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Abstract

In [HWO02b, HWO02a], a new methodology has been proposed which allows to derive
uniform characterizations of different declarative semantics for logic programs with negation,
and it has also been hinted at the possibility to use this novel approach in order to obtain
new meaningful semantics for logic programs. In this paper, we substantiate this claim by
proposing a new semantics which allows to deal with circular belief in logic programming. We
will also show that this circular ssmantics makes it possible to encode uncertain knowledge
with logic programs in a novel way.
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1 Introduction

Negation in logic programming differs from the negation of classical logic. Indeed, the quest for
a satisfactory understanding of negation in logic programming is still inconclusive — although
the issue has cooled down a bit recently — and has proved to be very stimulating for research
activities in computational logic, and in particular amongst knowledge representation and
reasoning researchers concerned with commonsense and nonmonotonic reasoning. During the
last two decades, different interpretations of negation in logic programming have lead to the
development of a variety of declarative semantics, as they are called. Some early research efforts
for establishing a satisfactory declarative semantics for negation as failure and its variants,
as featured by the resolution-based Prolog family of logic programming systems, have later
on been merged with nonmonotonic frameworks for commonsense reasoning, culminating
recently in the development of so-called answer set programming systems, like SMODELS or
pLv [MT99, SNSOx]. In turn, these have recently been shown to have potential for representing
action and change in research on cognitive agents [Lif02].

Systematically, one can understand Fitting’s proposal [Fit85] of a Kripke-Kleene semantics
— also known as Fitting semantics — as a cornerstone which plays a fundamental role both
for resolution-based and nonmonotonic reasoning inspired logic programming. Indeed, his
proposal, which is based on a monotonic semantic operator in Kleene’s strong three-valued
logic, has been pursued in both communities, for example by Kunen [Kun87] for giving a
semantics for pure Prolog, and by Apt and Pedreschi [AP93] in their fundamental paper on
termination analysis of negation as failure, leading to the notion of acceptable program. On the
other hand, however, Fitting himself [Fit91, Fit02], using a bilattice-based approach which
was further developed by Denecker, Marek and Truszczynski [DMTO0], tied his semantics
closely to the major semantics inspired by nonmonotonic reasoning, namely the stable model
semantics due to Gelfond and Lifschitz [GL88|, which is based on a nonmonotonic semantic
operator, and the well-founded semantics due to van Gelder, Ross and Schlipf [vGRS91],
originally defined using a different monotonic operator in three-valued logic together with a
notion of unfoundedness.

Another fundamental idea which was recognised in both communities was that of stratifi-
cation, with the underlying idea of restricting attention to certain kinds of programs in which
recursion through negation is prevented. Apt, Blair and Walker [ABW88| proposed a variant
of resolution suitable for these programs, while Przymusinski [Prz88] coined the slighty more
general notion of local stratification.

The semantics mentioned so far are defined and characterized using a variety of different
techniques and constructions, including monotonic and nonmonotonic semantic operators in
two- and three-valued logics, program transformations, level mappings, restrictions to suitable
subprograms, detection of cyclic dependencies etc. So in [HW02b, HWO02a], the authors have
proposed a methodology which allows to obtain uniform characterizations of all semantics
previously mentioned, and which clearly has potential for encompassing more than these. The
characterizations allow immediate comparison between the semantics, and one interesting
observation made in [HW02b, HW02a] was the fact that the well-founded semantics can
formally be understood as a Fitting semantics augmented with a form of stratification. We
will reproduce this argument at the end of Section 2 since it is important for the motivation
underlying our new proposal. In fact, while this perspective is very appealing, it suffers from a



certain asymmetry. Formally, this asymmetry is easily rectified, and a new semantics is born.
The remainder of the paper will then substantiate the claim that this new semantics is both
satisfactory from a theoretical perspective and meaningful from a knowledge representation
point of view. Indeed, on the theoretical side it will turn out to be tightly coupled to variants
of the Gelfond-Lifschitz operator, and thus to variants of the stable model semantics. On
the applied side it will turn out to be a reasonable framework for dealing with circular, i.e.
unfounded, belief. A slight reinterpretation will also make it applicable to reasoning with
uncertain knowledge.

The plan of the paper is as follows. Section 2 contains preliminaries which are needed
to make the paper relatively self-contained, as well as a short survey of some of the main
results from [HW02b, HW02a)]. In Section 3 we will use the results from [HW02b, HW02a|
just mentioned in order to systematically create a proposal for a new semantics, based on
purely formal considerations. In Sections 4 and 5 we will show that the proposed semantics is
meaningful, and is indeed a variant of the well-founded semantics, in a strictly formal sense.
In Section 6, we will eventually merge the new proposal with the well-founded semantics, in
order to arrive at the circular semantics for logic programs which we propose for dealing with
circular belief. Some examples will illustrate its potential for reasoning with uncertainty. We
conclude and discuss possibilities for further work in Section 7.

Acknowledgement. Thanks to Herbert Stoyan for his encouragment to extend [HW02b], and to
Matthias Wendt for inspiring discussions. Thanks also to Mike Stange for some terminological
first aid.

2 Preliminaries and Notation

A (normal) logic program is a finite set of (universally quantified) clauses of the form V(A «+
Ay N~ NA, AN =By A --- A =B,y,), commonly written as A < Ay, ..., A,,~By,...,2 By,
where A, A;, and B, fori=1,...,nand j =1,...,m, are atoms over some given first order
language. A is called the head of the clause, while the remaining atoms make up the body of
the clause, and depending on context, a body of a clause will be a set of literals (i.e. atoms or
negated atoms) or the conjunction of these literals. Care will be taken that this identification
does not cause confusion. We allow a body, i.e. a conjunction, to be empty, in which case it
always evaluates to true. A clause with empty body is called a unit clause or a fact. A clause
is called definite, if it contains no negation symbol. A program is called definite if it consists
only of definite clauses. We will usually denote atoms with A or B, and literals, which may
be atoms or negated atoms, by L or K.

Given a logic program P, we can extract from it the components of a first order language,
and we always make the mild assumption that this language contains at least one constant
symbol. The corresponding set of ground atoms, i.e. the Herbrand base of the program, will
be denoted by Bp. For a subset I C Bp, we set = = {—A | A € Bp}. The set of all ground
instances of P with respect to Bp will be denoted by ground(P). For I C Bp U —Bp, we say
that A is true with respect to (or in) I if A € I, we say that A is false with respect to (or in)
I'if =A € I, and if neither is the case, we say that A is undefined with respect to (or in) I. A
(three-valued or partial) interpretation I for P is a subset of BpU—Bp which is consistent, i.e.



whenever A € I then A & I. A body, i.e. a conjunction of literals, is true in an interpretation
I if every literal in the body is true in I, it is false in I if one of its literals is false in I, and
otherwise it is undefined in I. For a negated literal L = —A we will find it convenient to write
-L e Tif A€l By Ip we denote the set of all (three-valued) interpretations of P. Both Ip
and BpU—-Bp are complete partial orders (cpos) via set-inclusion, i.e. they contain the empty
set as least element, and every ascending chain has a supremum, namely its union. A model
of P is an interpretation I € Ip such that for each clause A <— body we have that body C [
implies A € I. A total interpretation is an interpretation I such that no A € Bp is undefined
in [.

For an interpretation I and a program P, an I-partial level mapping for P is a partial
mapping | : Bp — «a with domain dom(l) = {A | A € I or mA € I}, where « is some
(countable) ordinal. We extend every level mapping to literals by setting I(—A) = [(A) for
all A € dom(l). A (total) level mapping is a total mapping [ : Bp — « for some (countable)
ordinal «.

Given a normal logic program P and some [ C Bp U —Bp, we say that U C Bp is an
unfounded set (of P) with respect to I if each atom A € U satisfies the following condition:
For each clause A < body in ground(P) (at least) one of the following holds.

(Ui) Some (positive or negative) literal in body is false in I.
(Uii) Some (non-negated) atom in body occurs in U.

Given a normal logic program P, we define the following operators on Bp U—Bp. Tp(I) is
the set of all A € Bp such that there exists a clause A < body in ground(P) such that body
is true in I. Fp([) is the set of all A € Bp such that for all clauses A <— body in ground(P)
we have that body is false in I. Both Tp and Fp map elements of Ip to elements of Ip. Now
define the operator ®p : Ip — Ip by

Op(I) = Tp(I) U ~Fp(I).

This operator is due to [Fit85] and is well-defined and monotonic on the cpo Ip, hence has
a least fixed point by the Knaster-Tarski! fixed-point theorem, and we can obtain this fixed
point by defining, for each monotonic operator F, that FF10 =0, F1(a+ 1) = F(F T«) for
any ordinal o, and F1 5 = U7<g F 1~ for any limit ordinal 3, and the least fixed point of F' is
obtained as F'1T« for some ordinal a. The least fixed point of ®p is called the Kripke-Kleene
model or Fitting model of P, determining the Fitting semantics of P.

Now, for I € Bp U —=Bp, let Up(I) be the greatest unfounded set (of P) with respect to
I, which always exists due to [vGRS91]. Finally, define

WP(I) == Tp([) U _|UP(I)

'We follow the terminology from [Jac01]. The Knaster-Tarski theorem is sometimes called Tarski theorem
and states that every monotonic function on a cpo has a least fixed point, which can be obtained by transfinitely
iterating the bottom element of the cpo. The Tarski-Kantorovitch theorem is sometimes refered to as the
Kleene theorem or the Scott theorem (or even as “the” fixed-point theorem) and states that if the function
is additionally Scott (or order-) continuous, then the least fixed point can be obtained by an iteration which
is not transfinite, i.e. closes off at w, the least infinite ordinal. In both cases, the least fixed point is also the
least pre-fixed point of the function.



for all I C Bp U —~Bp. The operator Wp, which operates on the cpo Bp U —Bp, is due to
[vGRS91] and is monotonic, hence has a least fixed point by the Tarski fixed-point theorem,
as above for ®p. It turns out that Wp 1« is in Ip for each ordinal «, and so the least fixed
point of Wp is also in Ip and is called the well-founded model of P, giving the well-founded
semantics of P.

In order to avoid confusion, we will use the following terminology: the notion of interpreta-
tion, and Ip will be the set of all those, will by default denote consistent subsets of BpU—-Bp,
i.e. interpretations in three-valued logic. We will sometimes emphasize this point by using the
notion partial interpretation. By two-valued interpretations we mean subsets of Bp. Both in-
terpretations and two-valued interpretations are ordered by subset inclusion. Each two-valued
interpretation I can be identified with the partial interpretation I’ = I U —=(Bp \ I). Note
however, that in this case I’ is always a maximal element in the ordering for partial inter-
pretations, while I is in general not maximal as a two-valued interpretation?®. Given a partial
interpretation I, we set I =INBp and I~ = {A € Bp | A € I}.

Given a program P, we define the operator Tp on subsets of Bp by T4 (I) = Tp(I U
=(Bp \ I)). The pre-fixed points of Tj, i.e. the two-valued interpretations I C Bp with
TH(I) C I, are exactly the models, in the sense of classical logic, of P. Post-fixed points of
TS, ie. I C Bp with I C T4 (I) are called supported interpretations of P, and a supported
model of P is a model P which is a supported interpretation. The supported models of P
thus coincide with the fixed points of T . It is well-known that for definite programs P the
operator T is monotonic on the set of all subsets of Bp, with respect to subset inclusion.
Indeed it is Scott-continuous [L1088, SHLG94] and, via the Tarski-Kantorovich! fixed-point
theorem, achieves its least pre-fixed point M, which is also a fixed point, as the supremum of
the iterates T tn for n € N. So M = Ifp (T}}) = T} tw is the least two-valued model of P.
Likewise, since the set of all subsets of Bp is a complete lattice, and therefore has greatest
element Bp, we can also define 75 | 0 = Bp and inductively 75 | (a + 1) = Tp (T4 | «) for
each ordinal w and T3 | 8 = v<B T4 |~y for each limit ordinal 3. Again by the Knaster-Tarski
fixed-point theorem, applied to the superset inclusion ordering (i.e. reverse subset inclusion)
on subsets of Bp, it turns out that 7} has a greatest fixed point, gfp (T7).

There is a semantics using two-valued logic, the stable model semantics due to [GL88],
which is intimately related to the well-founded semantics. Let P be a normal program, and
let M C Bp be a set of atoms. Then we define P/M to be the (ground) program consisting
of all clauses A < A,..., A, for which there is a clause A + A,,...,A,,—~B;,...,~B,, in
ground(P) with By, ..., B, & M. Since P/M does no longer contain negation, it has a least
two-valued model T; M Tw. For any two-valued interpretation I we can therefore define the
operator GLp(I) = TIJ;/I T w, and call M a stable model of the normal program P if it is
a fixed point of the operator GLp, i.e. if M = GLp(M) = TIJ;/M T w. As it turns out, the
operator GLp is in general not monotonic for normal programs P. However it is antitonic,
i.e. whenever I C J C Bp then GLp(J) € GLp(I). As a consequence, the operator GL%,
obtained by applying GLp twice, is monotonic, and hence has a least fixed point Lp and
a greatest fixed point Gp. In [vG89] it was shown that GLp(Lp) = Gp, Lp = GLp(Gp),
and that Lp U =(Bp \ Gp) coincides with the well-founded model of P. This is called the
alternating fized point characterization of the well-founded semantics.

2These two orderings in fact correspond to the knowledge and truth orderings as discussed in [Fit91].



Some Results

The following is a straightforward result which has, to the best of our knowledge, not been
noted before. It follows the general approach put forward in [HW02b, HW02a].

2.1 Theorem Let P be a definite program. Then there is a unique two-valued model M of
P for which there exists a (total) level mapping [ : Bp — « such that for each atom A € M
there exists a clause A <— A,..., A, in ground(P) with A; € M and [(A) > [(4;) for all
1t =1,...,n. Furthermore, M is the least two-valued model of P.

Proof: Let M be the least two-valued model T tw, choose o = w, and define [ : Bp — « by
setting [(A) =min{n | A € T4 t(n+1)},if A € M, and by setting I(A) =0, if A ¢ M. From
the fact that 0 CTA 1M1 C...CTgtn C...C T tw=J,, T Tm, for each n, we see that
[ is well-defined and that the least model T4 tw for P has the desired properties.
Conversely, if M is a two-valued model for P which satisfies the given condition for some
mapping [ : Bp — «, then it is easy to show, by induction on [(A), that A € M implies
A e TE1(I(A) +1). This yields that M C T tw, and hence that M = T3 tw by minimality
of the model T Tw. [ ]

The following result is due to [Fag94], and is striking in its similarity to Theorem 2.1.

2.2 Theorem Let P be normal. Then a two-valued model M C Bp of P is a stable model of
P if and only if there exists a (total) level mapping [ : Bp — « such that for each A € M there
exists A <~ A;,...,A,~By,...,7 By, in ground(P) with A, € M, B; ¢ M, and [(A) > I(A;)
foralli=1,...,nand j=1,...,m.

We next recall the following alternative characterization of the Fitting model, due to
[HWO02b, HW02a).

2.3 Definition Let P be a normal logic program, I be a model of P, and [ be an [-partial
level mapping for P. We say that P satisfies (F) with respect to I and l, if each A € dom()
satisfies one of the following conditions.

(Fi) A € I and there exists a clause A < Ly, ..., L, in ground(P) such that L; € I and
[(A) > I(L;) for all i.

(Fii) =A € I and for each clause A < L4,..., L, in ground(P) there exists i with =L; € T
and [(A) > I(L;).

If A € dom(l) satisfies (Fi), then we say that A satisfies (Fi) with respect to I and [, and
similarly if A € dom(l) satisfies (Fii).

2.4 Theorem Let P be a normal logic program with Fitting model M. Then M is the
greatest model among all models I, for which there exists an [-partial level mapping [ for P
such that P satisfies (F) with respect to I and .

Let us recall next the definition of a (locally) stratified program, due to [ABW88, Prz88]:
A normal logic program is called locally stratified if there exists a (total) level mapping



[ : Bp — «, for some ordinal «, such that for each clause A «— Ay,..., A,,—B,...,B,, in
ground(P) we have that [(A) > [(A4;) and I(A) > [(B;) foralli=1,...,nand j=1,...,m.
The notion of (locally) stratifed program was developed with the idea of preventing recursion
through negation, while allowing recursion through positive dependencies. (Locally) stratified
programs have total well-founded models.

There exist locally stratified programs which do not have a total Fitting semantics and
vice versa. In fact, condition (Fii) requires a strict decrease of level between the head and
a literal in the rule, independent of this literal being positive or negative. But, on the other
hand, condition (Fii) imposes no further restrictions on the remaining body literals, while the
notion of local stratification does. These considerations motivate the substitution of condition
(Fii) by the condition (Cii), as done for the following definition.

2.5 Definition Let P be a normal logic program, I be a model of P, and [ be an [-partial
level mapping for P. We say that P satisfies (WF) with respect to I and [, if each A € dom(l)
satisfies one of the following conditions.

(Fi) A € I and there exists a clause A < Ly,..., L, in ground(P) with L, € I and
[(A) > I(L;) for all i.

(Cii) =A € I and for each clause A < Ay,..., A,,~By,...,7B,, in ground(P) (at least)
one of the following conditions holds:

(Ciia) There exists i € {1,...,n} with =4; € I and I(A4) > I(A;).
(Ciib) There exists j € {1,...,m} with B; € I and I(A) > [(B;).

If A € dom(l) satisfies (Fi), then we say that A satisfies (Fi) with respect to I and [, and
similarly if A € dom({) satisfies (Cii).

So, in the light of Theorem 2.4, Definition 2.5 should provide a natural “stratified ver-
sion” of the Fitting semantics. And indeed it does, and furthermore, the resulting seman-
tics coincides with the well-founded semantics, which is a very satisfactory result from
[HWO02b, HW02a).

2.6 Theorem Let P be a normal logic program with well-founded model M. Then M is the
greatest model among all models I, for which there exists an I-partial level mapping [ for P
such that P satisfies (WF) with respect to I and [.

For completeness, we remark that an alternative characterization of the weakly perfect
model semantics [PP90] can also be found in [HW02b, HW02a].

The approach which led to the results just mentioned, originally put forward in
[HWO02b, HW02a|, provides a methodology for obtaining uniform characterizations of dif-
ferent semantics for logic programs. It appears to be obvious that by further modifying the
conditions in Definitions 2.3 or 2.5, one can obtain new semantics, in a formal way. Certainly,
such an undertaking will be of purely academic value unless the new semantics can be shown,
at hindsight, to represent something meaningful. That is exactly what we will undertake in
the following.



3 A Proposal for a New Semantics

We note that condition (Fi) has been reused in Definition 2.5. Thus, Definition 2.3 has been
“stratified” only with respect to condition (Fii), yielding (Cii), but not with respect to (F1i).
Indeed, also replacing (Fi) by a stratified version such as the following seems not satisfactory
at first sight.

(Ci) A € I and there exists a clause A < Ay, ..., A,,"By,..., 7B, in ground(P) such that
A;,mB; €1, 1(A) > 1(A;), and I(A) > I(B;) for all i and j.

If we replace condition (Fi) by condition (Ci) in Definition 2.5, then it is not guaranteed
that for any given program there is a greatest model satisfying the desired properties, as the
following example from [HW02b, HW02a] shows.

3.1 Example Consider the program consisting of the two clauses p < p and ¢ < —p, and
the two (total) models M; = {p,—q} and My = {-p, q}, which are incomparable, and the
level mapping [ with {(p) = 0 and [(q) = 1.

Nevertheless, we will argue later in Section 6, that conditions (Ci) and (Cii) together pro-
vide a meaningful semantics which is suitable for dealing with circular belief and uncertainty.
In order to arrive at an understanding of this, we first consider the setting with conditions
(Ci) and (Fii), which is somehow “dual” to the well-founded semantics which is characterized
by (Fi) and (Cii).

3.2 Definition Let P be a normal logic program, I be a model of P, and [ be an [-partial
level mapping for P. We say that P satisfies (CW) with respect to I and [, if each A € dom(l)
satisfies one of the following conditions.

(Ci) A € I and there exists a clause A < Ay,..., A,,—B,...," B, in ground(P) such
that A;,~B; € I, I[(A) > l(4;), and [(A) > [(B;) for all ¢ and j.

(Fii) = A € I and for each clause A <— Ly, ..., L, in ground(P) there exists i with =L; € T
and [(A) > I(L;).

If A € dom(l) satisfies (Ci), then we say that A satisfies (Ci) with respect to I and [, and
similarly if A € dom(l) satisfies (Fii).

In the following two sections, we will present arguments which substantiate the claim that
Definition 3.2 provides a meaningful variant of the well-founded semantics. In order to do
this, we will start our investigations with a variant of the stable semantics. Via an alternating
fixed point characterization, this will also yield a variant of the well-founded semantics, which
in turn we will see to be characterized by Definition 3.2.

4 Maximally Circular Stable Semantics

The following result characterizes the greatest model of a definite program analogously to
Theorem 2.1.



4.1 Theorem Let P be a definite program. Then there is a unique two-valued supported
interpretation M of P for which there exists a (total) level mapping [ : Bp — « such that
for each atom A ¢ M and for all clauses A < A;,..., A, in ground(P) there is some A; ¢ M
with [(A) > [(A;). Furthermore, M is the greatest two-valued model of P.

Proof: Let M be the greatest two-valued model of P, and let « be the least ordinal such
that M = T4 | a. Define [ : Bp — « by setting [(A) = min{y | A & T4 | (v + 1)} for
A ¢ M, and by setting [(A) = 0 if A € M. The mapping [ is well-defined because A ¢ M
with A ¢ Tp |y = g, Tp 4 8 for some limit ordinal v implies A ¢ T | 3 for some 3 < 7.
So the least ordinal 8 with A ¢ T |3 is always a successor ordinal. Now assume that there is
A ¢ M which does not satisfy the stated condition. We can furthermore assume without loss of
generality that A is chosen with this property such that [(A) is minimal. Let A <+ Aq,..., A,
be a clause in ground(P). Since A & TjF (T} L1(A)) we obtain 4; & T} [I(A) DO M for some
i. But then [(A4;) < I(A) which contradicts minimality of [(A).

Conversely, let M be a two-valued model for P which satisfies the given condition for
some mapping [ : Bp — a. We show by transfinite induction on [(A) that A ¢ M implies
AgTh L (I(A) + 1), which suffices because it implies that for the greatest two-valued model
TS | B of P we have that T/ | 3 C M, and therefore T | 3 = M. For the inductive proof
consider first the case where [(A) = 0. Then there is no clause in ground(P) with head A and
consequently A ¢ T5 |1 = T4 (Bp). Now assume that the statement to be proven holds for
all B ¢ M with [(B) < «, where « is some ordinal, and let A ¢ M with [(A) = a. Then each
clause in ground(P) with head A contains an atom B with [(B) = 8 < o and B ¢ M. Hence
B ¢ Tg ] (B+1) and consequently A & T | (o + 1). |

The following definition and theorem are analogous to Theorem 2.2.

4.2 Definition Let P be normal. Then M C Bp is called a mazimally circular stable model
(mazstable model) of P if it is a two-valued supported interpretation of P and there exists
a (total) level mapping | : Bp — « such that for each atom A ¢ M and for all clauses
A<+ Ay, ... Ay, By, ...,7B,, in ground(P) with By,...,B,, ¢ M there is some A; ¢ M
with [(A) > [(A;).

4.3 Lemma Every maxstable model is a supported model.

Proof: Supportedness follows immediately from the definition. Now assume that M is

maxstable but is not a model, i.e. there is A € M but there is a clause A < Ay,..., A,
in ground(P) with A; € M for all 4. But by the definition of maxstable model we must have
that there is A; ¢ M, which contradicts A; € M. [ |

4.4 Theorem M C Bp is a maxstable model of P if and only if M = gfp (T;/M).

Proof: Let M be a maxstable model of P. Let A ¢ M and let T;F/Mia = gfp (T;/M) We
show by transfinite induction on I(4) that A ¢ T, | (I(4) + 1) and hence A ¢ T,/ | a.

For [(A) = 0 there is no clause with head A in P/M, so A ¢ T;/Mil. Now let [(A) = 3 for
some ordinal 3. By assumption we have that for all clauses A <— Ay,..., A,,~By,...,—B,

9



with By,..., B, € M there exists A; ¢ M with [(A) > [(A;), say [(4;) = v < (. Hence
A & T;/M¢(7+ 1), and consequently A ¢ T;/Mi(ﬁqL 1), which shows that gfp (T;/M> C M.

So let again M be a maxstable model of P and let A ¢ gfp (T;/M) = T;E/M l a and

[(A) = . Then for each clause A <— A;,..., A, in P/M there is A; with A; ¢ T;/Mia and
[(A) > I(A;). Now assume A € M. Without loss of generality we can furthermore assume that
A is chosen such that [(A) = ( is minimal. Hence A; ¢ M, and we obtain that for each clause
in P/M with head A one of the corresponding body atoms is false in M. By supportedness
of M this yields A ¢ M, which contradicts our assumption. Hence A ¢ M as desired.
Conversely, let M = gfp (TIJ;/M>. Then as an immediate consequence of Theorem 4.1 we
obtain that M is maxstable. |

5 Maximally Circular Well-Founded Semantics

Maxstable models are formally analogous® to stable models in that the former are fixed

points of the operator I — gfp (T;/I>, while the latter are fixed points of the operator
1 1fp (T3,
founded model, we can obtain a corresponding variant of the well-founded semantics, which
we will do next. Theorem 4.4 suggests the defininition of the following operator.

) . Further, in analogy to the alternating fixed point characterization of the well-

5.1 Definition Let P be a normal program and I be a two-valued interpretation. Then define
CGLp(I) = gfp <T;/I>.

Using the operator CGLp, we can define a “maximally circular” version of the alternating
fixed-point semantics.

5.2 Proposition Let P be a normal program. Then the following hold.
(i) CGLp is antitonic and CGL? is monotonic.

(ii) CGLp (Ifp (CGL})) = gfp (CGL}) and Ifp (CGL3) = CGLp (gfp (CGL7)).

Proof: (i) If I C J € Bp, then P/J C P/I and consequently CGLp(J) = gfp (T;/J> C

gfp (T;/I> = CGLp(I). Monotonicity of CGL? then follows trivially.

(ii) Let Lp = Ifp (CGL}) and Gp = gfp (CGL},). Then we obtain CGL}(CGLp(Lp)) =
CGLp (CGLY(Lp)) = CGLp(Lp), so CGLp(Lp) is a fixed point of CGL}, and hence
Lp C CGLp(Lp) C Gp. Similarly, Lp € CGLp(Gp) C Gp. Since Lp C Gp we get
from the antitonicity of CGLp that Lp C CGLp(Gp) C CGLp(Lp) C Gp. Similarly,
since CGLP(LP) g Gp, we obtain CGLP(GP) g CGL?D(LP) == Lp g CGLP(GP), SO
CGLP(GP) == Lp, and also Gp = CGL?D(GP) == CGLP(LP) |

3The term dual seems not to be entirely adequate in this situation, although it is intuitionally appealing.
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We will now define an operator for the maximally circular well-founded semantics. Given
a normal logic program P and some I € Ip, we say that S C Bp is a self-founded set (of P)
with respect to I if SUI € Ip and each atom A € S satisfies the following condition: There
exists a clause A <— body in ground(P) such that one of the following holds.

(Si) body is true in I.

Sii) Some (non-negated) atoms in bOdy occur in S and all other literals in bOdy are true in
g
I.

Self-founded sets are analogous® to unfounded sets, and the following proposition holds.

5.3 Proposition Let P be a normal program and let I € Ip. Then there exists a greatest
self-founded set of P with respect to I.

Proof: If (5;);ez is a family of sets each of which is a self-founded set of P with respect to I,
then it is easy to see that (J,.; S; is also a self-founded set of P with respect to I. [

Given a normal program P and I € Ip, let Sp(I) be the greatest self-founded set of P
with respect to I, and define the operator CWp on Ip by

CWp(I) = Sp(I) U ~Fp().

5.4 Proposition The operator CWp is well-defined and monotonic.

Proof: For well-definedness, we have to show that Sp(I) N Fp(I) = () for all I € Ip. So
assume there is A € Sp(I) N Fp(I). From A € Fp(I) we obtain that for each clause with
head A there is a corresponding body literal L which is false in I. From A € Sp(I), more
precisely from (Sii), we can furthermore conclude that L is an atom and L € Sp([). But then
—L € I and L € Sp(I) which is impossible by definition of self-founded set which requires
that Sp(I)UTI € Ip. So Sp(I) N Fp(I) = 0 and CWp is well-defined.
For monotonicity, let I C J € Ip and let L € CWp(I). If L = —A is a negated atom, then
A € Fp(I) and all clauses with head A contain a body literal which is false in I, hence in .J,
and we obtain A € Fp(J). If L = A is an atom, then A € Sp([) and there exists a clause
A < body in ground(P) such that (at least) one of (Si) or (Sii) holds. If (Si) holds, then body
is true in I, hence in J, and A € Sp(J). If (Sii) holds, then some non-negated atoms in body
occur in S and all other literals in body are true in I, hence in .J, and we obtain A € Sp(.J).
|

The following theorem relates our previous observations to Definition 3.2, in perfect anal-
ogy to the correspondence between the stable model semantics, Theorem 2.1, Fages’s char-
acterization from Theorem 2.2, the well-founded semantics, and the alternating fixed point
characterization. That such analogies are not purely coincidental was already hinted at in the
work of Fitting, Denecker, Marek, and Truszczynski [Fit91, Fit02, DMT00].

5.5 Theorem Let P be a normal program and Mp = Ifp(CWp). Then the following hold.

4 Again, it is not really a duality.
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(i) Mp is the greatest model among all models I of P such that there is an I-partial level
mapping [ for P such that P satisfies (CW) with respect to I and [.

(ii) Mp =Ifp (CGL}) U= (Bp \ gfp (CGL})).

Proof: (i) Let Mp = Ifp(CWp) and define the Mp-partial level mapping [p as follows: [p(A) =
«, where « is the least ordinal such that A is not undefined in CWp1(a+ 1). The proof will
be established by showing the following facts: (1) P satisfies (CW) with respect to Mp and
Ip. (2) If I is a model of P and [ is an [-partial level mapping such that P satisfies (CW)
with respect to I and [, then I C Mp.

(1) Let A € dom(lp) and [p(A) = a. We consider two cases.

(Case i) If A € Mp, then A € Sp(CWp T «), hence there exists a clause A < body in
ground(P) such that (Si) or (Sii) holds with respect to CWpTa. If (Si) holds, then all literals
in body are true in CWp 1, hence have level less than [p(A) and (Ci) is satisfied. If (Sii)
holds, then some non-negated atoms from body occur in Sp(CW p 1), hence have level less
than or equal to [p(A), and all remaining literals in body are true in CWp 1 «, hence have
level less than [p(A). Consequently, A satisfies (Ci) with respect to Mp and [p.

(Case ii) If 7 A € Mp, then A € Fp(CWp1Ta), hence for all clauses A < body in ground(P)
there exists L € body with =L € CWpt« and [p(L) < «, hence =L € Mp. Consequently, A
satisfies (Fii) with respect to Mp and [p, and we have established that fact (1) holds.

(2) We show via transfinite induction on o = [(A), that whenever A € I (respectively,
—A € 1), then A € CWp 1 (a+ 1) (respectively, ~A € CWp 1 (a + 1)). For the base case,
note that if [(A) = 0, then =A € I implies that there is no clause with head A in ground(P),
hence =A € CWp 1 1. If A € I then consider the set S of all atoms B with I(B) = 0 and
B € I. We show that S is a self-founded set of P with respect to CWp 10 = ), and this
suffices since it implies A € CWp 11 by the fact that A € S. So let C € S. Then C € I and
C satisfies condition (Ci) with respect to I and [, and since [(C') = 0, we have that there is a
definite clause with head C' whose body atoms (if it has any) are all of level 0 and contained
in I. Hence condition (Sii) (or (Si)) is satisfied for this clause and S is a self-founded set of
P with respect to I. So assume now that the induction hypothesis holds for all B € Bp with
[(B) < o, and let A be such that [(A) = a. We consider two cases.

(Case i) If A € I, consider the set S of all atoms B with [(B) = a and B € I. We show
that S is a self-founded set of P with respect to CWp 1 «, and this suffices since it implies
A € CWp 1 (a+1) by the fact that A € S. First note that S C I, so SUI € Ip. Now
let C € S. Then C' € I and C satisfies condition (Ci) with respect to I and [, so there is
a clause A < Ay,...,A,,—By,..., 7By, in ground(P) such that A4;,—B; € I, [(A) > I(4;),
and [(A) > [(B;) for all i and j. By induction hypothesis we obtain -B; € CWp 1 . If
[(A;) < I(A) for some A; then we have A; € CWp T, also by induction hypothesis. If there
is no A; with [(A;) = {(A), then (Si) holds, while [(A;) = [(A) implies A; € S, so (Sii) holds.

(Case ii) If =A € I, then A satisfies (Fii) with respect to I and [. Hence for all clauses
A < body in ground(P) we have that there is L € body with =L € I and I(L) < «.
Hence for all these L we have =L € CWp T a by induction hypothesis, and consequently for
all clauses A < body in ground(P) we obtain that body is false in CWp 1 o which yields
-A € CWp1t(a+1). This establishes fact (2) and concludes the proof of (i).
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(ii) We first introduce some notation. Let

Ly =0,

Go = Bp,

Lot1 = CGLp(Gy) for any ordinal «,
Gat+1 = CGLp(L,) for any ordinal «,

L, = U Lg for limit ordinal «,
[B<a

Gy = ﬂ Gp for limit ordinal «,
B<a

Lp = Ifp(CGL3%),
Gp = gfp(CGL%).

By transfinite induction, it is easily checked that L, C Lg C G C G, whenever a@ < 3. So
Lp=|JL, and Gp = Gq-

Let M = Lp U —(Bp \ Gp). We intend to apply (i) and first define an M-partial level
mapping [. We will take as image set of [, pairs («,7y) of ordinals, with the lexicographic
ordering. This can be done without loss of generality since any set of such pairs, under
the lexicographic ordering, is well-ordered, and therefore order-isomorphic to an ordinal. For
A € Lp, let [(A) be the pair (a,0), where « is the least ordinal such that A € L,.,. For
B ¢ Gp, let [(B) be the pair (3, ), where 3 is the least ordinal such that B ¢ G, and v
is least such that B & Tp/r, 7. It is easily shown that [ is well-defined, and we show next by
transfinite induction that P satisfies (CW) with respect to M and .

Let A € Ly = gfp (T;/B ) Since P/Bp contains exactly all clauses from ground(P)

which contain no negation, we have that A is contained in the greatest two-valued model of
a definite subprogram of P, namely P/Bp. So there must be a definite clause in ground(P)
with head A whose corresponding body atoms are also true in L, which, by definition of [,
must have the same level as A, hence (Ci) is satisfied. Now let =B € —(Bp \ Gp) such that
B € (Bp\ G1) = Bp\ gfp( P/(D) Since P/() contains all clauses from ground(P) with all
negative literals removed, we obtain that B is not contained in the greatest two-valued model
of the definite program P/(), and (Fii) is satisfied by Theorem 4.1 using a simple induction
argument.

Assume now that, for some ordinal a;, we have shown that A satisfies (CW) with respect
to M and [ for all A € Bp with [(A4) < («,0).

Let A€ Lo\ Ly = gfp ( /G ) \ Ly Then A € ( P/Ge iy) \ L,, for some 7; note that all
(negative) literals which were removed by the Gelfond-Lifschitz transformation from clauses
with head A have level less than («,0). Then A satisfies (Ci) with respect to M and [ by
definition of /.

Let A € (Bp\ Goy1) NG,. Then A & gfp ( /L ) and we conclude again from Theorem

4.1, using a simple induction argument, that A satisfies (CW) with respect to M and [.
This finishes the proof that P satisfies (CW) with respect to M and [. It remains to show
that M is greatest with this property.
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So assume that M; D M is the greatest model such that P satisfies (CW) with respect to
M, and some Mi-partial level mapping [;. Assume L € M;\ M and, without loss of generality,
let the literal L be chosen such that [;(L) is minimal. We consider two cases.

(Case i) If L = =A € M; \ M is a negated atom, then by (Fii) for each clause A «
Lq,...,L, in ground(P) there exists ¢ with =L; € M; and [;(A) > [;(L;). Hence, =L; € M
and consequently for each clause A <— body in P/Lp we have that some atom in body is false
in M = LpU—(Bp\ Gp). But then A ¢ CGLp(Lp) = Gp, hence =A € M, contradicting
-Ae M\ M.

(Caseii) If L = A € M;\ M is an atom, then A ¢ M = LpU—(Bp\Gp) and in particular

Ad Lp = gfp (TIJ;/GP
with this property. We show by induction on 7 that this leads to a contradiction, to finish the
proof.

If v = 1, then there is no clause with head A in P/Gp, i.e. for all clauses A < body in
ground(P) we have that body is false in M, hence in M, which contradicts A € M.

Now assume that there is no B € M; \ M with B ¢ T;/GP 10 for any § < 7, and let
Ae M\ M with A ¢ T;/GP 47y, which implies that 7 is a successor ordinal. By A € M; and
(Ci) there must be a clause A <— A;,..., A,~B,..., 7B, in ground(P) with A;,~B; € M,
for all + and j. However, since A & T;/Gp 47 we obtain that for each A < Ay,..., A4, in
P/Gp, hence for each A «+ Ay,..., Ay, —By,...,~By, in ground(P) with =By,..., "B, €
=(Bp \ Gp) € M C M, there is A; with A; ¢ T;/GP 1 (y—=1) € M, and by induction
hypothesis we obtain A; ¢ M;. So A; € M, and A; ¢ M;, which is a contradiction and
concludes the proof. [ |

). Hence A ¢ T;/GP J v for some 7, which can be chosen to be least

5.6 Definition For a normal program P, we call Ifp(CWp) the mazimally circular well-
founded model (mazwf model) of P.

6 Circular Beliefs

Observe the program P consisting of the single clause p <— p. In classical logic, this clause is
equivalent to pV—p, which has two models, namely {p} and {—p}. We note that {—p} coincides
with the stable model of P, while {p} is its maxstable model. So we refer to stable models as
minimally circular stable models (minstable models). For the program from Example 3.1, we
have that M, is the unique minstable model, while M;" is the unique maxstable model.

6.1 Example Consider the following program, where X is a variable, and bob a constant.

penguin(X) < penguin(X),bird(X)
flies(X) « bird(X), —penguin(X)
bird(bob)

The first clause is supposed to represent the knowledge that a bird may be a penguin. The
only minstable model of the program is {bird(bob), flies(bob)}, i.e. bob does fly. The only
maxstable model of the program is {bird(bob), penguin(bob)}, i.e. bob does not fly, but is a
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penguin. Both the maxstable and the minstable model describe possible settings if the first
clause is interpreted as indicated.

Consider the program consisting of the two clauses p <— p and ¢ < ¢, and we would like to
interpret both clauses as before, namely as allowing a choice for believing p, or ¢, or both, or
none. Thus we have four possibilities, which are not all captured by the minstable model () and
the maxstable model {p, ¢}. We rectify this situation by introducing the following definitions,
inspired by our investigations in the previous chapters.

6.2 Definition Let P be a normal logic program, I be a model of P, and [ be an [-partial
level mapping for P. We say that P satisfies (C) with respect to I and [, if each A € dom(l)
satisfies one of the following conditions.

(Ci) A € I and there exists a clause A < Ay,..., A,,—By,...,=B,, in ground(P) with
Ai,ﬁBj el, l(A) > l(AZ), and l(A) > l(B]) for all 7 and j.

(Cii) —A € I and for each clause A < A,,..., A,,—By,..., B, in ground(P) (at least)
one of the following conditions holds:

(Ciia) There exists i € {1,...,n} with =A; € I and I(A4) > I(A;).

(Ciib) There exists j € {1,...,m} with B; € I and I(A) > I(B;).
If A € dom(l) satisfies (Ci), then we say that A satisfies (Ci) with respect to I and [, and
similarly if A € dom([) satisfies (Cii). If M is a model of P which is maximal under the
condition that P satisfies (C) with respect to M and some M-partial level mapping [, then
we call M a circular model of P. The corresponding semantics is called the cirular semantics
or® the switch semantics of P.

For the program consisting of the two clauses p <— p and ¢ < ¢, we have four (total)
circular models {—p, =q}, {p, ~q}, {-p, ¢}, and {p, ¢}, as the reader will easily verify. Again,
in this simple case the models coincide with the models of (p +— p) A (¢ < ¢) in classical logic.
Using the stable model semantics for extended disjunctive logic programs as introduced by
Gelfond and Lifschitz [GLI1], the same could be achieved using the program consisting of the
two clauses p V —p <— and ¢ V ¢ <—. The following example is less abstract, but conveys the
same idea.

6.3 Example Consider a coffee delivery robot, which has two choices of doors for entering
the room where the coffee is to be delivered. It is unknown to the robot whether these doors,
or one of them, are open.

open(X) + open(X), door(X)
deliverable <— open(X)
undeliverable < —deliverable
door(1) +
door(2) «+

5The latter term is a proposal by Matthias Wendt.
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This program has four (total) circular models, as follows.

{door(1),door(2), open(1l), open(2),deliverable} U —{undeliverable}
(The maxstable model.)
{door(1),door(2),undeliverable} U —{open(1), open(2),deliverable}
(The minstable model.)
{door(1),door(2), open(1l),deliverable} U —{open(2), undeliverable}
{door(1),door(2), open(2),deliverable} U ~{open(l),undeliverable}

It is remarkable that this result can be achieved without the use of disjunctive logic program-
ming, as e.g. in [GLI1].

Let us shortly discuss our examples. Under the circular semantics, a program in general
has several distinguished three-valued models, which we call circular models. In essence, these
different models come from interpreting the switch p <— p similarly to classical logic, i.e. as
classical disjunction. However, this dependency of an atom on itself may be hidden in the
program, e.g. within two clauses a <— b and b < «a. In this latter case the only two circular
models are {a, b} and {—a, —b}.

As a result we obtain a setting in which we can model choices or uncertain knowledge
about the environment — whether a door is open or not — without the use of explicit
disjunction. It is certainly to be investigated whether the circular semantics is a reasonable
framework for knowledge representation and reasoning purposes. However, our main concern
in this paper was to show how the methodology from [HW02b, HW02a] can be used to create
new semantics, which is are least potentially meaningful. So we restrict our analysis of circular
models to the examples above and the following theorems, which shed some additional light
on circular models.

6.4 Theorem Let P be a normal program and N be a total circular model of P. Then
M = N* is a fixed point of T} A The converse does not hold in general.

Proof: We have to show that M = T;/M(M). So let A € M. Then by (Ci) there exists a
clause A < Ay,..., Ap,—By,..., 7By, in ground(P) with A; € M and B; ¢ M, for all i and
J. Thus, there exists a clause A < Ay,..., A, in P/M with A; € M for all i, and we conclude
that A € T, (M), and we have shown that M C T, (M). Now let A ¢ M. Then by
(Cii) we have that for each clause A < body in ground(P) (at least) one of (Ciia) or (Ciib)
holds with respect to M. In either case, we have that body is false in M, and we conclude

A ¢ Tg, (M), showing M D Ty, (M).
In order to see that the converse does not hold in general, consider the program con-

sisting of the two clauses p < —¢ and ¢ < —p, which has the single circular model (), but
T3, (p}) = {p}. n

The Fitting model of a program approximates all circular models of a program, as follows.

6.5 Theorem Let P be a program, F' be its Fitting model, and M be a circular model of P.
Then F C M. Furthermore, there exists a program P, the Fitting model F' of which is not
circular, but F' is the intersection of all circular models of P.
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Proof: It follows immediately from Definitions 2.3 and 6.2 that P satisfies (C) with respect
to I and [, which suffices.

For the second assertion consider the program P consisting of the single clause p < p.
Then () is the Fitting model of P, while its circular models are {p} and {-p}, which shows
the claim. |

Finally, we note that the well-founded model of a program is not necessarily circular.
Indeed, consider the program P consisting of the two clauses p < p and p < —p. Then 0
is the well-founded model of P while {p} is its maxwf model. So the well-founded model is
not maximal as a model satisfying (C). Likewise, the maxwf model is not necessarily circular,
which can be seen from the program () consisting of the single clause ¢ <— ¢, —¢, which has
well-founded model {—¢} and maxwf model (). Note also that the program P U @ has well-
founded model {—¢} and maxwf model {p}, while its unique circular model is {p, ~¢}. It is
trivial, however, to verify that in general both the well-founded and the maxwf model satisfy
(C) with respect to the given program, although maximality is not guaranteed as the examples
just given show.

7 Conclusions and Further Work

We have displayed the usefulness of the approach from [HW02b, HW02a] for creating new
semantics, which are potentially meaningful. Using solely formal arguments we have designed
a semantics which allows to deal with circular belief and uncertainty, in a novel way. Circular
reasoning, although judged undesirable in scientific discourse, is a natural ingredient in the
way humans think and argue in everyday life, and we refer to [Rip02] for a recent publication
on this issue. Certainly, it remains to be determined whether the proposed circular semantics
is useful for knowledge representation and reasoning purposes. Our main motivation, however,
was to study the methodology proposed in [HWO02b, HW02a] by providing a case in point
which shows how it can lead to the creation of new semantics. Indeed, we note that all proofs
of theorems in Sections 4 and 5 follow the general proof scheme laid out in [HWO02a]. The
work presented here is explorative, but we expect that our studies will eventually lead to a
meta-theory based on [HW02b, HW02a].
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