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Abstract. One approach to integrating first-order logic programming
and neural network systems employs the approximation of semantic op-
erators by feedforward networks. For this purpose, it is necessary to
view these semantic operators as continuous functions on the reals. This
can be accomplished by endowing the space of all interpretations of a
logic program with topologies obtained from suitable embeddings. We
will present such topologies which arise naturally out of the theory of
logic programming, discuss continuity issues of several well-known se-
mantic operators, and derive some results concerning the approximation
of these operators by feedforward neural networks.

1 Introduction

The area of neuro-symbolic integration has received growing attention in the
recent past. It would be highly desirable to enhance the very adaptable and
robust neural networking machinery with the ability to handle structured, sym-
bolic knowledge expressed, for example, as first-order logic programs.

Several attempts to obtain such an integration have been made, and we refer
to [1] for a recent survey and to [2] for an overview of the recent challenges in this
area. However, most of these attempts have stayed within the context of propo-
sitional logic and they are unlikely to carry over to full first-order logic. One
exception to this statement is due to Holldobler, Stérr and Kalinke in [3] who
employed a general approximation theorem due to Funahashi [4] which states
that every continuous function on the real numbers can be uniformly approx-
imated by 3-layer feedforward neural networks. Holldobler et al. investigated
a syntactically restricted class of logic programs (acyclic normal with injective
level mapping) and showed that for these a semantic operator (the immediate
consequence operator) can, via suitable embeddings, be viewed as a continuous
function on the real line. It follows then that the immediate consequence oper-
ator can be approximated by neural networks due to Funahashi’s theorem. It
even turned out in this case that the approximating function is a contraction on
the reals, when endowed with the usual metric, and that iterations of the ap-
proximating function are well-behaved, in a certain specific sense. We also note
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that such methods and techniques are quite closely related to the overall aims
of the programme of research being undertaken by Blair et al. [5] relating logic
programming to continuous models of computation.

In this paper, we will examine the topological content of the results of
Holldobler, Storr and Kalinke, and set out to generalize some of their results. We
present our results in two sections, Sections 2 and 3. In the first of these, Sec-
tion 2, we study continuity issues of semantic operators in logic programming.
Then, in Section 3, we relate this discussion to the results of Holldobler et al.
and Funahashi already alluded to.

2 Continuity of Semantic Operators

A (normal) logic program is a finite set of clauses of the form
V(A< Li A+ A Ly),

where n € N may differ for each clause, A is an atom in a first order language £
and Ly,..., L, are literals, that is, atoms or negated atoms, in £. As is customary
in logic programming, we will write such a clause in the form

A(—Ll,...,Ln,

in which the universal quantifier is understood. Then A is called the head of
the clause, each L; is called a body literal of the clause and their conjunction
Lq,...,L, is called the body of the clause. We allow n = 0, by an abuse of
notation, which indicates that the body is empty; in this case the clause is
called a unit clause or a fact. We will occasionally use the notation A < body
for clauses, so that body stands for the conjunction of the body literals of the
clause. If no negation symbol occurs in a logic program, the program is called a
definite logic program. The Herbrand base underlying a given program P will be
denoted by Bp and the set of all Herbrand interpretations by Ip, and we note
that the latter can be identified simultaneously with the power set of Bp and
with the set 287 of all functions mapping Bp into the set 2 consisting of two
distinct elements. By ground(P), we will denote the set of all ground instances of
clauses in P. Finally, we refer the reader to [6] for general background concerning
logic programming.

Throughout the rest of the paper, we will impose the standing condition on
the language £ that it contains at least one constant symbol and at least one
function symbol with arity greater than 0. If this is not done, ground(P) may
be a finite set of ground instances of clauses, and can be treated essentially as
a propositional program, for which methods other than those propounded here
seem more appropriate.

In logic programming semantics, it has turned out to be both useful and
convenient to use many-valued logics. Our investigations will therefore begin
by studying suitable topologies on spaces of many-valued interpretations. We
assume we have given a finite set 7 = {t1,...,t,} of truth values containing at
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least the two distinguished values ¢; and t,, which are interpreted as being the
truth values for “false”, and “true”, respectively. We also assume that we have
truth tables for the usual connectives V, A, <, and —. Given a logic program P,
we denote the set of all (Herbrand) interpretations or valuations in this logic by
Ipy; thus Ip, is the set TBr of all functions I : Bp — T. If n is clear from the
context, we will use the notation Ip instead of Ip, and we note that this usage
is consistent with the one given above for n = 2. As usual, any interpretation
I can be extended, using the truth tables, to give a truth value in 7 to any
variable-free formula in L.

Throughout the paper we will make substantial use of elementary notions
and results from the mathematical area called Topology, our standard reference
being [7].

Definition 1. Given any logic program P, the generalized atomic topology Q
on Ip = Ip,, is defined to be the product topology on TBP , where T = {t1,...,t,}
is endowed with the discrete topology.

We note that these topologies can be defined analogously for the non-Herbrand
case. For n = 2, the generalized atomic topology Q specializes to the query
topology of [8] (in the Herbrand case), or to the atomic topology @ of [9] (in
the non-Herbrand case). The following results follow immediately since Q is a
product topology of the discrete topology on a finite set, and hence is a topology
of pointwise convergence.

Proposition 1. For A € Bp and t; a truth value, let G(A,t;) = {I € Ip, |
I(A) = t;}. The following hold.

(a) Q is the topology generated by the subbase G = {G(A,t;) | A € Bp,i €
{1,...,n}}.

(b) A net (I)) in Ip converges in Q if and only if for every A € Bp there exists
some \o such that I\(A) is constant for all X > Ag.

(c) Q is a second countable totally disconnected compact Hausdorff topology
which is dense in itself. Hence, Q is metrizable and homeomorphic to the
Cantor topology on the unit interval of the real line.

We note that the second countability of Q rests on the fact that Bp is count-
able, so that this property does not in general carry over to the non-Herbrand
case.

The study of topologies such as @ comes from our desire to be able to con-
trol the iterative behaviour of semantic operators. Topologies which are closely
related to order structures, as common in denotational semantics [10], are of
limited applicability since nonmonotonic operators frequently arise naturally in
the logic programming context. See also [11,12] for a study of these issues.

We proceed next with studying a rather general notion of semantic operator,
akin to Fitting’s approach in [13], which generalizes standard notions occurring
in the literature.
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Definition 2. An operator T on Ip is called a consequence operator for P if
for every I € Ip the following condition holds: for every ground clause A < body
in P, where T(I)(A) = t;, say, and I(body) = t;, say, we have that the truth
table for t; < t; yields the truth value t,, that is, “true”.

It turns out that this notion of consequence operator relates nicely to Q,
yielding the following result which was reported by us in [11,14]. If T' is a conse-
quence operator for P and if for any I € I'p we have that the sequence of iterates
T™(I) converges in Q to some M € Ip, then M is a model, in a natural sense,
for P. Furthermore, continuity of T yields the desirable property that M is a
fixed point of T.

Intuitively, consequence operators should propagate “truth” along the impli-
cation symbols occurring in the program. From this point of view, we would like
the outcome of the truth value of such a propagation to be dependent only on
the relevant clause bodies. The next definition captures this intuition.

Definition 3. Let A € Bp and denote by Ba the set of all body atoms of
clauses with head A that occur in ground(P). A consequence operator T is called
(P-)local if for every A € Bp and any two interpretations I, K € Ip which agree
on all atoms in By, we have T'(I)(A) = T(K)(A).

It is our desire to study continuity in Q of local consequence operators. Since
Q is a product topology, it is reasonable to expect that finiteness conditions
will play a role in this context, and indeed conditions which ensure finiteness in
the sense of Definition 4 below, due to [9], have made their appearance in this
context.

Definition 4. Let C be a clause in P and let A € Bp be such that A coincides
with the head of C'. The clause C is said to be of finite type relative to A if C
has only finitely many different ground instances with head A. The program P
will be said to be of finite type relative to A if each clause in P is of finite type
relative to A, that is, if the set of all clauses in ground(P) with head A is finite.
Finally, P will be said to be of finite type if P is of finite type relative to A for
every A € Bp.

A local variable is a variable which appears in a clause body but not in the
corresponding head. Local variables appear naturally in practical logic programs,
but their occurrence is awkward from the point of view of denotational semantics,
especially if they occur in negated body literals since this leads to the so-called
floundering problem, see [6].

It is easy to see that, in the context of Herbrand-interpretations, and if func-
tion symbols are present, then the absence of local variables is equivalent to a
program being of finite type.

Proposition 2. Let P be a logic program of finite type and let T be a local
consequence operator for P. Then T is continuous in Q.
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Proof. Let I € Ip be an interpretation and let Go = G(A,t;) be a subba-
sic neighbourhood of T'(I) in Q, and note that G5 is the set of all K € Ip
such that K(A) = t;. We need to find a neighbourhood G; of I such that
T(G1) C Gs. Since P is of finite type, the set B, is finite. Hence the set
G1 = Npep, 9(B,I(B)) is a finite intersection of open sets and is therefore open.
Since each K € GGy agrees with I on B4, we obtain T'(K)(A) = T(I)(A) = t; for
each K € GG by locality of T'. Hence, T(G1) C G».

Now, if P is not of finite type, but we can ensure by some other property of P
that the possibly infinite intersection (\zc5, G(B, I(B)) is open, then the above
proof will carry over to programs which are not of finite type. Alternatively,
we would like to be able to disregard the infinite intersection entirely under
conditions which ensure that we have to consider finite intersections only, as in
the case of a program of finite type. The following definition is, therefore, quite
a natural one to make.

Definition 5. Let P be a logic program and let T be a consequence operator on
Ip. We say that T is (P-)locally finite for A € Bp and I € Ip if there ezists
a finite subset S = S(A,I) C Ba such that we have T'(J)(A) = T(I)(A) for all
J € Ip which agree with I on S. We say that T is (P-)locally finite if it is locally
finite for all A € Bp and all I € Ip.

It is easy to see that a locally finite consequence operator is local. Conversely,
a local consequence operator for a program of finite type is locally finite. This
follows from the observation that for a program of finite type the sets B4, for
any A € Bp, are finite. But a much stronger result holds.

Theorem 1. A local consequence operator is locally finite if and only if it is
continuous in Q.

Proof. Let T be a locally finite consequence operator, let I € Ip, let A € Bp,
and let Gy = G(A,T(I)(A)) be a subbasic neighbourhood of T'(I) in Q. Since T'
is locally finite, there is a finite set S C B4 such that T'(J)(A) = T(I)(A) for
all J € NgegG(B,I(B)). By finiteness of S, the set (g5 G(B,1(B)) is open,
which suffices for continuity of 7.

For the converse, assume that T is continuous in Q@ and let A € Bp and
I € Ip be chosen arbitrarily. Then Gy = G(A,T(I)(A)) is a subbasic open set,
so that, by continuity of T', there exists a basic open set G; = G(By, I(By))N---N
G(By, I(By)) with T'(G1) C G2. In other words, we have T'(.J)(A) = T'(I)(A) for
each J € Npeg G(B,I(B)), where S" = {B,..., By} is a finite set. Since T' is
local, the value of T'(J)(A) depends only on the values J(A) of atoms A € By.
So if we set S = S"'N By, then T(J)(A) = T(I)(A) for all J € Nzc59(B,I(B))
which is to say that T is locally finite for A and I. Since A and I were chosen
arbitrarily, we obtain that T is locally finite.

The following corollary was communicated to us by Howard A. Blair in the
two-valued case. A level mapping for a program P is a mapping [ : Bp — «
for some ordinal «; we always assume that [ has been extended to all literals
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by setting [(—A) = [(A) for each A € Bp. An w-level mapping for P is a level
mapping [ : Bp — N.

Corollary 1. Let P be a program, let T be a local consequence operator and
let I be an injective w-level mapping for P with the following property: for each
A € Bp there exists an na € N such that [(B) < na for all B € Bs. Then T is
continuous in Q.

Proof. Tt follows easily from the given conditions that B4 is finite for all A € Bp,
which implies that 7" is locally finite.

We next take a short detour from our discussion of continuity to study the
weaker notion of measurability [15] for consequence operators. For a collection
M of subsets of a set X, we denote by o(M) the smallest o-algebra containing
M, called the g-algebra generated by M. Recall that a function f : X — X is
measurable with respect to o(M) if and only if f~1(A) € o(M) for each A € M.
If B is the subbase of a topology 7 and f is countable, then o(8) = o(7). It
turns out that local consequence operators are always measurable with respect
to the o-algebra generated by a generalized atomic topology. The following result
generalizes a theorem from [16].

Theorem 2. Local consequence operators are measurable with respect to o(G) =

a(Q).

Proof. Let T be a local consequence operator. We need to show that for each
subbasic set G(A,t;) we have T1(G(A,t;)) € o(G).

Let A € Bp and let t € T both be chosen arbitrarily. Let F' be the set of
all functions from B4 to 7, and note that F' is countable since B4 is countable
and 7 is finite. Let F’ be the subset of F' which contains all functions f with
the following property: whenever an interpretation I agrees with f on B4, then
T(I)(A) =t. Then, Ngep, 9(B, f(B)) € T"'(G(A,t)) for each f € F'.

We obtain by locality of T', that whenever I is an interpretation for which
T(I)(A) =t holds, then there exists a function f; € F’ such that fr and I agree
on By, and this yields 77"(G(A,t)) = Uy, e Npen, 9(B, 1(B)). Since F' and
B4 are countable, the set on the right hand side is measurable as required.

We turn now to the study of the continuity of a particular operator introduced
by Fitting [13] to logic programming semantics. To this end, we associate a set
P* with each logic program P by the following construction. Let A € Bp. If
A occurs as the head of some unit clause A < in ground(P), then replace it
by the clause A < t,,, where by a slight abuse of notation we interpret ¢, to
be an additional atom which we adjoin to the language £ and always evaluate
to t, € T, that is, it evaluates to “true”. If A does not occur in the head of
any clause in ground(P), then add the clause A < ty, where #; is interpreted as
an additional atom which again we adjoin to £ and always evaluate to tg € T,
that is, it evaluates to “false”. The resulting (ground) program, which results
from ground(P) by the changes just given with respect to every A € Bp, will
be denoted by P’. Now let P* be the set of all pseudo clauses of the form
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A+ CiVCsy V..., where the C; are exactly the bodies of the clauses in P’ with
head A. We call A the head and By = C; V Cs V ... the body of the resulting
pseudo clause, and we note that each A € Bp occurs in the head of exactly one
pseudo clause in P*. Bodies of pseudo clauses are possibly infinite disjunctions,
but this will not pose any particular difficulty with respect to the logics which
we are going to discuss. We note that a program P is of finite type if and only
if all bodies of all pseudo clauses in P* are finite.

Now, if we are given (suitable) truth tables for negation, conjunction and
disjunction, we are able to evaluate the truth values of bodies of pseudo clauses
relative to given interpretations.

Definition 6. Let P be a logic program. Define the mapping Fp : Ip, — Ipy
relative to a given (suitable) logic with n truth values by Fp(I) = J, where J
assigns to each A € Bp the truth value I(By).

We call operators which satisfy Definition 6 Fitting operators. If we impose
the mild assumption that t; < t; evaluates to “true” for every j with respect to
the underlying logic, then we easily obtain that every Fitting operator is a local
consequence operator. This will always be the case in the remaining section.

The virtue of Definition 6, due to Fitting [13], lies in the fact that several
operators known from the theory of logic programming can be derived from it
in a very concise way, and we refer to [13,17] for a discussion of these matters,
see also [14]. We will now investigate some of these operators in the light of
Theorem 1. In the following, we will denote the “true” truth value by t and the
“false” truth value by f.

If the chosen logic is classical two-valued logic, then the corresponding Fitting
operator is the single-step or immediate consequence operator Tp (for a given
program P). Now, if Tp(I)(A) = t, then there exists a clause A < body in
ground(P) such that I(body) is true, and we obtain Tp(J)(A) = t whenever
J(body) = t. The observation that bodies of clauses are finite conjunctions leads
us to conclude the following lemma.

Lemma 1. If Tp(I)(A) is true, then Tp is locally finite for A and I. Further-
more, Tp is continuous if and only if it is locally finite for all A and I with
Tp(I)(4) =t.

A body \/ C; of a pseudo clause is false if and only if all C; are false. Since
Tp is a Fitting operator, we obtain Tp(I)(A) = f if and only if all C; are false.
If we require T'p to be locally finite for A and I, then there must be a finite set
S C By such that any J € Ip which agrees with I on S renders all C; to be
false. These observations now easily yield the following theorem from [9].

Theorem 3. Let P be a normal logic program. Then Tp is continuous if and
only if, for each I € Ip and for each A € Bp with Tp(I)(A) = £, either
there is no clause in P with head A or there exists a finite set S(I,A) =
{A1,..., A, B1,..., B} C B4 with the following properties:

(i) Ai,..., Ag are true in I and By,..., By are false in I.
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(it) Given any clause C' with head A, at least one -~ A; or at least one B; occurs
in the body of C.

Table 1. Connectives for Kleene’s strong three-valued logic.

pqglpANgpVgp
ttl t t f
tul u t f
tflf ot f
ut| u t u
uul u U U
u f| f U U
ftlf t ot
ful f u t
Frr 5t

In the case of Kleene’s strong three-valued logic, with set of truth values 7 =
{t,u, f} and logical connectives as in Table 1, the associated Fitting operator
was introduced in [18] and is denoted by ®p, for a given program P. As in the
case of classical two-valued logic, we obtain the following lemma.

Lemma 2. If &p(I)(A) =t, then ®p is locally finite for A and I. Furthermore,
@ p is continuous if and only if it is locally finite for all A and I with ®p(I)(A) €

{u, f}.

Obtaining a theorem analogous to Theorem 3 is now straightforward, but
tedious, and we omit the details. Similar considerations apply to the operator ¥
on Belnap’s four-valued logic [13] and to the operators from [19].

We mention in passing the nonmonotonic Gelfond-Lifschitz operator [20] in
classical two-valued logic, whose fixed points yield the stable models of the pro-
gram in question. It turns out that this operator is not a consequence operator
in the sense discussed in this paper, and attempts to characterize continuity of
it will involve different methods, e.g. by means of the results from [21].

3 Approximation by Artificial Neural Networks

A 3-layer feedforward network (or single hidden layer feedforward network) con-
sists of an input layer, a hidden layer, and an output layer. Each layer consists of
finitely many computational units. There are connections from units in the input
layer to units in the hidden layer, and from units in the hidden layer to units
in the output layer. The input-output relationship of each unit is represented
by inputs x;, output y, connection weights w;, threshold 8, and a function ¢ as

follows:
y=2a (szwl —0> .
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The function ¢, which we will call the squashing function of the network, is
usually non-constant, bounded and monotone increasing, and sometimes also
assumed to be continuous. We will specify the requirements on ¢ that we assume
in each case.

We assume throughout that the input-output relationships of the units in the
input and output layer are linear. The output function of a network as described
above is then obtained as a mapping f : R" — R with

f@y,.. ) =) cio (ijifi —9j> ;
J i

where r is the number of units in the input layer, and the constants c; correspond
to weights from hidden to output layers. See also Figure 1. We refer to [22] for
background concerning artificial neural networks.

‘ ‘ y ‘ output layer ‘ ‘ ‘
G

‘ ‘ i ‘ hidden layer ‘ ‘ ‘
wji

‘ ‘ % ‘ input layer ‘ ‘ ‘

Fig. 1. 3-Layer Feedforward Neural Network.

It is our aim to obtain results on the approximation of consequence operators
by input-output functions of 3-layer feedforward networks. Our first result rests
on the following theorem, which is due to Funahashi, see [4].

Theorem 4. Suppose that ¢ : R — R is non-constant, bounded, monotone in-
creasing and continuous. Let K C R™ be compact, let f : K — R be a contin-
wous mapping and let € > 0. Then there exists a 3-layer feedforward network
with squashing function ¢ whose input-output mapping f : K — R satisfies
max,cx d(f(z), f(z)) < ¢, where d is a metric which induces the natural topol-
ogy on R.

In other words, each continuous function f : K — R can be uniformly ap-
proximated by input-output functions of 3-layer networks. For our purposes, it
will suffice to assume that K is a compact subset of the set of real numbers, so
that our network architecture can be depicted as in Figure 2.

The Cantor set C is a compact subset of the real line and the topology which
C inherits as a subspace of R coincides with the Cantor topology on C. Also,
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Fig. 2. Network architecture used in this paper.

the Cantor space C is homeomorphic to Ip,, when the latter is endowed with a
generalized atomic topology Q. Hence, if a consequence operator T is continuous
in Q, we can identify it with a mapping «(T) : C — C : & = «(T(+~(z))) which
is continuous in the subspace topology of C in R, as follows.

Theorem 5. Let P be a program, let T be a consequence operator which is
locally finite and let v be a homeomorphism from (Ipy, Q) to C. Then T (more
precisely o(T)) can be uniformly approzimated by input-output mappings of 3-
layer feedforward networks.

Proof. Under the conditions stated in the theorem, the operator 7" is continuous
in Q. Using the homeomorphism ¢, the resulting function +(T') is continuous on
the Cantor set C, which is a compact subset of R. Applying Theorem 4, +(T')
can be uniformly approximated by input-output functions of 3-layer feedforward
networks.

The restriction to programs with continuous consequence operator is unsat-
isfactory. There is another approximation theorem due to [23], which requires
only measurable functions:

Theorem 6. Suppose that ¢ is a monotone increasing function from R onto
(0,1). Let f : R" — R be a Borel-measurable function and let p be a probability
Borel-measure on R". Then, given any ¢ > 0, there exists a 3-layer feedforward
network with squashing function ¢ whose input-output function f : R* — R
satisfies

ou(f, F) =nf{6 > 0: p{z : |f(z) — f(x)| > 0} < 0} <e.

In other words, the class of functions computed by 3-layer feedforward neural
nets is dense in the set of all Borel measurable functions f : R” — R relative to
the metric g, defined in Theorem 6.

By means of Theorem 2, we can now view a local consequence operator T as a
measurable function ¢(T") on C by identifying Ip,, with C via a homeomorphism ¢.
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Since C is measurable as a subset of the real line, this operator can be extended?
to a measurable function on R and we obtain the following result.

Theorem 7. Given any program P with local consequence operator T, the op-
erator T (more precisely (T)) can be approzimated in the manner of Theorem
6 by input-output mappings of 3-layer feedforward networks.

This result is somewhat unsatisfactory since the approximation stated in
Theorem 6 is only almost everywhere, that is, pointwise with the exception of a
set of measure zero. The Cantor set, however, is a set of measure zero. In [16],
the present authors were able to strengthen this result in the case of classical
logic by giving an explicit extension of T to the real line.

We want to return now to the case discussed earlier in Theorem 5. In [3], the
following recurrent neural network architecture was considered: we assume that
the number of output and input units is equal and that, after each propagation
through the network, the output values are fed back without changes into input
values. For the case which we consider it will again be sufficient to suppose that
the input layer consists of one unit only, so that the architecture can be depicted
as in Figure 3.

Fig. 3. Recurrent Network.

We will show in the following that iterates of locally finite local consequence
operators can be approximated arbitrarily closely by iterates of suitably chosen
networks. This is in fact a consequence of the uniform approximation obtained
from Theorem 4 and the compactness of the unit interval.

% E.g. as a function T : R = R with T(z) = «(Tr(¢ *(z))) if 2 € C and T(z) = 0
otherwise.
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Let P be a logic program, let T be a locally finite local consequence operator
for P and let ¢+ : Ip — C be a homeomorphism. Let F' be a continuous extension
of ¢(T') onto the unit interval [0, 1] in the reals, let d be the natural metric on R,
and let € > 0. By Theorem 5, there exists a three-layer feedforward network with
input-output mapping f such that max,ejo,1}d(f (), F(z)) < e. Since [0,1] is
compact, and F' is continuous, we obtain that F' is Lipschitz-continuous, that is,
there exists A > 0 such that for all z,y € [0, 1] we have d(F(x), F(y)) < Ad(z,y).
For z,y € [0, 1] we therefore obtain

d(f(@), F(y) < d(f(x), F(2)) + d(F(@), F(y)) <+ Ad(z,y). (1)
Now let x € [0, 1] be arbitrarily chosen. By Equation (1) we obtain
d(f2 (@), F2(2)) < = + Ad(f(2), F(2)) <= + Ae. (2)
Inductively, we can prove that for all n € N we have

d(f"(z), F"(z)) <e+Xe+-+ A" le=¢ (nZ: Ai> = 511__/\;. (3)

i=0

Thus we obtain the following bound on the error produced by the recurrent
network after n iterations.

Theorem 8. With the notation and hypotheses above, for any I € Ip and any

n € N we have
1-A\"

1—X7

Proof. Note that ¢«(T™(I)) = F™(:(I)), and the assertion follows from Equation
(3) since d is the natural metric on R.

[f* (D)) = (T*(D))| < e

We derive a few corollaries from this result.

Corollary 2. If F is a contraction on [0,1], so that A\ < 1, then (F*(.(I)))
converges for every I to the unique fized point © of F and there exists m € N
such that for all n > m we have

[f* () —z| <e

1-X

Proof. The convergence follows from the Banach contraction mapping theorem.
The inequality follows immediately from Theorem 8 using the well-known equa-
tion for limits of geometric series.

If F is a contraction on [0,1], then T is a contraction on the complete sub-
space C, and also has a fixed point M, and (M) = x. However, it seems diffi-
cult to guarantee the hypothesis of Corollary 2, although Holldobler et al. have
achieved in [3] a similar result for acyclic programs with injective level mappings
in classical logic. The following result may be more promising.
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Corollary 3. If for some I € Ip, T"(I) converges in Q to a fized point M of
T, then for every § > 0 there exists a network with input-output function f, and
some n € N such that | f"(«(I)) — o(M)| < 6.

Proof. The hypothesis implies that F™(.(I)) converges to ¢(M) in the natural
metric on R. Given § > 0, there exists n € N such that |[F™(u(I)) — o(M)| < &
for all m > n. Since F is fixed, we know the value of A\. Now, by the approxima-
tion results above, we choose a network with input-output function f such that
el=At < g Then using Theorem 8 and the triangle inequality we obtain

1-X
£ (D)) = (M) < | f"

<2-

—~

1)) = F*((D)] + [F™ (1)) = o(M)]

< 4.

N S

We will close by describing a class of programs for which the additional
hypothesis from Corollary 3 is satisfied. The result is well-known for the case of
classical two-valued logic and the immediate consequence operator in this case.
The following definition is due to [24].

Definition 7. A logic program P is called acyclic if there exists an w-level
mapping | such that for each clause A < Ly,...,L, in ground(P) we have
I(A) > I(L;) foralli=1,...,n.

In the following, let P be acyclic with level mapping I, and let T be a local
consequence operator for P. We next define a mapping d : Ip x Ip — R by
d(I,J) = 27", where n is least such that I and J differ on some atom A with
I(A) = n. It is easily verified that d is a complete metric on Ip, see [25].

Proposition 3. With the stated hypotheses, T is a contraction with respect to
d.

Proof. Suppose d(I,J) =2~™. Then I and J coincide on all atoms of level less
than n. Now let A € Bp with I[(A) = n. Then by acyclicity of P we have that
all atoms in B, are of level less than n, and by locality of T we have that
T(I)(4) = T(J)(A). So d(T(I),T(J)) < 2"+,

We finally obtain the following theorem.

Theorem 9. Let P be an acyclic program and let T be a local consequence
operator for P. Then for any I € Ip we have that T™(I) converges in Q to the
unique fized point M of T'.

Proof. By Proposition 3, and since d is a complete metric, we can apply the
Banach contraction mapping theorem which yields convergence of 7"(I) in d to
a unique fixed point M of T'. By definition of d, the convergence of the sequence
of valuations T™(I) to M must be pointwise, hence is also convergence in Q.

Theorem 9 is remarkable since the existence of a fixed point of the semantic
operator can be guaranteed without any further knowledge about the underlying
multi-valued logic.
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4 Conclusions

The contribution of this paper is twofold.

(1) We have motivated the study of local consequence operators in multi-
valued logic from an abstract and topological point of view. So far, semantic
operators in multi-valued logic have been monotonic, to our knowledge, in order
to circumvent problems related to nonmonotonicity of semantic operators in the
study of declarative semantics. However, it is becoming clearer and clearer that
nonmonotonic semantic operators in logic programming can be controlled using
topological methods, see [11,12]. By merging multi-valued logics and nonmono-
tonicity the arsenal of tools available to researchers working on the declarative
semantics of logic programming becomes considerably larger.

(2) We have generalized substantially some results from [3] concerning the ap-
proximation of semantic operators by artificial neural networks. However, many
questions remain. We have not yet found a way to actually construct the approx-
imating network. Very recent results [26] indicate that in order to do this, it will
be necessary to find ways of obtaining good bounds on Lipschitz constants of
semantic operators. Also, alternative methods of extending the results for con-
tinuous operators are needed, since the approach based on measurability seems
unsatisfactory. One may get better results by using different homeomorphisms
or even by using p-adic numbers* for representing Ir as a subspace of R.

Acknowledgement. We would like to thank Howard A. Blair, Steffen Hélldobler,
and Hans-Peter Storr for discussions on the subject matter.
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