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Abstract

We present a new fixed-point theorem akin to the
Banach contraction mapping theorem, but in the
context of a novel notion of generalized metric
space, and show how it can be applied to anal-
yse the denotational semantics of certain logic
programs. The theorem is obtained by generaliz-
ing a theorem of Priess-Crampe and Ribenboim,
which grew out of applications within valuation
theory, but is also inspired by a theorem of S.G.
Matthews which grew out of applications to con-
ventional programming language semantics. The
class of programs to which we apply our theo-
rem was defined previously by us in terms of op-
erators using three-valued logics. However, the
new treatment we provide here is short and intu-
itive, and provides further evidence that metric-
like structures are an appropriate setting for the
study of logic programming semantics.
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ric, Fixed-point Theorem

Introduction

One advantage possessed by a logic program P,
or a disjunctive database, over conventional im-
perative and object oriented programs is that
it has a natural machine-independent meaning,
namely, its logical meaning or declarative seman-
tics. This is usually taken to be some “stan-
dard” model canonically associated with P. Un-
fortunately, there is often many possible choices
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for the standard model such as the well-founded
model (van Gelder et al.), the stable model (Gel-
fond and Lifschitz), the perfect and weakly per-
fect models (Przymusinski), and so on, which do
not in general coincide and all of which have
a claim to be “the natural choice” depending
on one’s view of non-monotonic reasoning. It
is therefore important and interesting to know
when these various models coincide since this
confirms coincidence of the various ways of con-
sidering non-monotonic reasoning.

In [6, 10], the authors defined certain classes of
programs, called ®-accessible and ®*-accessible
programs, which have the property that each
program in the class has a unique supported
model, and showed that it follows from this prop-
erty that all the different semantics mentioned
above in fact coincide. These latter classes were
defined in terms of various three-valued logics
and are known to include the acceptable pro-
grams of Apt and Pedreschi (important in ter-
mination analysis), see [2], and certain other im-
portant classes, and are also known to be compu-
tationally adequate i.e. can compute all partial
recursive functions; they therefore provide a se-
mantically unambiguous setting with enhanced
syntax and full computational power.

The supported models of P (or the Clark com-
pletion semantics) are the fixed points of the
single-step operator Tp, and the proof of their
existence and uniqueness we gave in [6] for the
®-accessible and ®*-accessible programs was by
means of three-valued logic. In this paper, we
provide an alternative proof based on a new
fixed-point theorem we establish here which gen-
eralizes the theorem of Priess-Crampe & Riben-



boim [7, 14, 15]. This generalization was inspired
by the occurrence of distance functions d with
the slightly surprising property that d(z, z) need
not be zero. Indeed, such distance functions have
already been discussed by Matthews in [12, 13] in
connection with the data flow networks of Kahn,
and this suggests that theorems of the sort we
present here may have other interesting applica-
tions within computer science.

Preliminaries

A (normal) logic program is a finite set of uni-
versally quantified clauses, from first order logic,
of the form

V(A< LiA--ALy),

where A is an atom and Lq,..., L, are literals.
Such clauses are usually written as

A(—Ll,...,Ln.

We call A the head of the clause, and Ly, ..., L,
the body of the clause. Each L; is said to be a body
literal of the clause. We refer to [11] for notation
and basic concepts in logic programming.

For a given logic program P, we denote the
Herbrand base (i.e. the set of all ground atoms
in the underlying first order language) by Bp.
As usual, (Herbrand-) interpretations of P can
be identified with subsets of Bp, so that the set
Ip of all interpretations of P can be identified
with the power set of Bp. The set of all ground
instances of each clause in a program P will be
denoted by ground(P). A level mapping is a func-
tion [ : Bp — «, where « is an arbitrary (count-
able) ordinal; we always assume that [ has been
extended to all literals by setting [(—A) = [(A)
for each A € Bp.

The standard approach to logic programming
semantics, i.e. to assigning a reasonable mean-
ing to a given logic program, is to identify mod-
els of the program which have certain additional
properties. We will focus here on the supported
model semantics or Clark completion semantics,
see [4, 1]. We define the immediate consequence
or single-step operator Tp for a given logic pro-
gram P as a mapping Tp : Ip — Ip of interpre-
tations to interpretations as follows: Tp(I) is the

set of all A € Bp such that there exists a ground
instance A < Lq,...,L, of a clause in P with
head A and such that I = Ly A--- A L,. Note
that Tp is in general not monotonic. As it turns
out, the models of P are exactly the pre-fixed
points of Tp, that is, satisfy Tp(I) C I. A sup-
ported model (or model of the Clark completion
[4]) of P is a fixed point of Tp, see [11] for these
and related concepts.

The following definition is taken from [2] where
it was employed in defining acceptable programs.
Such programs have been shown to be of great
importance in termination analysis, and we will
use it as the basis of the more general Definition
2.

Definition 1 Let P be a logic program and let
p, q be predicate symbols occurring in P.

1. p refers to q if there is a clause in P with p
in its head and ¢ in its body.

2. p depends on q if (p,q) is in the reflexive,
transitive closure of the relation refers to.

3. Negp denotes the set of predicate symbols
in P which occur in a negative literal in the
body of a clause in P.

4. Negp denotes the set of all predicate sym-
bols in P on which the predicate symbols in
Negp depend.

5. P~ denotes the set of clauses in P whose
head contains a predicate symbol from
Negp.

Definition 2 A program P is called &*-
accessible if and only if there exists a level map-
ping [ for P and a model I for P which is a sup-
ported model of P, such that the following con-
dition holds. For each clause A + Lq,...,L, in
ground(P), we either have I = L; A--- A L,, and
I(A) > I(L;) for all ¢ = 1,...,n or there exists
i €{1,...,n}such that I f= L; and [(4) > I(L;).

The ®*-accessible programs are a common
generalization of acyclic, locally hierarchical [3]
and acceptable [2] programs. In [6], the authors
gave a unified treatment of these classes of pro-
grams by means of operators in various three-
valued logics.

Definition 3 Let X be a set and let I' be a par-
tially ordered set with least element 0. We call



(X,d,T") (or simply (X,d)) a generalized ultra-
metric space if d : X x X — I is a function such
that for all z,y,z € X and all v € I' we have:

(Ui) d(z,y) = 0 implies z = y.

(Uii) d(z, ) =

( 1 ((II, ) - d(ya )

(Uiv) Whenever d(z,y) <~ and d(y, z) <7, we
have d(z,z) <.

Generalized ultrametrics have been studied in
the context of logic programming semantics in
[7, 15, 16]. If d satisfies conditions (Ui), (Uiii)
and (Uiv) only, we call (X, d) a dislocated gener-
alized ultrametric space or simply a d-ultrametric
space.

A Generalized Priess-Crampe &
Ribenboim Fixed-Point Theorem

Definition 4 Let (X,d,I') be a d-ultrametric
space. For 0 # v € I' and =z € X, the set
By(z) :=={y € X | d(z,y) < 7} is called a (y-
)ball in X with centre z. A d-ultrametric space is
called spherically complete if, for any chain (C, C)
of non-empty balls in X, we have (C # (. A
function f: X — X is called

(1) non-expanding if d(f(x), f(y)) < d(z,y) for
all z,y € X,

(2) strictly  contracting — on  orbits  if
d(f*(@), f(2)) < d(f(z),z) for every
z € X with z # f(z), and

(3) strictly contracting if d(f(z), f(y)) < d(z,y)
for all z,y € X with z # y.

We will need the following observations, which
are well-known for ordinary ultrametric spaces,
see [14].

Lemma 5 Let (X,d,I') be a d-ultrametric
space. For a, 0 € " and z,y € X the following
statements hold.
(1) If @« < B and By(z) N Bg(y) # 0, then
Ba(z) C Bs(y).
If Bo(z) N Ba(y) # 0, then By (z) = Ba(y).
(3) Bd(w,y) (z) = Bd(w,y) (y)-

Proof: Let a € B,(x) and b € By(z) N Bg(y).
Then d(a,z) < aand d(b, z) < «, hence d(a,b) <
a < (. Since d(b,y) < (3, we have d(a,y) < 3,
hence a € Bg(y), which proves the first state-
ment. The second follows by symmetry and the
third by replacing a by d(z,y). [ |

The following theorem gives a partial unifica-
tion of a theorem of Matthews [12, Theorem 5,
Page 20] and the Priess-Crampe & Ribenboim
theorem. The proof of the latter theorem given
in [14] in fact carries over directly to our more
general setting of d-ultrametrics.

Theorem 6 Let (X,d,T") be a spherically com-
plete d-ultrametric space and let f : X — X
be non-expanding and strictly contracting on or-
bits. Then f has a fixed point. If f is strictly
contracting on X, then the fixed point is unique.

Proof: Assume that f has no fixed point. Then
for all z € X,d(z, f(z)) # 0. We define the
set B by B = {Bd(w,f(w))(x) | € X}, and
note that each ball in this set is non-empty.
We also note that because d(z,y)) < d(z,y) =
d(y,z), and using (Uiv), we have d(z,z) <
d(z,y) for all z,y € X, and it follows easily
from this that Bd(:v,f(:v))(x) = Bd(m,f(x))(f($))
by Lemma 5. Now let C be a maximal chain
in B. Since X is spherically complete, there ex-
ists z € [C. We show that By, r;))(2) C
Bz, f(z)) for all z € X and hence, by max-
imality, that Bg(, f(.))(#) is the smallest ball
in the chain. Let By, r(,))(z) € C. Since z €
Bz, f(x))(x), and noting our earlier observation
that Bd(m,f(m))(flf) = Bd(:v,f(:v))(f(x)) for all Z,
we get d(z,z) < d(z, f(z)) and d(z, f(z)) <
d(z, f(z)). By non-expansiveness of f, we get
d(f(z), f(z)) < d(z,z) < d(z, f(x)). It follows
by (Uiv) that d(z, f(z)) < d(z, f(x)) and there-
fore that Bd(z’f(z))(z) - Bd(m,f(x))(x) by Lemma
5 for all x € X, since x was chosen arbitrar-

ily. Now, since f is strictly contracting on orbits,
d(f(2), f2(z)) < d(z, f(2)), and therefore z ¢
Ba((2),12(2)) (f(2)) C Ba(z,f(z))(f(2)). By Lemma
5, this is equivalent to Byif(.),r2(2)(f(2)) C
By(z,f(2))(2), which is a contradiction to the max-
imality of C. So f has a fixed point.

Now let f be strictly contracting on X and
assume that z, y are two distinct fixed points of



f. Then we get d(z,y) = d(f(z), /() < d(,y)
which is impossible. So the fixed point of f is

unique in this case. |

We note that if d is a d-ultrametric, we can
generate an associated generalized ultrametric d’
in the usual sense by defining d'(z,y) = d(z,y)
whenever z # y and setting d'(z,z) = 0 for all z.
Doing this, however, does not simplify our main
application, which is below, and one then has
to check that spherical completeness is preserved
in generalizing the theorem of Priess-Crampe &
Ribenboim. Since distance functions d such that
d(z,z) is not necessarily equal to 0 do arise nat-
urally in computing, and we consider one next,
we prefer to stay with the d-ultrametric and not
pass to an ultrametric.

An Application of Theorem 6:
®*-accessible programs

In the following, P is a ®*-accessible program
which satisfies the defining conditions with re-
spect to a model I and a level mapping [ : Bp —
v. We let I" denote the set {27 | a < v} ordered
by 27 < 277 iff 3 < «, and denote 277 by 0.

For J,K € Ip, we now define d(K,K) = 0,
and d(J,K) = 27°, where J and K differ on
some atom A € Bp of level «, but agree on all
ground atoms of lower level. As was shown in
[16], (Ip,d) is a spherically complete generalized
ultrametric space. For K € Ip, we denote by K’
the set K restricted to the predicate symbols in
Negp. By analogy with [5], we now define for all
J,K € Ip: di(J,K) = d(J',K') and dy(J, K) =
d(J\ J',K \ K'). Finally, define a function f :
Ip > T by f(K)=0if K\ K' C I and other-
wise f(K) = 2%, where « is the smallest ordi-
nal such that there is an atom A € K \ K’ with
[(A) = aand A € I. Finally, we define o(J, K) =
max{di(J,I),d(K,I),d2(J,K), f(J), f(K)} for
all JJK € Ip.

Proposition 7 (Ip, ) is a spherically complete
d-ultrametric space.

Proof: (Ui), (Uiii) and (Uiv) we leave to the
reader. For spherical completeness, let (B, ) be a
(decreasing) chain of balls in X with centres I,,.

Let K be the set of all atoms which are eventually
in I, that is, the set of all A € Bp such that
there exists some 3 with A € I, for all &« > 5. We
show that for each ball By-o () in the chain we
have d(I,,I) < 27%, which suffices to show that
K is in the intersection of the chain. Indeed, it
is easy to see by the definition of ¢ that all Iy
with 8 > « agree on all atoms of level less than
a. Hence, by definition of K we obtain that K
and I, agree on all atoms of level less than « as
required. |

The next proposition is analogous to [5, Propo-
sition 7.1].

Proposition 8 Let P be ®*-accessible with re-
spect to a level mapping [ and a model I.
Then for all J,K € Ip with J # K we have
o(Tp(J), Tp(K)) < o(J,K). In particular we
have the following:

(1) dl(TP(‘])al) < dl(‘]al)
(ii) f(Tp(J)), f(Tp(K)) < o(J,K).
(ili) do(Tp(J),Tp(K)) < o(J, K).

Proof: It suffices to prove properties (i), (ii) and
(iii). For convenience, we identify Negp with the
subset of Bp containing predicate symbols from
Negp.

(i) First note that di(Tp(J),I) =
di(Tp-(J),I) since d; only depends on the
predicate symbols in Negp. Let d(J,I) = 27°.
We show that d(Tp (J),I) < 2-(@+D, We know
that J' and I’ agree on all ground atoms of level
less than « and differ on an atom of level a. It
suffices to show now that Tp-(J)" and I' agree
on all ground atoms of level less than or equal
to a.

Let A be a ground atom in Neg} with [(4) < «
and suppose that Tp—(J) and I differ on A. As-
sume first that A € Tp-(J) and A ¢ I. Then
there must be a ground instance A < Lq,..., Ly,
of a clause in P~ such that J |= L1 A -+ A Ly,.
Since [ is a fixed point of Tp—, and using Defini-
tion 2, there must also be a k such that I j= Ly
and I(Ly) < a. Note that the predicate symbol in
Ly, is contained in Negp. So we obtain I = Ly,
J |= Ly and [(Ly) < « which is a contradic-
tion to the assumption that J and I agree on
all atoms in Negp of level less than «. Now as-
sume that A € I and A € Tp-(J). It follows



that there is a ground instance A < Lq,..., Ly,
of a clause in P~ such that I = L; A--- A Ly,
and [(A) > I(L1),...,l(Ly) by Definition 2. But
then J |= Ly A--- A Ly, since J and I agree on
all atoms of level less than « and consequently
A € Tp-(J). This contradiction establishes (i).

(ii) It suffices to show this for K. Assume
o(J, K) = 27® We show that f(Tp(K)) <
2~ (@t for which in turn we have to show that
for each A € Tp(K) not in Negp with [(A) < «
we have A € I. Assume that A ¢ I for such
an A. Since A € Tp(K), there is a ground in-
stance A < Lq,...,Ly, of a clause in P with
KEL A---ALy. Since A ¢ I, there must also
be a k with I = Ly and I(A) > [(Lg) by Def-
inition 2. If the predicate symbol of L; belongs
to Negp then, since K and I agree on all atoms
in Negp of level less than «, we obtain K [~ Ly
which contradicts K = L1 A---A Ly,. If the pred-
icate symbol in Lj does not belong to Negp, then
Li is an atom and since f(K) < 27% we obtain
I |= Ly, which is again a contradiction.

(iii) Let o(J, K) = 27%, let A be not in Negp
with [(A) < a and A € Tp(J). By symmetry,
it suffices to show that A € Tp(K). Since A €
Tp(J), we must have a ground instance A <
Ly,...,Ly, of a clause in P with J =Ly A--- A
Ly T E=LiA---ALp, then I(L) <l(A) <«
for all k£, and since J and K agree on all atoms
of level less than a we obtain K = L1 A--- A
L,,, and hence A € Tp(K). If there is some Ly,
such that I [~ Ly, then without loss of generality
I(Lg) < I(A) < a by Definition 2. Now, if the
predicate symbol of Lj; belongs to Neg}p then,
since dy(J,I) < 27%, we obtain from J = Ly
that I |= Ly which is a contradiction. Also, if
the predicate symbol of Ly does not belong to
Negp, then Ly is an atom and since f(J) < 27,
we obtain I = Lj, again a contradiction. This
establishes (iii). [ |

We are now in a position to prove our main
result.

Theorem 9 Let P be a ®*-accessible program.
Then P has a unique supported model.

Proof: By Proposition 8, Tp is strictly contract-
ing with respect to d3, which in turn is a spher-
ically complete d-ultrametric by Proposition 7.

So by Theorem 6, the operator Tp must have
a unique fixed point which yields a unique sup-
ported model for P. |

Conclusion

This work is part of an ongoing programme of
research being undertaken by the authors in in-
vestigating the extent to which the methods of
domain theory and denotational semantics can
be applied to logic programming, nonmonotonic
reasoning and artificial intelligence. The focus of
much of this work is on the fixed points of various
operators which are associated with programs
written in these paradigms, since the former pro-
vide one with a semantics (the fixed-point seman-
tics) for the latter. Such methods depend heavily
on ideas and techniques drawn from topology as
illustrated in this paper, and this line of research
is being further pursued in [8, 9].
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