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Abstract

We prove a type of converse of the Banach contraction mapping theorem for metric
spaces: if X is a Ty topological space and f : X — X is a function with unique fixed
point a such that f"(z) converges to a for each = € X, then there exists a distance
function d on X such that f is a contraction on the complete ultrametric space (X, d)
with contractivity factor % We explore properties of the resulting space (X, d).

1 Introduction and Motivation

Fixed points of functions and of operators are important in many classical mathemat-
ical areas ranging from analysis to dynamical systems to geometry etc. One area in
which they have recently risen to prominence is the area of denotational semantics of
programming languages, or the process of giving precise mathematical meaning to com-
puter programs, see for example [19] for theoretical background. To this end, semantic
operators are associated with various constructs! in a program in such a way that the
fixed points of these operators correspond to the denotational reading of the constructs.
A particular case in point, and one which is the inspiration for the present work, is that
of the semantics of logic programming systems, see [14]. In this context, an operator
F' can often be assigned to each program P in the system in such a manner that the
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denotational or declarative semantics of the entire program P can be viewed in terms
of the fixed points of F.

Of course, fixed-point theorems are of major importance anywhere that fixed points
are important. In the theory of programming languages, the fixed-point theorems used,
for example those of Knaster-Tarski and Kleene, are often based on order. Nevertheless,
in recent years there has been a significant movement towards the use of theorems, such
as the Banach contraction mapping theorem, which apply to metric spaces and especially
to ultrametric spaces, and to variants and generalizations of ultrametric spaces, see for
example [3, 4, 15]. This is particularly so in the case of logic programming, where the
presence of negation may restrict the use of order theory. Fixed-point theorems on metric
spaces and on generalized metric spaces provide an alternative and have indeed been
applied successfully in the area of logic programming semantics, see [5, 7, 8, 12, 16, 17,
18]. In fact, investigations using tools from topology and analysis are of general interest
in the area of logic programming, and elsewhere, in attempting to build continuous
models of computation, see [2].

If the Banach contraction mapping theorem is applied in order to show that a func-
tion f has a unique fixed point a, then the proof of the Banach theorem also establishes
the fact that iterates of f, or the sequences (f™(z)),, converge to a for each choice of
x (see below for a statement of the Banach theorem). This strong property often al-
lows one to compute approximations to the desired fixed point. In the context of logic
programming, there are programs whose semantic operators are defined on topological
spaces (of interpretations) and exhibit the same behaviour in that their iterates always
converge (in the topological sense) to a unique fixed point, although no metric space
structure has been given a priori and indeed may not be obviously available. In fact,
on the contrary, we will show in this paper that such an ultrametric space underlying
these processes can always be found. Thus, our main result, which is stated precisely in
Theorem 2, is in a sense a converse of the Banach contraction mapping theorem, and
permits that theorem to be “applied” in some circumstances where no metric rendering
the operators in question to be contractions was readily to hand in advance.

It should be noted that our theorem is not a true converse of the Banach theorem
in that we do not start out with a metrizable space and attempt to obtain a metric for
it relative to which f is a contraction. Our results, therefore, are very different from
those discussed in Section 3.6 of the text [13] which discusses a number of converses
of the Banach theorem. Even the result of Bessaga discussed there, which applies to
an abstract set, is very different from ours in that we do not require all iterations of f
to have a unique fixed point, but we do require topological convergence of the iterates
of any point. However, we wish to thank Professor Finbarr Holland for drawing our
attention to the results of [13].

Our results may be particularly interesting in the context of relationships between
logic programs and artificial neural networks [10, 12]: under certain conditions involving
the requirement that the semantic operator satisfies the hypotheses of the Banach con-
traction mapping theorem, it can be shown that artificial neural networks exist which



approximate this operator and its fixed point [12]. By providing a converse of the Ba-
nach contraction mapping theorem, we may be able to show that these hypotheses are
satisfied in certain contexts, thus allowing us to apply the results from [12]. Such matters
are under investigation by the authors.

The paper is structured as follows: we first recall some basic notions and establish
some notation in the remainder of this section. In Section 2, we will state our main result
and give its detailed proof. In Section 3, we will conclude with some further observations
concerning the ultrametric space which results from Theorem 2.

For background on topological and metric spaces, and the Banach contraction map-
ping theorem, we refer to [20]. If X is a set, and f: X — X is a function, then, for all
z € X, we define inductively f°(z) = z and f**'(z) = f(f"(z)) for n € N. Each f*(z)
is called an iterate of f on z. We also define f~'(z) = {y € X | f(y) = x} as usual. The
set of all integers is denoted by Z. Finally, we denote sequences by (z;,)nen or simply by

We recall the definition of a metric for later reference.

Definition 1 A metric on a set X is a function d : X x X — R which satisfies the
following conditions (Mi) to (Miv) for all z,y,z € X. We call d an ultrametric if it also
satisfies (Mv), and we note that (Mv) implies (Miv).

(Mi) d(z,y) = 0 implies z = y.
(Mii) d(z,z) = 0.
(Miii) d(z,y) = d(y, ).
(Miv) d(z,2) < d(z,y) +d(y, 2).

(Mv) d(z,2) < max{d(z,y),d(y, 2)}.

Finally, we recall the Banach contraction mapping theorem as follows.

Theorem 1 (Banach) Let (X, d) be a complete metric space and let f : X — X be a
function such that there exists 0 < A < 1 with d(f(z), f(y)) < Ad(z,y) for all z,y € X.
Then, for any = € X, the sequence (f"(x)) converges to the unique fixed point a of f.

Acknowledgement. The authors wish to thank an anonymous referee for drawing their
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slight change in the constructions made therein.

2 The Theorem

Theorem 2 Let (X,7) be a T; topological space and let f : X — X be a function
which has a unique fixed point a and is such that, for each x € X, the sequence (f™(z))
converges to a in 7. Then there exists a function d : X x X — R such that (X,d) is
a complete ultrametric space and such that for all z,y € X we have d(f(z), f(y)) <

1d(z,y).



Proof: The proof is divided into several steps, numbered consecutively.

1. Given z € X, we define the set T'(x) C X to be the smallest subset of X which is
closed under the following rules.

(1) z € T'(z).

(2) If y € T(x) and f(y) # a, then f(y) € T(x).

(3) If y € T(x) and y # a, then f~'(y) C T(z).

It is clear that the intersection of the family of all sets closed under these rules is itself
closed under these rules, and so the minimality condition is met. Moreover, it is also
clear that each of the sets T'(x) is non-empty. Now let 7 = {T'(x) | = € X} and observe
the following facts:

(i) T(a) = {a}. To see this, we note that (1), (2) and (3) are all true relative to the set
{a}. Therefore, by minimality we have T'(a) = {a}.

(i) If x # a, then a &€ T(x) and so T'(a) N T(x) = 0. Hence, either T'(a) and T'(x) are
equal or they are disjoint. To see this, suppose = # a and consider rule (3). Clearly, we
cannot have a € f~!(z) otherwise f(a) = z and hence a = x which is a contradiction.
Thus, rules (2) and (3) applied repeatedly and starting with x never place a in T'(z)
and, by minimality, the process just described generates T'(x).

(iii) If T(z) # T'(a) and T'(y) # T'(a), then either T'(x) and T'(y) are equal or they are
disjoint. To see this, suppose z € T'(x) N T'(y). Then the rules (1), (2) and (3) under
repeated application starting with z force T'(x) = T'(y).

Thus, the collection 7 is a partition of X.

2. We next inductively define a mapping [ : T'— Z U {oo} on each T' € T.

(1) We set I(a) = oo, and this defines [ on "= T'(a). If T' # T'(a), we choose an arbitrary
x € T and set [(z) = 0 (of course, x # a) and proceed as follows:

(2) For each y € T with f(y) # a and l(y) =k, let I(f(y)) = k + 1.

(3) For each y € T' with I(y) = k, let I(2) = k — 1 for all z € f~(y).

We will henceforth assume that all this is done for every 7" € T so that [ is a function
defined on all of X. It is clear that the mapping [ is well-defined since (X, 7) is a
T, space®. For, if there is a cycle in the sequence f"(x) of iterates for some r € X,
then we can arrange for some element y in this sequence to be frequently not in some
neighbourhood of a, using the fact that X is Ty, which contradicts the convergence of
the sequence f"(x) to a.

3. Define a mapping ¢ : Z U {oc} — R by

(k) = {o if k = oo,

2=k otherwise.

Furthermore, define a mapping 0: X x X — R by

o(z,y) = max{u(l(z)), (I(y))}
2We can weaken the requirement of 7 being T; by replacing it with the following condition: for every
y € X there exists an open neighbourhood U of a with y € U.
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and a mapping d : X x X — R by

o(z,y) ifx#y,
d(w,y)Z{O o=y

4. We show that (X, d) is an ultrametric space.

(Mi) Let d(z,y) = 0 and assume that x # y. Then o(z,y) = d(z,y) =
max{¢(l(x)), t(I(y))} = 0, so 1(I(x)) = «(I(y)) = 0. Hence I(x) = I(y)
x = y = a by construction of [, which is a contradiction.

(Mii) This is true by definition of d.

(Miii) This is true by symmetry of p, and hence of d.

(Mv) Let z,y,z € X and assume without loss of generality that ¢(I(z)) < ¢(I(z))
that d(x,z) = ({(2)). If «(I(y)) < (l(2)), then d(y,2z) = ¢(I(2)). If «(I(y))
t(1(2)), then d(y, z) = ¢(I(y)) > ¢(I(2)). In both cases we get d(y, z) > d(z, 2) as
required.

0, hence
= oo and

SO
>

5. (X,d) is complete as a metric space. In order to show this, let (z,) be a Cauchy
sequence in X. If (z,,) is eventually constant, then it converges trivially. So assume that
(xy,) is not eventually constant. We show that z,, converges to a in d, for which it suffices
to show that (¢(I(z,)))nen converges to 0. Let € > 0. Then there exists ny € N such that
for all m,n > ny we have d(x,,,x,) < e. In particular, we have d(x,,x,,) < € for all
m > ng, and, since (x,) is not eventually constant, we obtain ¢({(x,,)) < &, and also
t(I(xp,)) < € for all m > ng. Since € was chosen arbitrarily, we see that (t(I(z,)))nen
converges to 0.

6. We note that for f(z) # a, we have [(f(z)) = {(x) + 1 by definition of [, and hence
W(1(f(2))) = 5(l(x)).

7. For all z,y € X, we have that d(f(z), f(y)) < 3d(z,y). In order to show this, let
z,y € X and assume without loss of generality that x # y. Let d(z,y) = 2%, say,

so that max{c(I(x)),c(I(y))} = 27%. Then d(f(x), f(y)) = max{e(I(f(x))), (I(f(y)))} =
%max{b(l(x)), t(l(y)} = %d(x, y), as required. m

3 Exploring the Proof

We make some observations concerning the proof of Theorem 2, and continue to use the
notation adopted there.

i. Any x # a is an isolated point with respect to d, that is, {z} is open and closed in
the topology generated by d.

Proof: Let x # a and let +(I(z)) = 2%, say. Then, for any y € X, we have o(z,y) > 2%
and hence, for each y # x, we have d(x,y) > 27%. Therefore, {y € X | d(x,y) < 27} =
{z} which is consequently open in d. Closedness is trivial. [ |
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ii. If (x,) is a sequence in X which converges in d to some x # a, then the sequence
(xy,) is eventually constant.

Proof: In order to see this, it suffices to show that {z} is open with respect to d for any
x # a, which is true by point i. [ |

iii. The metric d does not in general generate 7, but the iterates (f"(z)) of f converge
to a both with respect to 7 and with respect to d.

Proof: Indeed, the topology 7 is not in general metrizable. By the proof of the Banach
contraction mapping theorem, (f"(z)) converges to a with respect to d. Convergence
with respect to 7 follows from the hypothesis of Theorem 2. [

iv. p is a dislocated ultrametric.

Dislocated metrics, and the slightly stronger partial metrics, are a generalization of
metrics and have recently been studied in the context of domain theory, see for example
6,9, 15]. A dislocated ultrametric on a set X is a mapping p: X x X — R, where Ry
stands for the positive real numbers including zero, such that conditions (Mi), (Miii) and
(Mv) from Definition 1 are satisfied. The assertion is easily derived from the definition
of o.

v. There exists a partial order < on X such that the following hold:

(i) (X, <) is chain complete, that is, every increasing chain has a least upper bound.
(ii) f is monotonic: if z <y, then f(z) < f(y).
(iii) For each increasing chain (z,) in X, we have f(sup, z)) = sup, f(z,).
(iv) f(x) >z forall x € X.

Proof: We define the partial order < on X by (1) z < a forall z € X, and (2) z < y if
I(z) <l(y) and y € T'(x).

(i) Note that if (x,), is an increasing chain, then so is (I(z,)),. If (x,), is eventually
constant, then there is nothing to show, so let (z,,) be strictly increasing. Then
(I(xy,)) is also strictly increasing, and it is easy to see that a is the least upper
bound of (I(z,)).

(ii) If l(z) < (y), then I(f(z)) =l(x) + 1 <IU(y)+1=1(f(y)).

(iii) If (xy) is eventually constant, then there is nothing to show. Otherwise, we have
f(supy(2x)) = f(a) = sup,(f(xx)), as required.
(iv) This is clear by definition of [.

Thus, the proof is complete. |
We note the similarity between these conditions and the hypothesis of the Kleene
theorem, see [1, 4].

vi. We finally note that Theorem 2 is essentially a generalization of a proposition in
[11], which was proven for finite X.
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