Generalized Metrics and
Uniquely Determined Logic Programs®

Pascal Hitzler! Anthony Karel Seda
Artificial Intelligence Institute Department of Mathematics
Department of Computer Science National University of Ireland
Dresden University of Technology University College Cork
Dresden, Germany Cork, Ireland
phitzler@inf.tu-dresden.de a.seda@ucc.ie
www.wv.inf.tu-dresden.de/~pascal / maths.ucc.ie/staff/seda/

November 28, 2001

Abstract

The introduction of negation into logic programming brings the benefit
of enhanced syntax and expressibility, but creates some semantical problems.
Specifically, certain operators which are monotonic in the absence of negation
become non-monotonic when it is introduced, with the result that standard ap-
proaches to denotational semantics then become inapplicable. In this paper, we
show how generalized metric spaces can be used to obtain fixed-point semantics
for several classes of programs relative to the supported model semantics, and
investigate relationships between the underlying spaces we employ. Our meth-
ods allow the analysis of classes of programs which include the acyclic, locally
hierarchical, and acceptable programs, amongst others, and draw on fixed-point
theorems which apply to generalized ultrametric spaces and to partial metric
spaces.

*To appear in: Proceedings of the Dagstuhl Seminar 00231, Topology in Computer Science:
Constructivity; Asymmetry and Partiality; Digitalization, Schloss Dagstuhl, Germany, June,
2000. Special issue of Theoretical Computer Science, Elsevier, 2001.

"The first named author acknowledges financial support under grant SC/98/621 from Enter-
prise Ireland.

Contents

1 Introduction 2
2 Preliminaries 5
2.1 The Supported Model Semantics 5
2.2 Uniquely Determined Programs 6
2.3 Generalized Metricso 11
2.4 The Query and Atomic Topologies 13
3 Basic Construction 13
4 Dislocated Metrics and the ®;-Accessible Programs 17
4.1 'The Fixed-Point Theorem of Matthews 17
4.2 An Application to the ®;-Accessible Programs 18
4.3 Dislocated Metrics and Metrics oL 22

5 Dislocated Generalized Ultrametrics and the ®*-Accessible Pro-

grams 24
5.1 A Generalized Priess-Crampe & Ribenboim Fixed-Point Theorem — 24
5.2 Application to the ®*-Accessible Programs 26
5.3 Generalized Ultrametrics and Dislocated Generalized Ultrametrics 28
6 ®-Accessible Programs 30
7 Related and Further Work 31
8 Conclusions 33
A Appendix: More on the Atomic Topology 38

1 Introduction

In recent years, the role of topology in Logic Programming has come to be rec-
ognized, with applications of methods of topology to several areas within logic
programming including: continuous models of computation, building formal mod-
els of hybrid systems, modularity of programs, fixed-point theory, inductive logic
programming, studies in termination and verification, connections between logic
programming and neural networks, applications to disjunctive databases, and con-
struction of standard models of logic programs. Whilst the bibliography of this
paper is not in any way intended to be comprehensive, the reader may care to
consult [4, 5, 6, 7, 16, 19, 20, 22, 23, 29, 31, 35, 41, 43] for some sample results

and to gain an overview; a brief discussion of some of these works is to be found
in Section 7 of this paper. In particular, it is now appreciated that topological
methods can be employed to obtain fixed-point semantics for logic programs in
situations where methods based on order may fail. In this paper, we will pursue
the observation just made quite extensively by examining the use of fixed-point
theorems which utilize various types of generalized metric. In addition, we show
how these latter theorems may be applied with the specific aim of establishing
that certain classes of programs are uniquely determined in the sense that each
member of the class has a unique supported model, that is, an unambiguous Clark
completion semantics.

In the classical approach to logic programming semantics, see [32], one asso-
ciates with each definite or positive program! an operator Tp called the single-step
or immediate consequence operator, see Section 2. This operator turns out to be
Scott-continuous on the complete lattice of all interpretations. An application of
the well-known fixed-point theorem for continuous operators on complete partial
orders yields a least fixed point of Tp. Usually, one takes this least fixed point
to be the denotational semantics, or meaning, of the program in question, and
indeed, in the definite case, it turns out that this semantics agrees very well with
the procedural and logical reading of the program, see [32].

However, when syntax is enhanced by introducing classical negation to ob-
tain the so-called normal logic programs, the single-step operator becomes non-
monotonic, and hence not Scott-continuous, in general. This fact has the unfortu-
nate consequence that the classical approach described above using the fixed-point
theorem for Scott-continuous mappings becomes invalid, and other methods have
to be sought. To date, these include: (1) restricting the syntax of the programs in
question (see for example [1, 10, 37, 43]), (2) using alternative operators (see for
example [15, 17, 18, 21]), and (3) applying alternative fixed-point theorems which
apply to non-monotonic operators. It is this latter point (3) which we address
here.

The main alternative to the Knaster-Tarski theorem and its relatives, such
as the fixed-point theorem already alluded to above, is the Banach contraction
mapping theorem for complete metric spaces. In some cases, for example for the
acyclic? programs, the Banach theorem can indeed be applied, see [16, 29, 44].
Acyclic programs, however, are a rather restrictive class and, furthermore, the
topological spaces which arise in the area of denotational semantics are often not
metrizable. It is therefore of interest to find fixed-point theorems for spaces which
are weaker than metrics in a topological sense. The options include (a) quasi-
metrics, see [42, 46], which have a well-established presence within domain theory,

'A program in which negation does not occur.
2Called w-locally hierarchical in [10].

(b) generalized ultrametric spaces having arbitrary partially ordered sets as the
codomain of their distance function, see [31, 43, 35, 22|, and (c) partial metrics,
or the slightly more general dislocated metrics®, which differ from metrics in that
one allows the distance from a point to itself to be non-zero, see [24].

Here, we will see that the theorem of Priess-Crampe and Ribenboim on gen-
eralized ultrametrics, the fixed-point theorem of Matthews on dislocated metrics,
and a theorem which is obtained by merging those two can be employed in order
to analyse logic programs from the point of view of denotational semantics. Pre-
liminary results along these lines have already been obtained by the authors in
(22, 23, 24, 25, 26] and presented at various conferences and workshops. In this
paper, these results are placed in a general framework and further results and new
proofs are included. Where proofs have already been published, references only
are given so that the paper is partly a survey of our results in this area.

The plan of the paper is as follows. After some preliminaries in Section 2,
the basic underlying construction of (generalized) metric is presented in Section
3 and applied to both acyclic and locally hierarchical programs using the Ba-
nach contraction mapping theorem respectively the theorem of Priess-Crampe
and Ribenboim. This line of thinking is then extended in Sections 4 and 5 in
order to permit the investigation of larger classes of programs, first by employing
dislocated metrics and the Matthews fixed-point theorem, and then by merging
dislocated metrics and generalized ultrametrics. An even more general approach is
then considered in Section 6, where we will ultimately employ our results in order
to study the class of all programs which have a total Kripke-Kleene semantics [15].
At all times, investigations of the underlying spaces and the interrelationships be-
tween them will go hand in hand with the results on logic programming semantics
which are the motivation for these investigations. Finally, in Appendix A, we col-
lect together some background facts concerning the topology which underlies all
the work presented here.

Acknowledgements. We thank Michel Schellekens for bringing [34] to our attention,
Keye Martin for pointing us to [12], and Pawel Waszkiewicz for providing us
with some facts about partial metric spaces. Roland Heinze made us aware of
an incorrecteness in an earlier version of Definition 2.2. The suggestions of three
anonymous referees have helped us to substantially improve the presentation of the
paper in several places. Finally, we wish to thank the organizers of the Dagstuhl
Seminar 00231 for inviting us to present our work at that meeting.

3Called metric domains in [33].

2 Preliminaries

2.1 The Supported Model Semantics

A (normal) logic program is a finite set of universally quantified clauses of the
form
VA« LiAN---NLy,),

where A is an atom and all the L; are literals, usually written simply as
A(—Ll,...,Ln.

We call A the head of the clause and Ly, ..., L, (which denotes Ly A ... A L)
the body of the clause. Each L; is called a body literal of the clause. A program
is called definite if no negation symbol occurs in it. If p is a predicate symbol
occurring in P, then the definition of p consists of all clauses from P whose head
contains p.

For a given logic program P, we denote the Herbrand base (the set of all
ground atoms in the underlying first order language) by Bp. As usual, (Herbrand-
) interpretations of P will be identified with subsets of Bp, so that the power set
Ip = 2B7 is the set of all interpretations of P. The set of all ground instances of
each clause in a program P will be denoted by ground(P). A level mapping is a
function [: Bp — «, where « is an arbitrary (countable) ordinal; we call the value
[(A) the level of the element A of Bp. We always assume that a level mapping is
extended to ground literals by setting [(—A) = [(A) for each A € Bp. If o = w,
the smallest infinite ordinal, we call [an w-level mapping. We identify w with the
set of natural numbers, N.

A standard approach to logic programming semantics, that is, to assigning a
reasonable meaning to a given logic program, is to identify models of the program
which have certain additional properties. We will focus here on the supported model
semantics or Clark completion semantics. To do this, we define the immediate
consequence operator, or single-step operator, Tp, for a given logic program P as
a mapping Tp : Ip — Ip of interpretations to interpretations as follows: Tp (/)
is the set of all A € Bp for which there exists an element A < Lq,...,L, of
ground(P), with head A, satisfying I = Ly A--- A L,. Note that Tp is in general
not monotonic. As it turns out, the models of P are exactly the pre-fixed points
of Tp, and hence are those interpretations I which satisfy Tp(I) C I. A supported
model (or model of the Clark completion) of P is a fixed point of Tp.

The Clark completion of a program was introduced in [11], see also [32], as
a way of interpreting logic programming clauses as equivalences rather than as
implications. Clark studied the relationship between his completion and the in-
terpretation of negation as finite failure, which is the way negation is treated for

example in Prolog. First, a given program P is completed to obtain a set comp(P)
of logical formulas. The models of comp(P) are then taken to be the declarative
semantics of P. It not only turns out [11] that negation as failure is correct with
respect to this semantics, but also that the models of comp(P) can be obtained,
using a simple identification, as the fixed points of the operator Tp introduced
above. These fixed points, which are models of P, were termed supported in [1]
since such a model I provides support for belief in each ground atom A with
I E A in the following precise sense: if I = A, then there is a ground instance
A<« Ly,...,L, of a clause in P such that [= L; A --- A Ly; thus, each ground
atom A which is true in [is true for a reason provided by the program and [
itself.

In the sequel, we will study the declarative reading of logic programs as given
by the Clark completion semantics, or supported model semantics. This undertak-
ing necessarily inherits any limitations which are implicit in the Clark completion
semantics itself, and therefore can only be as satisfactory as this semantics.* How-
ever, the declarative reading we have chosen to work with provides the conceptual
clarity which is needed to understand the central aspects of our approach, namely
to use generalized metrics for the study of non-monotonic semantic operators in
logic programming. Certainly, this paper is not an end in itself.

2.2 Uniquely Determined Programs

We next introduce some classes of logic programs which will be studied in detail
in the sequel. We will see later that all these programs are uniquely determined in
that each of them has a unique supported model. The following definition is taken
from [2] where it was employed in defining acceptable programs, much studied
in the context of termination analysis. It is the inspiration for the more general
classes which will be given in Definition 2.2.

2.1 Definition Let P be a logic program and let p and ¢ be predicate symbols
occurring in P.

1. p refers to q if there is a clause in P with p in its head and ¢ in its body.

2. p depends on q if (p,q) is in the reflexive, transitive closure of the relation
refers to.

3. Negp denotes the set of predicate symbols in P which occur in a negative
literal in the body of a clause in P.

“Indeed, although there has been considerable progress concerning the study of declarative,
model-theoretic semantics of logic programs, this quest is still inconclusive for programs with
negation.

4. Negp denotes the set of all predicate symbols in P on which the predicate
symbols in Negp depend.

5. P~ denotes the set of clauses in P whose head contains a predicate symbol
from Negp.

2.2 Definition A program P is called ®*-accessible if and only if there exists a
level mapping [for P and a model I for P which is a supported model of P~ such
that the following condition holds. For each clause A < Ly, ..., L, in ground(P),
we either have I = Ly A--- A L, and [(A) > [(L;) for all i = 1,...n or there
exists i € {1,...,n} such that I & L; and [(A) > [(L;). Furthermore, P is called
®F -accessible if it is ®*-accessible and [can be taken to be an w-level mapping.

Next, P is called ®-accessible if and only if there exists a level mapping [for
P and a model I for P such that the following condition holds. Each A € Bp
satisfies either (i) or (ii):

(i) There exists a clause A < Ly,..., L, in ground(P) with head A such that
I'ELyN---NL,and I[(A) > I(L;) foralli =1,...,n.

(ii) I = A and for each clause A < Ly, ..., L, in ground(P) with head A there
exists ¢ € {1,...,n} such that I & L; and I(A) > [(L;).

Again, P is called ®,-accessible if it is ®-accessible and [can be taken to be
an w-level mapping.

Finally, a program P is called locally hierarchical, see [10], if there exists a level
mapping [: Bp — « such that for each clause A < Ly,..., L, in ground(P) and
for all i = 1,...,n we have [(A) > [(L;). If a can be chosen to be w, then P is
called acyclic.

We note that if a program is ®-accessible with respect to a model I and a level
mapping [, then [is supported. This follows easily from the defining conditions.

Relationships between the classes of programs defined above are represented
in Figure 1, where an arrow pointing from one class to a second indicates inclusion
of the first inside the second. We also note that both the class of ®*-accessible
and the class of ®-accessible programs contain the acceptable programs of [2] and
the locally hierarchical programs.

Examples

We illustrate the definitions above by means of some example programs which
can actually be run under Prolog. The language which we will consider contains
a constant symbol 0 and a function symbol s. The intended meaning of these
symbols is that 0 stands for the natural number zero, and s stands for the successor

acyclic

v N\

@r-accessible locally hierarchical

/\/

d,-accessible @' -accessible

N/

®-accessible

Figure 1: Relationships between unique supported model classes

function on the natural numbers. We abbreviate s(...(s(0))...), in which s occurs
n times, by s"(0), and we think of this as the natural number n. Variables are
denoted by uppercase letters as usual under Prolog.

The following program even is acyclic:

even(0) <
even(s(X)) < —even(X)

This program can be used to check whether a given term s"(0) represents an
even number, but it cannot be used to generate the even numbers because the
call ?-even(X) fails immediately since the derived goal 2-=even(Y") flounders®. In
order to generate the even numbers, we use the so-called generate-and-test scheme
as in the following program getEven, which consists of the program even together
with the following clauses:

nn(0) <
nn(s(X)) < nn(X)
getBven(X) « nn(X), even(X)

In this program, the predicate nn is used in order to generate, successively, all
natural numbers. As soon as one of them is generated, it is tested for being even
by invoking a call to even. The program call ?-getFEven(X) successively generates
all even numbers.

Program getEven is still acyclic with respect to the level mapping which maps
each ground atom to the natural number which equals the number of occurrences
of the function symbol s in the atom. The following program existsEven is not

5Tt flounders because it attempts to evaluate a negated atom in which a variable occurs. This
cannot be resolved under Prolog.

acyclic, but is locally hierarchical, and consists of the definitions of even, nn and
the following clause:

existsEven < nn(X), even(X)

Procedurally, the call ?-ezistsFven succeeds if and only if there exists an even
natural number. Admittedly, this example is somewhat academic, but it illustrates
why it may be interesting to study locally hierarchical programs which are not
acyclic. For example, the predicate nn could be replaced by the generator of some
more complicated data structure, and even by a sophisticated test predicate. The
resulting program is then no longer trivial like existsEven, but it is still locally
hierarchical if the subprograms belonging to the substituted predicates are.

We note that the clause defining ezistsEven contains variables which occur in
the body of the clause but not in its head. Such variables are called local. Locally
hierarchical programs without local variables turn out to be acyclic, see [44].

As an example of a @} -accessible program we use the following program game
from [2] as follows. Let G be an acylic finite graph.

win(X) < move(X,Y), mwin(Y")
move(a, b) for all (a,b) € G

It was shown in [2] that game is acceptable, and the proof carries over directly to
show that it is @] -accessible.

Acyclic programs always terminate, see [3], and are therefore not expressive
enough for implementing all partial recursive functions. We give next a more
sophisticated example concerning the minimalization step in implementing partial
recursive functions. The resulting program will turn out to be ®*-accessible.

Suppose that g is a partial recursive function (on natural numbers in successor
notation) with n+1 arguments, and that the partial recursive function f is defined
by f(z1,...,2,) = py(g(zy,...,z,,y) = 0), that is, f(xy,...,x,) is the least y
such that g(z1,...,z,,y) = 0 and g(z1,...,x,, 2) is not undefined for all z < y,
if such a y exists, and is undefined otherwise. Suppose, furthermore, that P,
is a ®*-accessible program which defines an (n — 2)-ary predicate p, such that
a call ?-p,(z1,...,7y,y,U) does not terminate if g(zy,...,x,,y) is undefined,
and otherwise yields the computed answer substitution which gives the value
g(x1,...,2,,y) to U. Now consider the following program P; which contains®

#We assume without loss of generality that P, does not contain predicate symbols py, r and
It.

P, and the following clauses:

pr(X,Y) = py(X,0,U),r(X,0,U,Y)
r(X,Y,0,Y) «
r(X,Y,s(V), Z) = pg(X,s(Y),U),r(X,s(Y),U, Z), (Y, Z)

10, 5(X))
it(s(X), s(Y)) « U(X,Y)

Program P; is an adaptation of a program used in [32, Theorem 9.6]” to show
that every partial recursive function can be implemented by a definite program.
Using the proof in [32], it is easy to see that Py indeed implements f, and the
details of this are not our main concern here. We will instead show that P; is
®*-accessible under some reasonable assumptions on F,. However, we delay this
discussion until the end of Section 5.2, since the analysis of the program Py is
easier once we have gained some insight into the nature of ®*-accessible programs.
The considerations just given lead to the fact reported in [21] that every partial
recursive function can be implemented, under Prolog, by a definite ®*-accessible
program. We know of no work describing a smaller class of programs with this

property.

Uniquely Determined Programs in Context

Some of the classes of programs which satisfy Definition 2.2 are already well-known
in the literature, since level mappings have provided a convenient tool for studying
termination properties. Bezem in [3] showed that the acyclic programs are exactly
the programs which terminate under any selection rule. Apt and Pedreschi in [2]
relaxed the notion of acyclicity and obtained the class of acceptable programs
which, in the absence of floundering, correspond exactly to left-termination, that
is, to termination under the left-to-right selection rule as implemented in Prolog.
Both classes are contained in the class of all ®}-accessible programs. In fact,
each ®-accessible program is acceptable modulo reordering of body literals (in
ground(P)), and can therefore be understood, in the absence of floundering, as
corresponding to a terminating program under a don’t know non-deterministic
selection rule. We do not study acceptable programs here, as such, since they
are completely subsumed, for our purposes, by the more general classes we have
introduced in Definition 2.2.

The ®-accessible programs are exactly the programs which have a total Kripke-
Kleene semantics as introduced by Fitting in [15]. This follows from the results
presented in [21] where the present authors proposed a unifying view of certain

"The original program of Lloyd is not ®*-accessible.

10

classes of programs, including those defined above, based on various three-valued
logics. Building on [21], we subsequently showed in [25, 27] that each ®-accessible
program is weakly stratified in the sense of Przymusinska and Przymusinski [36].
This fact strengthens what is in effect the well-known result from [17] that every
d-accessible program has a total well-founded semantics and therefore a unique
stable model [18], although the terminology “®-accessible” was not of course used
in these earlier works. We note that Definition 2.2 differs slightly from the one
used in [21, 25, 27], but equivalence between the respective definitions can easily
be established.

For the study of the termination properties and relationships mentioned in
this section we refer the reader to the literature already indicated, and we proceed
now to the study of generalized metrics in logic programming.

2.3 Generalized Metrics

Metrics, and their generalized versions as introduced below, provide an abstract
quantitative measure of distance between points in a space. In the following, we
collect together the different definitions of generalized metrics which will be used
in the sequel.

2.3 Definition Let X be aset andlet d : X x X — R be a function, called a dis-
tance function, where RS denotes the set of non-negative real numbers. Consider
the following conditions:

(Mi) For all x € X, d(z,z) = 0.

(Mii) For all z,y € X, if d(z,y) = 0, then x = y.
(Miii) For all z,y € X, d(z,y) = d(y, x).
(Miv) For all z,y,2z € X, d(z,y) < d(z,z) +d(z,y).
(Miv') For all z,y,z € X, d(x,y) < max{d(z, z),d(z,y)}.
Terminology for d, depending on which of the conditions it satisfies, is given in
Table 1, where a “x” indicates that the respective condition holds, and will be
extended to the pair (X, d) in the obvious way. Thus, for example, (X, d) will be
called a metric space if d is a metric, and so on. In fact, it will often be convenient

throughout the paper to abuse notation and refer to properties of d which, more
properly, are properties of (X, d), and vice versa.

The most important of the notions just defined is that of metric, and indeed
results on metric spaces can be found in any standard textbook on general topol-
ogy, see for example [48]. One of the central results in the theory is the Banach

11

metric

ultrametric

dislocated metric (d-metric)
dislocated ultrametric (d-ultrametric

X X

X X X X

Name | (Mi) | (Mii) | (Miii) | (Miv) | (Miv)
) X X x

Table 1: Metric Definitions

contraction mapping theorem which we state for convenient reference. Note that
sequences such as (z,)neny will usually be denoted simply by (x,) where no con-
fusion is caused.

A sequence (z,,) in a metric space (X, d) converges with respect to d (or in d)
if there exists © € X such that d(z,,) converges in the real line to 0 as n — oc.
In this case, x is called the limit of (x,). A sequence (z,) in a metric space is
called a Cauchy sequence if, for each ¢ > 0, there exists nyg € N such that for all
m,n > nyg we have d(z,,x,) < . A metric space X is called complete if every
Cauchy sequence in X converges. A function f : X — X is called a contraction if
there exists 0 < A < 1 such that the inequality d(f(x), f(y)) < Ad(z,y) holds for
all z,y € X.

2.4 Theorem (Banach) Let (X, d) be a complete metric space and let f : X —
X be a contraction. Then f has a unique fixed point zy which can be obtained as
the limit of the sequence (f"(z))nen for any choice of z € X.

Dislocated metrics were introduced in [33], and we will return to them later.

An alternative method of obtaining generalized metrics is by relaxing the con-
ditions on the codomain of the distance function: we allow arbitrary partially
ordered sets with least element in place of the set of real numbers. Such general-
ized metric spaces originate from valuation theory and were introduced to logic
programming in [35], see also [22].

2.5 Definition Let X be a set and let (I, <) be a partially ordered set with
least element 0. We call (X, d,T'), or simply (X, d), a generalized ultrametric space
(gum) if d : X x X — T is a function satisfying the following conditions for all
r,y,z€ X and v € I':

(Ui) d(x,y) =0 implies z = y.
(Uii) d(z,z) =0.

(Uiil) d(z,y) = d(y,).

12

(Uiv) If d(z,y) <~ and d(y, z) < v, then d(z, z) <.

If d satisfies conditions (Ui), (Uiii) and (Uiv) only, then we call (X, d) a dislocated
generalized ultrametric space (d-gum). A ball in a (dislocated) generalized ultra-
metric space (X,d) is a set of the form B,(z) = {y € X | d(z,y) < 7}, where
v € T'; we call a midpoint of the ball (note that any point of a ball in a gener-
alized ultrametric space is a midpoint, see [35] and Lemma 5.2), and we call v its
radius. Similar terminology applies in metric spaces also. We note at this point
that a ball in a d-gum may be empty. A (dislocated) generalized ultrametric space
X is called spherically complete if the intersection of each chain® of (non-empty)
balls is non-empty.

2.4 The Query and Atomic Topologies

We will need to make use of the atomic topology @ which was introduced in [41].
This topology is a generalization of the query topology discussed in [7]. In fact, we
will only use two properties of this topology, namely, that limits in () are unique,
and that limits of sequences in () are characterized as follows.

2.6 Proposition A sequence (I,,) converges in @ iff for every A € Bp we have
either A € I, eventually or eventually A ¢ I,, that is, for every A € Bp there
exists some ng such that either for all n > ny we have A € I,, or for all n > ny we
have A ¢ I,,. Moreover, if (I,,) converges in @), then its limit is the set {A € Bp |
A eventually belongs to I,,}.

We also note that it is possible to characterize () using logical notions. For the
reader with some topological background we have recorded some further results
and observations about (), which are independent of the rest of the paper, in
Appendix A.

3 Basic Construction

The following construction is fundamental to our investigations, and was already
hinted at in [16]. It is also closely related to a definition used in [46] for obtaining
quasi-metrics from domains, see also [43].

Let P be a logic program and let [: Bp — 7 be a level mapping for P. Let
I'={27%| a <}, ordered by 27 < 277 iff 3 < @, and denote 27 by 0.

3.1 Definition We define a function d : Ip x Ip — T by setting d(I,J) = 0 if
I = J, and, when I # J, by setting d(I,.J) = 27, where I and .J differ on some
ground atom of level a but agree on all ground atoms of lower level.

8By a chain of balls we mean a chain with respect to set-inclusion.

13

It turns out that (Ip, d) is a spherically complete generalized ultrametric space,
see [43]. If &« = w, then (Ip,d) is a complete ultrametric space.

3.2 Definition A function f : X — X defined on a generalized ultrametric space
(X, d) is called strictly contracting if d(f(z), f(y)) < d(z,y) for all z,y € X with

x Fy.

3.3 Theorem Let X be a spherically complete generalized ultrametric space and
let f: X — X be strictly contracting. Then f has a unique fixed point.

This theorem, due to Priess-Crampe and Ribenboim [35], is clearly analogous
to the Banach contraction mapping theorem for complete metric spaces. The rela-
tionship between these two theorems can be clarified using the following proposi-
tion, and we note that every (conventional) ultrametric space is also a generalized
ultrametric space.

3.4 Proposition Let (X, d) be an ultrametric space. If X is spherically complete,
then it is complete. The converse does not hold in general.

Proof: Assume that (X, d) is spherically complete and that (z,) is a Cauchy
sequence in (X, d). Then, for every k € N, there exists a least n, € N such that
for all n,m > ny we have d(x,,x,,) < % We note that n;, increases with k. Now
consider the set of balls B = {B% (zn,) | £ € N}. By (Uiv), B is a decreasing
chain of balls and has non-empty intersection B by the spherical completeness of
(X,d). Let a € B. Then it is easy to see that (x,) converges to a (and hence that
B = {a} is a one-point set since limits in (X, d) are unique) and therefore (X, d)
is complete.

In order to show that the converse does not hold in general, define an ultramet-
ric d on N as follows. For n,m € N, let d(n,m) = 1 + 2~ ™™™} if p £ m and set
d(n,n) = 0 for all n € N. The topology induced by d is then the discrete topology
on N, and the Cauchy sequences with respect to d are exactly the sequences which
are eventually constant. So, (N, d) is complete. Now consider the chain of balls B,
of the form {m € N | d(m,n) <1+ 27"}. Then we obtain B,, = {m | m > n} for
all n € N and hence (| B,, = 0. |

We note that the immediate consequence operator T is not in general strictly
contracting if no conditions are placed on the program P. However, for locally
hierarchical programs P, Tp is strictly contracting. Hence, by Theorem 3.3 we can
conclude that each locally hierarchical program has a unique supported model (as
shown first in [10] by completely different methods). For details of the proofs, we
refer to [22]. In fact, if P is acyclic, then the contraction mapping theorem itself
can be applied instead of Theorem 3.3, and again we refer to [22] for details.

14

A proof of Theorem 3.3 can be found in [35]. However, we wish to give an
alternative proof which is inspired by [12], where the Banach contraction mapping
theorem was proven from the fixed-point theorem for Scott continuous functions on
complete partial orders. We will prove the Priess-Crampe and Ribenboim theorem
using a form of Tarski’s theorem, Theorem 3.5 below. For this purpose, we will
impose the condition on the generalized ultrametric space (X,d,T’) that T is of
the form {27* | & < 7} for some ordinal 7, ordered as above. Such a generalized
ultrametric space will be called a gum with ordinal distances.

3.5 Theorem Let (D, <) be a partially ordered set with bottom element | such
that each chain has a least upper bound, and let f : D — D be a monotonic
function on D. Then f has a least fixed point.

For the proof of this well-known theorem, we define ordinal powers of f as
follows. Let f10 = L; for each successor ordinal a + 1, let f1(a+1) = f(fT);
for each limit ordinal o, let f 1T« = sup{f 1S | f < a}. The resulting chain of
ordinal powers of f must become stationary at some stage, yielding a least fixed
point of f.

The main technical tool which was employed in [12] is the space of formal balls
associated with a given metric space. We will extend this notion to generalized
ultrametrics.

Let (X, d,T') be a generalized ultrametric space and let B'X be the set of all
pairs (z,a) with x € X and a € T'. We define an equivalence relation ~ on B'X
by setting (z1,aq) ~ (29,) iff a5 = ay and d(x, z3) < aq. The quotient space
BX = B'X/ ~ will be called the space of formal balls associated with (X,d,T),
and carries an ordering C which is well-defined (on representatives of equivalence
classes) by (z,a) C (y,3) iff d(z,y) < o and 8 < a. We denote the equivalence
class of (z,a) by [(x,«)], and note of course that the use of the same symbol C
between equivalence classes and their representatives should not cause confusion.

Informally, we think of each formal ball [(z, @)] in BX as standing for the ball
B, (z). The equivalence relation ~ corresponds to the fact that y € B,(x) implies
B, (x) = B4 (y), see Lemma 5.2. However, note that it is possible in general that
B,(x) = Bg(x), for some « and 3, but that a # /. So in this case we will still
have (z,a) o (x,). The ordering C is an abstract form of inverse containment
for formal balls. More precisely, (z,«) C (y,3) implies Bg(y) C B,(z), but not
vice versa in general.

3.6 Proposition The set BX is partially ordered by C. Moreover, X is spheri-
cally complete if and only if every chain in BX has a least upper bound.

Proof: The proof is straightforward and we omit the details. |

15

3.7 Proposition The function ¢ : X — BX : z — [(x,0)] is injective and +(X)
is the set of all maximal elements of BX.

Proof: Injectivity of ¢ follows from (Ui). The observation that the maximal el-
ements of BX are exactly the elements of the form [(x,0)] completes the proof.
[|

Given a strictly contracting mapping f on a generalized ultrametric space
(X,d,T) with ordinal distances, we define a function Bf : BX — BX by setting

BF([(x,27)]) = [(F(2),2-@D)], if 27 £ 0, and setting Bf ([(z,0)]) = [((x), 0)].
3.8 Proposition If f is strictly contracting, then Bf is monotonic.

Proof: Let (z,27%) C (y,27"), so that d(x,y) < 27® and a < f3. Since (z,27%) ~
(y,27%), we only have to show that d(f(z), f(y)) < 271 (which holds since f
is strictly contracting), that o +1 < B+ 1if 2791 € I', that a +1 < Bif 279 =0
and o # 3, and that o < fif 27 = 27 = 0, all of which are easy to see. [|

Proof of Theorem 3.3 for ordinal distances: Let (X,d,T") be a spherically
complete generalized ultrametric space with ordinal distances, and let f : X — X
be strictly contracting. Then BX is a partially ordered set such that every chain
in BX has a least upper bound, and Bf is a monotonic mapping on BX. For
By € BX, we denote by 1 By the upper cone of By, that is, the set of all B € BX
with By C B.

Let x € X be arbitrarily chosen, assuming without loss of generality that x is
not a fixed point of f, and let & be an ordinal such that d(z, f(x)) = 2~*. Then
(x,27%) C (f(x), 2’(0‘“)) and, by monotonicity of Bf, we obtain that Bf maps
1 [(x,279)] into itself. Since T [(z,27%)] is a partially ordered set with bottom
element [(z,27%)] and such that each chain in 1[(x,27%)] has a least upper bound,
we obtain that Bf has a least fixed point in 1 [(z,2~*)] which we will denote by
By. It is clear by definition of Bf that By must be maximal in BX, and hence is
of the form [(zg,0)]. From Bf[(zy,0)] = [(x0,0)], we obtain f(zg) = ¢, so that x,
is a fixed point of f.

Now assume that y # 1z is another fixed point of f. Then d(zy,y) =
d(f(zo), fy)) < d(xo,y) since f is strictly contracting. This contradiction es-
tablishes that f has no fixed point other than x,. [

Whilst the proof just given is a slight digression from the main theme of
the paper, it does suggest the possibility of a domain-theoretic treatment of non-
monotonic operators in logic programming, possibly related to the work of Rounds
and Zhang in [39, 50, 51, 52]. We will return to this comment in Section 7. We also
note that, on setting Bf([(x, «)]) = [(f(z), L(«))], we can extend this proof from
the case of ordinal distances to the slightly more general case that there exists a

16

mapping L : I' — T satisfying the following conditions: (i) L is monotonic, (ii)
L(0) = 0, (iii) L(«) is the largest element of I' strictly less than « for all o # 0.
Of course, this latter condition is as much a condition on I' as it is a condition on
L, and in particular it says that L(a) < a for all a # 0.

4 Dislocated Metrics and the ¢ -Accessible Pro-
grams

4.1 The Fixed-Point Theorem of Matthews

It will be convenient next to review the fixed-point theorem on dislocated metrics
established by Matthews in [33]; it gives a result very similar in form to the Banach
contraction mapping theorem.

4.1 Definition A sequence (x,) in a dislocated metric space (X,) converges
with respect to o (or in) if there exists an 2 € X such that o(x,, z) converges to
0 as n — oo. In this case, = is called the d-limit of (z,).

It is easy to see that limits in dislocated metric spaces are unique.

4.2 Definition A sequence (x,) in a dislocated metric space (X,) is called a
Cauchy sequence if, for each € > 0, there exists ng € N such that for all m,n > nyg
we have o(z,,r,) < €. A dislocated metric space X is called complete if every
Cauchy sequence in X converges. A function f : X — X is called a contraction if
there exists 0 < A < 1 such that the inequality o(f(x), f(y)) < Ao(x,y) holds for
all z,y € X.

4.3 Theorem Let (X, 9) be a complete dislocated metric space and let f : X —
X be a contraction. Then f has a unique fixed point zy which can be obtained as
the d-limit of the sequence (f"(x))nen for any x € X.

Proofs of this theorem can be found in [33, 20]. Another proof, which is closer
to the proof of the original Banach contraction mapping theorem, can be found
in [24]. A third proof will be given in Section 4.3.

There are various ways of obtaining dislocated metrics from metrics, see [24].
In fact, the following result, which is Proposition 4.7 of [24], will be applied in
Section 4.2.

4.4 Proposition Let (X, d) be an ultrametric space and let v : X — R§ be a
function. Then (X, o) with

o(z,y) = max{d(z,y), u(z),u(y)}

17

is a d-ultrametric and o(z,z) = u(x) for all € X. If u is a continuous function
on (X, d), then completeness of (X, d) implies completeness of (X, o).

The function u is called a weight. In the definition of o, we think of d as
providing a basic, probably context-independent metric structure, while u encodes
some particular knowledge about the specific problem at hand. In what follows,
it may be helpful to think of u(z) as measuring the extent to which z is a priori
not suitable as a solution to a given problem. We will clarify this intuition in the
next section.

4.2 An Application to the ®]-Accessible Programs

In the following, P denotes a @] -accessible program which satisfies the defining
conditions of such programs with respect to a model I and a level mapping I.
Then (Ip,d), with d as given by Definition 3.1, is a complete ultrametric space.

Inspired by [16], we next define a function f : Ip — R by setting f(K) = 0
if K C T and, if K Z I, by setting f(K) = 27", where n is the smallest integer
such that there is an atom A € Bp with [(A) = n, K = A and I [~ A. Finally,
we define u : Ip — R by u(K) = max{f(K'),d(K \ K',I\ I')}, where K', for any
K € Ip, denotes K restricted to the predicate symbols which are not in Negp,
and we define p: Ip x Ip — R by

o(J, K) = max{d(J, K),u(J),u(K)}.

We call p the d-metric associated with P.
Proposition 4.4 yields that ¢ is a complete d-ultrametric on Ip provided that
we are able to show that the function wu, as given there, is continuous.

4.5 Lemma The function u : Ip — R defined by u(K) = max{f(K'),d(K \
K', T\ I')} is continuous as a function from (Ip,d) to R.

Proof: Let K,, be a sequence in Ip which converges in d to some K € Ip.
We need to show that d(K \ K], I\ I') converges to d(K \ K',I\ I') and that
f(K,) converges to f(K') as m — oo. Since (K,,) converges to K with respect
to the metric d, it follows that for each n € N there is m,, € N such that K and
K,,, for all m > m,, agree on all atoms of level less than or equal to n. So, if
f(K) = 27" say, that means that K,, and K agree on all atoms of level less
than or equal to n if m > m,,,, and hence f(K,,) = f(K) for all m > m,,. Also,
if d(K\ K', T\ I') =2, say, then d(K,, \ K,, I\ I')=d(K \ K', I\ I') for all

m > My,, as required. [|

As an example, we consider a rather simple instance of the program game, call

18

it gamel, which is as follows:
win(X) < move(X,Y), mwin(Y)
move(a, b)
move(a, c)
move(b, d) +

In order to clarify the role of the function u, we define program game2 to consist
of the clauses from gamel together with the single clause

wins(X) + win(X).

According to the analysis of game in [2], which is easily adapted to game2, we
can construct a level mapping [and a model I such that game2 is @} -accessible
with respect to [and I. The definitions are as follows, where the graph G is given
as the set {(a,b), (a,c), (b,d)}.

We define a function f’ mapping D = {a, b, ¢, d} into the set of natural numbers
by f'(c) = f'(d) =0, f'(b) =1, f'(a) = 2, and we define the level mapping [by
[(move(x,y)) = f'(x) for all (z,y) € G, l(win(x)) = f'(x) + 1 for x € D, and
l(wins(z)) = f'(z) + 2, thus

We also define a function ¢’ from D to {0,1} by ¢'(c) = ¢'(d) = 0 and ¢'(a) =
g'(b) =1, and we also define the following interpretations

I' = {move(z,y) | (z,y) € G} U{win(z) | ¢'(x) = 1}
= {mowe(a, b), move(a, c), move(b, d), win(a), win(b) } and
I =TU{wins(xz) |z € D}
= {move(a, b), move(a, ¢), move(b, d), win(a), win(b) }
U {wins(a), wins(b), wins(c), wins(d)}.
By [2], game2 is @} -accessible with respect to [and I. This is also easily verified
directly.

We now consider the construction of ¢ given earlier. We obtain Negg, .., =
{win, move} and game2~ as the subprogram gamel. Let us call an interpretation

19

J for game2 (a priori) suitable if J C I and J coincides with I on all atoms
with predicate symbol in Negg,,.,. In the light of Proposition 4.11 below, this is
equivalent to saying that J C I and that J\ J’' is the unique supported model
of gamel. It then turns out that u(K) = 0 if and only if K is suitable. Further-
more, suitability of some interpretation K is a necessary condition for obtaining
o(K, K) = 0, which is in turn a necessary condition for K to be a fixed point of
Tgane> provided the latter operator is a contraction (which is the case as we will
see later). To summarize: a supported model of game2 is always suitable. This is
the precise sense in which u(z), for given x, can be thought of as a quantitative
measure of the extent to which x is a priori not suitable as a solution. The obser-
vations just given are valid in general, and we will return to this point at the end
of the section. But first, we define suitability for ®*-accessible programs.

4.6 Definition Let P be a program which is ®*-accessible with respect to some
level mapping [and some model I. An interpretation K of P is called (a priori)
suitable if K C I and K coincides with I on all atoms with predicate symbol in
Negp.

The following result states that if an arbitrary sequence of interpretations
converges with respect to p, then its limit is a limit in) and is always suitable.

4.7 Proposition Let P be a program which is ®-accessible with respect to a
model I and a level mapping [, and let p be its associated d-metric. If (.J,) is
a sequence which converges in ¢ to some K, then (.J,) converges in the atomic
topology on Ip, and the following two conditions hold.

(i) J, restricted to Negp converges in), and its limit is I restricted to Negp.
(i) J, restricted to the complement of Neg} converges in) to some J C I.

Furthermore, the limit K of J, is equal to (I \ I') U J.

Proof: It is easy to see that if o(.J,,, K) < 27% then J, and K agree on all atoms of
level less than k which shows the first assertion. From convergence in @) of (.J,,) to
some K, it follows that (.J,,\ J!) and (J)) converge in @ to K \ K’ respectively K.
By definition of p, we have d(K \ K, I\ I') = 0 which implies that K\ K’ = I\ I".
From the same definition, we obtain f(K) = 0 and therefore J = K’ C I which
completes the proof. [|

We return now to the study of the fixed-point theoretical aspects of @ -
accessible programs. The proof of the following proposition carries over directly
from the treatment of acceptable programs given in [16].

20

4.8 Proposition Let P be a ®]-accessible program and let p be defined as
above. Then the associated immediate consequence operator 1p is a contraction

on (Ip,).

By Theorem 4.3 we can now conclude the following result.

4.9 Theorem Each ®]-accessible program has a unique supported model which
can be obtained as the limit, in the atomic topology, of iterates of the single-step
operator associated with the program.

Proof: Let P be ®}-accessible. Then (Ip,0) is a complete d-ultrametric space
and Tp is a contraction relative to p. By Theorem 4.3, Tpr has a unique fixed point
which is the unique supported model of P. This fixed point can be obtained as
stated by Proposition 4.7. |

In the remainder of this section, let P be a program which is & -accessible
with respect to some level mapping [and some interpretation I, and let Mp be
the unique supported model of P. We now formally prove that Mp is a priori
suitable.

4.10 Proposition If J is an interpretation with o(J, J) = 0, then .J is suitable.
In particular, Mp is suitable.

Proof: From p(J,J) = 0 we obtain u(J) = 0, and from the definition of u the
assertion follows. Since Tp(Mp) = Mp, and since Tp is a contraction, we obtain
Q(Mp, Mp) =0. |

The construction of the dislocated metric o depends on the interpretation [
with respect to which P is @} -accessible. Determining such an interpretation from
a given program is an undecidable task, and cannot be automated. So we can only
hope to give some guidance, in the form of necessary conditions, which can help in
determining it. Such necessary conditions on interpretations and on level mappings
can be found in [20, Section 5.2]. We next prove a result which is important in
this respect. It will guide our search for an interpretation with respect to which
the program Py from Section 2.2 is ®*-accessible, and this point will be taken up
at the end of Section 5.2.

4.11 Proposition The following hold.

(i) For every suitable J with Mp C J C I, we have that P is ®}-accessible
with respect to .J and [.

(ii) Mp is the intersection of all models K with respect to which P is ®}-
accessible.

21

(iii) Every interpretation K with respect to which P is ®!-accessible contains
Mp and coincides with Mp on all atoms with predicate symbol in Negp.

Proof: Since J is suitable, we obtain that J coincides with I on all atoms with
predicate symbol in Neg}. Thus, for all clauses in P~, the defining condition
for @ -accessibility is satisfied. The remaining clauses form a definite program.
Now let A < By,..., B, be a ground instance of such a clause. If B; € I for all
i=1,...,n, then [(B;) <I(A) for all i and the defining condition holds also with
respect to J. If there is some ¢ with B; ¢ I and I(B;) < [(A), then B; & J since J
is suitable, and again the defining condition holds.

This much proves (i), from which it follows that P is also ®-accessible with
respect to Mp and [. Hence, Mp DO (Z, where Z stands for the set of all interpre-
tations with respect to which P is ®-accessible. Now let i € Z. From suitability
of Mp, we obtain both the inclusion Mp C K and the coincidence of Mp with K
on all atoms with predicate symbol in Neg},, and this establishes (iii). Finally, the
inclusion Mp C K implies Mp C (Z, proving the equality stated in (ii). [|

4.3 Dislocated Metrics and Metrics

In this subsection, we consider the relationship between the theorem of Matthews,
Theorem 4.3 and the Banach contraction mapping theorem.

4.12 Proposition Let (X, o) be a dislocated metric space and define d : X x X —
R by setting d(z,y) = o(x,y) for # y and setting d(z,z) = 0 for all z € X.
Then d is a metric.

Proof: We obviously have d(z,z) = 0 for all x € X. If d(x,y) = 0, then either
x =y or o(x,y) = 0, and from the latter we also obtain z = y. Symmetry is clear.
We want to show that d(z,y) < d(z,2) + d(z,y) for all z,y,z € X. If d(x,2) =
o(z, z) and d(z,y) = 0(z,y), then the inequality is clear. If d(z, 2) = 0, then z = 2
and the inequality reduces to d(z,y) < d(x,y) which holds. If d(z,y) = 0, then
z = y and the inequality reduces to d(z,y) < d(z,y) which also holds. |

We call d, as defined in Proposition 4.12, the metric associated with the d-
metric . We note that if z € X has self-distance o(x,x) # 0, then for each y # x
we obtain d(z,y) = o(z,y) > jo(x,z) by the triangle inequality. Consequently,
each © € X with o(z,z) # 0 is an isolated point with respect to the metric d
associated with p, that is, for each such x there exists ¢ > 0 such that the ball
with centre x and radius € contains only the single point z.

4.13 Proposition Let (X, p) be a dislocated metric space and let d denote the
metric associated with p. If the metric d is complete, then so is p. If f is a
contraction relative to g, then f is also a contraction relative to d.

22

Proof: If (x,) is a Cauchy sequence in p, then for all £ > 0 there exists ny such
that o(xy, xp,) < e for all k£, m > ny. Consequently, we also obtain d(zy, z,) < &
for all k,m > ng and, since d is complete, the sequence (x,) converges in d to
some z. Thus, d(z,,z) — 0 as n — oo. It remains to show that o(x,,z) — 0 as
n — oo, and we consider two cases.
(1) Assume that the sequence (x,) is such that there exists ng with x,,, # z for
all m > ng. Then o(zp,x) = d(xy,,) for all m > ng, that is, o(x,,,) — 0, and
hence o(z,,x) — 0.
(2) Assume that there exist infinitely many n, € N such that z,,, = x. Since (z,,)
is a Cauchy sequence with respect to p, we obtain p(x,, ,x) < € for all ¢ > 0, that
is, o(x,x) = 0. Hence, o(z,,z) = d(x,,x) for all n € N, as required.

Let z,y € X and assume o(f(z), f(y)) < Ao(z,y) for some 0 < A < 1. If
f() = f(y), then d(f(x), f(y)) = 0, hence d(f(z), f(y)) < Ad(z,y). If f(z) #

f(y)a then z # y and so d(f(x)af(y)) = Q(f(«T),f(y)) <)‘Q(xay) =)‘d(xay)a as
required. [|

4.14 Proposition Let (X,) be a complete dislocated metric space and let d
denote the metric associated with p. Then the metric d is complete. However, a
function f can be a contraction relative to d and not be a contraction relative to

0.

Proof: Let (z,) be a Cauchy sequence in d. If (z,) eventually becomes constant,
then it obviously converges in d. So assume that (z,) does not eventually become
constant. Then in that case we note that (z,) contains infinitely many distinct
points, otherwise it would not be a Cauchy sequence. Now define a subsequence
(yn) of (x,) by removing multiple occurrences of points in (x,): for each n € N,
let y, = xk, where k is minimal with the property that for all m < n we have
Ym 7 Tg. Since (y,) is a subsequence of the Cauchy sequence (z,,), we obtain that
(yn) is also a Cauchy sequence. Now, for any two elements y, z in the sequence
(yn), we have that d(y, z) = o(y, z) by definition of d, and hence (y,) converges in
o to some y, € X. Hence, (y,) also converges in d to y,. We show next that (x,)
converges to y,. Let € > 0 be arbitrarily chosen. Since (x,) is a Cauchy sequence,
there exists an index n; such that d(xy,,) < § for all k,m > n,. Since (y,)
converges to y,, we also know that there is an index ny, with y,, = z,, for some
index ng such that ng > n; and that d(y,,,y.) < 5. For all ,, with n > nj, we
then obtain d(z,, y,) < d(zn, Tns) + d(Tns, Yw) < £, as required.

Let X = {0, 1}, and define a mapping f : X — X by f(z) =0 for z € X. Let
o0 be constant and equal to 1. Then p is a complete d-metric and f is a contraction
relative to d. However, o(f(0), f(1)) = 0(0,0), and so f is not a contraction relative
to o. |

23

We can now prove Theorem 4.3 by using the Banach contraction mapping
theorem as follows. Let o be a complete d-metric and let f be a contraction
relative to p. Let d denote the metric associated with p. Then d is a complete
metric and f is a contraction relative to d. So, f has a unique fixed point by the
Banach contraction mapping theorem.

5 Dislocated Generalized Ultrametrics and the
®*- Accessible Programs

In this section, we extend Theorem 3.3 by allowing non-zero self-distances. The
results we establish will then be applied to discuss the fixed-point theory of the
class of ®*-accessible programs (defined in Section 2) which we introduced in [21]
in the context of three-valued logical operators.

5.1 A Generalized Priess-Crampe & Ribenboim Fixed-
Point Theorem
5.1 Definition Let (X,d,T") be a dislocated generalized ultrametric space. A

function f: X — X is called strictly contracting if d(f(x), f(y)) < d(z,y) for all
r,y € X with x # y.

We will need the following observations, which are well-known for ultrametric
spaces.

5.2 Lemma Let (X,d,I") be a dislocated generalized ultrametric space. For
a,B €l and z,y € X, the following statements hold.

(1) If @ < B and By (z) N Bs(y) # 0, then B, (x) C Bs(y).
(2) If By(x) N Ba(y) # 0, then B,(x) = B, (y).

(3) Bd(:z:,y) (LE) = Bd(z,y)(y)'

Proof: Let a € B,(z) and let b € B,(x)NBg(y). Then d(a, z) < aand d(b,z) < «,
so by (Uiv) d(a,b) < a < . Since d(b,y) < 3, we obtain from (Uiv) again that
d(a,y) < B, so that a € Bg(y), which proves the first statement. The second
follows by symmetry, and the third by replacing « by d(z,y). [

The following theorem reconciles the theorem of Matthews (Theorem 4.3) and
the Priess-Crampe & Ribenboim theorem (Theorem 3.3) for ordinal distances.
Although the proof of the latter theorem given in [35] carries over directly to our
more general setting, see [26], we give a new proof which is constructive in that

24

it yields a way of obtaining the fixed point as a kind of limit. The original proof
shows existence only, whereas the new proof is in the spirit of [31].

5.3 Theorem Let (X,d,T) be a spherically complete dislocated generalized ul-
trametric space with ordinal distances, so that T' = {27 | @ < ~} for some ordinal
7 (as usual we order T' by 27@ < 277 iff 3 < @, and denote 277 by 0). If f : X — X
is any strictly contracting function on X, then f has a unique fixed point.

Proof: Let x € X. Then f(z) € f(X) and d(f(z),z) < 279, since 270 is the
maximum distance possible between any two points in X. Now, d(f(f(z)), f(z)) <
271 < 27%since f is strictly contracting, and by (Uiv) it follows that d(f?(x),z) <
279, By the same argument, we obtain d(f3(x), f?(x)) < 272 < 27! and therefore
d(f3(z), f(z)) < 27" In fact, an easy induction argument along these lines shows
that d(f"*!(z), f™(x)) < 27™ for m < n. Again by (Uiv), we obtain that the
sequence of balls of the form By—.(f™(x)) is a descending chain (with respect to
set-inclusion) if n is increasing, and therefore has non-zero intersection B, since
X is spherically complete. We therefore conclude that there is x, € B, with
d(zy, f*(x)) < 27" for each n € N.

For each n € N we argue as follows. Since d(f(z,), f""(r)) <
27" and d(z,, " (z)) < 27+ < 27" we obtain d(f(z,),z.) <
Since this is the case for all n € N, we obtain d(f(z,),z,) < 27¢.

It is straightforward to cast the observations above into a transfinite induction
argument, and we obtain the following construction: Choose x € X arbitrarily.
For each ordinal o < 7, we define f*(z) as follows. If v is a successor ordinal,
then f*(z) = f(f*')(x). If a is a limit ordinal, then we choose f*(z) as some z,
which has the property that d(z,, f°(z)) < 277, and we note that the existence
of such an x, is guaranteed by spherical completeness of X.

The resulting transfinite sequence f®(x) has the property that d(f*™!,) <
27 for all @ < . Consequently, d(f7*!(z), f7(z)) =277 = 0, and therefore f7(z)
must be a fixed point of f.

Finally, z, = f7(x) can be the only fixed point of f. To see this, suppose
y # x, is another fixed point of f. Then we obtain f(y,z,) < f(y,z,) from the
fact that f is strictly contracting, which is impossible. [|

d(zy, ["(z)) <
27" by (Uiv).

5.4 Proposition Let (X,d,I") be a generalized ultrametric space, where I is a
complete lattice, and let u : X — RJ be a function. Then (X, o,T") with

o(z,y) = sup{d(x,y), u(r),u(y)}

is a dislocated generalized ultrametric space, and o(z,z) = u(z) for all z € X.

25

Proof: (Ui) and (Uiii) are trivial, and (Uiv) is proved in the same way that
Proposition 4.4 is proved. [|

5.2 Application to the &*-Accessible Programs

We intend now to apply the results above to the ®*-accessible programs. We do
this, in effect, by merging the lines of thinking employed in Sections 3 and 4.2.

In the following, P denotes a ®*-accessible program which satisfies the defining
conditions for such programs with respect to a model I and a level mapping
[: Bp — 7. Recall that the space (Ip, d), as given by Definition 3.3, is a generalized
ultrametric space.

Following Section 4.2, we define a function f on Ip by setting f(K) = 0 if
K C I and, if K Z I, by setting f(K) = 27%, where « is the smallest ordinal
such that there is an atom A € Bp with [(A) = a, K = A and I [~ A. Finally,
we define u on Ip by u(K) = max{f(K'),d(K \ K',I\ I')}, where K', for any
K € Ip, denotes K restricted to the predicate symbols which are not in Negp,
and we define p on Ip x Ip by

o(J, K) = sup{d(J, K),u(J),u(K)} = max{d(J, K),u(J),u(K)}.

5.5 Proposition The space (Ip, p) is a spherically complete dislocated general-
ized ultrametric space.

Proof: (Ui), (Uiii) and (Uiv) follow from Proposition 5.4. For spherical complete-
ness, let (B,) be a chain of balls in X with midpoints I,. Let I be the set of all
atoms which are eventually in I,, that is, the set of all A € Bp such that there
exists some [with A € I, for all a > (3. It is easy to see that for each ball By-« in
the chain, we have d(I,,I) < 2% and hence [is in the intersection of the chain.

[|

The proof of the next proposition is analogous to that of [16, Lemma 7.1 and
Proposition 7.1], and the details can be found in [26].

5.6 Proposition Let P be ®*-accessible with respect to a level mapping [and a
model /. Then we have o(Tp(J),Tp(K)) < o(J, K) for all J, K € Ip with J # K.

5.7 Theorem Let P be a ®*-accessible program. Then P has a unique supported
model.

Proof: By Proposition 5.6, Tp is strictly contracting with respect to p, which
in turn is a spherically complete dislocated generalized ultrametric. By Theorem

26

5.3, the operator Tp must have a unique fixed point and hence P has a unique
supported model. [|

Using the proof of Theorem 5.3 above, we can in fact obtain the unique model
by constructing the sequence f?()) as shown in that proof, where f denotes the
operator Tp. It remains to determine how to obtain f?()) in the case that 3 is a
limit ordinal. To this end, we employ the construction from the proof of Propo-
sition 5.5, that is, we set f(()) to be the set of all A € Bp which are eventually
in (f*(0))a<s. The transfinite sequence thereby obtained has the property that it
converges in the atomic topology to the unique fixed point of f.

As an example, we will now return, as earlier promised, to the analysis of the
program Py from Section 2.2. To do this, we will first determine a level mapping
[and a model I such that P is ®*-accessible with respect to [and I. Since there
is no algorithm for computing I, we give a heuristic argument for constructing I
and [, and then in fact prove ®; -accessibility of Py with respect to I and [.

We assume that the unique supported model Mp, of the ®}-accessible pro-
gram P, contains exactly those atoms of the form p,(z1,...,x,,y,u) for which
g(x1,...,2,,y) is not undefined and equal to u, and that the collection of all [(A)
for which A has predicate symbol p, is bounded by some limit ordinal o > w. It
is also a reasonable assumption that the only constant symbol occurring in P, is
0, and that the only function symbol occurring in P is s.

From the insights obtained by Proposition 4.11, in the case of ®-accessible
programs, we start looking for a model I which is the unique supported model
of P, when restricted to the predicate symbols in Neg’l‘)f. We also know that P,
is @7 -accessible with respect to Mp, and a suitable level mapping [,. So, it is
reasonable to work under the assumption that I, restricted to the atoms with
predicate symbols occurring in Py, coincides with Mp , and that [, restricted to
these atoms, coincides with /.

We next turn to the predicate symbol [t. The subprogram consisting of
the two clauses which define It is acyclic with respect to the level mapping l;
which maps each atom [#(s™(0),s"(0)) to m. It has unique supported model
My = {lt(s™(0),s™(0)) | m < n}, and we assume now that I coincides with
M;; on all atoms which contain It.

The difficult task which remains is to determine what values I should have
on atoms with predicate symbol r. Obviously, I should contain all atoms of
the form r(s™(0), s™(0),0,s"(0)), since I must be a model of P;. Which of the
atoms of the form r(s™(0), s"(0), s*71(0), s7(0)) must be true under I? At most
those for which n < j, since otherwise the atom It(s"(0), s’(0)) occurring in
the corresponding body is false in I. From Proposition 4.11 again, we can bor-
row the intuition that it is not unreasonable to try with an I which is larger
than the unique supported model of Pf, so we try the following: let I contain

27

M, = {r(s"(0),s™(0),s*(0),s7(0)) | m < j}. We now turn to the level map-
ping. If we take one of the atoms of the form r(s™(0), s"(0), s**1(0), s7(0)), with
n < j, as head of the recursive clause in the definition of r, then we note
that the recursive call is made with the atom r(-, s"*(0),,s7(0)), where - de-
notes some term, and we have n + 1 < j. So the difference between the num-
bers represented by the second and fourth argument decreases, and we define
I(r(s™(0),s™(0), s*(0),s7(0))) = a + j —m for j > m and = « otherwise. Finally,
we add to I the set M, of all atoms containing py, and set the level of all these
atoms to o + w.
Thus, in summary:

T = Mp, UM,UM, UM,,
= Mp, U M, U {it(s"(0),s™(0)) [n < m}
U {r(s"(0),5™(0), 5*(0), s (0)) | m < 7}
[(lt(s"(0),s™(0)) =n

zv@“m»smm»s%o»ynn»::{a I

U(ps(s"(0), 5™(0)) = a+w
It is easy to verify now that Py is ®*-accessible with respect to I and [as defined
above.

a+j—m, lszma

5.3 Generalized Ultrametrics and Dislocated Generalized
Ultrametrics

We want next to investigate the relationship between Theorem 5.3 and Theo-
rem 3.3.

5.8 Proposition Let (X, o,T") be a dislocated generalized ultrametric space and
define d : X x X — I' by d(z,y) = o(z,y) for x # y and d(z,z) =0 for all z € X.
Then d is a generalized ultrametric.

Proof: The proof is straightforward and parallels the proof of Proposition 4.12.
[|

We call d, as defined in Proposition 5.8, the generalized ultrametric associated
with p.

5.9 Proposition Let (X, o,T") be a dislocated generalized ultrametric space and
let d denote the generalized ultrametric associated with p. If d is spherically com-
plete, then o is spherically complete. If f is strictly contracting relative to o, then
f is also strictly contracting relative to d.

28

Proof: Let B be a chain of non-empty balls in o, thus each B € B is of the form
B ={x € X | o(xz,mp) < ag} for some mp € X and ag € I'. For each ball
B in B, we define B' = B U {mg}. The collection B’ of all the B’ is a chain
of balls in (X, d) and has non-empty intersection by assumption; let x € (B'.
Assume that x ¢ (| B. Then there must be a ball B € B such that © € B’ but
x € B. Since B is non-empty, we also conclude that there is some y € B with
r # y and o(z,y) < o(z,z). But by (Uiv) we know that o(z,z) < o(z,y). This
contradiction shows that our assumption x ¢ (B is incorrect, and hence p is
spherically complete, as required.

Let z,y € X with z # y, and assume o(f(z), f(y)) < o(x,y). If f(z) = f(y),
then d(f(z), /(4)) = 0, hence d(f(z), /(4)) < d(x,y). If f(z) # f(y), then z £y
and so d(f(x), f(y)) = o(f(z), f(y)) < e(x,y) = d(x,y), as required. u

5.10 Proposition Let (X,) be a spherically complete dislocated generalized
ultrametric space and let d denote the generalized ultrametric associated with p.
Then d is spherically complete. However, a function f can be a contraction relative
to d and not be a contraction relative to p.

Proof: Let B be a chain of balls in d. For each ball {z | d(z, x,,) < v}, we define
a corresponding ball {x | o(x,x,,) < v}, where z,, is a midpoint of the ball in
question. Let the corresponding chain of balls be denoted by B'. Then (B’ # (.
Since (B’ C (B, we obtain (B # 0.

Let X = {0,1} and define a mapping f : X — X by f(z) = 0 for z € X.
Let o be constant and equal to 1. Then (X, o, {0, 1}), where 0 < 1, is spherically
complete, and f is strictly contracting relative to d. However, o(f(0), f(1)) =
0(0,0), and so f is not strictly contracting relative to o. [|

We can now use Theorem 3.3 to give an easy proof of a more general version
of Theorem 5.3 which was already obtained by us using different methods in [26].

5.11 Theorem Let (X, 0,T") be a spherically complete dislocated ultrametric
space and let f : X — X be strictly contracting on X. Then f has a unique
fixed point.

Proof: Using Proposition 5.8, we obtain a generalized ultrametric d which is
spherically complete by Proposition 5.10. By Proposition 5.9, the function f is
strictly contracting relative to d. Hence, by Theorem 3.3, f has a unique fixed
point. [|

29

6 ®-Accessible Programs

We intend finally to consider the ®-accessible programs using the same sort of
methods as we used in Section 5.2. The approach does not generalize without
modifications to ®-accessible programs as can be seen from the following example
program P.

p(s*(x)
p(0
(0)

(32(0)

This program is ®-accessible (even definite ®-accessible) with respect to the
model Bp = {s"(0) | n € N} and the level mapping [: Bp — N : p(s"(0)) = n.
Using the dislocated ultrametric o from Section 5.2, we obtain for K = {s°(0)}
and J = {s*(0)} that o(K,J) = 273 and o(Tp(K),Tp(J)) = 272, so Tp is not a
contraction relative to p.

We will modify the methods used in Section 5.2 by means of the following
result.

6.1 Proposition Let (X,d,T") be a generalized ultrametric space with ordinal
distances and define the function p by

0: X x X =T (J,K) = max{d(J, I),d(I, K)},

where I denotes any fixed element of X. Then (X, o,T") is a dislocated generalized
ultrametric space. Furthermore, if (X, d) is spherically complete, then so is (X,).

Proof: Clearly, ¢ is a d-gum. For spherical completeness, note that every non-
empty ball in (X, p) contains I, which suffices. [|

6.2 Proposition Let P be ®-accessible with respect to a model I and level map-
ping [. Then Tp is strictly contracting with respect to (Ip,).

Proof: Let J, K € Ip and assume that o(J, K) = 2°“. Then J, K, I agree on all
ground atoms of level less than a. We show that Tp(.J) and I agree on all ground
atoms of level less than or equal to a. A similar argument shows that Tp(K') and
I agree on all ground atoms of level less than or equal to «, and this suffices.
Let A € Tp(J) with I(A) < «. Then there must be a clause A < Ly,..., L,
in ground(P) such that J = Ly A--- A L,. Since I and J agree on all ground
atoms of level less than «a, condition (ii) of Definition 2.2 cannot hold, because

30

if I = L; with [(A) > I(L;), then J [~ L; and consequently J & Ly A -+ A Ly,
which is a contradiction. Therefore, condition (i) of Definition 2.2 holds and so
AeTp(l)=1I. Hence, A€ I.

Conversely, suppose that A € I. Since I = Tp(I), there must be a clause
A< Ly,...,L, in ground(P) such that I = Ly A--- A L,. Thus, condition (i) of
Definition 2.2 must hold, and so we can assume that A < L, ..., L, also satisfies
I(A) > I(L;) for i = 1,...,n. Since I and J agree on all ground atoms of level less
than a, we have J = Ly A--- A L, and hence A € Tp(J) as required. |

Applying Theorem 5.3 now yields a unique fixed point M of the operator Tp,
that is, a unique supported model for P. The proof of Theorem 5.3 furthermore
yields that there must be an ordinal « such that o(M, M) = 0. Since the only point
of X which has non-zero distance from itself is I, we conclude that I = M is the
unique supported model of P. This is somewhat unfortunate since I was needed
in order to construct p. However, using the proof of Theorem 5.3 again, we can
also conclude that transfinite iterates of Tp starting at an arbitrary interpretation
J converge in () to the unique fixed point. This latter result is stronger than that
obtained in [21], using different methods, where this same fact was established
only for J = ().

7 Related and Further Work

One of the early landmark results in the theory of logic programming, the
Kowalski-van Emden Theorem, has topological content: the single-step operator
for definite programs is continuous with respect to the Scott topology. For logic
programming with negation, certain natural semantic operators appearing in the
literature fail to have this property, despite the fact that their associated fixed-
point semantics, given by the fixed points of these operators, is computationally
meaningful. From this point of view, logic programming is unusual compared with
other major programming paradigms, where most of the operators which arise are
Scott continuous. In fact, the quest for a clear declarative meaning for negation in
logic programming is still ongoing despite a very considerable amount of research
having been undertaken on this problem.

The use of topology in the analysis of negation in logic programming was
initiated by Batarekh and Subrahmanian who defined the query topology in [6, 7,
8]. Their work was considerably simplified and extended by Seda in [41]. Perhaps
the best-known paper in this area is Fitting’s paper [16] in which the use of
metrics is proposed in the context of logic programming semantics. In [31], Khamsi,
Kreinovich and Misane used metrics and a version of the Banach contraction
mapping theorem for multivalued mappings, due to S.B. Nadler, to study answer

31

set semantics for disjunctive logic programs. Stimulated by recent developments
in domain theory, Seda in [42] investigated quasi-metrics and the corresponding
fixed-point theorem on quasi-metric spaces due to Smyth [45] and Rutten [40],
thus reconciling the use of metric spaces and order within logic programming. A
quite recent development in this respect is due to Priess-Crampe and Ribenboim
[35] who introduced generalized ultrametrics to logic programming and proposed
to examine the applicability of their fixed-point theorems on these spaces, see [22]
for an overview.

The generalized-metric approach presented in this paper offers a technique for
studying fixed-point semantics of non-monotonic semantic operators. It can be ex-
pected that results similar to those presented herein can be obtained for semantics
which are more refined than the Clark completion semantics. In particular, we see
a promising candidate in semantics related to the s-semantics, see [9]. Such inves-
tigations may eventually lead to a practically useful declarative understanding of
negation in logic programming.

Another aspect of the work presented in this paper concerns investigations
into continuous models of computation. This encompasses the task of embedding
semantic operators into Euclidean space, which carries many natural metrics. Of
the many convincing arguments given by Blair et al. [4] for the virtue of such
investigations, we point to one: the study of relationships between logic proram-
ming and artificial neural networks. Indeed these two paradigms differ very much
in their strengths and weaknesses, and it would be highly desirable to merge them.
Some of the results in this area employ topological notions: Holldobler, Storr and
Kalinke [29] make use of the metric d from Section 3 and the Banach contrac-
tion mapping theorem; [28] uses the atomic topology. The paper [30] provides an
overview of current open challenges concerning logic and neural networks.

Yet another prospect for further work lies in the intersection of topology and
programming language semantics, that is, Domain Theory. Motivated by the fact
that domains and logic are strongly related, see [49], Rounds and Zhang have
extensively investigated domain-theoretical foundations of logic programming. In
closing, we mention two lines of their work and how relationships between our
work and theirs may possibly be established, as follows.

In [50, 51, 39], Rounds and Zhang develop a domain-theoretic perspective of
default logic, using power domains, which they call power defaults. Default logic,
due to Reiter [38], also motivated the development of the stable model seman-
tics of Gelfond and Lifschitz [18], which is a refinement of the Clark completion
semantics. Fages [13, 14] has studied interesting relationships between the Clark
completion semantics and the stable semantics, and this may allow one to carry
over some “metric” techniques to the stable model semantics. In order to es-
tablish connections with the work of Rounds and Zhang, it will be necessary to
understand the exact relationship between the model-theoretic semantics of power

32

defaults and the stable model semantics, leading perhaps to the transfer of metric
methods to power defaults by means of the work of Fages. Such a transfer may
help in understanding both logic programming and default reasoning.

In [39, 52], Rounds and Zhang have introduced a domain-theoretic framework
for the study of semantical aspects of logic programming, including an abstract
resolution rule. The main gap between this work and the Clark completion se-
mantics (and practical logic programming) in our opinion lies in the treatment
of negation, which is not taken to be finite failure in [52]. In order to establish
a cross-transfer of methods, it seems to be necessary to first study the seman-
tics of Rounds and Zhang in the context of negation as failure. Again, a possible
long-term prospect lies in a clean domain-theoretic treatment of the declarative
semantics of negation in logic programming.

8 Conclusions

We have presented a unified framework for the fixed-point analysis of normal logic
programs with respect to the Clark completion semantics which, as is well-known,
is strongly related procedurally to negation as finite failure. This was achieved
by casting spaces of interpretations into generalized metric spaces in such a way
that various fixed-point theorems could be applied. The classes of programs which
we investigated were all contained in the rather general class of programs which
have a total Kripke-Kleene semantics, and encompass classes which are important
from the point of view of termination analysis, and classes which are sufficiently
expressive for every partial recursive function to be implemented within them.
Each of the programs studied has a unique supported model which can be obtained
as a limit in the atomic topology of iterates of the immediate consequence operator,
starting from any arbitrarily chosen interpretation. For small classes of programs
such as the acyclic or locally hierarchical programs, no semantic knowledge about
the programs is needed in order to construct the generalized metric used here.
The more we relax the requirements on the programs, the more knowledge is built
into the construction of the generalized metric. At each stage in the development,
we have investigated the generalized metric spaces which were appropriate at that
stage, and have given new proofs of some of the fixed-point theorems we applied.
Finally, we have presented three possible lines of investigation which are related
to our work, and which can be expected to further our knowledge of theoretical
and practical aspects of logic programming.

33

References

1]

2]
3]

K.R. Apt, H.A. Blair and A. Walker, Towards a Theory of Declarative Knowl-
edge. In: J. Minker (Ed.), Foundations of Deductive Databases and Logic
Programming. Morgan Kaufmann, Los Altos, CA, 1988, pp. 89-148.

K.R. Apt and D. Pedreschi, Reasoning about Termination of Pure Prolog
Programs, Information and Computation 106 (1993), 109-157.

M. Bezem, Characterizing Termination of Logic Programs with Level Map-
pings. In: E.L. Lusk and R.A. Overbeek (Eds.), Proceedings of the North
American Conference on Logic Programming, MIT Press, Cambridge, MA,
1989, pp. 69-80.

H.A. Blair, F. Dushin, D.W. Jakel, A.J. Rivera and M. Sezgin, Continuous
Models of Computation for Logic Programs. In: K.R. Apt, V.W. Marek, M.
Truszeynski and D.S. Warren (Eds.), The Logic Programming Paradigm: A
25-Year Perspective. Springer, Berlin, 1999, pp. 231-255.

H.A. Blair and J. Remmel, Hybrid Automata: Convergence Spaces and Con-
tinuity. Proceedings of the joint ITIS & IEEE meeting of the 5th World Mul-
ticonference on Systemics, Cybernetics and Informatics (SCI2001) and the
7th International Conference on Information Systems Analysis and Synthe-
sis (ISAS2001), Orlando, Florida, USA, July, 2001. International Institute of
Informatics and Systemics, 2001.

A. Batarek, Topological Aspects of Logic Programming. PhD thesis, Syracuse
University, June 1989.

A. Batarekh and V.S. Subrahmanian, Topological Model Set Deformations in
Logic Programming, Fundamenta Informaticae 12 (3) (1989), 357-400.

A. Batarekh and V.S. Subrahmanian, The Query Topology in Logic Pro-
gramming. In: Proc. 1989 Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Compuer Science Vol. 349, Springer, Berlin, 1989,
pp. 375-387.

A. Bossi, M. Gabbrielli, G. Levi and M. Martelli, The s-Semantics Approach:
Theory and Applications, Journal of Logic Programming 19 & 20 (1994),
149-198.

L. Cavedon, Acyclic Programs and the Completeness of SLDNF-Resolution,
Theoretical Computer Science 86 (1991), 81-92.

K.L. Clark, Negation as Failure. In: H. Gallaire and J. Minker (Eds.): Logic
and Data Bases. Plenum Press, New York (1978), pp. 293-322.

A. Edalat and R. Heckmann, A Computational Model for Metric Spaces,
Theoretical Computer Science 193 (1998), 53-73.

F. Fages, A New Fizpoint Semantics for General Logic Programs compared
with the Well-founded and the Stable Model Semantics, New Generation Com-
puting 9 (1991), 425443,

34

[14]
[15]
[16]
[17]

18]

[19]

[22]

[24]

F. Fages, Consistency of Clark’s Completion and Existence of Stable Models,
Journal of Methods of Logic in Computer Science 1 (1994), 51-60.

M. Fitting, A Kripke-Kleene-Semantics for General Logic Programs, Journal
of Logic Programming 2 (1985), 295-312.

M. Fitting, Metric Methods: Three Examples and a Theorem, J. Logic Pro-
gramming 21 (3) (1994), 113-127.

A. Van Gelder, K.A. Ross and J.S. Schlipf, The Well-Founded Semantics for
General Logic Programs, Journal of the ACM 38 (3) (1991), 620-650.

G. Gelfond and V. Lifschitz, The Stable Model Semantics for Logic Program-
ming. In: R.A. Kowalski, K.A. Bowen (Eds.), Logic Programming. Proceed-
ings of the 5th International Conference and Symposium on Logic Program-
ming, MIT Press, 1988, pp. 1070-1080.

M.A. Gutiérrez Naranjo, J.A. Alonso Jiménez and J. Borrego Diaz, A Topo-
logical Study of the Upward Refinement Operators in ILP. In: J. Cussens and
A. Frisch (Eds.), Inductive Logic Programming, 10th International Confer-
ence (ILP2000) Work-in-Progress Reports, London, 2000, pp. 120-137.

P. Hitzler, Generalized Metrics and Topology in Logic Programming Seman-
tics. PhD thesis, Department of Mathematics, National University of Ireland,
University College Cork, 2001.

P. Hitzler and A.K. Seda, Characterizations of Classes of Programs by Three-
Valued Operators. In: M. Gelfond, N. Leone and G. Pfeifer (Eds.), Logic
Programming and Non-Monotonic Reasoning, Proceedings of the 5th Inter-
national Conference on Logic Programming and Non-Monotonic Reasoning
(LPNMR’99), El Paso, Texas, USA, December 1999. Lecture Notes in Arti-
ficial Intelligence, Vol. 1730. Springer, Berlin (1999), 357-371.

P. Hitzler and A.K. Seda, The Fized-Point Theorems of Priess-Crampe and
Ribenboim in Logic Programming. Proceedings of the International Confer-
ence and Workshop in Valuation Theory in Honour of Paulo Ribenboim,
Saskatchewan, Canada, July 1999. Fields Institute Communications Series,
American Mathematical Society, pp. 1-17, to appear.

P. Hitzler and A.K. Seda, Acceptable Programs Reuvisited. Proceedings of the
Workshop on Verification in Logic Programming, Sixteenth International
Conference on Logic Programming (ICLP’99), Las Cruces, New Mexico,
November, 1999. Electronic Notes in Theoretical Computer Science, Volume
30, No. 1, Elsevier, 1999, pp. 1-18.

P. Hitzler and A.K. Seda, Dislocated Topologies. Proceedings of the Slovakian
Conference in Applied Mathematics, Bratislava, 2000. Journal of Electrical
Engineering, Vol. 51 No. 12/s, Slovak Academy of Sciences (2000), 3-7.

35

[25]

[26]

[27]

28]

[30]

[31]

A more detailed version of this paper is available from the authors’ web
pages as a Technical Report with the same title, Department of Mathematics,
University College Cork, 17 pages.

P. Hitzler and A.K. Seda, Unique Supported-Model Classes of Logic Programs,
Information 4 (3), International Information Institute, 2001, 295-302.

P. Hitzler and A.K. Seda, A New Fized-point Theorem for Logic Program-
ming Semantics. Proceedings of the joint IIIS & IEEE meeting of the 4th
World Multiconference on Systemics, Cybernetics and Informatics (SCI2000)
and the 6th International Conference on Information Systems Analysis and
Synthesis (ISAS2000), Orlando, Florida, USA, July 2000. International In-
stitute of Informatics and Systemics: IIIS, Vol. VII, Computer Science and
Engineering Part 1, 2000, pp. 418-423.

P. Hitzler and A.K. Seda, On the Coincidence of Semantics for Uniquely De-
termined Programs. In: T. Hurley, M. Mac an Airchinnigh, M. Schellekens and
AK. Seda (Eds.), Proceedings of the First Irish Conference on the Mathe-
matical Foundations of Computer Science and Information Technology, Cork,
Ireland, July 2000. Electronic Notes in Theoretical Computer Science, Vol-
ume 40, 2001, Elsevier, pp. 1-17.

P. Hitzler and A.K. Seda, A Note on the Relationships between Logic Pro-
grams and Neural Networks. In: P. Gibson and D. Sinclair (Eds.), Proceedings
of the 4th Irish Workshop on Formal Methods (IWFM’00), Maynooth, July
2000. Electronic Workshops in Computing (eWiC), British Computer Society,
pp- 1-9.

S. Holldobler, H. Storr and Y. Kalinke, Approzimating the Semantics of Logic
Programs by Recurrent Neural Networks, Applied Intelligence 11 (1999), 45—
58.

S. Holldobler, Challenge Problems for the Integration of Logic and Connec-
tionist Systems. Technical Report WV-99-03, Artificial Intelligence Institute,
Department of Computer Science, Dresden University of Technology, 1999.q
M.A. Khamsi, V. Kreinovich and D. Misane, A New Method of Proving the
Ezxistence of Answer Sets for Disjunctive Logic Programs: A Metric Fized-
Point Theorem for Multivalued Mappings. In: C. Baral and M. Gelfond (Eds.),
Proceedings of the Workshop on Logic Programming with Incomplete Infor-
mation, Vancouver, B.C., Canada, October 1993, pp. 58-73.

J.W. Lloyd, Foundations of Logic Programming. Springer, Berlin, 1988.
S.G. Matthews, Metric Domains for Completeness. PhD thesis (1985). Re-
search Report 76, Department of Computer Science, University of Warwick,
UK, April, 1986.

S.G. Matthews, Partial Metric Topology. In: Proceedings of the 8th Sum-
mer Conference on Topology and its Applications, Annals of the New York
Academy of Sciences, Vol. 728, 1992, pp. 183-197.

36

[35]

[36]

[37]

[38]

[44]

[45]

[46]

S. Priess-Crampe and P. Ribenboim, Ultrametric Spaces and Logic Program-
ming, J. Logic Programming 42 (2000), 59-70.

H. Przymusinska and T.C. Przymusinski, Weakly Stratified Logic Programs.
Fundamenta Informaticae 13 (1990), 51-65. K.R. Apt (Ed.), special issue on
Logical Foundations of Artificial Intelligence.

T.C. Przymusinski, On the Declarative Semantics of Deductive Databases and
Logic Programs. In: J. Minker (Ed.), Foundations of Deductive Databases and
Logic Programming. Morgan Kaufmann, Los Altos, CA 1988, pp. 193-216.
R. Reiter, A Logic for Default Reasoning, Artificial Intelligence 13 (1980),
81-132.

W.C. Rounds and G-Q. Zhang, Clausal Logic and Logic Programming in
Algebraic Domains. To appear in Information and Computation.

J.J.M.M. Rutten, Elements of Generalized Ultrametric Domain Theory, The-
oretical Computer Science 170 (1996), 349-381.

A K. Seda, Topology and the Semantics of Logic Programs, Fundamenta In-
formaticae 24 (4) (1995), 359-386.

A K. Seda, Quasi-metrics and the Semantics of Logic Programs, Fundamenta
Informaticae 29 (1) (1997), 97-117.

A K. Seda and P. Hitzler, Topology and Iterates in Computational Logic. Pro-
ceedings of the 12th Summer Conference on Topology and its Applications:
Special Session on Topology in Computer Science, Ontario, August 1997.
Topology Proceedings Vol. 22, Summer 1997, 427-469.

A.K. Seda and P. Hitzler, Strictly Level-Decreasing Logic Programs. In: A.
Butterfield and S. Flynn (Eds.), Proceedings of the Second Irish Workshop
on Formal Methods (IWFM’98), Cork, 1998, Electronic Workshops in Com-
puting, British Computer Society, 1999, pp. 1-18.

M.B. Smyth, Quasi-uniformities: Reconciling Domains with Metric Spaces.
In: M. Main, A. Melton, M. Mislove and D. Schmidt (Eds.), Mathematical
Foundations of Programming Language Semantics, Lecture Notes in Com-
puter Science Vol. 198, Springer, Berlin, 1987, pp. 236-253.

M.B. Smyth, Totally Bounded Spaces and Compact Ordered Spaces as Do-
mains of Computation. In: G.M. Reed, A.W. Roscoe and R.F. Wachter
(Eds.), Topology and Category Theory in Computer Science. Oxford Uni-
versity Press, 1991, pp. 207-229.

V. Stoltenberg-Hansen, I. Lindstrom and R. Griffor, Mathematical Theory of
Domains. Cambridge University Press, 1994.

S. Willard, General Topology. Addison-Wesley, Reading MA, 1970.

G.-Q. Zhang, Logic of Domains. Progress in Theoretical Computer Science,
Birkhauser, Boston, 1991.

37

[50] G-Q. Zhang and W.C. Rounds, Complezity of Power Default Reasoning. In:
Proceedings of the Twelfth Annual IEEE Symposium on Logic in Computer
Science, LICS’97, Warsaw, Poland, July 1997. IEEE Computer Society Press
pp. 328-339.

[51] G-Q. Zhang and W.C. Rounds, Power defaults (preliminary report). In: J.
Dix, U. Furbach and A. Nerode (Eds.), Proceedings of the Fourth Inter-
national Conference on Logic Programming and Non-Monotonic Reasoning
(LPNMR'97), Dagstuhl, Germany, July 28-31, 1997. Lecture Notes in Com-
puter Science, Vol. 1265, Springer-Verlag, 1997, pp. 152-169.

[52] G-Q. Zhang and W.C. Rounds, Semantics of Logic Programs and Represen-
tation of the Smyth Powerdomain. In: K. Keimel, G.-Q. Zhang et al (Eds.),
Domains and Processes (ISDT’99), volume 1 of the series Semantic Structures
in Computation, Kluwer Academic Publishers, pp. 151-179, 2001.

A Appendix: More on the Atomic Topology

We briefly list here some aspects of the atomic topology which the topologically
minded reader may find interesting. We refer to [41, 20] for proofs and further
details. In the following, P is a normal logic program. Also, we work over arbitrary
preinterpretations, so that Bp, the set of all ground instances of atoms in that
preinterpretation?, may be uncountable. The same applies to ground(P). Again,
Ip denotes the set of all interpretations over the given preinterpretation. The
single-step operator Tp is defined exactly as in the Herbrand case.

For every literal L, let G(L) = {I € Ip | I = L} and form the sets G* =
{G(A) | A€ Bp}and G~ = {G(—A) | A € Bp}. Then G7 is a subbase of the Scott-
topology on Ip, while Gt U G~ is a subbase of the atomic topology @ on Ip. We
note that the basic open sets of @ are of the form G(A;,..., Ay, =By, ..., Bp) :=
GA)N---NG(A) NG(=B1) N---NG(—Bp).

The atomic topology can be characterized in terms of convergence as follows.

A.1 Proposition A net (1)) converges in Q) to I € Ip if and only if every element
in [is eventually in [, and every element not in [is eventually not in [, that is,
for each A € I there exists Ay such that for all A > Ay we have A € I, and for
each A € Bp with A ¢ I there exists A; such that for all A > \; we have A & I,.

The following result records some basic facts about Q.

A.2 Theorem The topology () on Ip coincides with the product topology on
287 where 2 = {0,1} is endowed with the discrete topology. Thus, (Ip,Q) is

9As usual, Bp contains all formal symbols p(di,...,d,) for which p is a predicate symbol
from P and dy,...,d, are elements of the domain of the preinterpretation.

38

a totally disconnected compact Hausdorff space. It is also second countable and
metrizable if the domain of the chosen preinterpretation is countably infinite and
in that case is homeomorphic to the Cantor set in the real line.

We finally present some results which underline the importance of the atomic
topology as an alternative to the Scott topology when non-monotonicity of oper-
ators is present.

A.3 Theorem The following hold.

(i) If, for some I € Ip, the sequence (TH(I)) converges in @) to an interpretation
M, then M is a model for P.

(i) If the sequence (TE(I)) does not converge in () for any I € Ip, then P has
no supported models.

Let P be a normal logic program and let I € Ip be such that the sequence
(TE(I)) converges in @ to some M € Ip. Then, by Theorem A.3, M is a model
for P. If, furthermore, Tp is continuous in (), or at least continuous at M in (),
then M = UimThE™ (1) = limTp(TE(I)) = Tp(imTE(I)) = Tp(M). So M is a
supported model in this case.

The following result characterizes continuity in).

A.4 Theorem The single-step operator Tp is continuous in) if and only if, for
each I € Ip and for each A € Bp with A & Tp([), either there is no clause in P
with head A or there is a finite set S(I, A) = {Ay,..., A, By, ..., By} of elements
of Bp with the following properties:

(1) Al,...,AkE[andBl,...,BkIQT.

(ii) Given any clause C' with head A, at least one —A; or at least one B; occurs
in the body of C.

As a corollary, one obtains that programs without local variables'® have contin-
uous single-step operators, and also that the single-step operator is not in general
continuous for arbitrary programs.

A.5 Theorem Let P be a normal logic program and let I, € Ip be such that
the sequence (I,,), with I, = Th(1ly), converges in) to some M € Ip. If, for every
A € M, no clause whose head matches A contains a local variable, then M is a
supported model.

I0A variable is local if it occurs in the body of a clause, but not in its head.

39

The following result is an obvious, but fundamental, generalization of Theo-
rem A.3 prompted by the observation that transfinite iterations of the single-step
operator are sometimes necessary'! in order to achieve a fixed point.

A.6 Theorem Let P be a normal logic program and let I € Ip. Define, for each
limit ordinal «,

T3 (1) = {A € Bp | A is eventually in (T{i (I))M} .

If, for some limit ordinal -y, the transfinite sequence (TR(I)),<,, converges in @,
then the limit of this sequence is a model for P.

1 For example, for locally hierarchical programs in general.

40

