
Description Logic Reasoning with Decision Diagrams
Compiling SHIQ to Disjunctive Datalog

Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler

Institut AIFB, Universität Karlsruhe, Germany

Abstract. We propose a novel method for reasoning in the description logic
SHIQ. After a satisfiability preserving transformation fromSHIQ to the de-
scription logicALCIb, the obtainedALCIb Tbox T is converted into an or-
dered binary decision diagram (OBDD) which represents a canonical model for
T . This OBDD is turned into a disjunctive datalog program thatcan be used for
Abox reasoning. The algorithm is worst-case optimal w.r.t.data complexity, and
admits easy extensions with DL-safe rules and ground conjunctive queries.

1 Introduction

In order to leverage intelligent applications for the Semantic Web, scalable reasoning
systems for the standardised Web Ontology Language OWL1 are required. OWL is
essentially based on description logics (DLs), with the DL known asSHIQ currently
being among its most prominent fragments. State-of-the artOWL reasoners, such as
Pellet, FaCT++, or RacerPro use tableau methods with good performance results, but
even those successful systems are not applicable in all practical cases. This motivates
the search for alternative reasoning approaches that buildupon different methods in
order to address cases where tableau algorithms turn out to have certain weaknesses.
Successful examples are recent works based on resolution and hyper-tableau calculi, as
realised by the systems KAON2 and HermiT.

In this paper, we pursue a new DL reasoning paradigm based on the use of or-
dered binary decision diagrams (OBDD). These reasoning tools have been successfully
applied in the domain of large-scale model checking and verification, but have hitherto
seen only little investigation in DLs [1]. Our work bases on arecent adoption of OBDDs
for terminological reasoning inSHIQ [2]. This approach, however, is inherently inapt
of dealing with assertional knowledge directly. We therefore adopt the existing OBDD
method for terminological reasoning, but use its output forgenerating a disjunctive dat-
alog program that can in turn be combined with Abox data to obtain a correct reasoning
procedure. The main technical contribution of the paper is to show this adoption to be
sound and complete based on suitable model constructions. Considering possible appli-
cations, the work establishes the basis for applying OBDD-based methods forSHIQ
reasoning, including natural support for DL-safe rules andground queries. Implemen-
tation is still at prototype stage, but was used to generate some extended examples that
illustrate our method.

1 http://www.w3.org/2004/OWL/

The structure of the paper is as follows. In Section 2, we recall some essential def-
initions and results on which we base our approach. Section 3then discusses the de-
composition of models into sets ofdominoes, which are then computed with OBDDs
in Section 4. The resulting OBDD presentation is transformed to disjunctive datalog in
Section 5, where we also show the correctness of the approach. Section 6 concludes.

2 The Description LogicsSHIQ andALCI b

We first recall some basic definitions of DLs (see [3] for a comprehensive treatment of
DLs) and introduce our notation. Next we define a rather expressive description logic
SHIQb that extendsSHIQ with restricted Boolean role expressions [4]. We will not
considerSHIQb knowledge bases, but the DL serves as a convenient umbrella logic
for the DLs used in this paper.

Definition 1. A SHIQb knowledge base is based on three disjoint sets ofconcept
namesNC, role namesNR, and individual namesNI . A set ofatomic rolesR is defined
asR ≔ NR ∪ {R− | R ∈ NR}. In addition, we setInv(R) ≔ R− and Inv(R−) ≔ R, and
we will extend this notation also to sets of atomic roles. In the sequel, we will use the
symbols R,S to denote atomic roles, if not specified otherwise.

The set ofBoolean role expressionsB is defined as

BF R | ¬B | B ⊓ B | B ⊔ B.
We use⊢ to denote standard Boolean entailment between sets of atomic roles and role
expressions. Given a setR of atomic roles, we inductively define:

– For atomic roles R,R ⊢ R if R∈ R, andR 0 R otherwise,
– R ⊢ ¬U if R 0 U, andR 0 ¬U otherwise,
– R ⊢ U ⊓ V if R ⊢ U andR ⊢ V, andR 0 U ⊓ V otherwise,
– R ⊢ U ⊔ V if R ⊢ U or R ⊢ V, andR 0 U ⊔ V otherwise.

A Boolean role expression U isrestrictedif ∅ 0 U. The set of all restricted role ex-
pressions is denotedT, and the symbols U and V will be used throughout this paper
to denote restricted role expressions. ASHIQb Rbox is a set of axioms of the form
U ⊑ V (role inclusion axiom) orTra(R) (transitivity axiom). The set of non-simple roles
(for a given Rbox) is inductively defined as follows:

– If there is an axiomTra(R), then R is non-simple.
– If there is an axiom R⊑ S with R non-simple, then S is non-simple.
– If R is non-simple, thenInv(R) is non-simple.

A role issimpleif it is atomic (simplicity of Boolean role expressions is not relevant in
this paper) and not non-simple. Based on aSHIQb Rbox, the set ofconcept expres-
sionsC is the smallest set containingNC, and all concept expressions given in Table 1,
where C,D ∈ C, U ∈ T, and R∈ R is a simple role. Throughout this paper, the symbols
C, D will be used to denote concept expressions. ASHIQb Tbox (or terminology) is
a set ofgeneral concept inclusion axioms(GCIs) of the form C⊑ D. ASHIQb Abox
(containingassertional knowledge) is a set of statements of the form C(a) or R(a, b),

Table 1.Semantics of constructors inSHIQb for an interpretationI with domain∆I.

Name SyntaxSemantics
inverse role R− {〈x, y〉 ∈ ∆I × ∆I | 〈y, x〉 ∈ RI}
role negation¬U {〈x, y〉 ∈ ∆I × ∆I | 〈x, y〉 < UI}
role conj. U ⊓ V UI ∩ VI

role disj. U ⊔ V UI ∪ VI

top ⊤ ∆I

bottom ⊥ ∅

negation ¬C ∆I \CI

conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

univ. rest. ∀U.C {x ∈ ∆I | 〈x, y〉 ∈ UI impliesy ∈ CI}
exist. rest. ∃U.C {x ∈ ∆I | y ∈ ∆I: 〈x, y〉 ∈ UI, y ∈ CI}
qualified ≤n R.C {x ∈ ∆I | #{y∈∆I |〈x, y〉 ∈RI, y∈CI} ≤ n}
number rest.≥n R.C {x ∈ ∆I | #{y∈∆I |〈x, y〉 ∈RI, y∈CI} ≥ n}

where a, b ∈ NI . We assume throughout that all roles and concepts occurringin the
Abox are atomic (which can be done without loss of generality). ASHIQb knowledge
base KBis a triple 〈A,R,T 〉, whereA is an Abox,R is an Rbox, andT is a Tbox.

As mentioned above, we will consider only fragments ofSHIQb. In particular,
aSHIQ knowledge base is aSHIQb knowledge base without Boolean role expres-
sions, and anALCIb knowledge base is aSHIQb knowledge base that contains no
Rbox axioms and no number restrictions (i.e. axioms≤n R.C or≥n R.C). Consequently,
anALCIb knowledge base only consists of a pair〈A,T〉, whereA is an Abox andT
is a Tbox. The related DLALCQIb has been studied in [4].

An interpretationI consists of a set∆I called domain(the elements of it being
calledindividuals) together with a function·I mapping individual names to elements of
∆I, concept names to subsets of∆I, and role names to subsets of∆I ×∆I. The function
·I is extended to role and concept expressions as shown in Table1. An interpretationI
satisfiesan axiomϕ if we find thatI |= ϕ, where

– I |= U ⊑ V if UI ⊆ VI,
– I |= Tra(R) if RI is a transitive relation,
– I |= C ⊑ D if CI ⊆ DI,

– I |= C(a) if aI ∈ CI,
– I |= R(a, b) if (aI, bI) ∈ RI.

I satisfiesa knowledge base KB,I |= KB, if it satisfies all axioms of KB.Satisfiability,
equivalence, andequisatisfiabilityof knowledge bases are defined as usual.

For convenience of notation, we abbreviate Tbox axioms of the form⊤ ⊑ C by
writing justC. Statements such asI |= C andC ∈ KB are interpreted accordingly. Note
thatC ⊑ D can thus be written as¬C ⊔ D.

Finally, we will often need to access a particular set of quantified and atomic subfor-
mulae of a DL concept. These specific parts are provided by thefunctionP : C→ 2C:

P(C) ≔































P(D) if C = ¬D
P(D) ∪ P(E) if C = D ⊓ Eor C = D ⊔ E
{C} ∪ P(D) if C = QU.D with Q∈ {∃,∀,≥n,≤n}
{C} otherwise

We generaliseP to DL knowledge bases KB by definingP(KB) to be the union of the
setsP(C) for all Tbox axiomsC in KB.

We will usually express all Tbox axioms as simple concept expressions as explained
above. Given a knowledge base KB we obtain its negation normal form NNF(KB) by
converting every Tbox concept into its negation normal formas usual. It is well-known
that KB andNNF(KB) are equivalent.

ForALCIb knowledge bases KB, we will usually require another normalisation
step that simplifies the structure of KB byflatteningit to a knowledge baseFLAT(KB).
This is achieved by transforming KB into negation normal form and exhaustively ap-
plying the following transformation rules:

– Select an outermost occurrence ofQU.D in KB, such that Q∈ {∃,∀} andD is a
non-atomic concept.

– Substitute this occurrence withQU.F whereF is a fresh concept name (i.e. one not
occurring in the knowledge base).

– If Q∈ {∃,∀}, add¬F ⊔ D to the knowledge base. knowledge base.

Obviously, this procedure terminates yielding a flat knowledge baseFLAT(KB) all Tbox
axioms of which are Boolean expressions over formulae of theform A, ¬A, or QU.A
with A an atomic concept name. As shown in [2], anyALCIb knowledge base KB is
equisatisfiable toFLAT(KB). This work also detailed a reduction ofSHIQ knowledge
bases toALCIb that we summarise as follows:

Theorem 2. AnySHIQ knowledge baseKB can be transformed in polynomial time
into an equisatisfiableALCIb knowledge baseKB′.

It is easy to see that the algorithm from [2] is still applicable in the presence of
Aboxes, and that ground Abox conclusions are preserved – with the exception of en-
tailments of the formR(a, b) for non-simple rolesR which fall victim to the standard
elimination of transitivity axioms.

3 Building Models from Domino Sets

Our approach towards terminological reasoning inALCIb exploits the fact that models
for this DL can be decomposed into small parts, which we calldominoes. Intuitively,
each domino abstractly represents two individuals in anALCIb interpretation, based
on their concept properties and role relationships. We willsee that suitable sets of such
two-element pieces suffice to reconstruct models ofALCIb Tboxes, and satisfiability
ofALCIb terminologies can thus be reduced to the existence of suitable sets.

We first introduce the basic notion of a domino set, and its relationship to interpreta-
tions. Given a DL language with conceptsC and rolesR, adominois an arbitrary triple
〈A,R,B〉, whereA,B ⊆ C andR ⊆ R. We will generally assume a fixed language and
refer to dominoes over that language only. Interpretationscan be deconstructed into sets
of dominoes as follows:

Definition 3. Given an interpretationI = 〈∆I, ·I〉, and a setC ⊆ C of concept expres-
sions, thedomino projectionof I w.r.t.C, denoted byπC(I) is the set that contains for
all δ, δ′ ∈ ∆I the triple〈A,R,B〉 with

– A = {C ∈ C | δ ∈ CI},
– R = {R ∈ R | 〈δ, δ′〉 ∈ RI},
– B = {C ∈ C | δ′ ∈ CI}.

An inverse construction of interpretations from arbitrarydomino sets is as follows:

Definition 4. Given a setD of dominoes, the induceddomino interpretationI(D) =
〈∆I, ·I〉 is defined as follows:

1. ∆I consists of all finite nonempty words overD where, for each pair of subsequent
letters〈A,R,B〉 and〈A′,R′,B′〉 in a word, we haveB = A′.

2. Forδ = 〈A1,R1,A2〉〈A2,R2,A3〉 . . . 〈Ai−1,Ri−1,Ai〉 a word and A∈ NC a concept
name, we definetail(δ) ≔ Ai , and setδ ∈ AI iff A ∈ tail(δ),

3. For each R∈ NR, we set〈δ1, δ2〉 ∈ RI if either δ2 = δ1〈A,R,B〉 with R ∈ R or
δ1 = δ2〈A,R,B〉 with Inv(R) ∈ R.

Mark that – following the intuition – the domino interpretation is constructed by
conjoining matching dominoes. This process is also similarto the related method of
“unravelling” models in order to obtain tree-like interpretations.

Domino projections do not faithfully represent the structure of the interpretation that
they were constructed from, yet they capture enough information to reconstruct models
of a TboxT , as long asC is chosen to contain at leastP(T). Indeed, it was shown in [2]
that, for anyALCIb terminologyT , J |= T iff I(πP(T)(J)) |= T . This observation
allows us to devise an algorithm that directly constructs a suitable domino set from
which one could obtain a model that witnesses the satisfiability of some knowledge
base. The following algorithm therefore considers all possible dominoes, and iteratively
eliminates those that cannot occur in the domino projectionof any model:

Definition 5. Consider anALCIb terminologyT , and defineC = P(FLAT(T)). Sets
Di of dominoes based on concepts fromC are constructed as follows:
D0 consists of all dominoes〈A,R,B〉 which satisfy:

kb: for every concept C∈ FLAT(T), we have that
�

D∈A D ⊑ C is a tautology2,
ex: for all ∃U.A ∈ C, if A ∈ B andR ⊢ U then∃U.A ∈ A,
uni: for all ∀U.A ∈ C, if ∀U.A ∈ A andR ⊢ U then A∈ B.

Given a domino setDi , the setDi+1 consists of all dominoes〈A,R,B〉 ∈ Di satisfy-
ing the following conditions:

delex: for every∃U.A ∈ C with ∃U.A ∈ A, there is some〈A,R′,B′〉 ∈ Di such that
R′ ⊢ U and A∈ B′,

deluni: for every∀U.A ∈ C with ∀U.A < A, there is some〈A,R′,B′〉 ∈ Di such that
R′ ⊢ U but A< B′,

sym: 〈B, Inv(R),A〉 ∈ Di .

The construction of domino setsDi+1 is continued untilDi+1 = Di . The final result
DT ≔ Di+1 defines thecanonical domino setofT .

2 Note that formulae inFLAT(T) and inA ⊆ C are such that this can easily be checked by
evaluating the Boolean operators inC as ifA was a set of true propositional variables.

Note that the algorithm must terminate, since it starts froma finite initial setD0 that
is reduced in each computation step. Intuitively, the algorithm implements a kind of
greatest fixed point construction that yields the domino projection of the largest possible
model of the terminological part of anALCIb knowledge base. The following result
makes this intuition more explicitly:

Lemma 6. Consider anALCIb terminologyT and an arbitrary modelI ofT . Then
the domino projectionπP(FLAT(T))(I) is contained inDT .

Proof. The claim is shown by a simple induction. In the following, weuse〈A,R,B〉
to denote an arbitrary domino ofπP(FLAT(T))(I). For the base case, we must show that
πP(FLAT(T))(I) ⊆ D0. Let 〈A,R,B〉 to denote an arbitrary domino ofπP(FLAT(T))(I) which
was generated from elements〈δ, δ′〉. Then〈A,R,B〉 satisfies conditionkb, sinceδ ∈ CI

for anyC ∈ FLAT(T). The conditionsexanduni are obviously satisfied.
For the induction step, assume thatπP(FLAT(T))(I) ⊆ Di , and let〈A,R,B〉 again

denote an arbitrary domino ofπP(FLAT(T))(I) which was generated from elements〈δ, δ′〉.

– For delex, note that∃U.A ∈ A implies δ ∈ (∃U.A)I. Thus there is an individual
δ′′ such that〈δ, δ′′〉 ∈ UI andδ′′ ∈ AI. Clearly, the domino generated by〈δ, δ′′〉
satisfies the conditions ofdelex.

– For deluni, note that∀U.A < A impliesδ < (∀U.A)I. Thus there is an individual
δ′′ such that〈δ, δ′′〉 ∈ UI andδ′′ < AI. Clearly, the domino generated by〈δ, δ′′〉
satisfies the conditions ofdeluni.

– The condition ofsym for 〈A,R,B〉 is clearly satisfied by the domino generated
from 〈δ′, δ〉. ⊓⊔

We will also exploit this observation in the later construction of models for knowl-
edge bases with individual assertions. The following was again shown in [2]:

Theorem 7. AnALCIb terminologyT is satisfiable iff its canonical domino setDT is
non-empty. Definition 5 thus defines a decision procedure forsatisfiability ofALCIb
terminologies.

4 Sets as Boolean Functions

The algorithm of the previous section may seem to be of littlepractical use, since it re-
quires the computations on an exponentially large set of dominoes. The required com-
putation steps, however, can also be accomplished with a more indirect representation of
the possible dominoes based on Boolean functions. Indeed, any propositional logic for-
mula represents a set of interpretations for which the function evaluates totrue. Using
a suitable encoding, each interpretation can be understoodas a domino, and a proposi-
tional formula can represent a domino set.

In order for this approach to be more feasible than the naive algorithm given above,
an efficient representation of propositional formulae is needed.For this we use binary
decision diagrams (BDDs), that have been applied to represent complex Boolean func-
tions in model-checking (see, e.g., [5]). A particular optimisation of these structures are
ordered BDDs (OBDDs) that use a dynamic precedence order of propositional variables
to obtain compressed representations. We provide a first introduction to OBDDs below.
A more detailed exposition and pointers to the literature are given in [6].

Boolean Functions and OperationsWe first explain how sets can be represented by
means of Boolean functions. This will enable us, given a fixedfinite base setS, to
represent every family of setsS ⊆ 2S by a single Boolean function.

A Boolean functionon a setVar of variables is a functionϕ : 2Var → {true, false}.
The underlying intuition is thatϕ(V) computes the truth value of a Boolean formula
based on the assumption that exactly the variables ofV are evaluated totrue. A simple
example are so-calledcharacteristic functionsof the form~v�χ for somev ∈ Var, which
are defined as~v�χ(V) ≔ true iff v ∈ V, or the functions~true� and~false� mapping
any input totrue or false, respectively.

Boolean functions over the same set of variables can be combined and modified in
several ways. Firstly, there are the obvious Boolean operators for negation, conjunc-
tion, disjunction, and implication. By slight abuse of notation, we will use the com-
mon (syntactic) operator symbols¬, ∧, ∨, and→ to also represent such (semantic)
operators on Boolean functions. Given, e.g., Boolean functionsϕ andψ, we find that
(ϕ ∧ ψ)(V) = true iff ϕ(V) = true andψ(V) = true. Note that the result of the ap-
plication of∧ results in another Boolean function, and is not to be understood as a
syntactic formula. Another operation on Boolean functionsis existential quantification
over a set of variablesV ⊆ Var, written as∃V.ϕ for some functionϕ. Given an input set
W ⊆ Var of variables, we define (∃V.ϕ)(W) = true iff there is some V′ ⊆ V such that
ϕ(V′ ∪ (W \ V)) = true. In other words, there must be a way to set truth values of vari-
ables inV such thatϕ evaluates totrue. Universal quantification is defined analogously,
and we thus have∀V.ϕ ≔ ¬∃V.¬ϕ as usual. Mark that our use of∃ and∀ overloads
notation, and should not be confused with role restrictionsin DL expressions.

Ordered Binary Decision Diagrams Binary Decision Diagrams (BDDs), intuitively,
are a generalisation of decision trees which allow the reuseof nodes. Structurally, BDDs
are directed acyclic graphs whose nodes are labelled by variables from some setVar.
The only exception are twoterminalnodes that are labelled bytrue andfalse, respec-
tively. Every non-terminal node has two outgoing edges, corresponding to the two pos-
sible truth values of the variable.

Definition 8. A BDD is a tupleO = (N, nroot, ntrue, nfalse, low, high,Var, λ) where

– N is a finite set callednodes,
– nroot ∈ N is called theroot node,
– ntrue, nfalse ∈ N are called theterminal nodes,
– low, high : N \ {ntrue, nfalse} → N are twochild functionsassigning to every non-

terminal node alow and ahigh child node. Furthermore the graph obtained by
iterated application has to be acyclic, i.e. for no node n exists a sequence of appli-
cations oflow andhigh resulting in n again.

– Var is a finite set ofvariables.
– λ : N \ {ntrue, nfalse} → Var is the labelling function assigning to every non-terminal

node a variable fromVar.

OBBDs are a particular realisation of BDDs where a certain ordering is imposed
on variables to achieve more efficient representations. We will not require to consider

the background of this optimisation in here. Now every BDD based on a variable set
Var = {x1, . . . , xn} represents ann-ary Boolean functionϕ : 2Var → {true, false}.

Definition 9. Given a BDDO = (N, nroot, ntrue, nfalse, low, high,Var, λ) the Boolean func-
tion ϕO : 2Var → {true, false} is defined recursively as follows:

ϕO ≔ ϕnroot ϕntrue = ~true� ϕnfalse = ~false�

ϕn =
(

¬~λ(n)�χ ∧ ϕlow(n)

)

∨
(

~λ(n)�χ ∧ ϕhigh(n)

)

for n ∈ N \ {ntrue, nfalse}

In other words, the valueϕ(V) for someV ⊆ Var is determined by traversing the
BDD, beginning from the root node: at a node labelled withv ∈ Var, the evaluation pro-
ceeds with the node connected by thehigh-edge ifv ∈ V, and with the node connected
by thelow-edge otherwise. If a terminal node is reached, its label is returned as a result.

BDDs for some Boolean formula might be exponentially large in general, but often
there is a representation which allows for BDDs of manageable size. Finding the op-
timal representation is NP-complete, but heuristics have shown to yield good approx-
imate solutions. Hence (O)BDDs are often conceived as efficiently compressed repre-
sentations of Boolean functions. In addition, many operations on Boolean functions –
such as the aforementioned “point-wise” negation, conjunction, disjunction, implication
as well as propositional quantification – can be performed directly on the corresponding
OBDDs by fast algorithms.

Translating Dominos into Boolean Functions To apply the above machinery to DL
reasoning, consider a flattenedALCIb terminologyT = FLAT(T). A set of propo-
sitional variablesVar is defined asVar ≔ R ∪

(

P(T) × {1, 2}
)

. We thus obtain an
obvious bijection between setsV ⊆ Var and dominoes over the setP(T) given as
〈A,R,B〉 7→ (A × {1}) ∪ R ∪ (B × {2}). Hence, any Boolean function overVar rep-
resents a domino set as the collection of all variable sets for which it evaluates totrue.
We can use this observation to rephrase the construction ofDT in Definition 5 into an
equivalent construction of a function~T �.

We first represent DL conceptsC and role expressionsU by characteristic Boolean
functions overVar as follows. Note that the application of∧ results in another Boolean
function, and is not to be understood as a syntactic formula.

~C� ≔































¬~D� if C = ¬D
~D� ∧ ~E� if C = D ⊓ E
~D� ∨ ~E� if C = D ⊔ E
~〈C, 1〉�χ if C ∈ P(T)

~U� ≔































¬~V� if U = ¬V
~V� ∧ ~W� if U = V ⊓W
~V� ∨ ~W� if U = V ⊔W
~U�χ if U ∈ R

We can now define an inferencing algorithm based on Boolean functions.

Definition 10. Given a flattenedALCIb terminologyT and a variable setVar defined
as above, Boolean functions~T �i are constructed based on the definitions in Fig. 1:

– ~T �0 ≔ ϕkb ∧ ϕuni ∧ ϕex,
– ~T �i+1 ≔ ~T �i ∧ ϕ

delex
i ∧ ϕdeluni

i ∧ ϕ
sym
i

The construction terminates as soon as~T �i+1 = ~T �i , and the result of the con-
struction is then defined as~T � ≔ ~T �i . The algorithm returns “unsatisfiable” if
~T �(V) = false for all V⊆ Var, and “satisfiable” otherwise.

ϕkb
≔

∧

C∈T

~C�

ϕuni
≔
∧

∀U.C∈P(T)

~〈∀U.C,1〉�χ ∧ ~U�→ ~〈C,2〉�χ ϕex
≔
∧

∃U.C∈P(T)

~〈C,2〉�χ ∧ ~U�→ ~〈∃U.C,1〉�χ

ϕdelex
i ≔

∧

∃U.C∈P(T)

~〈∃U.C,1〉�χ → ∃
(

R ∪ C×{2}
)

.
(

~T �i ∧ ~U� ∧ ~〈C,2〉�χ
)

ϕdeluni
i ≔

∧

∀U.C∈P(T)

~〈∀U.C,1〉�χ → ¬∃
(

R ∪ C×{2}
)

.
(

~T �i ∧ ~U� ∧ ¬~〈C,2〉�χ
)

ϕ
sym
i (V)≔~T �i

(

{

〈D,1〉 | 〈D,2〉 ∈ V
}

∪
{

Inv(R) | R ∈ V
}

∪
{

〈D,2〉 | 〈D,1〉 ∈ V
}

)

Fig. 1.Boolean functions for defining the canonical domino set in Definition 10.

PhDStudent⊑ ∃has.Diploma
Diploma⊑ ∀has−.Graduate

Diploma⊓Graduate⊑ ⊤
Diploma(laureus) PhDStudent(laureus)

Fig. 2. An exampleALCIb knowledge base.

As shown in [2], the above algorithm is a correct procedure for checking consis-
tency of terminologicalALCIb knowledge bases. Moreover, all required operations
and checks are provided by standard OBDD implementations, and thus can be realised
in practice. Correctness follows from the next observation, which is also relevant for
extending reasoning to Aboxes below:

Proposition 11. For anyALCIb terminologyT and variable set V∈ Var as above,
we find that~T �(V) = true iff V represents a domino inDT as defined in Definition 5.

In the remainder of this section, we illustrate the above algorithm by an extended
example, to which we will also come back to explain the later extensions of the infer-
ence algorithm. Therefore, consider theALCIb knowledge base given in Fig. 2. For
now, we are only interested in the terminological axioms, the consistency of which we
would like to establish. As a first transformation step, all Tbox axioms are transformed
into the following universally valid concepts in negation normal form:

¬PhDStudent⊔∃has.Diploma ¬Diploma⊔∀has−.Graduate ¬Diploma⊔¬Graduate

The flattening step can be skipped since all concepts are already flat. Now the relevant
concept expressions for describing dominoes are as followsgiven by the setP(T) =
{∃has.Diploma,∀has−.Graduate,Diploma,Graduate,PhDStudent}. We thus obtain the
following setVar of Boolean variables (thoughVar is just a set, our presentation follows
the domino intuition):

〈∃has.Diploma, 1〉 has 〈∃has.Diploma, 2〉
〈∀has−.Graduate, 1〉 has− 〈∀has−.Graduate, 2〉
〈Diploma, 1〉 〈Diploma, 2〉
〈Graduate, 1〉 〈Graduate, 2〉
〈PhDStudent, 1〉 〈PhDStudent, 2〉

h iPhDStudent,1

h9 h9has.Diploma,1i has.Diploma,1i

h iDiploma,2

h iDiploma,1

h iGraduate,1

h iGraduate,2

has

has

h8 h8has .Graduate,1i has .Graduate,1i- -

-

1 0

h iPhDStudent,1

h9has.Diploma,1i

h iDiploma,1

h iGraduate,1

h8has .Graduate,1i-

1 0

Fig. 3. OBDDs arising when processing the terminology of Fig. 2. Following traditional BDD
notation, solid arrows indicatehigh successors, and dashed arrows indicatelow successors.

We are now ready to construct the OBDDs as described. Figure 3(left) displays an
OBDD corresponding to the following Boolean function:

ϕkb ≔ (¬~〈PhDStudent, 1〉� ∨ ~〈∃has.Diploma, 1〉�)
∧(¬~〈Diploma, 1〉� ∨ ~〈∀has−.Graduate, 1〉�)
∧(¬~〈Diploma, 1〉� ∨ ¬~〈Graduate, 1〉�)

and in Fig. 3 (right) shows the OBDD representing the function ~T �0 obtained from
ϕkb by conjunctively adding

ϕex
= ¬~〈Diploma, 2〉� ∨ ¬~has� ∨ ~〈∃has.Diploma, 1〉� and

ϕuni
= ¬~〈∀has−.Graduate, 1〉� ∨ ¬~has−� ∨ ~〈Graduate, 2〉�.

Then, after the first iteration of the algorithm, we arrive atan OBDD representing~T �1
which is displayed in Fig. 4. This OBDD turns out to be the finalresult~T � .

5 Abox Reasoning with Disjunctive Datalog

The above algorithm does not yet take any assertional information about individuals
into account. Now the proof of Theorem 7 given in [2] hinges upon the fact that the
constructed domino setDT induces a model of the terminologyT , and Lemma 6 states
that this is indeed thegreatestmodel in a certain sense. This provides some first intuition
of the problems arising when Aboxes are to be added to the knowledge base:ALCIb
knowledge bases with Aboxes do generally not have a greatestmodel.

We thus employdisjunctive datalogas a paradigm that allows us to incorporate
Aboxes into the reasoning process. The basic idea is to forgea datalog program that
– depending on two given individualsa andb – describes possible dominoes that may

h iPhDStudent,1

h iPhDStudent,2 h iPhDStudent,2 h iPhDStudent,2 h iPhDStudent,2

h9 h9 h9 h9

h9

has.Diploma,2i has.Diploma,2i has.Diploma,2i has.Diploma,2i

has.Diploma,1i

h iDiploma,2 h iDiploma,2 h iDiploma,2 h iDiploma,2

h iDiploma,1 h iDiploma,1 h iDiploma,1

h iGraduate,1 h iGraduate,1 h iGraduate,1

h iGraduate,2h iGraduate,2 h iGraduate,2 h iGraduate,2

has has has

has

h8

h8 h8 h8

has .Graduate,1i

has .Graduate,2i has .Graduate,2i has .Graduate,2i

-

- - -

- - -

1

h8has .Graduate,1i-

Fig. 4.Final OBDD obtained when processing Fig. 2, using notation as in Fig. 3. Arrows to the 0
node have been omitted for better readability.

connecta andb in models of the knowledge base. There might be various, irreconcilable
such dominoes in different models, but disjunctive datalog supports such choicesince it
admits multiple minimal models. As long as the knowledge base has some model, there
is at least one possible domino for every pair of individuals(possibly without connect-
ing roles) – only if this is not the case, the datalog program will infer a contradiction.

In earlier sections, we have already reduced terminological reasoning inALCIb to
iterative constructions of Boolean formulae, and one mightbe tempted to directly cast
these constructions into datalog. However, the terminological reasoning must take into
accountall possible individuals occurring in the constructed greatest model. If we want
to represent individuals by constants in datalog, this would require us to declare expo-
nentially many individuals in datalog. This would give up onthe possible optimisation
of using OBDDs, and basically just mirror the naive domino set construction in datalog.

So we use the OBDD computed from the terminology as a kind of pre-compiled
version of the relevant terminological information. Abox information is then considered
as a kind of incomplete specification of dominoes that must beaccepted by the OBDD,
and the datalog program simulates the OBDD’s evaluation foreach of those.

Definition 12. Consider anALCIb knowledge baseKB = 〈A,T〉 such thatA con-
tains only atomic concepts, and letO = (N, nroot, ntrue, nfalse, low, high,Var, λ) denote an
OBDD obtained as a representation of~FLAT(T)� as in Definition 10. A disjunctive
datalog programDD(KB) is defined as follows.DD(KB) uses the following predicate
symbols:

– a unary predicate SC for every concept expression C∈ P(FLAT(T)),
– a binary predicate SR for every atomic role R∈ NR,
– a binary predicate An for every OBDD node n∈ N.

The constants inDD(KB) are just the individual names used inA. The disjunctive
datalog rules ofDD(KB) are defined as follows:

(1) DD(KB) contains rules→ Anroot(x, y) and Anfalse(x, y)→.
(2) If C(a) ∈ A thenDD(KB) contains→ SC(a).
(3) If R(a, b) ∈ A thenDD(KB) contains→ SR(a, b)
(4) If n ∈ N withλ(n) = 〈C, 1〉 thenDD(KB) contains rules

SC(x) ∧ An(x, y)→ Ahigh(n)(x, y) and An(x, y)→ Alow(n)(x, y) ∨ SC(x).
(5) If n ∈ N withλ(n) = 〈C, 2〉 thenDD(KB) contains rules

SC(y) ∧ An(x, y)→ Ahigh(n)(x, y) and An(x, y)→ Alow(n)(x, y) ∨ SC(y).
(6) If n ∈ N withλ(n) = R for some R∈ NR thenDD(KB) contains rules

SR(x, y) ∧ An(x, y)→ Ahigh(n)(x, y) and An(x, y)→ Alow(n)(x, y) ∨ SR(x, y).
(7) If n ∈ N withλ(n) = R− for some R∈ NR thenDD(KB) contains rules

SR(y, x) ∧ An(x, y)→ Ahigh(n)(x, y) and An(x, y)→ Alow(n)(x, y) ∨ SR(y, x).

Note that the number of variables per rule inDD(KB) is bounded by 2. The seman-
tically equivalent grounding ofDD(KB) thus is a propositional program of quadratic
size, and the worst-case complexity for satisfiability checking is NP, as opposed to the
NET complexity of disjunctive datalog in general. Note that, ofcourse,DD(KB)
may still be exponential in the size of KB in the worst case. Itremains to show the
correctness of the datalog translation.

Lemma 13. Given anALCIb knowledge baseKB such thatI is a model ofKB,
there is a modelJ of DD(KB) such thatI |= C(a) iff J |= SC(a), andI |= R(a, b) iff
J |= SR(a, b), for any a, b ∈ NI , C ∈ NC, and R∈ NR.

Proof. Let KB = (A,T). We define an interpretationJ of DD(KB). The domain ofJ
is the domain ofI, i.e.∆I = ∆J . For individualsa, we setaJ ≔ aI. The interpretation
of predicate symbols is now defined as follows (note thatAn is defined inductively):

– δ ∈ SJC iff δ ∈ CI,
– 〈δ1, δ2〉 ∈ SJR iff 〈δ1, δ2〉 ∈ RI,
– 〈δ1, δ2〉 ∈ AJnroot

for all δ1, δ2 ∈ ∆
J ,

– 〈δ1, δ2〉 ∈ An for n , nroot if there is a noden′ such that〈δ1, δ2〉 ∈ An′ , and one of
the following is the case:
• λ(n′) = 〈C, i〉, for somei ∈ {1, 2}, andn = low(n′) andδi < CI

• λ(n′) = 〈C, i〉, for somei ∈ {1, 2}, andn = high(n′) andδi ∈ CI

• λ(n′) = R andn = low(n′) and〈δ1, δ2〉 < RI

• λ(n′) = R andn = high(n′) and〈δ1, δ2〉 ∈ RI

Mark that, in the last two items,R is any role expression fromVar, and hence is a role
name or its inverse. Also note that due to the acyclicity ofO, the interpretation of the
A-predicates is indeed well-defined. We now show thatJ is a model ofDD(KB). To
this end, first note that the extensions of predicatesSC andSR in J were defined to
coincide with the extensions ofC andR in I. SinceI satisfiesA, all ground facts of
DD(KB) are satisfied byJ. This settles cases (2) and (3) of Definition 12.

Similarly, we find that the rules of cases (4)–(7) are satisfied byJ. Consider the first
rule of (4),SC(x)∧An(x, y)→ Ahigh(n)(x, y), and assume thatδ1 ∈ SJC and〈δ1, δ2〉 ∈ AJn .
Thusδ1 ∈ CI, and, using the preconditions of (4), we conclude that〈δ1, δ2〉 ∈ AJhigh(n)
follows from the definition ofJ. The second rule of case (4) covers the analogous
negative case, and all other cases can be treated similarly.

Finally, for case (1), we need to show thatAJnfalse
= ∅. For that, we first explicate

the correspondence between domain elements ofI and sets of variables ofO: Given
elementsδ1, δ2 ∈ ∆

I we defineVδ1,δ2 ≔ {〈C, n〉 | C ∈ P(FLAT(T)), δn ∈ CI} ∪ {R |
〈δ1, δ2〉 ∈ RI}, the set of variables corresponding to theI-domino betweenδ1 andδ2.

Now AJnfalse
= ∅ clearly is a consequence of the following claim: for allδ1, δ2 ∈ ∆

I

and alln ∈ N, we find that〈δ1, δ2〉 ∈ An impliesϕn(Vδ1,δ2) = true (using the notation
of Definition 9). The proof proceeds by induction. For the case n = nroot, we find that
ϕnroot = ~T �. SinceVδ1,δ2 represents a domino ofI, the claim thus follows by combining
Proposition 11 and Lemma 6.

For the induction step, letn be a node such that〈δ1, δ2〉 ∈ An follows from the
inductive definition ofJ based on some predecessor noden′ for which the claim has
already been established. Note thatn′ may not be unique. The cases in the definition of
J must be considered individually. Thus assumen′, n, andδ1 satisfy the first case, and
that 〈δ1, δ2〉 ∈ An. By induction hypothesis,ϕn′ (Vδ1,δ2) = true, and by Definition 9 the
given case yieldsϕn(Vδ1,δ2) = trueas well. The other cases are similar. ⊓⊔

Lemma 14. Given anALCIb knowledge baseKB such thatJ is a model ofDD(KB),
there is a modelI of DD(KB) such thatI |= C(a) iff J |= SC(a), andI |= R(a, b) iff
J |= SR(a, b), for any a, b ∈ NI , C ∈ NC, and R∈ NR.

Proof. Let KB = (A,T). We construct an interpretationIwhose domain∆I consists of
all sequences starting with an individual name followed by a(possibly empty) sequence
of dominoes fromDT such that, for everyδ ∈ ∆I,

– if δ begins witha〈A,R,B〉, then{C | C ∈ P(FLAT(T)), aJ ∈ SJC } = A, and
– if δ contains subsequent letters〈A,R,B〉 and〈A′,R′,B′〉, thenB = A′.

For a sequenceδ = a〈A1,R1,A2〉〈A2,R2,A3〉 . . . 〈Ai−1,Ri−1,Ai〉, we define tail(δ) ≔
Ai , whereas for aδ = a we define tail(δ) ≔ {C | C ∈ P(FLAT(T)), aJ ∈ SJC }. Now the
mappings ofI are defined as follows:

– for a ∈ NI , we haveaI ≔ a,
– for A ∈ NC, we haveδ ∈ AI iff A ∈ tail(δ),
– for R ∈ NR, we have〈δ1, δ2〉 ∈ RI if one of the following holds
• δ1 = a ∈ NI andδ2 = b ∈ NI and〈a, b〉 ∈ SJR , or

• δ2 = δ1〈A,R,B〉 with R ∈ R, or
• δ1 = δ2〈A,R,B〉 with Inv(R) ∈ R.

Thus, intuitively,I is constructed by extracting the named individuals as well their
concept (and mutual role) memberships fromJ, and appending an appropriate domino-
constructed tree model to each of those named individuals. We proceed by showing that
I is indeed a model of KB.

We begin with the following auxiliary observation: For every two individual names
a, b ∈ NI , andRab := {R | 〈aJ , bJ〉 ∈ SJR } ∪ {Inv(R) | 〈bJ , aJ〉 ∈ SJR }, the domino
〈tail(a),Rab, tail(b)〉 is contained inDT (Claim †). Using Proposition 11, it suffices to
show that the Boolean function~T � if applied toVa,b ≔ {tail(a)×{1}∪Rab∪tail(b)×{2}}
yields true. Since~T � = ϕnroot , this is obtained by showing the following: For any
a, b ∈ NI , we find that〈aJ , bJ〉 ∈ AJn impliesϕn(Va,b) = true. Indeed, the intended
claim follows since we have〈aJ , bJ〉 ∈ AJnroot

due to the first rule of (1) in Definition 12.
We proceed by induction, starting at the leaves of the OBDD. The case〈a, b〉 ∈ AIntrue

is
immediate, and〈a, b〉 ∈ AInfalse

is excluded by the second rule of (1). For the induction
step, consider nodesn, n′ ∈ N such that eitherλ(n) ∈ Va,b andn′ = high(n), or λ(n) <
Va,b andn′ = low(n). We assume that〈aJ , bJ〉 ∈ AJn , and, by induction, that the claim
holds forn′. If λn = 〈C, 1〉, then one of the rules of case (4) applies toaJ andbJ . In
both cases, we can infer〈aJ , bJ〉 ∈ AJn′ , and henceϕn′ (Va,b) = true. Together with the
assumptions for this case, Definition 9 implies thatϕn(Va,b) = true as required. The
other cases are analogous.

It is easy to see thatI satisfies all Abox axioms from KB by definition, due to the
ground facts inDD(KB) (case (2) and (3) in Definition 12). To show that the Tbox is
also satisfied, we need to show that all individuals ofI are contained in the extension
of each concept expression ofFLAT(T). To this end, we first show thatδ ∈ CI iff
C ∈ tail(δ) for all C ∈ P(FLAT(T)). If C ∈ NC is atomic, this follows directly from the
definition ofI. The remaining cases that may occur inP(FLAT(T)) areC = ∃U.A and
C = ∀U.A.

First consider the caseC = ∃U.A, and assume thatδ ∈ CI. Thus there isδ′ ∈ ∆I

with 〈δ, δ′〉 ∈ UI andδ′ ∈ AI. The construction of the domino model admits three
possible cases:

– δ, δ′ ∈ NI andRδδ′ ⊢ U andA ∈ tail(δ′). Now by†, the domino〈tail(δ),Rδδ′ , tail(δ′)〉
satisfies conditionexof Definition 5, and thusC ∈ tail(δ) as required.

– δ′ = δ〈tail(δ),R, tail(δ′)〉 with R ⊢ U andA ∈ tail(δ′). SinceDT ⊆ D0, we find that
〈tail(δ),R, tail(δ′)〉 satisfies conditionex, and thusC ∈ tail(δ) as required.

– δ = δ′〈tail(δ′),R, tail(δ)〉 with Inv(R) ⊢ U and A ∈ tail(δ′). By conditionsym,
DT contains the domino〈tail(δ), Inv(R), tail(δ′)〉, and we can again invokeex to
concludeC ∈ tail(δ).

For the converse, assume that∃U.A ∈ tail(δ). SoDT contains a domino〈A,R, tail(δ)〉.
This is obvious if the sequenceδ ends with a domino. Ifδ = a ∈ NI , then it follows
by applying† to a with the first individual being arbitrary. BysymDT also contains
the domino〈tail(δ),R,A〉. By conditiondelex, the latter implies thatDT contains a
domino〈tail(δ),R′,A′〉 such thatR′ ⊢ U andA ∈ A′. Thusδ′ = δ〈tail(δ),R′,A′〉 is an
I-individual such that〈δ, δ′〉 ∈ UI andδ′ ∈ AI, and we obtainδ ∈ (∃U.A)I as claimed.

For the second case, considerC = ∀U.A and assume thatδ ∈ CI. As above, we
find thatDT contains some domino〈A,R, tail(δ)〉, where† is needed ifδ ∈ NI . By sym
we find a domino〈tail(δ),R,A〉. For a contradiction, suppose that∀U.A < tail(δ). By
conditiondeluni, the latter implies thatDT contains a domino〈tail(δ),R′,A′〉 such that
R′ ⊢ U andA < A′. Thusδ′ = δ〈tail(δ),R′,A′〉 is anI-individual such that〈δ, δ′〉 ∈ UI

andδ′ < AI. But thenδ < (∀U.A)I, which is the required contradiction.
For the other direction, assume that∀U.A ∈ tail(δ). According to the construction

of I, for all elementsδ′ with 〈δ, δ′〉 ∈ UI, there are three possible cases:

– δ, δ′ ∈ NI andRδδ′ ⊢ U. Now by†, the domino〈tail(δ),Rδδ′ , tail(δ′)〉 satisfies con-
dition uni, whenceA ∈ tail(δ′).

– δ′ = δ〈tail(δ),R, tail(δ′)〉 with R ⊢ U. SinceDT ⊆ D0, 〈tail(δ),R, tail(δ′)〉 must
satisfy conditionuni, and thusA ∈ tail(δ′).

– δ = δ′〈tail(δ′),R, tail(δ)〉 with Inv(R) ⊢ U. By conditionsym, DT also contains the
domino〈tail(δ), Inv(R), tail(δ′)〉, and we can again useuni to concludeA ∈ tail(δ′).

Thus,A ∈ tail(δ′) for all U-successorsδ′ of δ, and henceδ ∈ (∀U.A)I as claimed.
To finish the proof, note that any domino〈A,R,B〉 ∈ DT satisfies conditionkb.

Usingsym, we have that for anyδ ∈ ∆I, the axiom
�

D∈tail(δ) D ⊑ C is a tautology for
all C ∈ FLAT(T). As shown above,δ ∈ DI for all D ∈ tail(δ), and thusδ ∈ CI. Hence
every individual ofI is an instance of each concept ofFLAT(T) as required. ⊓⊔

Lemma 13 and 14 show thatDD(KB) faithfully captures both positive and negative
ground conclusions of KB, and in particular thatDD(KB) and KB are equisatisfiable.
As discussed in Section 2,SHIQ knowledge bases can be transformed into equisatis-
fiableALCIb knowledge bases, and hence the above algorithm can also be used to de-
cide satisfiability in the case ofSHIQ. The transformations used to convertSHIQ to
ALCIb, however, do not preserve all ground consequences. In particular,SHIQ con-
sequences of the formR(a, b) with Rbeing non-simple may not be entailed byDD(KB).
Such positive non-simple role atoms are the only case where entailments are lost, and
thusDD(KB) behaves similar to the disjunctive datalog program created by the KAON2
approach [7].

The above observation immediately allow us to add reasoningsupport forDL-safe
rules [8], simply by adding the respective rules toDD(KB) after replacingC andR
by SC andSR. A special case of this areDL-safeconjunctive queries, i.e. conjunctive
queries that assume all variables to range only over named individuals. It is easy to
see that, as a minor extension, one could generally allow forconcept expressions∀R.A
and∃R.A in queries and rules, simply becauseDD(KB) represents these elements of
P(FLAT(T)) as atomic symbols in disjunctive datalog.

6 Discussion

We have presented a new reasoning algorithm forSHIQ knowledge bases that com-
pilesSHIQ terminologies into disjunctive datalog programs, which are then combined
with assertional information for satisfiability checking and (ground) query answering.
The approach is based on our earlier work on terminologicalSHIQ reasoning with

ordered binary decision diagrams (OBDDs), which fails whenintroducing Aboxes as it
hinges upon a form of greatest model property [2]. OBDDs now are still used to pro-
cess terminologies, but are subsequently transformed intodisjunctive datalog programs
that can incorporate Abox data. The generation of disjunctive datalog may require ex-
ponentially many computation steps, the complexity of which depends on the concrete
OBDD implementation at hand – findingoptimal encodingsis NP-complete but heuris-
tic approximations are often used in practice. Querying thedisjunctive datalog program
then is co-NP-complete w.r.t. the size of the Abox, so that the data complexity of the
algorithm is worst-case optimal [7].

The presented method exhibits similarities to the algorithm underlying the KAON2
reasoner [7]. In particular, pre-transformations are firstapplied toSHIQ knowledge
bases, so that the resulting datalog program is not completefor querying instances of
non-simple roles. Besides this restriction, extensions with DL-safe rules and ground
conjunctive queries are straightforward. The presented processing, however, is very dif-
ferent from KAON2. Besides using OBDDs, it also employs Boolean role constructors
that admit an efficient binary encoding of number restrictions [2].

For future work, the algorithm needs to be evaluated in practice. A prototype im-
plementation was used to generate the examples within this paper, but this software is
not fully functional yet. It is also evident that redundancyelimination techniques are
required to reduce the number of generated datalog rules, which is also an important
aspect of the KAON2 implementation. Another strand for future development is the
extension of the approach to take nominals into account – significant revisions of the
model-theoretic considerations are needed for that case.

References

1. Pan, G., Sattler, U., Vardi, M.Y.: BDD-based decision procedures for the modal logic K.
Journal of Applied Non-Classical Logics16(1-2) (2006) 169–208

2. Rudolph, S., Krötzsch, M., Hitzler, P.: Terminological reasoning in SHIQ with ordered binary
decision diagrams. In: Proc. 23rd AAAI Conference on Artficial Intelligence (AAAI-08),
AAAI Press (2008) To appear.

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.: The Descrip-
tion Logic Handbook: Theory, Implementation and Applications. Cambridge University Press
(2007)

4. Tobies, S.: Complexity Results and Practical Algorithmsfor Logics in Knowledge Represen-
tation. PhD thesis, RWTH Aachen, Germany (2001)

5. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking: 1020

states and beyond. In: Proc. 5th Annual IEEE Symposium on Logic in Computer Science,
Washington, D.C., IEEE Computer Society Press (1990) 1–33

6. Huth, M.R.A., Ryan, M.D.: Logic in Computer Science: Modelling and reasoning about
systems. Cambridge University Press (2000)

7. Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. PhD
thesis, Universität Karlsruhe (TH), Germany (2006)

8. Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Journal of Web
Semantics3(1) (2005) 41–60

