Exercise Sheet 10 CS 2210 Logic for Computer Scientists (Hitzler) Solutions due: Tuesday April 7, 2015, 11am

Exercise 48 Identify all predicate symbols and all terms in Example 3.1.5 3.

Exercise 49 Determine all predicate symbols and all function symbols, with arities, of the formula

$$\forall \varepsilon \exists \delta \forall x ((\varepsilon > 0 \land \delta > 0) \to (|x - 2| < \delta \to |x^3 - 2^3| < \varepsilon)).$$

Exercise 50 Give all subformulas of Example 3.1.5 4. Which of them are closed? Which of them are open?

Exercise 51 Give a structure for the formula

$$\forall x \forall y (Q(x,y) \to Q(y,x)).$$

Exercise 52 Give two structures for the first formula in Example 3.2.8, one of which is a model for the formula, and one of which is not a model for the formula.

Exercise 53 Show that $(U_{\mathcal{B}}, I_{\mathcal{B}})$ as in Example 3.2.2 is a model for

$$\forall x \exists y (P(x) \land Q(s(x), y)).$$

Exercise 54 Sentence 1 of Example 3.1.2 can be written as.

$$\forall x (\text{Healthy}(x) \to \neg \text{Dead}(x)).$$

Translate all other sentences from Example 3.1.2. Use schroedinger as a constant symbol and use only the following predicate symbols:

unary: Healthy, Dead, Cat, Alive, HappyCatOwner binary: owns, cares

Exercise 55 Sketch how you could formally prove, using the formulas from Exercise 54, that Schrödinger's cat is alive.