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Abstract. We propose a novel method for reasoning in the descriptigit lo
SHIQ. After a satisfiability preserving transformation fraf¥7Q to the de-
scription logicALCIb, the obtainedALCIb Thox 7 is converted into an or-
dered bhinary decision diagram (OBDD) which represents amiaal model for
7. This OBDD is turned into a disjunctive datalog program fttet be used for
Abox reasoning. The algorithm is worst-case optimal wdata complexity, and
admits easy extensions with DL-safe rules and ground cotijignqueries.

1 Introduction

In order to leverage intelligent applications for the Setitaweb, scalable reasoning
systems for the standardised Web Ontology Language Dwe required. OWL is
essentially based on description logics (DLs), with the Dlown asSH 7 Q currently
being among its most prominent fragments. State-of-th@©®t reasoners, such as
Pellet, FaC¥+, or RacerPro use tableau methods with good performanchkgesut
even those successful systems are not applicable in aliigabcases. This motivates
the search for alternative reasoning approaches that bpich diferent methods in
order to address cases where tableau algorithms turn owvi® d¢ertain weaknesses.
Successful examples are recent works based on resolutibmyaer-tableau calculi, as
realised by the systems KAON2 and HermiT.

In this paper, we pursue a new DL reasoning paradigm basetieonge of or-
dered binary decision diagrams (OBDD). These reasoning tave been successfully
applied in the domain of large-scale model checking andieation, but have hitherto
seen only little investigationin DLs [1]. Our work bases areent adoption of OBDDs
for terminological reasoning iISH 7Q [2]. This approach, however, is inherently inapt
of dealing with assertional knowledge directly. We therefadopt the existing OBDD
method for terminological reasoning, but use its outpugkmerating a disjunctive dat-
alog program that can in turn be combined with Abox data taiokd correct reasoning
procedure. The main technical contribution of the papen shiow this adoption to be
sound and complete based on suitable model constructionsidzring possible appli-
cations, the work establishes the basis for applying OB@Beld methods faSH 7 Q
reasoning, including natural support for DL-safe rules gralind queries. Implemen-
tation is still at prototype stage, but was used to genemateeextended examples that
illustrate our method.

Thttp://www.w3.org/2004/0WL/



The structure of the paper is as follows. In Section 2, welfsome essential def-
initions and results on which we base our approach. Sectitre3 discusses the de-
composition of models into sets dbminoeswhich are then computed with OBDDs
in Section 4. The resulting OBDD presentation is transfatteedisjunctive datalog in
Section 5, where we also show the correctness of the apprBaction 6 concludes.

2 The Description LogicsSHIQ and ALCIb

We first recall some basic definitions of DLs (see [3] for a coshgnsive treatment of
DLs) and introduce our notation. Next we define a rather esgive description logic
SH Qb that extendsSH 7 Q with restricted Boolean role expressions [4]. We will not
considerSH 7Qb knowledge bases, but the DL serves as a convenient umhoglta |
for the DLs used in this paper.

Definition 1. A SH7Qb knowledge base is based on three disjoint setsarfcept
nameNc, role namedNg, andindividual names\,. A set ofatomic rolesR is defined
asR := NR U {R | R € Ng}. In addition, we setnv(R) := R~ andInv(R") = R, and
we will extend this notation also to sets of atomic roles.hi@ $equel, we will use the
symbols RS to denote atomic roles, if not specified otherwise.

The set oBoolean role expressiorsis defined as

B:=R|-B|BrnB|BLB.
We use- to denote standard Boolean entailment between sets of @atoies and role
expressions. Given a sgtof atomic roles, we inductively define:

— For atomicroles RR + R if Re R, andR ¥ R otherwise,
— R+ -UifR¥ U, andR ¥ -U otherwise,

- RrUNVIifRrUandR + V, andR ¥ U NV otherwise,
—RrUUVIiIfRFUOrR+V,andR ¥ U LUV otherwise.

A Boolean role expression U iestrictedif 0 ¥ U. The set of all restricted role ex-
pressions is denoted, and the symbols U and V will be used throughout this paper
to denote restricted role expressionsS&{7Qb Rboxis a set of axioms of the form

U C V (role inclusion axiom) ofira(R) (transitivity axiom). The set of non-simple roles
(for a given Rbox) is inductively defined as follows:

— If there is an axionTra(R), then R is non-simple.
— Ifthere is an axiom R= S with R non-simple, then S is non-simple.
— If Ris non-simple, themv(R) is hon-simple.

A role issimpleif it is atomic (simplicity of Boolean role expressions ig relevant in
this paper) and not non-simple. Based o8& 7Qb Rbox, the set o€oncept expres-
sionsC is the smallest set containimg, and all concept expressions given in Table 1,
where CD € C, U € T, and Re R is a simple role. Throughout this paper, the symbols
C, D will be used to denote concept expressionS7#A7 Qb Thox (or terminology) is

a set ofgeneral concept inclusion axior{GCIs) of the form Gz D. ASHIQb Abox
(containingassertional knowledgeés a set of statements of the forngaL or R(a, b),



Table 1.Semantics of constructors 7+ .7Qb for an interpretatiod with domain4?.

Name SyntaySemantics

inverse role [R™ (X, y) € 47 x 47 | (y, x) € RY}
role negation-U  |{(x.y) € 47 x 47 | (x,y) ¢ U7}
role conj. |UnV [UfnvZ

roledisj. |UuV [UTuV?

top T A7

bottom 1 0
negation |[-C |47\ C’

conjunction [Cn D |Cf n DY

disjunction [CuD |Cf uD’

univ. rest.  [YU.C [{xe 47 |(x,y) € U7 impliesy e C’}
exist. rest. |AU.C |{xe4? |year:(xy)e UL yeC}
qualified  |<nRC|{xe 47 |#lyed’(x,y)eR!,yeC’} <n}
number rest>n RC|{x € 47 | #lye47|(x,y)e R/, ye CT} > n}

where gb € N,. We assume throughout that all roles and concepts occuirirthe
Abox are atomic (which can be done without loss of genejalitysH 7Qb knowledge
base KBis a triple (A, R, 7), whereA is an AboxR is an Rbox, and™ is a Thox.

As mentioned above, we will consider only fragmentsSsff7Qb. In particular,
aSHIQ knowledge base is 8H7Qb knowledge base without Boolean role expres-
sions, and atALCIb knowledge base is 8H 7Qb knowledge base that contains no
Rbox axioms and no number restrictions (i.e. axiam$C or >n RC). Consequently,
anALCIb knowledge base only consists of a pait, 7), whereA is an Abox and’™
is a Thbox. The related DIALCQTIb has been studied in [4].

An interpretation/ consists of a seti’ calleddomain(the elements of it being
calledindividualg together with a functioef mapping individual names to elements of
4%, concept names to subsets4df and role names to subsetstifx 47. The function
I is extended to role and concept expressions as shown in TaBleinterpretation
satisfiesan axiomy if we find that? = ¢, where

- TrUCVIifUl cV/, — T EC(a)if al e C,

— I E Tra(R) if R? is a transitive relation, — 7 k£ R(a, b)if (a’,b’) e R..

— JTECCDifcf cDf,
I satisfiesa knowledge base KH, | KB, if it satisfies all axioms of KBSatisfiability
equivalenceandequisatisfiabilityof knowledge bases are defined as usual.

For convenience of notation, we abbreviate Thox axioms efftnm T = C by
writing justC. Statements such dsl= C andC € KB are interpreted accordingly. Note
thatC C D can thus be written asC LI D.

Finally, we will often need to access a particular set of difiad and atomic subfor-
mulae of a DL concept. These specific parts are provided bfuthetionP : C — 2°:

P(D) if C=-=D
P(D)UP(E)ifC=DnEorC=DUE
{ClUP(D) if C=0U.DwithQ € {3,V,>n, <n}
{C} otherwise

P(C) =



We generalisé® to DL knowledge bases KB by definirig(KB) to be the union of the
setsP(C) for all Tbox axiomsC in KB.

We will usually express all Thox axioms as simple conceptesgions as explained
above. Given a knowledge base KB we obtain its negation ndiorra NNF(KB) by
converting every Tbox concept into its negation normal faswsual. It is well-known
that KB andNNF(KB) are equivalent.

For ALCIb knowledge bases KB, we will usually require another norsagion
step that simplifies the structure of KB Hiatteningit to a knowledge baseLAT(KB).
This is achieved by transforming KB into negation normahfaand exhaustively ap-
plying the following transformation rules:

— Select an outermost occurrenceq@.D in KB, such that) € {3,¥} andD is a
non-atomic concept.

— Substitute this occurrence wighlJ.F whereF is a fresh concept name (i.e. one not
occurring in the knowledge base).

— If 0 € {3,V}, add=F u D to the knowledge base. knowledge base.

Obviously, this procedure terminates yielding a flat knalgle bas&LAT(KB) all Tbox
axioms of which are Boolean expressions over formulae ofdahma A, —A, or QU.A
with A an atomic concept name. As shown in [2], afiy’CZb knowledge base KB is
equisatisfiable t&LAT(KB). This work also detailed a reduction 8fH7Q knowledge
bases tgALCIb that we summarise as follows:

Theorem 2. Any SH 7Q knowledge bas&B can be transformed in polynomial time
into an equisatisfiableALC b knowledge baskB’.

It is easy to see that the algorithm from [2] is still applitln the presence of
Aboxes, and that ground Abox conclusions are preservedh-tivit exception of en-
tailments of the fornR(a, b) for non-simple rolefk which fall victim to the standard
elimination of transitivity axioms.

3 Building Models from Domino Sets

Our approach towards terminological reasoninglifiC 7 b exploits the fact that models
for this DL can be decomposed into small parts, which we a@athinoesIntuitively,
each domino abstractly represents two individuals itZefC b interpretation, based
on their concept properties and role relationships. Wesed that suitable sets of such
two-element pieces flice to reconstruct models AALC7b Thoxes, and satisfiability
of ALCTbterminologies can thus be reduced to the existence of seisaits.

We first introduce the basic notion of a domino set, and iegi@hship to interpreta-
tions. Given a DL language with conce@sand rolesR, adominois an arbitrary triple
(A, R, B), whereA, B c C andR € R. We will generally assume a fixed language and
refer to dominoes over that language only. Interpretatiamsbe deconstructed into sets
of dominoes as follows:

Definition 3. Given an interpretatiod = (47,-7), and a seC c C of concept expres-
sions, thedomino projectiorof 7 w.r.t. C, denoted byrc(Z) is the set that contains for
all 6,6’ € 47 the triple (A, R, B) with



—A={CeC|6eCl}
— R={ReR|(56)eR),
- B={CeC|5 eCT},

An inverse construction of interpretations from arbitrdomino sets is as follows:

Definition 4. Given a setD of dominoes, the inducedbmino interpretatiory (D) =
4t 1y is defined as follows:

1. 4% consists of all finite nonempty words ou&mwhere, for each pair of subsequent
letters(A, R, B) and(A’, R’, B’) in aword, we haveB = A'.

2. Foré = (A1, R1, A){(Az, Ro, A3) . . . (Ai_1, Ri_1, Ay aword and A N¢ a concept
name, we defin&il(d) := A;, and set € AL iff A € tail(s),

3. For each Re Ng, we set(d1,d,) € RL if either s, = 61(A, R, B) with R e R or
01 = 62(A, R, B) with Inv(R) € R.

Mark that — following the intuition — the domino interprétat is constructed by
conjoining matching dominoes. This process is also simdathe related method of
“unravelling” models in order to obtain tree-like interpagons.

Domino projections do not faithfully represent the struetof the interpretation that
they were constructed from, yet they capture enough infaom#o reconstruct models
of a Tbox7", as long ag is chosen to contain at lea3(7"). Indeed, it was shown in [2]
that, for anyALCIb terminology?, J E 7 iff I(7p)(J)) E 7. This observation
allows us to devise an algorithm that directly constructsiitgable domino set from
which one could obtain a model that witnesses the satidfialoif some knowledge
base. The following algorithm therefore considers all fisslominoes, and iteratively
eliminates those that cannot occur in the domino projeafany model:

Definition 5. Consider anALCIb terminology7, and define> = P(FLAT(7")). Sets
D; of dominoes based on concepts frérare constructed as follows:
Dy consists of all dominoesA, R, B) which satisfy:

kb: for every concept & FLAT(7"), we have thaf]p.4 D C C is a tautology,
ex: forall JU.AeC,if Ae BandR+ U thendU.Ae A,
uni: forall YVUAeC,if YUAe AandR + U then Ae B.

Given a domino sébj, the setD;,; consists of all dominogsA, R, B) € D; satisfy-
ing the following conditions:

delex: for everydU.A € C with JU.A € A, there is som&A, R', B’) € D; such that
R +U and Ace B,

deluni: for everyYU.A € C with YU.A ¢ A, there is soméA, R, B’) € D; such that
R +UbutA¢g B,

sym: (8, Inv(R), A) € D.

The construction of domino s€fs,, is continued untiD;,; = Dj. The final result
Dy := Dj,1 defines theanonical domino seif 7.

2 Note that formulae irFLAT(7") and inA < C are such that this can easily be checked by
evaluating the Boolean operatorsGres if AA was a set of true propositional variables.



Note that the algorithm must terminate, since it starts fediinite initial setD that
is reduced in each computation step. Intuitively, the atgor implements a kind of
greatest fixed point construction that yields the dominggmtion of the largest possible
model of the terminological part of aALCZb knowledge base. The following result
makes this intuition more explicitly:

Lemma 6. Consider anALCIb terminology7 and an arbitrary model of 7. Then
the domino projectiompe arry)(Z) is contained irDy-.

Proof. The claim is shown by a simple induction. In the following, wse(A, R, B)
to denote an arbitrary domino abg ) (Z). For the base case, we must show that
mpELar)) () € Do. Let(A, R, B) to denote an arbitrary domino opear)) () Which
was generated from elemerdss’y. Then(A, R, B) satisfies conditiokb, sinces € C*
for anyC € FLAT(7"). The conditiongx anduni are obviously satisfied.

For the induction step, assume tha{r arry) () € Dj, and let(A, R, B) again
denote an arbitrary domino @b arry) () which was generated from elemerdss’).

— For delex, note thatdU.A € A impliess € (FU.A)L. Thus there is an individual
8" such that(s,5”) € U? ands” e AL. Clearly, the domino generated kg, 6”)
satisfies the conditions afelex

— Fordeluni, note thatYU.A ¢ A impliesé ¢ (YU.A)Y. Thus there is an individual
8" such that(s,6”)y € UZ ands” ¢ A’. Clearly, the domino generated kg, 6”)
satisfies the conditions afeluni.

— The condition ofsym for (A, R, B) is clearly satisfied by the domino generated
from (&', 6). |

We will also exploit this observation in the later constiantof models for knowl-
edge bases with individual assertions. The following wasraghown in [2]:

Theorem 7. AnALCIb terminologys is satisfiableffits canonical domino sés is
non-empty. Definition 5 thus defines a decision procedursdtsfiability of ALCIb
terminologies.

4 Sets as Boolean Functions

The algorithm of the previous section may seem to be of |ittkectical use, since it re-
quires the computations on an exponentially large set ofidoas. The required com-
putation steps, however, can also be accomplished with a mdirect representation of
the possible dominoes based on Boolean functions. Indeggrapositional logic for-
mula represents a set of interpretations for which the fanavaluates térue. Using

a suitable encoding, each interpretation can be undersi®adlomino, and a proposi-
tional formula can represent a domino set.

In order for this approach to be more feasible than the ndgarighm given above,
an dficient representation of propositional formulae is neeéed this we use binary
decision diagrams (BDDs), that have been applied to reptesenplex Boolean func-
tions in model-checking (see, e.g., [5]). A particular opsiation of these structures are
ordered BDDs (OBDDs) that use a dynamic precedence ordeopbpitional variables
to obtain compressed representations. We provide a firsduattion to OBDDs below.
A more detailed exposition and pointers to the literatueegiven in [6].



Boolean Functions and OperationsWe first explain how sets can be represented by
means of Boolean functions. This will enable us, given a fifieile base ses, to
represent every family of sefsc 25 by a single Boolean function.

A Boolean functioron a setvar of variables is a functiop : 2¥¥" — ({true, falsg.
The underlying intuition is thap(V) computes the truth value of a Boolean formula
based on the assumption that exactly the variablésarie evaluated ttrue. A simple
example are so-callezharacteristic functionsf the form[[v], for somev € Var, which
are defined a§v], (V) = trueift v e V, or the functiongtrue] and[false] mapping
any input totrue or false respectively.

Boolean functions over the same set of variables can be emdlzind modified in
several ways. Firstly, there are the obvious Boolean opexdbr negation, conjunc-
tion, disjunction, and implication. By slight abuse of rnaia, we will use the com-
mon (syntactic) operator symboig A, v, and— to also represent such (semantic)
operators on Boolean functions. Given, e.g., Boolean fansty andy, we find that
(o A Y)(V) = trueiff (V) = true andy(V) = true. Note that the result of the ap-
plication of A results in another Boolean function, and is not to be undedstas a
syntactic formula. Another operation on Boolean functisnaxistential quantification
over a set of variableg C Vvar, written asiV.¢ for some functiorp. Given an input set
W C Var of variables, we definedV.¢)(W) = true iff there is some VC V such that
(V' U (W\ V)) = true. In other words, there must be a way to set truth values of vari
ables inV such thatp evaluates tdrue. Universal quantification is defined analogously,
and we thus hav&V.¢ = =3V.—p as usual. Mark that our use dfandV overloads
notation, and should not be confused with role restrictioriBL expressions.

Ordered Binary Decision Diagrams Binary Decision Diagrams (BDDs), intuitively,
are a generalisation of decision trees which allow the retisedes. Structurally, BDDs
are directed acyclic graphs whose nodes are labelled bghblas from some seétar.
The only exception are twterminal nodes that are labelled lisyue andfalse respec-
tively. Every non-terminal node has two outgoing edges,esponding to the two pos-
sible truth values of the variable.

Definition 8. ABDD is a tupleO = (N, Niot, Nirue» Ntaise, loW, high, Var, 1) where

N is a finite set callethodes

— Nwot € N is called theoot node

— Nyue, Naise € N are called theéerminal nodes

low, high : N\ {Nye, Ntase} — N are twochild functionsassigning to every non-
terminal node dow and ahigh child node. Furthermore the graph obtained by
iterated application has to be acyclic, i.e. for no node rsexa sequence of appli-
cations oflow andhigh resulting in n again.

— Var is a finite set ofvariables

— A N\ {Nye, Naise} — Var is the labelling function assigning to every non-terminal
node a variable fronvar.

OBBDs are a particular realisation of BDDs where a certagtedng is imposed
on variables to achieve mordieient representations. We will not require to consider



the background of this optimisation in here. Now every BD3dzhon a variable set
Var = {Xg,..., X} represents an-ary Boolean functiorp : 22" — {true, falsg.

Definition 9. Given a BDDO = (N, Nyoot, Nirues Ntaise» 10w, high, Var, 1) the Boolean func-
tion g : 2¥" — {true, falsg is defined recursively as follows:

PO = P P = [rU€l ¢, = [false]
®n = (_‘[[/l(n)]])( A ‘Plow(n)) \ ([[/l(n)]])( A ‘Phigh(n)) for n e N\ {Nyye, Niaise}

In other words, the valug(V) for someV C Var is determined by traversing the
BDD, beginning from the root node: at a node labelled withVvar, the evaluation pro-
ceeds with the node connected by ttigh-edge ifv € V, and with the node connected
by thelow-edge otherwise. If a terminal node is reached, its laba@tigned as a result.

BDDs for some Boolean formula might be exponentially larggéneral, but often
there is a representation which allows for BDDs of managesize. Finding the op-
timal representation is NP-complete, but heuristics h&aasve to yield good approx-
imate solutions. Hence (O)BDDs are often conceivedfasiently compressed repre-
sentations of Boolean functions. In addition, many operation Boolean functions —
such as the aforementioned “point-wise” negation, cortjongdisjunction, implication
as well as propositional quantification — can be performesbdly on the corresponding
OBDDs by fast algorithms.

Translating Dominos into Boolean Functions To apply the above machinery to DL
reasoning, consider a flattens®lLC7b terminology7 = FLAT(7"). A set of propo-
sitional variablesvar is defined asvar := R U (P(7) x {1,2}). We thus obtain an
obvious bijection between set6 C Vvar and dominoes over the s&(7") given as
(AR, B) = (Ax{1})) URU (B x {2}). Hence, any Boolean function ovear rep-
resents a domino set as the collection of all variable setwlfich it evaluates tdrue.
We can use this observation to rephrase the constructiy-ah Definition 5 into an
equivalent construction of a functidifJ.

We first represent DL concepBsand role expressiond by characteristic Boolean
functions ovewar as follows. Note that the application afresults in another Boolean
function, and is not to be understood as a syntactic formula.
=[[D] if C=-=D =[[VI if U=-V
[DIALE] fC=DNE [U] = IVIAIW] ifU=VRW
[DIVIE] f C=DUE TYIVIvVIWE fU=VuUW
[C, 11, ifCeP(T) [ul, ifUeR
We can now define an inferencing algorithm based on Booleagtifans.

[C] =

Definition 10. Given a flatteneddLCZb terminology7” and a variable sevar defined
as above, Boolean functiofjg ]; are constructed based on the definitions in Fig. 1:

_ [[7']]0 — ‘pkb A ‘puni A l,DeX, . .
— [T lis1 =17 Ti A (p?elex/\ (p?elum A (p_y

The construction terminates as soon [B8]i.1 = [7 I, and the result of the con-
struction is then defined gg7] = [7 1i.- The algorithm returns “unsatisfiable” if
[71(V) = false for all V C var, and “satisfiable” otherwise.



¢ = \ICI

CeT

¢"i= \LVUC DI, AUL = [C.21, ¢ = /\C,2)], A[U] > [(QUC. DI,

YU.CeP(T) AU.CeP(T)

¢f@:= A\ [EU.C, DI, — AR UCX(2).(IT T A TUT A [KC, 2)1))
JU.CeP(T)
gl = A\ [(YU.C, DI, — IR UCX{2).(17 T A TUT A =IKC, 2)],)
VU.CeP(T)
(V)= [71(|(D. 1) 1 (D, 2) € V} U {Inv(R) | Re V} U {(D. 2) | (D. 1) € V)

Fig. 1. Boolean functions for defining the canonical domino set ififd&on 10.

PhDStudent FhasDiploma
DiplomacC Yhas .Graduate
Diploman GraduateC T
Diplomalaureug  PhDStuder(taureug

Fig. 2. An exampleALCZb knowledge base.

As shown in [2], the above algorithm is a correct procedurecf@ecking consis-
tency of terminologicalALCZb knowledge bases. Moreover, all required operations
and checks are provided by standard OBDD implementatiombttaus can be realised
in practice. Correctness follows from the next observatighich is also relevant for
extending reasoning to Aboxes below:

Proposition 11. For any ALCZb terminology7 and variable set Ve Var as above,
we find thaf[71(V) = true iff V represents a domino ibs as defined in Definition 5.

In the remainder of this section, we illustrate the abovemtigm by an extended
example, to which we will also come back to explain the late¢ersions of the infer-
ence algorithm. Therefore, consider tfe C7b knowledge base given in Fig. 2. For
now, we are only interested in the terminological axioms,dbnsistency of which we
would like to establish. As a first transformation step, &bX axioms are transformed
into the following universally valid concepts in negaticormal form:

-PhDStudentdhasDiploma -Diploma.Yhas .Graduate -Diploma.l-Graduate

The flattening step can be skipped since all concepts aradgiftat. Now the relevant
concept expressions for describing dominoes are as folipves by the seP(7") =
{dhasDiploma Yhas .Graduate Diploma Graduate PhDStudent We thus obtain the
following setVar of Boolean variables (thouglar is just a set, our presentation follows
the domino intuition):

(3FhasDiploma 1) |has [(dhasDiploma 2)
(Yhas .Graduatel)|has [(Vhas .Graduate2)
(Diploma 1) (Diploma, 2)
(Graduatel) (Graduate 2)
(PhDStudentl) (PhDStuden®)




oI --

Fig. 3. OBDDs arising when processing the terminology of Fig. 2ldwahg traditional BDD
notation, solid arrows indicateéigh successors, and dashed arrows inditatesuccessors.

We are now ready to construct the OBDDs as described. Figyleft} displays an
OBDD corresponding to the following Boolean function:

o = (=[(PhDStudentl)] v [(IhasDiploma 1)])
A(=[[¢Diploma 1)] Vv [{Yhas .Graduate 1)])
A(=[[¢Diploma 1)] v —[[(Graduate 1))

and in Fig. 3 (right) shows the OBDD representing the funcfid ]|o obtained from
©® by conjunctively adding

¢** = =[(Diploma 2)] v —[hag] v [{dhasDiploma 1)] and

uni

@ = =[(VYhas .Graduatel)] v —=[has] V [{Graduate2)].

Then, after the first iteration of the algorithm, we arriv@atOBDD representinf7 11
which is displayed in Fig. 4. This OBDD turns out to be the firedult[77] .

5 Abox Reasoning with Disjunctive Datalog

The above algorithm does not yet take any assertional irdtbam about individuals
into account. Now the proof of Theorem 7 given in [2] hingesmphe fact that the
constructed domino s&t- induces a model of the terminology, and Lemma 6 states
that this is indeed thgreatesimodel in a certain sense. This provides some first intuition
of the problems arising when Aboxes are to be added to the ledgs baseALCIb
knowledge bases with Aboxes do generally not have a greated|.

We thus employdisjunctive datalogas a paradigm that allows us to incorporate
Aboxes into the reasoning process. The basic idea is to ®dgtalog program that
— depending on two given individuadsandb — describes possible dominoes that may



Fig. 4. Final OBDD obtained when processing Fig. 2, using notat®imdrig. 3. Arrows to the 0
node have been omitted for better readability.

connect andbin models of the knowledge base. There might be variougamreilable
such dominoes in dierent models, but disjunctive datalog supports such ctsinoe it
admits multiple minimal models. As long as the knowledgeslieas some model, there
is at least one possible domino for every pair of individpisssibly without connect-
ing roles) — only if this is not the case, the datalog progréinfer a contradiction.

In earlier sections, we have already reduced terminolbggeaoning inALCIbto
iterative constructions of Boolean formulae, and one miightempted to directly cast
these constructions into datalog. However, the termirioldgeasoning must take into
accoundll possible individuals occurring in the constructed greatexdel. If we want
to represent individuals by constants in datalog, this Waeafuire us to declare expo-
nentially many individuals in datalog. This would give upthe possible optimisation
of using OBDDs, and basically just mirror the naive dominicemstruction in datalog.

So we use the OBDD computed from the terminology as a kind efcempiled
version of the relevant terminological information. Abakdrmation is then considered
as a kind of incomplete specification of dominoes that mustdoepted by the OBDD,
and the datalog program simulates the OBDD'’s evaluatiordch of those.



Definition 12. Consider anALCIb knowledge baskB = (A, 7) such thatA con-
tains only atomic concepts, and @t= (N, Niyot, Nirue, Ntaise, lOW, high, Var, 2) denote an
OBDD obtained as a representation ffLAT(7)] as in Definition 10. A disjunctive
datalog programDD(KB) is defined as followdDD(KB) uses the following predicate
symbols:

— aunary predicate g for every concept expression<CP(FLAT(7")),
— a binary predicate & for every atomic role R Ng,
— a binary predicate Afor every OBDD node & N.

The constants iDD(KB) are just the individual names used Jjfi. The disjunctive
datalog rules oDD(KB) are defined as follows:

(1) DD(KB) contains rules— A, (X, y) and A, . (X y) —.

(2) If C(a) € AthenDD(KB) contains— Sc(a).

(3) If R(a, b) € A thenDD(KB) contains— Sr(a, b)

(4) 1f ne N with A(n) = (C, 1) thenDD(KB) contains rules
Sc(¥) A An(XY) = Anighry (X, Y) and A, y) = Aowr) (X, Y) V Sc(X).

(5) If ne N with A(n) = (C, 2) thenDD(KB) contains rules
Sc(¥) A An(X,Y) = Anignn) (X Y) @and A(X, y) = Ao (X Y) V Sc(y).

(6) If ne N with A(n) = R for some R Nr thenDD(KB) contains rules
SR(XY) A An(X,Y) = Anign(n) (X, Y) and Av(X, ¥) = Aow(n) (X Y) V Sr(X. Y).

(7) 1f ne N with A(n) = R™ for some Re Ng thenDD(KB) contains rules
SR(y7 X) A An(X, y) d Ahigh(n)(xv y) and A‘I(X» y) d A|0W(n)(x7 y) 4 SR(y7 X)'

Note that the number of variables per ruleDB(KB) is bounded by 2. The seman-
tically equivalent grounding obD(KB) thus is a propositional program of quadratic
size, and the worst-case complexity for satisfiability dtieg is NP, as opposed to the
NExrTiMe complexity of disjunctive datalog in general. Note thatcotirse DD(KB)
may still be exponential in the size of KB in the worst caseehhains to show the
correctness of the datalog translation.

Lemma 13. Given anALCIb knowledge bas&B such thats is a model ofKB,
there is a modely of DD(KB) such that/ E C(a) iff  E Sc(a), andZ E R(a, b) iff
J E Sr(a,b), forany ab e Nj, C € N¢, and Re Ng.

Proof. Let KB = (A, 7). We define an interpretatiqfi of DD(KB). The domain of7
is the domain off, i.e.4? = 47 For individualsa, we seta” := a’. The interpretation
of predicate symbols is now defined as follows (note fais defined inductively):

-sesliffsect,
— (81,02) € SY iff (61,62) € RY,
— (61,62) € AT forall 61,67 € 47,
— {81,02) € A, for n # n,q if there is a noda’ such thatéq, 62) € Ay, and one of
the following is the case:
e A(') = (C, i), for somei € {1, 2}, andn = low(n’) ands; ¢ C¥
e A(") = (C,i), for somei € {1, 2}, andn = high(n’) ands; € C*
e A(n") = Randn = low(n’) and{d1, 62) ¢ RY



e A(") = Randn = high(’) and(1, 5,y € RY

Mark that, in the last two item$ is any role expression frovar, and hence is a role
name or its inverse. Also note that due to the acyclicitfpothe interpretation of the
A-predicates is indeed well-defined. We now show tfias a model ofDD(KB). To
this end, first note that the extensions of predic&esand Sk in J were defined to
coincide with the extensions & andRin 7. Since satisfiesA, all ground facts of
DD(KB) are satisfied byy. This settles cases (2) and (3) of Definition 12.

Similarly, we find that the rules of cases (4)—(7) are satidfgJ. Consider the first
rule of (4),Sc(X) A An(X,Y) = Anightn) (X ), and assume thai € SZ and(s1,62) € A7
Thusd, € C’, and, using the preconditions of (4), we conclude taats,) < A;Zgh(n)
follows from the definition ofJ. The second rule of case (4) covers the analogous
negative case, and all other cases can be treated similarly.

Finally, for case (1), we need to show th&f _ = 0. For that, we first explicate
the correspondence between domain elements arfid sets of variables @: Given
elementssy, 6, € 47 we defineVs, s, :== {(C,n) | C € P(FLAT(7)),6n € C'} U (R |
(61, 82) € R}, the set of variables corresponding to thelomino betweed; andds.

Now A7 = 0 clearly is a consequence of the following claim: for@ll 6, € 47
and alln € N, we find that(é1, d2) € A, implies¢n(Vs,5,) = true (using the notation
of Definition 9). The proof proceeds by induction. For theecas= .., we find that
Onee = LT 1. SinceVs, 5, represents a domino @i the claim thus follows by combining
Proposition 11 and Lemma 6.

For the induction step, let be a node such thdbi,d,) € A, follows from the
inductive definition ofy based on some predecessor nodfor which the claim has
already been established. Note thamay not be unique. The cases in the definition of
J must be considered individually. Thus assume, ands; satisfy the first case, and
that(é1,62) € An. By induction hypothesisyy (Vs,5,) = true, and by Definition 9 the
given case yieldgn(Vs, s,) = trueas well. The other cases are similar. O

Lemma 14. Given anALCIb knowledge baséB such thaty is a model oDD(KB),
there is a model of DD(KB) such that? = C(a) iff 7 = Sc(a), andZ E R(a,b) iff
J E Sr(a,b), forany ab e Nj, C € N¢, and Re Ng.

Proof. Let KB = (A, 7). We construct an interpretatidnwhose domain? consists of
all sequences starting with an individual name followed lgyassibly empty) sequence
of dominoes fronDy such that, for every € 47,

— if 5 begins witha(A, R, B), then{C | C € P(FLAT(T)),a’ € S} = A, and
— if § contains subsequent lett€td, R, B) and(A’, R, B’), thenB = A’.

For a sequencé = a(Aj, R, A)( Az, Ro, A3z) . .. (Ai-1, Ri—1, Ai), we define tail) =
A;, whereas for @ = a we define tail§) := (C | C € P(FLAT(7)),a” € SZ}. Now the
mappings off are defined as follows:

— forae N, we havea! = a,

— for A € N¢, we haves € AL iff A € tail(6),

— for R e Ng, we have(dy, §,) € R” if one of the following holds
e 51=acN, ands, =be N, and(a,by € S7, or



e 52 = 61(A, R, B)withRe R, or
e §1 = 62(A, R, B) with Inv(R) € R.

Thus, intuitively, I is constructed by extracting the named individuals as wedirt
concept (and mutual role) memberships frgimand appending an appropriate domino-
constructed tree model to each of those named individuagpndteed by showing that
I is indeed a model of KB.

We begin with the following auxiliary observation: For eyéwo individual names
abe N, andRyp = (R] @7,b7) € S;Z} U {Inv(R) | (b7,a”) ¢ Sg}, the domino
(tail(a), Ran, tail(b)) is contained inDs+ (Claim ). Using Proposition 11, it gfices to
show that the Boolean functidi ] if applied toVa = {tail(a) x{1} URapUtail(b) x{2}}
yields true. Since[[7] = ¢n,, . this is obtained by showing the following: For any
a,b € N, we find that(@’,b7) e A7 implies ¢n(Vap) = true. Indeed, the intended
claim follows since we hav&?,b7) € A7 due to the first rule of (1) in Definition 12.

root

We proceed by induction, starting at the leaves of the OBDi das€a, b) € A;ft is
immediate, anda, b) € A{H is excluded by the second rule of (1). For the induction
step, consider nodesn’ € N such that eithei(n) € Vap andn’ = high(n), or A(n) ¢
Vap andn’ = low(n). We assume thaa’,b7) € A7, and, by induction, that the claim
holds forn'. If A, = (C, 1), then one of the rules of case (4) appliesfoandb”. In
both cases, we can inféa”,b”) € A7, and hencey (Vap) = true. Together with the
assumptions for this case, Definition 9 implies thafVap) = true as required. The
other cases are analogous.

It is easy to see that satisfies all Abox axioms from KB by definition, due to the
ground facts irDD(KB) (case (2) and (3) in Definition 12). To show that the Thex i
also satisfied, we need to show that all individuald adre contained in the extension
of each concept expression BEAT(7). To this end, we first show that € C7 iff
C e tail(6) for all C € P(FLAT(7)). If C € N¢ is atomic, this follows directly from the
definition of 7. The remaining cases that may occuP{FLAT(7")) areC = JU.A and
C=VUA

First consider the case = JU.A, and assume thate C’. Thus there isy’ € 47
with (6,¢8’y € UL ands’ € AL. The construction of the domino model admits three
possible cases:

— 8,0 € Ny andRss + U andA e tail(6”). Now by, the domingtail(6), Rss , tail(6”))
satisfies conditioex of Definition 5, and thu€ e tail(6) as required.

— & = §(tail(s), R, tail(6”)) with R + U andA e tail(¢"). SinceDy C Do, we find that
(tail(s), R, tail(¢”)) satisfies conditioex, and thu<C € tail(6) as required.

— § = §'(tail(¢"), R, tail(6)) with Inv(R) + U andA e tail(¢’). By conditionsym,
D¢ contains the domindtail(s), Inv(R), tail(6")), and we can again invokex to
concludeC e tail(6).

For the converse, assume thti.A € tail(6). SoDs contains a domingA, R, tail(6)).
This is obvious if the sequen@eends with a domino. I6 = a € Ny, then it follows
by applyingf to a with the first individual being arbitrary. Bgym D¢ also contains
the domino(tail(s), R, A). By conditiondelex the latter implies thaDs+ contains a
domino(tail(s), R’, A’y such thatr’ + U andA € A’. Thus¢’ = &(tail(6), R, A’) is an
J-individual such thats, ¢’y € UZ ands’ € A?, and we obtaid € (3U.A) as claimed.



For the second case, consider= YU.A and assume that € C. As above, we
find thatD+ contains some domin@A, R, tail(6)), wheret is needed i € N;. By sym
we find a domingtail(6), R, A). For a contradiction, suppose thét.A ¢ tail(s). By
conditiondeluni, the latter implies thdbs contains a domingtail(s), R’, A’) such that
R+ U andA ¢ A’. Thuss’ = §(tail(8), R, A’) is anI -individual such thags, 6"y € U7
and¢’ ¢ AL But thens ¢ (YU.A), which is the required contradiction.

For the other direction, assume thél.A € tail(§). According to the construction
of 1, for all elements’ with (5,5’) € UZ, there are three possible cases:

— 6,8 € Nj andRss + U. Now by f, the dominc(tail(s), Rss, tail(¢")) satisfies con-
dition uni, whenceA ¢ tail(¢").

— & = tail(s), R, tail(¢")) with R + U. SinceDs C Dy, (tail(s), R, tail(6")) must
satisfy conditioruni, and thusA € tail(¢").

— § = ¢'(tail(¢"), R, tail(6)) with Inv(R) + U. By conditionsym, Dy also contains the
domino(tail(s), Inv(R), tail(6")), and we can again usei to concludeA e tail(s).

Thus,A € tail(¢”) for all U-successorg’ of §, and hencé € (YU.A) as claimed.

To finish the proof, note that any domifdi, R, B) € D+ satisfies conditiorkb.
Usingsym, we have that for any € 47, the axiom penis) D E C is a tautology for
all C € FLAT(7"). As shown abovej € D’ for all D € tail(s), and thuss € C*. Hence
every individual off is an instance of each conceptrafAT(7") as required. O

Lemma 13 and 14 show thBD(KB) faithfully captures both positive and negative
ground conclusions of KB, and in particular tH2b(KB) and KB are equisatisfiable.
As discussed in Section 3+ 7Q knowledge bases can be transformed into equisatis-
fiable ALCIb knowledge bases, and hence the above algorithm can alset¢oude-
cide satisfiability in the case &fH 7 Q. The transformations used to conv8®t{ 7Q to
ALCIb, however, do not preserve all ground consequences. IrepkntiSH 7 Q con-
sequences of the forR(a, b) with Rbeing non-simple may not be entailed bp(KB).
Such positive non-simple role atoms are the only case wheedments are lost, and
thusDD(KB) behaves similar to the disjunctive datalog progranated by the KAON2
approach [7].

The above observation immediately allow us to add reasosupgort forDL-safe
rules [8], simply by adding the respective rules BiD(KB) after replacingC andR
by Sc andSg. A special case of this afeL-safeconjunctive queries, i.e. conjunctive
queries that assume all variables to range only over nantédidnals. It is easy to
see that, as a minor extension, one could generally allowdocept expressiondgR A
andJR.A in queries and rules, simply becau3®(KB) represents these elements of
P(FLAT(77)) as atomic symbols in disjunctive datalog.

6 Discussion

We have presented a new reasoning algorithnSfbf7 Q knowledge bases that com-
pilesSH IQ terminologies into disjunctive datalog programs, whichthien combined
with assertional information for satisfiability checkingda(ground) query answering.
The approach is based on our earlier work on terminologdddl7 Q reasoning with



ordered binary decision diagrams (OBDDs), which fails winéroducing Aboxes as it
hinges upon a form of greatest model property [2]. OBDDs nosvsdill used to pro-
cess terminologies, but are subsequently transformediisjianctive datalog programs
that can incorporate Abox data. The generation of disjuaatatalog may require ex-
ponentially many computation steps, the complexity of \Wwidepends on the concrete
OBDD implementation at hand — findiregptimal encodings NP-complete but heuris-
tic approximations are often used in practice. Queryinglibginctive datalog program
then is co-NP-complete w.r.t. the size of the Abox, so thatdhta complexity of the
algorithm is worst-case optimal [7].

The presented method exhibits similarities to the algoritmderlying the KAON2
reasoner [7]. In particular, pre-transformations are figplied toSH 7Q knowledge
bases, so that the resulting datalog program is not comfaetguerying instances of
non-simple roles. Besides this restriction, extensiortt WBiL-safe rules and ground
conjunctive queries are straightforward. The presentedgssing, however, is very dif-
ferent from KAONZ2. Besides using OBDDs, it also employs Baaml role constructors
that admit an icient binary encoding of number restrictions [2].

For future work, the algorithm needs to be evaluated in pracA prototype im-
plementation was used to generate the examples within #merpbut this software is
not fully functional yet. It is also evident that redundargimination techniques are
required to reduce the number of generated datalog ruleéshvidalso an important
aspect of the KAON2 implementation. Another strand for fatdevelopment is the
extension of the approach to take nominals into accountrifgignt revisions of the
model-theoretic considerations are needed for that case.
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