
3

Knowledge Representation and Ontologies
Logic, Ontologies and Semantic Web Languages

Stephan Grimm1, Pascal Hitzler2, Andreas Abecker1

1 FZI Research Center for Information Technologies, University of Karlsruhe, Germany
{grimm,abecker }@fzi.de

2 Institute AIFB, University of Karlsruhe, Germany
hitzler@aifb.uni-karlsruhe.de

Summary. In Artificial Intelligence, knowledge representation studies the formalisation of knowl-
edge and its processing within machines. Techniques of automated reasoning allow a computer sys-
tem to draw conclusions from knowledge represented in a machine-interpretable form. Recently,
ontologies have evolved in computer science as computational artefacts to provide computer systems
with a conceptual yet computational model of a particular domain of interest. In this way, computer
systems can base decisions on reasoning about domain knowledge, similar to humans. This chapter
gives an overview on basic knowledge representation aspects and on ontologies as used within com-
puter systems. After introducing ontologies in terms of their appearance, usage and classification, it
addresses concrete ontology languages that are particularly important in the context of the Semantic
Web. The most recent and predominant ontology languages and formalisms are presented in relation
to each other and a selection of them is discussed in more detail.

3.1 Knowledge Representation

As a branch of symbolic Artificial Intelligence,knowledge representation and reasoning
aims at designing computer systems that reason about a machine-interpretable representa-
tion of the world, similar to human reasoning.Knowledge-based systemshave a computa-
tional model of some domain of interest in which symbols serve as surrogates for real world
domain artefacts, such as physical objects, events, relationships, etc. [45]. Thedomain of
interestcan cover any part of the real world or any hypothetical system about which one
desires to represent knowledge for computational purposes.

A knowledge-based system maintains aknowledge basewhich stores the symbols of
the computational model in form of statements about the domain, and it performsreasoning
by manipulating these symbols. Applications can base their decisions on domain-relevant
questions posed to a knowledge base.

3.1.1 A Motivating Scenario

To illustrate principles of knowledge representation in this chapter, we introduce an exam-
ple scenario taken from a B2B travelling use case. In this scenario, companies frequently

38 Stephan Grimm, Pascal Hitzler, Andreas Abecker

book business trips for their employees, sending them to international meetings and con-
ference events. Such a scenario is a relevant use case for Semantic Web Services, since
companies desire to automate the online booking process, while they still want to bene-
fit from the high competition among various travel agencies and no-frills airlines that sell
tickets via the internet. Automation is achieved by computational agents deciding about
whether an online offer of some travel agency fits a request for a business trip or not, based
on the knowledge they have about the offer and the request. Knowledge represented in this
domain of “business trips” is about flights, trains, booking, companies and their employees,
cities that are source or destination for a trip, etc.

Knowledge-based systems use a computational representation of such knowledge in
form of statements about the domain of interest. Examples of such statements in the busi-
ness trips domain are “companies book trips for their employees”, “ flights and train rides
are special kinds of trips” or “ employees are persons employed at some company”. This
knowledge can be used to answer questions about the domain of interest. From the given
statements, and by means of automated deduction, a knowledge-based system can, for ex-
ample, derive that “a person on a flight booked by a company is an employee” or “ the
company that booked a flight for a person is this person’s employer”.

In this way, a knowledge-based computational agent can reason about business trips,
similar to the way a human would. It could, for example, tell apart offers for business trips
from offers for vacations, or decide whether the destination city for a requested flight is
close to the geographical region specified in an offer, or conclude that a participant of a
business flight is an employee of the company that booked the flight.

3.1.2 Forms of Representing Knowledge

If we look at current Semantic Web technologies and use cases, knowledge representation
appears in different forms, the most prevalent of which are based on semantic networks,
rules and logic. Semantic network structures can be found in RDF graph representations
[30] or Topic Maps [41], whereas a formalisation of business knowledge often comes in
form of rules with some “if-then” reading, e.g. in business rules or logic programming
formalisms. Logic is used to realise a precise semantic interpretation for both of the other
forms. By providing formal semantics for knowledge representation languages, logic-based
formalisms lay the basis for automated deduction. We will investigate these three forms of
knowledge representation in the following.

Semantic Networks

Originally, semantic networks stem from the “existential graphs” introduced by Charles
Peirce in 1896 to express logical sentences as graphical node-and-link diagrams [43]. Later
on, similar notations have been introduced, such as conceptual graphs [45], all differing
slightly in syntax and semantics. Despite these differences, all the semantic network for-
malisms concentrate on expressing the taxonomic structure of categories of objects and the
relations between them. We use a general notion of a semantic network, abstracting from
the different concrete notations proposed.

A semantic networkis a graph whose nodes represent concepts and whose arcs rep-
resent relations between these concepts. They provide a structural representation of state-
ments about a domain of interest. In the business trips domain, typical concepts would be

3 Knowledge Representation and Ontologies 39

“Company”, “Employee” or “Flight”, while typical relations would be “books”, “isEm-
ployedAt” or “participatesIn”. Figure 3.1 shows an example of a semantic network for the
business trips domain.

LegalEntity

Person Company

Employee

Trip City

Location

EUCity USCityFlight TrainRide

partic
ipatesIn

books

kindO
f

ki
nd

O
f

endsIn

startsFrom

ki
nd

O
f kindO

f

k
in

d
O

fkindO
f

ki
nd

O
f

isEmployedAt

k
in

d
O

f

isLocatedAt

UbiqBiz

MisterX FL4711

London

New York
endsIn

startsFromisEmployedAt books

participatesIn

is
A

is
A

is
A is

A

is
A

Fig. 3.1.A Semantic Network for Business Trips

Semantic networks provide a means to abstract from natural language, representing the
knowledge that is captured in text in a form more suitable for computation. The knowledge
expressed in the network from Figure 3.1 coincides with the content of the following natural
language text.

“Employees of companies are persons, while both persons and companies are le-
gal entities. Companies book trips for their employees. These trips can be flights
or train rides which start and end in cities of Europe or the USA. Companies them-
selves have locations which can be cities.
The company UbiqBiz books the flight FL4711 from London to New York for
Mister X.”

Typically, concepts are chosen to represent the meaning of nouns in such a text, while
relations are mapped to verb phrases. The fragmentCompany books−−−−−→ Trip is read as
“companies book trips”, expressed as a binary relation between two concepts. However,
this is not mandatory; the relation books−−−−−→ could also be “lifted” to a conceptBooking

with relations hasActor−−−−−−−−→ , hasParticipant−−−−−−−−−−−−→ and hasObject−−−−−−−−→ pointing to Company,
Employee and Trip , respectively. In this way, its ternary character would be expressed

more accurately than in the original network where the information about an employee’s
involvement in booking is implicit.

In principle, the concepts and relations in a semantic network are generic and could
stand for anything relevant in the domain of interest. However, some particular relations
for some standard knowledge representation and reasoning cases have evolved.

40 Stephan Grimm, Pascal Hitzler, Andreas Abecker

The semantic network in Figure 3.1 illustrates the distinction between general concepts,
like Employee, and individual concepts, likeMisterX . While the latter represent con-
crete individuals or objects in the domain of interest, the former serve as classes to group
together such individuals that have certain properties in common, as e.g. all employees. The
particular relation which links individuals to their classes is that ofinstantiation, denoted
by isA−−−−→ . Thus, MisterX is called an instance of the concept employee. The lower part of
the network is concerned with knowledge about individuals, reflecting a particular situation
of the employee MisterX participating in a certain flight, while the upper part is concerned
with knowledge about general concepts, reflecting various possible situations.

The most prominent type of relation in semantic networks, however, is that ofsubsump-
tion, which we denote by kindOf−−−−−−→ . A subsumption link connects two general concepts
and expresses specialisation or generalisation, respectively. In the network in Figure 3.1, a
flight is said to be a special kind of trip, i.e.Trip subsumesFlight . This means that any
flight is also a trip, however, there might be other trips which are not flights, such as train
rides. Subsumption is associated with the notion of inheritance in that a specialised concept
inherits all the properties from its more general parent concepts. For example, from the net-
work one can read that a company can be located in a European city, sincelocatedAt−−−−−−−−→
points from Company to Location while EUCity is a kind of City which is itself a
kind of Location . The conceptEUCity inherits the property of being a potential location
for a company from the conceptLocation .

Other particular relations that can be found in semantic network notations are, for ex-
ample, partOf−−−−−−→ to denote part-whole relationships, etc.

Semantic networks are closely related to another form of knowledge representation
called frame systems. In fact, frame systems and semantic networks can be identical in
their expressiveness but use different representation metaphors [43]. While the semantic
network metaphor is that of a graph with concept nodes linked by relation arcs, the frame
metaphor draws concepts as boxes, i.e. frames, and relations as slots inside frames that can
be filled by other frames. Thus, in the frame metaphor the graph turns into nested boxes.

The semantic network form of knowledge representation is especially suitable for cap-
turing the taxonomic structure of categories for domain objects and for expressing general
statements about the domain of interest. Inheritance and other relations between such cate-
gories can be represented in and derived from subsumption hierarchies. On the other hand,
the representation of concrete individuals or even data values, like numbers or strings, does
not fit well the idea of semantic networks.

Rules

Another natural form of expressing knowledge in some domain of interest arerulesthat re-
flect the notion of consequence. Rules come in the form ofIF -THEN -constructs and allow
to express various kinds of complex statements. Rules can be found in logic programming
systems, like the language Prolog [31], in deductive databases [34] or in business rules
systems.

The following is an example of rules expressing knowledge in the business trips do-
main, specified in their intuitive if-then-reading.

3 Knowledge Representation and Ontologies 41

(1) IF something is a flight THEN it is also a trip
(2) IF some person participates in a trip booked by some company

THEN this person is an employee of this company
(3) FACT the person MisterX participates in a flight booked by the company UbiqBiz
(4) IF a trip’s source and destination cities are close to each other

THEN the trip is by train

The IF -part is also called the body of a rule, while theTHEN -part is also called its
head. Typically, rule-based knowledge representation systems operate on facts, which are
often formalised as a special kind of rule with an empty body. They start from a given set
of facts, like rule (3) above, and then apply rules in order to derive new facts, thus “drawing
conclusions”.

However, the intuitive reading with natural language phrases is not suitable for compu-
tation, and therefore such phrases are formalised to predicates and variables over objects
of the domain of interest. A formalisation of the above rules in the typical style of rule
languages looks as follows.

(1) Trip (?t) :− Flight (?t)
(2) Employee (?p) ∧ isEmployedAt (?p, ?c) :−

Trip (?t) ∧ books (?c, ?t) ∧ Company(?c) ∧ participatesIn (?p, ?t) ∧ Person (?p)
(3) Person (MisterX) ∧ participatesIn (MisterX , FL4711)∧

Flight (FL4711) ∧ books (UbiqBiz , FL4711) ∧ Company(UbiqBiz) :−
(4) TrainRide (?t) :−

Trip (?t) ∧ startsFrom (?t, ?s) ∧ endsIn (?t, ?d) ∧ close (?s, ?d)

In most logic programming systems a rule is read as an inverse implication, starting
with the head followed by the body, which is indicated by the symbol:− that resembles a
backward arrow. In this formalisation, the intuitive notions from the text, that were concepts
and relations in the semantic network case, became predicates linked through variables and
constants that identify objects in the domain of interest. Variables start with the symbol?
and take as their values the constants that occur in facts such as (3).

Rule (1) captures inheritance – or subsumption – between trips and flights by stating
that “everything that is a flight is also a trip”. Rule (2) draws conclusions about the status
of employment for participants of business flights. From the facts (3), these two rules are
able to derive the implicit fact that “MisterX is an employee of UbiqBiz”.

While the rules (1) and (2) express general domain knowledge, rule (4) can be inter-
preted as part of some company’s travelling policy, stating that trips between close cities
shall be conducted by train. In business rules, for example, rule-based formalisms are used
with the motivation to capture complex business knowledge in companies like pricing mod-
els or delivery policies.

Rule-based knowledge representation systems are especially suitable for reasoning
about concrete instance data, i.e. simple facts of the formEmployee (MisterX). Com-
plex sets of rules can efficiently derive implicit such facts from explicitly given ones. They
are problematic if more complex and general statements about the domain shall be derived
which do not fit a rule’s head.

42 Stephan Grimm, Pascal Hitzler, Andreas Abecker

Logic

Both forms, semantic networks as well as rules, have been formalised using logic to give
them a precise semantics. Without such a precise formalisation they are vague and ambigu-
ous, and thus problematic for computational purposes. From just the graphical representa-
tion of the semantic network in Figure 3.1, for example, it is not clear whether companies
can only book flights for their own employees or for employees of partner companies as
well. Neither is it clear from the fragmentCompany books−−−−−→ Trip whether every com-
pany books trips or just some company. Also for rules, despite their much more formal
appearance, the exact meaning remains unclear when, for example, forms of negation are
introduced that allow for potential conflicts between rules. Depending on the choice of
procedural evaluation or flavour of formal semantics, different derivation results are being
produced.

The most prominent and fundamental logical formalism classically used for knowledge
representation is the “first-order predicate calculus”, orfirst-order logicfor short, and we
choose this formalism to present logic as a form of knowledge representation here. First-
order logic allows one to describe the domain of interest as consisting of objects, i.e. things
that have individual identity, and to construct logical formulas around these objects formed
by predicates, functions, variables and logical connectives [43]. We assume that the reader
is familiar with the notation of first-order logic from formalisations of various mathematical
disciplines.

Similar to semantic networks, most statements in natural language can be expressed
in terms of logical sentences about objects of the domain of interest with an appropriate
choice of predicate and function symbols. Concepts are mapped to unary, relations to binary
predicates. We illustrate the use of logic for knowledge representation by axiomatising parts
of the semantic network from Figure 3.1 more precisely.

Subsumption, for example, can be directly expressed by a logical implication, which is
illustrated in the translation of the following fragment.

Employee kindOf−−−−−−→ Person ∀ x : (Employee(x)→ Person(x))

Due to the universal quantifier, the variablex in the logical formula ranges over all domain
objects and its reading is “everything that is an employee is also a person”.

Other parts of the network can be further restricted using logical formulas, as shown in
the following example.

Company books−−−−−→ Trip ∀ x, y : (books(x, y)→ Company(x) ∧ Trip(y))
∀ x : ∃ y : (Trip(x)→ Company(y) ∧ books(y, x))

The graphical representation of the network fragment leaves some details open, while the
logical formulas capture the booking relation between companies and trips more precisely.
The first formula states that domain and range of the booking relation are companies and
trips, respectively, while the second formula makes sure that for every trip there does actu-
ally exist a company that booked it.

In particular, more complex restrictions that range over larger fragments of a network
graph can be formulated in logic, where the intuitive graphical notation lacks expressiv-
ity. As an example consider the relations between companies, trips and employees in the
following fragment.

3 Knowledge Representation and Ontologies 43

Company books−−−−−→ Trip participatesIn←−−−−−−−−−−− Employee
←−−−−−−−−−−−−−−−−−−−−−−−−

employedAt
∀ x : ∃ y : (Trip(x)→ Employee(y) ∧ participatesIn(y, x) ∧ books(employer(y), x))

The logical formula expresses additional knowledge that is not captured in the graph rep-
resentation. It states that, for every trip, there must be an employee that participates in this
trip while the employer of this participant is the company that booked the flight.

Rules can also be formalised with logic. AnIF -THEN -rule can be represented as a
logical implication with universally quantified variables. For example, a common formali-
sation of the rule

IF a trip’s source and destination cities are close to each other
THEN the trip is by train

is the translation to the logical formula
∀ x, y, z : (Trip(x) ∧ startsFrom(x, y) ∧ endsIn(x, z) ∧ close(y, z)→ TrainRide(x)).

However, the typical rule-based systems do not interpret such a formula in the classical
sense of first-order logic but employ different kinds of semantics, which are discussed in
Section 3.2.

Since a precise axiomatisation of domain knowledge is a prerequisite for processing
knowledge within computers in a meaningful way, we focus on logic as the dominant form
of knowledge representation. Therefore, we investigate different kinds of logics and formal
semantics more closely in a subsequent section.

In the context of the Semantic Web, two particular logical formalisms have gained
momentum, reflecting the semantic network and rules forms of knowledge representation.
The graph notations of semantic networks have been formalised throughdescription log-
ics, which are fragments of first-order logic with typical Tarskian model-theoretic seman-
tics but restricted to unary and binary predicates to capture the notions of concepts an
relations. On the other hand, rules have been formalised throughlogic programmingfor-
malisms with minimal model semantics, focusing on the derivation of simple facts about
individual objects. Both description logics and logic programming can be found as underly-
ing formalisms in various knowledge representation languages in the Semantic Web, which
are addressed in Section 3.4.

3.1.3 Reasoning about Knowledge

The way in which we, as humans, process knowledge is by reasoning, i.e. the process
of reaching conclusions. Analogously, a computer processes the knowledge stored in a
knowledge base by drawing conclusions from it, i.e by deriving new statements that follow
from the given ones.

The basic operations a knowledge-based system can perform on its knowledge base
are typically denoted bytell andask [43]. The tell -operation adds a new statement
to the knowledge base, whereas theask -operation is used to query what is known. The
statements that have been added to a knowledge base via thetell -operation constitute the
explicit knowledgea system has about the domain of interest. The ability to process explicit
knowledge computationally allows a knowledge-based system to reason over a domain of
interest by derivingimplicit knowledge that follows from what has been told explicitly.

44 Stephan Grimm, Pascal Hitzler, Andreas Abecker

This leads to the notion of logical consequence orentailment. A knowledge baseKB
is said to entail a statementα if α “follows” from the knowledge stored inKB, which is
written asKB |= α. A knowledge base entails all the statements that have been added via
thetell -operation plus those that are their logical consequences. As an example, consider
the following knowledge base with sentences in first-order logic.

KB={ Person(MisterX), participates(MisterX, FL4711),
Flight(FL4711), books(UbiqBiz, FL4711),
∀ x, y, z : (Flight(y) ∧ participates(x, y) ∧ books(z, y)→ employedAt(x, z)),
∀ x, y : (employedAt(x, y)→ Company(x) ∧ Employee(y)),
∀ x : (Person(x)→ ¬Company(x)) }

The knowledge baseKB explicitly states that “MisterX is a person who participates in
the flight FL4711 booked by UbiqBiz”, that “participants of flights are employed at the
company that booked the flight”, that “the employment relation holds between companies
and employees” and that “persons are different from companies”. If we ask the question
“ Is MisterX employed at UbiqBiz?” by saying

ask(KB, employedAt(MisterX, UbiqBiz))

the answer will be yes. The knowledge baseKB entails the fact that “MisterX is employed
at UbiqBiz”, i.e. KB |= employedAt(MisterX, UbiqBiz), although it was not “told” so ex-
plicitly. This follows from its general knowledge about the domain. A further consequence
is that “UbiqBiz is a company”, i.e. KB |= Company(UbiqBiz), which is reflected by a
positive answer to the question

ask(KB, Company(UbiqBiz)).

This follows from the former consequence together with the fact that “employment holds
between companies and employees”.

Another important notion related to entailment is that of consistency orsatisfiability.
Intuitively, a knowledge base is consistent or satisfiable if it does not contain contradictory
facts. If we would add the fact that “UbiqBiz is a person” to the above knowledge baseKB
by saying

tell(KB, Person(UbiqBiz)),

it would become unsatisfiable because persons are said to be different from companies. We
explicitly said that UbiqBiz is a person while at the same time it can be derived that it is a
company.

In general, an unsatisfiable knowledge base is not very useful, since in logical for-
malisms it would entail any arbitrary fact. Theask -operation would always return a posi-
tive result independent from its parameters, which is clearly not desirable for a knowledge-
based system.

The inference procedures implemented in computational reasoners aim at realising the
entailment relation between logical statements [43]. They derive implicit statements from
a given knowledge base or check whether a particular statement is entailed by a knowledge
base.

3 Knowledge Representation and Ontologies 45

An inference procedure that only derives entailed statements is calledsound. Soundness
is a desirable feature of an inference procedure, since an unsound inference procedure
would potentially draw wrong conclusions. If an inference procedure is able to derive every
statement that is entailed by a knowledge base then it is calledcomplete. Completeness is
also a desirable property, since a complex chain of conclusions might break down if only
a single statement in it is missing. Hence, for reasoning in knowledge-based systems we
desire sound and complete inference procedures.

3.2 Logic-Based Knowledge-Representation Formalisms

First-order (predicate) logic is the prevalent and single most important knowledge repre-
sentation formalism. Its importance stems from the fact that basically all current symbolic
knowledge representation formalisms can be understood in their relation to first-order logic.
Its roots can be traced back to the ancient Greek philosopher Aristotle, and modern first-
order predicate logic was created in the 19th century, when the foundations for modern
mathematics were laid.

First-order logic captures some of the essence of human reasoning by providing a notion
of logical consequenceas already mentioned. It also provides a notion ofuniversal truth
in the sense that a logical statement can be universally valid (and thus called atautology),
meaning that it is a statement which is true regardless of any preconditions.

Logical consequence and universal truth can be described in terms ofmodel-theoretic
semantics. In essence, a model for a logical theory3 describes a state of affairs which makes
the theory true. A tautology is a statement for which all possible states of affairs are models.
A logical consequence of a theory is a statement which is true inall models of the theory.

How to derive logical consequences from a theory – a process calleddeductionor infer-
encing– is obviously central to the study of logic. Deduction allows to access knowledge
which is not explicitly given but implicitly represented by a theory. Valid ways of deriv-
ing logical consequences from theories also date back to the Greek philosophers, and have
been studied since.

At the heart of this is what has become known asproof theory. Proof theory describes
syntactic rules which act on theories and allow to derive logical consequences without
explicit recurrence to models. The notion of universal truth can thus be reduced to syntactic
manipulations. This allows to abstract from model theory and enables deduction by symbol
manipulation, and thus by automated means.

Obviously, with the advent of electronic computing devices in the 20th century, the
automation of deduction has become an important and influential field of study. The field
of automated reasoning is concerned with the development of efficient algorithms for de-
duction. These algorithms are usually required to be sound, and completeness is a desired
feature.

The fact that sound and complete deduction algorithms exist for first-order predicate
logic is reflected by the statement that first-order logic issemi-decidable. More precisely,

3 A logical theory denotes a set of logical formulas, seen as the axioms of some theory to be mod-
elled.

46 Stephan Grimm, Pascal Hitzler, Andreas Abecker

semi-decidability of first-order logic means that there exist algorithms which, given a the-
ory and a query statement, terminate with positive answer in finite time whenever the state-
ment is a logical consequence of the theory. Note that for semi-decidability, termination
is not required if the statement isnot a logical consequence of the theory, and indeed, ter-
mination (with the correct negative answer) cannot be guaranteed in general for first-order
logical theories.

For some kinds of theories, however, sound and complete deduction algorithms exist
which always terminate. Such theories are calleddecidable, and they have certain more-or-
less obvious advantages, including the following.

• Decidability guarantees that the algorithm always comes back with a correct answer
in finite time.4 Under semi-decidability, an algorithm which runs for a considerable
amount of time may still terminate, or may not terminate at all, and thus the user cannot
know whether he has waited long enough for an answer. Decidability is particularly
important if we want to reason about the question of whetheror not a given statement
is a logical consequence of a theory.

• Experience shows that practically efficient algorithms are often available for decidable
theories due to the effective use of heuristics. Often, this is even the case if worst-case
complexity is very high.

3.2.1 Description Logics

Description logics [3] are essentially decidable fragments of first-order logic,5 and we have
just seen why the study of these is important. At the same time, description logics are
expressive enough such that they have become a major knowledge representation paradigm,
in particular for use within the Semantic Web.

We will describe one of the most important and influential description logics, called
ALC. Other description logics are best understood as restrictions or extensions ofALC. We
introduce the standard description logic notation and give a formal mapping into standard
first-order logic syntax.

The Description LogicALC

A description logic theory consists of statements about concepts, individuals, and their re-
lations. Individuals correspond to constants in first-order logic, and concepts correspond
to unary predicates. In terms of semantic networks, description logic concepts correspond
to general concepts in semantic networks, while individuals correspond to individual con-
cepts. We deal with concepts first, and will talk about individuals later.

Concepts can benamed conceptsor anonymous(composite) concepts. Named concepts
consist simply of a name, say “human”, which will be mapped to a unary predicate in

4 It should be noted that there are practical limitations to this due to the fact that computing resources
are always limited. A theoretically sound, complete and terminating algorithms may thus run into
resource limits and terminate without an answer.

5 To be precise, there do exist some description logics which are not decidable. And there exist some
which are not straightforward fragments of first-order logics. But for this general introduction, we
will not concern ourselves with these.

3 Knowledge Representation and Ontologies 47

first-order logic. Composite concepts are formed from named concepts by use of concept
constructors, similar to the formation of complex formulas out of atomic formulas in first-
order logic. InALC, we have theboolean constructors

• conjunctionu, which is binary,
• disjunctiont, which is binary, and
• negation¬ , which is unary.

Hence, ifC andD are concepts, thenC u D, C t D, and¬C are also concepts. Concept
constructors can be nested arbitrarily. The translation of boolean constructors to first-order
predicate logic is obvious. To give an example, the statementC u ¬D translates to the
formulaC(x) ∧ ¬D(x).
ALC statements relate named or anonymous concepts by means of one of the following:

• inclusionv,
• inverse inclusionw, and
• equivalence≡.

Their meaning in first-order logic are implication→, inverse implication←, and equiv-
alence↔. Occurring free variables are universally quantified. To give an example, the
statementC v D t ¬E translates to∀ x : (C(x)→ (D(x) ∨ ¬E(x))).
ALC provides two special classes as shortcuts, namely⊥ and>. They are defined by

means of the equivalences⊥ ≡ C u ¬C and> ≡ C t ¬C, whereC is some arbitrary
concept. I.e.⊥ is the empty concept, and> is the concept under which everything falls.
ALC allows the restricted further use of quantifiers by means of so-calledrole re-

strictions. A role is a named entity which translates to a binary predicate in first-order
logic. In the semantic network paradigm, roles are relations between concepts. Given
such a roler and a (named or anonymous) conceptC, the composite concepts∀ r.C and
∃ r.C can be formed. Role restrictions and boolean constructors can be nested arbitrarily
with each other to form anonymous concepts. The composite concept∀ r.C translates to
∀ y : (r(x, y)→ C(y)) in first-order logic, while∃ r.C translates to∃ y : (R(x, y) ∧ C(y)).

An ALC TBox, finally, consists of a set of statements of the formC v D, C w D or
C ≡ D, whereC andD are named or composite concepts. Obviously, any TBox can be
translated to first-order logic, and thus inherits a logical consequence relation from it.

To give some examples for TBox statements from the business trips domain,

Employeev Person

encodes the knowledge that every employee is a person, while

Trip v ∃ bookedBy.(Companyt Person)

states that every Trip is booked by a company or a person.

We now come to individuals, which correspond to constants in first-order logic.ALC
allows to state that some individuals belong to (named or composite) concepts, e.g.C(a)
states that the individuala belongs to conceptC. Similarly, a statementr(a, b), wherer is
a role, means that the individualsa andb stand in relationr. The translation to first-order
logic is obvious.

48 Stephan Grimm, Pascal Hitzler, Andreas Abecker

An ALC ABoxconsists of a set of statements of the formC(a) or R(a, b), whereC is
a named or anonymous concept,R is a role, anda, b are individuals. AnALC knowledge
baseconsists of anALC ABox and anALC TBox.

Examples for ABox statements areFlight(FL4711) andbookedBy(FL4711, UbiqBiz),
with the obvious meanings.

ALC allows to define a basic form of knowledge bases. We have already mentioned that
it appears to be somewhat akin to semantic networks, but differs in two important respects:
ALC comes with a precise formal semantics via first-order logic, and it is more expressive
due to the use of concept constructors.

Nevertheless,ALC is very restricted in expressiveness in comparison with other knowl-
edge representation formalisms. This is apparent e.g. by the very restricted kinds of first-
order logical statements which are expressible inALC. In order to meet requirements of
practice, it is therefore necessary to extend expressiveness ofALC. These extensions are
not necessarily of a kind such that a larger fragment of first-order logic is obtained. This is
indeed just one of the ways of extendingALC which we will examine.

Decidability-Preserving Extensions toALC

We have seen before that decidability is a desirable property, and so the natural question
arises, which extensions ofALC retain its decidability. Indeed, extendingALC while stay-
ing within first-order logic on the one hand, and while retaining decidability on the other,
has been one of the driving forces behind description logic research in the recent past. We
briefly describe some of these extensions. For a comprehensive treatment of description
logics, see [3].

The following additions can be made toALC while retaining decidability.6

• Roles (i.e. binary predicates) can have additional properties such as being transitive,
symmetric, or inverse to other roles.

• A role can be described as the inverse of another role.
• Roles can be arranged hierarchically, i.e. a statement such asr v s is allowed between

roles, which translates to∀ x, y : (r(x, y)→ s(x, y)) in first-order logic.
• Individuals can be compared, e.g. by stating explicitly that two individuals are identical

(a = b), or different (a 6= b).
• It is allowed to use so-callednominalsin the TBox. Nominals are classes which consist

of an enumeration of exactly those elements which are in the class. For example, the
statementC ≡ {a, b, c} says that the classC contains exactly the elementsa, b, andc.

• Quantifiers can be generalised tonumber restrictions, which yields anonymous con-
cepts such as≤ n r and ≥ n r, whereR is a role, andn is a positive integer. The first of
these describes the set of all individualsx for which less than or equal ton individualsy
are in relationr(x, y) to x. The meaning of the second construction is analogous. Note,
for example, that≥ 1 r is equivalent to∃ r.>.

• Roles such as the ones described so far are also calledabstract roles. Some descrip-
tion logics additionally allow the use ofconcrete roles, which allow to assign datatype
values such as integers or strings to individuals.

6 Some minor restrictions need to be respected, which we do not include here.

3 Knowledge Representation and Ontologies 49

ALC, together with the above mentioned additions, roughly constitutes the description
logic SHOIN (D). The strange acronym comes from a certain agreed-upon standard for
naming description logics, where each letter stands for a specific (group of) allowed con-
structor(s). TheS stands forALC together with transitivity for roles.H stands for role
hierarchies.O andI stand for nominals and for the use of inverse roles, respectively.N
stands for number restrictions. TheD, finally, stands for the use of concrete roles and
datatypes.

Non-Classical Semantics

SHOIN (D) is essentially still a decidable fragment of first-order predicate logic.7 Cer-
tain expressive features, however, cannot be conveniently described by means of first-order
logic. The study of such expressive features is motivated by Artificial Intelligence applica-
tions and has a long history in knowledge representation and reasoning, and most recently
corresponding extensions and alterations of description logics are also being developed.

From a very general perspective, such expressive features are obtained by altering the
notion of logical consequence. Recall that for first-order predicate logic a statement is a log-
ical consequence of a theory if it is true inall models of the theory. Models of the theory,
in turn, are interpretations (i.e. states of affairs) which make the theory true. An alterna-
tive notion of logical consequence can thus be derived by not selectingall interpretations
which make the theory true, but onlysome, more, or simply other such interpretations,
and by calling those statements logical consequences, which are true in all these selected
interpretations.

This endeavour, although it appears to be somewhat dubious at first, provides a general
perspective on many expressive features in knowledge representation and reasoning. Im-
portant for this is certainly that the corresponding selections of interpretations are clearly
defined and meaningful. Often, this selection is done most conveniently by means of ad-
ditional syntax, and in the following, we will cover some additional expressive features
which are most important for the Semantic Web context.

Let us remark that reasoning with expressive features is computationally expensive, and
this fact is a well-known obstacle for developments in symbolic Artificial Intelligence. By
means of description logics and the fact that they show reasonable scalability despite high
worst-case complexities, expressive knowledge representation features become attractive
for practical purposes. Of obvious importance is thus the identification of tractable descrip-
tion logics, as done e.g. in [18, 9, 2, 27].

3.2.2 Closed World Assumption

The Closed-World Assumption (CWA) can be understood as a computational reinterpre-
tation of negation. Roughly speaking, it is the assumption thatwhat cannot be proven is
wrong. Assume for example, the statement “if an employee is not booked on a trip at a
certain date, then (s)he is available for internal meetings that day”, and assume furthermore
that there is no knowledge available whether the employee MisterX is booked on a trip on

7 More precisely, it corresponds to first-order predicate logic with equality. Care needs to be taken
with the encoding of number restrictions, and datatypes must be allowed as required.

50 Stephan Grimm, Pascal Hitzler, Andreas Abecker

a certain day. Then, under the CWA, we would conclude that MisterX is available for an
internal meeting on that particular day.

A CWA perspective is particularly natural from a database point of view. An employee
is assumed to benot booked on a trip, unless the booking can be found in the database.
Thus, the database describes aclosed world, in which all statements are either the case (if
they are explicitly known) or not the case (otherwise).

Treating Semantic Web knowledge under CWA, however, is conceptually difficult in
some cases. This comes from the open nature of the World Wide Web, where data is con-
stantly added and changing. Thus, if a particular piece of knowledge cannot be retrieved
from the Semantic Web, then it cannot safely be assumed to be false: the information may
be contained on a web page which has not been included yet, but which will be crawled
next. Such a situation should be treated under theOpen-World Assumption(OWA), which
assumes that only such conclusions should be drawn which will remain valid if new infor-
mation is added.

The semantics of first-order predicate logic – and thus also of description logics – op-
erates under the OWA. If we have no knowledge about whether a person is booked on a
flight, then under the OWA we cannot conclude anything on this person’s availability for
an internal meeting from the example statement given above.

It is safe to assume that knowledge from databases will play a natural role in the realisa-
tion of the Semantic Web, and will come alongside knowledge from other sources, like the
open web. Restricting knowledge representation to pure OWA or pure CWA settings is thus
insufficient: while the basic framework for the open Semantic Web should be based on the
OWA, a restricted use of the CWA should be possible at the same time. This integration has
become known asLocal Closed World(LCW) [16], and is currently being researched from
several perspectives. We will say more about this in the next section on non-monotonicity.

3.2.3 Non-Monotonicity

The original motivation for the study of non-monotonic reasoning comes from the ob-
servation that humans tend tojump to conclusionswhen making every-day practical and
commonsense decisions. If we book a train trip, then we conclude that we won’t be arriving
by bus, and in case we have to base further decisions on the knowledge, we simply assume
the conclusion to be true. However, our knowledge about the real world is never complete.
It may turn out, for example, that there is a large power outage on the day of the trip so that
the trains won’t run – and as a substitute, we are being transported by bus on short notice.

Whenjumping to conclusions, it may be necessary to withdraw the conclusions if fur-
ther knowledge becomes available. In the example just given, we withdraw the knowledge
about not arriving by bus as soon as we learn about the special circumstances. In this sense,
commonsense reasoning isnon-monotonic.

More formally, a knowledge representation formalism is calledmonotonicif a larger
theory impliesmore conclusions, or in other words, if the addition of knowledge never
invalidates conclusions drawn before the addition. A knowledge representation formalism
is non-monotonicif it is not monotonic.

First-order predicate logic – and thus also description logics – are monotonic. For-
malisms operating under the CWA are usually non-monotonic: if a database does not con-
tain a booking information for MisterX being on a business trip at a certain date, then it

3 Knowledge Representation and Ontologies 51

could be concluded that MisterX is available for internal meetings at this date by an ap-
propriate rule; if, however, such a booking information becomes known and is added to the
database, then the earlier conclusion must be withdrawn.

The strong relation between CWA and non-monotonicity is well-known and has in-
spired many lines of research in these areas. Historically, there are three major approaches
to non-monotonicity, which we briefly list in the following.

Default Logic [42] uses so-calleddefault rulesof the form(α : β)/γ for expressing the
following condition for formulasα, β, andγ: if α is the case, andβ is possible, then
concludeγ. To give an example,α could be the statement “FL4711 is a trip to a foreign
country”, β could be the statement “FL4711is not a train ride”, andγ could be the state-
ment “FL4711 is a flight”. We further assume that we indeed know that FL4711 is a trip
to a foreign country. Without any further knowledge whether FL4711 is a flight or a train
ride, we conclude by the default rule that FL4711 is a flight. If we add further knowledge
that FL4711 is indeed a train ride, then the conclusion must be withdrawn. In this sense, a
default rule is a rule that allows for exceptions.

Circumscription [33] realises non-monotonicity by means of a condition over logical pred-
icates which ensures that in some cases truth or falsity of a statement is enforced although
this would not be the case in classical first-order predicate logic. Circumscription is ex-
pressed by means of second-order logic (see Section 3.2.5), and does not require any ex-
tension of syntax.

Autoepistemic Logic[35] employs a modal logic operator to represent that something is
believed(but not necessarily known).

All three historic approaches are being studied in the context of description logics, and
central references are [4], [6] and [14], respectively. It is still an open quest to find out
which of these is most suitable for Semantic Web applications. Of particular importance –
besides the obvious scalability requirements – is the question how the formalism realises
LCW reasoning in a practically useful way.

Historically, the area of non-monotonic reasoning received decisive impulses in the 80s
and 90s from logic programming research, which we discuss next.

3.2.4 Logic Programming

Logic programming was originally conceived as a way to use (first-order predicate) logic
as a programming language. In order to allow for efficient computation, formulas were
syntactically restricted to so-calledHorn clauses. Additionally, only certain kinds of logical
consequences are being considered.

Syntactically, Horn clauses can be understood as rules. For example, the expression
Trip(t) ∨ ¬ Flight(t) is a Horn clause, which is semantically equivalent (with respect
to FOL) to ∀ t : Trip(t) ← Flight(t). This, in turn, can also be interpreted as the rule
Trip (?t) :− Flight (?t) from page 41.

Note, however, that the semantics of the Horn clause is given by means of first-order
logic semantics, whereas logic programming rules are usually understood in a different
sense. One of the differences stems from the fact that in a logic programming system only

52 Stephan Grimm, Pascal Hitzler, Andreas Abecker

certain types of logical consequences are being considered, namely ground8 instances of
predicates. In the example, the addition of a factFlight (FL4711) would allow to con-
cludeTrip (FL4711) both in FOL and in a logic programming system. A conclusion such
asTrip (FL4711)∨¬ Flight (FL4711), however, would only be possible in FOL, and
not derivable using logic programming semantics.

The second difference between the semantics concerns the handling of negative
information. In the example above we could be interested in whether the statement
Trip (FL2306) holds. In FOL, neither truth nor falsity of this statement is derivable.
In logic programming, however, the statement would be considered false. The handling
of negative information in logic programming in this sense is based on the CWA: as no
information onFL2306 is available, it is considered to benot a trip.

Logic programming semantics is thus non-monotonic: just consider adding the sin-
gle factFlight (FL2306) to the knowledge base, by whichTrip (FL2306) turns true.
This insight triggered substantial research efforts on relating logic programming and non-
monotonic reasoning, which led to the introduction of non-monotonic kinds of negation
into the logic programming paradigm, see [1].

How to combine logic programming or other rules formalisms with description logics
constitutes a recent research issue. Prominent approaches include the creation of hybrid
systems by interfacing logic programming systems with description logic systems, as e.g.
in [15]. Other approaches simply go back to Horn clauses and add them as FOL statements
to description logic knowledge bases [26].

3.2.5 Higher-Order Logic

Another feature which is considered important for knowledge representation in the Seman-
tic Web is what has become known asmetamodelling. This occurs e.g. whenever descrip-
tion logic classes should be considered as individual members of other (meta-)classes, or if
properties shall be attached to entire classes by means of roles. Logically, this corresponds
to using high-order logics, and generally results in the loss of decidability. Decidable frag-
ments, however, can be described, as in [36].

To give an example, consider an international company using a semantics-based knowl-
edge management system for business trips, which requires that different languages spoken
within the company are supported by the system. It may thus be necessary to represent the
knowledge that the conceptFlight is called “Flug” in German. This could be represented
by using a concrete role statement likegermanName(Flight, “Flug”). Here, “Flug” would
be a data value of type string, while the conceptFlight actually appears syntactically as an
individual. Notice, that here a data value is directly assigned to a concept rather than to its
instances.

3.2.6 Treatment of Inconsistencies

A point of particular importance for the Semantic Web lies in a sensible treatment of incon-
sistencies in knowledge bases. This comes from the fact that in Semantic Web applications

8 A ground (instance of a) predicate is an atomic formula which does not contain any variable
symbols.

3 Knowledge Representation and Ontologies 53

it is very often necessary to merge different knowledge bases from different sources, and
it can be expected that in many cases some parts of the respective knowledge bases may
conflict with each other, resulting in inconsistency. In a classical FOL setting, a single
inconsistency causes a knowledge base to be entirely useless. For practical purposes, how-
ever, it should be possible to rescue at least some of the knowledge in a constructive way
in order to draw meaningful conclusions from the knowledge.

There exist two basic approaches to dealing with inconsistency. The first one is based
on the intuition that inconsistencies point to mistakes in modelling, and thus should be
repaired. Technically, such repairs can be done by identifying e.g. maximal consistent sub-
sets of the knowledge base and using those for drawing conclusions, see e.g. [48]. The other
approach is based on using so-called paraconsistent logics with an additional truth value
which represents contradiction, see e.g. [50].

3.2.7 Uncertainty

Knowledge is often acquired by machine learning techniques. Knowledge base statements
obtained this way are usually uncertain, for example in a probabilistic sense or in the sense
of fuzzy logic. Recent efforts are thus under way to provide methods and tools for the
representation and the reasoning with uncertainty in description logics.

To give an example, consider a business trips booking internet portal which uses a
knowledge base for providing personalised content to the user. From the usage patterns of
UbiqBiz customers the knowledge base knows with a probability of 80% that aUbiqBiz
customer browsing the portal will be interested in booking a flight, and is thus able to pro-
vide appropriate personalised content. As part of a sophisticated personalisation knowledge
base, the treatment of such probabilities and other uncertainty values becomes important.

3.3 Ontologies in Information Systems

Recently, the notion of ontologies as computational artefacts has appeared in Artificial
Intelligence and Computer Science, while “ontology” originally denotes the study of ex-
istence in philosophy. In information systems, ontologies are conceptual models of what
“exists” in some domain, brought into machine-interpretable form by means of knowledge
representation techniques. In this section we start from a general definition of the notion of
ontology and elaborate on its appearance and usage in computer science.

3.3.1 Ontology

In its original meaning in philosophy,ontologyis a branch of metaphysics and denotes the
philosophical investigation of existence. It is concerned with the fundamental questions
of “what is being?” and “what kinds of things are there?” [11]. Dating back to Aristotle,
the question of “what exists?” lead to studying general categories for all things that exist.
Ontological categories provide a means to classify all existing things, and the systematic or-
ganisation of such categories allows to analyse the world that is made up by these things in
a structured way. In ontology, categories are also referred to asuniversals, and the concrete
things that they serve to classify are referred to asparticulars.

54 Stephan Grimm, Pascal Hitzler, Andreas Abecker

Philosophers have mostly been concerned with general top-level hierarchies of univer-
sals that cover the entire physical world. Examples of universals occurring in such top-level
hierarchies are most general and abstract concepts like “substance”, “physical object”, “in-
tangible object”, “endurant” or “perdurant”. Philosophers have argued about the appro-
priateness of different such abstract categorisations and about the general properties of
everything existing. Transferred to knowledge representation and computer science, infor-
mation systems can benefit from the idea of ontological categorisation. When applied to a
limited domain of interest in the scope of a concrete application scenario, ontology can be
restricted to cover a special subset of the world. Examples of ontological categories in the
business trips domain are “Person”, “Company”, “Trip” or “Flight”, whereas examples for
particular individuals that are classified by these categories are the person “MisterX”, the
company “UbiqBiz” or the particular flight “FL4711”.

In general, the choice of ontological categories and particular objects in some domain
of interest determines the things about which knowledge can be represented in a computer
system [45]. In this sense, ontology provides the labels for nodes and arcs in a semantic
network or the names for predicates and constants in rules or logical formulas, that con-
stitute anontological vocabulary. By defining “what exists” it determines the things that
can be predicated about. The terms of the ontological vocabulary are then used to represent
knowledge, forming statements about the domain.

3.3.2 Ontologies

While “ontology” studies what exists in a domain of interest, “an ontology” as a compu-
tational artefact encodes knowledge about this domain in a machine-processable form to
make it available to information systems.

Definition of an Ontology

In various application contexts, and within different communities, ontologies have been ex-
plored from different points of view, and there exist several definitions of what an ontology
is. Within the Semantic Web community the dominating definition ofan ontologyis the
following, based on [19].

Definition (Ontology).
An ontologyis a formal explicit specification of a shared conceptualisation of a domain

of interest.

This definition captures several characteristics of an ontology as a specification of do-
main knowledge, namely the aspects of formality, explicitness, being shared, conceptuality
and domain-specificity, which require some explanation.

• formality
An Ontology is expressed in a knowledge representation language that provides a for-
mal semantics. This ensures that the specification of domain knowledge in an ontology
is machine-processable and is being interpreted in a well-defined way. The techniques
of knowledge representation help to realise this aspect.

3 Knowledge Representation and Ontologies 55

• explicitness
An ontology states knowledge explicitly to make it accessible for machines. Notions
that are not explicitly included in the ontology are not part of the machine-interpretable
conceptualisation it captures, although humans might take them for granted by common
sense9.

• being shared
An ontology reflects an agreement on a domain conceptualisation among people in a
community. The larger the community, the more difficult it is to come to an agreement
on sharing the same conceptualisation. Thus, an ontology is always limited to a partic-
ular group of people in a community, and its construction is associated with a social
process of reaching consensus.

• conceptuality
An ontology specifies knowledge in a conceptual way in terms of symbols that rep-
resent concepts and their relations. The concepts and relations in an ontology can be
intuitively grasped by humans, as they correspond to the elements in our mental model.
(In contrast to this, the weights in a neural network or the probability measures in a
Bayesean network would not fit such a conceptual and symbolic approach.) Moreover,
an ontology describes a conceptualisation in general terms and does not only capture
a particular state of affairs. Instead of making statements about a specific situation in-
volving particular individuals, an ontology tries to cover as many situations as possible,
that can potentially occur [21].

• domain specificity
The specifications in an ontology are limited to knowledge about a particular domain of
interest. The narrower the scope of the domain for the ontology, the more an ontology
engineer can focus on axiomatising the details in this domain rather than covering a
broad range of related topics. In this way, the explicit specification of domain knowl-
edge can be modularised and expressed using several different ontologies with separate
domains of interest.

Technically, the principal constituents of an ontology areconcepts, relationsand in-
stances. Concepts map to the generic nodes in semantic networks, or to unary predicates
in logic, or to concepts as in description logics. They represent the ontological categories
that are relevant in the domain of interest. Relations map to arcs in semantic networks, or
to binary predicates in logic, or to roles in description logics. They semantically connect
concepts, as well as instances, specifying their interrelations. Instances map to individual
nodes in semantic networks, or to constants in logic. They represent the named and iden-
tifiable concrete objects in the domain of interest, i.e. the particular individuals which are
classified by concepts.

These elements constitute an ontological vocabulary for the respective domain of inter-
est. An ontology can be viewed as a set of statements, expressed in terms of this vocabulary,
9 Notice that this notion of explicitness is different from the distinction between explicit and implicit

knowledge, introduced earlier. Implicit knowledge that can be derived by means of automated
deduction does not need to be included in an ontology for a computer system to access it. However,
knowledge that is neither explicitly stated nor logically follows from what is stated, can by no
means be processed within the machine, although it might be obvious to a human. Such knowledge
remains implicit in the modeller’s mind and is not represented in the machine.

56 Stephan Grimm, Pascal Hitzler, Andreas Abecker

which are also referred to asaxioms. A simple axiom would, for example, state that “Mister
X is an employee”, involving an instance and a concept. A more complex axiom could state
that “only employees of a particular company can be on trips booked by this company”,
imposing a restriction on a relation between two concepts.

Conceptual modelling with ontologies seems to be very similar to modelling in object-
oriented software development or to designing entity-relationship diagrams for database
schemas. However, there is a subtle twofold difference. First, ontology languages usu-
ally provide a richer formal semantics than object-oriented or database-related formalisms.
They support encoding of complex axiomatic information due to their logic-based nota-
tions. Hence, an ontology specifies a semantically rich axiomatisation of domain knowl-
edge rather than a mere data or object model. Second, ontologies are usually developed for
a different purpose than object-oriented models or entity-relationship diagrams. While the
latter mostly describe components of an information system to be executed on a machine
and a schema for data storage, respectively, an ontology captures domain knowledge as
such and allows to reason about it.

In summary, an ontology used in an information system is a conceptual yet executable
model of an application domain. It is made machine-interpretable by means of knowledge
representation techniques and can therefore be used by applications to base decisions on
reasoning about domain knowledge.

Appearance of Ontologies

When engineered for or processed by information systems, ontologies appear in different
forms related to the forms of knowledge representation which we discussed. A knowledge
engineer views an ontology by means of some graphical or formal visualisation, while for
storage or transfer it is encoded in an ontology language with some machine-processable
serialisation format. A reasoner, in turn, interprets an ontology as a set of axioms that
constitute a logical theory. We illustrate these different forms of appearance in ontology
engineering, machine-processing and reasoning by an example.

Our business trips scenario, introduced earlier, involves several domains of interest.
On the one hand, reasoning about business trips requires knowledge about travelling in-
frastructure for trains, flights and rental cars, while on the other hand it involves financial
knowledge about prices, different currencies and methods of payment when it comes to
comparing different offers. Yet another related domain is that of geographic knowledge
about locations of sources and destinations for trips, which we pick up as an example to
illustrate appearance of ontologies. All these different domains of interest can be thought
of as being captured by a modularised set of ontologies to which an information system in
the business trips scenario can have access.

A geographic ontology suitable for a business trips booking system encodes countries
and continents with their geographic regions, as well as geographic features like rivers,
roads, rail tracks or cities. It relates geographic features to their regions, stating, for exam-
ple, that a city occupies a certain region, and it defines containment between such regions;
the geographic region of a European city is, for example, contained in that of Europe.
Besides these general geographic concepts and their relations, such an ontology also de-
termines concrete instances, such as particular cities, countries and continents, and relates
them appropriately.

3 Knowledge Representation and Ontologies 57

To a knowledge engineer an ontology is often visualised as some form of semantic
network. Figure 3.2 shows the graphical visualisation of an example geographic ontology.

NewYork

USAEuropeAmerica

BerlinLondon

LinearRegion

Infrastructure

Lake

PlanarRegion

OceanRiverIndustrialFacilityRoadCity

USCityEuropeanCity

Land

BodyOfWater Territory

GeographicRegion

GeographicLocation

GeographicAreaGeographic Feature

CountryContinent

isa isa

isa isa isa isa

isa isa isa isaisa isa

isa

isa

isa

isaisa

isa

io io io

io io iolocatedIn locatedIn locatedIn locatedIn locatedIn

locatedIn locatedIn

contains*

isRegionFor* locatedIn

contains* isContainedBy*

Fig. 3.2.A graphical visualisation for a geographic ontology

As common to most ontology development environments10, the visualisation in Figure
3.2 presents to the knowledge engineer a taxonomy, i.e. a subsumption hierarchy, of the
concepts in the ontology, which is indicated byisa−−−→ -links. The two taxonomies exposed
in the graph are those forGeographicRegionwith subconcepts for linear and planar re-
gions, and forGeographicLocationwith subconcepts for geographic features, like cities or
rivers, and geographic areas, like continents or countries. In the visualisation, the knowl-
edge engineer can also see conceptual relations as arcs pointing from their domain concept
to their range concept. By the relationlocatedIn−−−−−−−−→ betweenGeographicLocationandGe-
ographicRegiona location, such as a city or a country, is associated to some region in which
it is actually located. ARoador River is further restricted to be located in aLinearRegion,
whereas aCity or Lake is located in aPlanarRegionencompassing a surface area. The
graph also shows some concrete cities and countries, modelled as instances of their respec-
tive concepts, which here serve as representatives for all the particular geographic places
such an ontology would be populated with.

Not all the information in an ontology can easily be visualised in a graph as the one
shown in Figure 3.2. For some more detailed information, such as complex axioms and
restrictions on concepts, there does to date not exist any appropriate visualisation paradigm
other than exposing such fragments of the ontology in a formal language. Therefore, on-
tology engineering environments usually provide extra means for displaying and editing

10 The ontology graph in Figure 3.2 has been produced with the OntoViz-plugin for the Protéǵe
environment (http://protege.stanford.edu/plugins/owl/).

58 Stephan Grimm, Pascal Hitzler, Andreas Abecker

such complex axiomatic information, using a special-purpose ontology language or logical
formal notation. When the environment exports the ontology for storage on a disk or for
transfer over the wire, all of its information is expressed in the ontology language supported
by the tool. Hence, the way an ontology appears to a developer of an ontology editor, stor-
age facility or reasoner is in form of ontology language constructs in some serialisation
format suitable for machine processing.

There are various ontology languages, based on different knowledge representation for-
malisms, and we investigate the most prevalent of them in Section 3.4. For illustrating a
fragment of our example geographic ontology, we choose the OWL11 ontology language.
The following listing displays a part of the ontology encoded in the OWL RDF serialisation
format.

...
<owl:Class rdf:ID="City">

<rdfs:subClassOf>
<owl:Restriction>

<owl:onProperty rdf:resource="#locatedIn"/>
<owl:allValuesFrom rdf:resource="#PlanarRegion"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf rdf:resource="#Infrastructure"/>
<owl:disjointWith rdf:resource="#Road"/>
<owl:disjointWith rdf:resource="#IndustrialFacility"/>

</owl:Class>
<owl:ObjectProperty rdf:ID="locatedIn">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#GeographicLocation"/>
<rdfs:range rdf:resource="#GeographicRegion"/>
<owl:inverseOf rdf:resource="#isRegionFor"/>

</owl:ObjectProperty>
<EuropeanCity rdf:ID="London"/>
...

The listing shows an excerpt of the geographic ontology as it is serialised and parsed
by tools and transferred over the network. It exhibits the specification of OWL classes
(concepts), properties (relations) and individuals (instances), all expressed by tags and at-
tributes of a customised XML serialisation. TheCity concept is defined as a subconcept of
Infrastructurewith the restriction that the relation locatedIn−−−−−−−−→ can only have instances
of PlanarRegionas values. The relation locatedIn−−−−−−−−→ is defined as functional (having a
unique value) and as being inverse toisRegionFor−−−−−−−−−−→ , with proper domain and range con-
cepts.Londonis introduced as an instance ofEuropeanCity.

As ontology languages like OWL are based on logical formalisms, the formal seman-
tics of the language precisely defines the meaning of an ontology in terms of logic. To a
reasoner, therefore, an ontology appears as a set of logical formulas that express the ax-
ioms of a logical theory. It can verify whether these axioms are consistent or derive logical
consequences. This form of appearance of an ontology is free of syntactical or graphical
additions or ambiguities and reflects the pure knowledge representation aspect.

We use the description logic notation for OWL to exemplify some of the axioms in our
example geographical ontology in their logical form. The following DL formulas constitute
the definition of a European city.

11 The DL-based Web Ontology Language (OWL) is popular in the Semantic Web context, and it is
described in Section 3.4 among other languages.

3 Knowledge Representation and Ontologies 59

∃ locatedIn.> v GeographicLocation
> v ∀ locatedIn.GeographicRegion

∃ contains.> v GeographicRegion
> v ∀ contains.GeographicRegion

GeographicLocation v =1 locatedIn
Continent v GeographicLocation
Continent(Europe)

PlanarRegion v GeographicRegion
City v GeographicLocationu ∀ locatedIn.PlanarRegion

EuropeanCity ≡ Cityu ∀ locatedIn.∃ contains−.∃ locatedIn−.{Europe}

The last, quite sophisticated formula defines the concept of a European city by its ge-
ographical region being contained in the geographical region of the European continent. It
has the following translation to first-order logic.

∀ x : (EuropeanCity(x)↔
City(x) ∧ ∀ y : (locatedIn(x, y)→ ∃ z : (contains(z, y) ∧ locatedIn(Europe, z))))

In prose, its reading is: “European cities are cities for which all geographic regions they
are located in are contained in some geographic region in which Europe is located.” This
allows a knowledge-based system to decide whether a city is European by reasoning over
containment of geographic regions.

In this logical form, an ontology is the set of axioms that constitutes the explicit knowl-
edge represented about its domain of interest. By means of automated deduction, implicit
knowledge of the same form can be derived but is not part of the ontology’s explicit speci-
fication.

3.3.3 Usage of Ontologies

Often, an ontology is distinguished from a knowledge base in that it is supposed to de-
scribe knowledge on a schema level, i.e. in terms of conceptual taxonomies and general
statements, whereas the more data-intensive knowledge base is thought of containing in-
stance information on particular situations. We take a different perspective and perceive the
relation between an ontology and a knowledge base as the connection between an episte-
mological specification of domain knowledge and a technical tool for reasoning. From this
point of view, an ontology is a piece of knowledge that can be used by a knowledge-based
application among other pieces of knowledge, e.g. other ontologies or meta data. To prop-
erly cover its domain of interest, it can make use of both schema level and instance level
information. Whenever the knowledge-based system needs to consult the ontology, it loads
(parts of) its specification into a knowledge base, most likely together with other pieces of
knowledge, to take it into account for reasoning. The business trips booking system, for
example, would probably make combined use of a geographical ontology, a financial one,
and one for public transportation, when comparing offers for trips, loading all relevant do-
main knowledge in its knowledge base. In this sense, a knowledge-based application uses
an ontology via its knowledge base.

The computational domain model of an ontology can be used for various purposes, de-
pending on the application scenario. We distinguish the different cases of usage on diverse
levels, as follows.

60 Stephan Grimm, Pascal Hitzler, Andreas Abecker

• level of knowledge connectivity
An application can view an ontology as its single and isolated source of knowledge in
a stand-alone fashion. This is the way an expert system maintains a highly specialised
knowledge base to answer questions in its domain of interest, simulating expert knowl-
edge.
In contrast to this, an ontology can also be viewed in relation to other sources of knowl-
edge, such as other ontologies or meta data that is aligned to the ontology’s conceptual
model. In an information integration scenario, for example, an ontology supports inter-
operability among different systems on the knowledge or data level, providing a basic
domain vocabulary.

• level of knowledge abstraction
On the one hand, an application can process an ontology on the schema level of knowl-
edge about categories. Examples for this are applications which need to automatically
classify user defined concepts in an existing taxonomy or which build upon answers to
general domain questions.
On the other hand, an ontology can be used as a schema for data-intensive instance
retrieval on large knowledge or databases.

• level of automation in knowledge processing
An application can make intensive use of automated reasoning techniques in order to
derive implicit knowledge from the axioms in an ontology, answering sophisticated
domain questions.
At the same time, ontologies can also be used for documentation and reference pur-
poses, targeting humans to read their specifications rather than machines. This way, the
documentation of domain models benefits from precise specification through the formal
semantics of ontology languages.

In Artificial Intelligence research some typical types of applications have evolved that
make use of ontologies in different ways. We list some of them as examples of how appli-
cations can leverage the formalised conceptual domain models that ontologies provide.

• information integration
A promising field of application for ontologies is their use for integrating heterogeneous
information sources on the schema level. Often, different databases store the same kind
of information but adhere to different data models. An ontology can be used to mediate
between database schemas, allowing to integrate information from differently organised
sources and to interpret data from one source under the schema of another.
Our example geographic ontology could be used to integrate geographic databases with
different schemas, for example, one relating cities directly to their countries as different
entities, and another modelling a single entity for geographic places which have the
property of being either a city or a country. In either schema, the local entities and
relations can be mapped to the respective notions ofCity, Country, GeographicRegion
and locatedIn−−−−−−−−→ in the ontology, realising unified querying and reasoning over both
information sources.

• information retrieval
Motivated by the success and key role of Google12 in the World Wide Web, information

12 http://www.google.com

3 Knowledge Representation and Ontologies 61

retrieval on web documents is a major field of application for ontologies. The idea be-
hind ontology-based information retrieval is to increase the precision of retrieval results
by taking into account the semantic information contained in queries and documents,
lifting keywords to ontological concepts and relations.
When interpreted according to our example geographic ontology, a query like “capi-
tal of Germany” would yield documents that are about Berlin, the capital of Germany.
Some of the false positive matches that keyword-based retrieval systems typically pro-
duce, such as documents about the German venture capital market, can be filtered out
this way.

• semantically enhanced content management
In many areas of computation the data that is actually computed is annotated with meta
data for various purposes. Ontologies provide the domain-specific vocabulary for anno-
tating data with meta data. The formality of ontology languages allows for an automated
processing of this meta data and their grounding in knowledge representation facilitates
machine-interpretability.
The geographic concepts and relations provided by our example ontology could be used
to annotate manifold geographic content, such as geographic books and articles in an
electronic library to better find and archive them or 3D-models of geographic sites in
surveying and mapping, in order to better group and relate them, providing easier access
to their content.

• knowledge management and community portals
In companies or other organised associations, or in communities of practice, individ-
ual knowledge can be viewed as a strategic resource that is desirable to be shared and
systematically maintained, which is referred to asknowledge management. Ontologies
provide a means to unify knowledge management efforts under a shared conceptual
domain model, connecting technical systems for navigating, storing, searching and ex-
changing community knowledge.
Our example ontology could serve as the backbone for a geographic knowledge portal
in the internet, through which land surveying offices, urban planning institutions and
other interested community members provide access to geography-related resources.

• expert systems
In various domains, such as medical diagnosis or legal advice in case-law, it is desir-
able to simulate a domain expert who can be asked sophisticated questions. In an expert
system, this is achieved by incorporating a thoroughly developed domain ontology that
formalises expert knowledge. Domain-specific questions can then be answered by rea-
soning over such highly specialised knowledge.
An expert system for the geographical domain could answer questions like “Which is
the German city closest to the French border? ”or “ Through which cities does the river
Rhein flow? ”.

3.3.4 Types of Ontologies

Since the beginning of ontology research in Computer Science, ontologies have been con-
sidered as a means to foster reuse within knowledge-based system engineering, and it
turned out that different types of ontologies exhibit a different potential for reuse.

62 Stephan Grimm, Pascal Hitzler, Andreas Abecker

A categorisation of ontologies can be made according to their subject of conceptual-
isation. The most prominent insights in this respect have been published in [20] and are
summarised in Figure 3.3.

top-level ontology

application ontology

domain ontology task ontology

Fig. 3.3.Types of ontologies

The categorisation in Figure 3.3 distinguishes the following types of ontologies.

• top-level ontologies
Top-level ontologies – also called upper ontologies or foundational ontologies – attempt
to describe very abstract and general concepts that can be shared across many domains
and applications. They borrow from philosophical notions, describing top-level con-
cepts for all things that exist, such as “physical object” or “abstract object”, as well
as generic notions of common-sense knowledge about phenomena as time, space, pro-
cesses, etc. They are usually well thought out and extensively axiomatised. Due to their
generality, they are typically not directly used in applications but for other ontologies
to be aligned to. Prominent examples for top-level ontologies are DOLCE [17] and
SUMO [39].

• domain ontologies and task ontologies
These types of ontologies capture the knowledge within a specific domain of discourse,
such as medicine or geography, or the knowledge about a particular task, such as diag-
nosing or configuring. In this sense, they have a much narrower and more specific scope
than top-level ontologies. In the ideal case, the conceptualisation in a domain ontology
is kept strictly task-independent, while the notions in a task ontology are described neu-
trally with respect to a domain. Much work has been done in the development of domain
ontologies in medicine, genetics, geographic and environment information, tourism,
as well as cultural heritage and museum exhibits. Task ontologies have been devised,
e.g., for scheduling and planning tasks, monitoring in a scientific domain, intelligent
computer-based tutoring, missile tracking, execution of clinical guidelines, etc.

• application ontologies
Further narrowing the scope, application ontologies provide the specific vocabulary
required to describe a certain task enactment in a particular application context. They
typically make use of both domain and task ontologies, and describe, e.g., the role that
some domain entity plays in a specific task. For example, a particular physical entity

3 Knowledge Representation and Ontologies 63

in some engineering domain may play the role of a replaceable unit in a machine-
diagnosis and maintenance task, and at the same time play the role of a spare resource
in a configuration or production process.

Altogether, we can say that the lattice indicated in Figure 3.3 represents an inclusion
hierarchy: the lower ontologies inherit and specialize concepts and relations from the upper
ones. The lower ontologies are more specific and have thus a narrower application scope,
whereas the upper ones have a broader potential for reuse.

3.3.5 Ontologies in the Semantic Web

In the context of the Semantic Web, ontologies play a particularly important key role. The
idea of the Semantic Web is to annotate web content by machine-interpretable meta data
such that computers are able to process this content on a semantic level. Ontologies pro-
vide the domain vocabulary in terms of which semantic annotation is formulated. Meta
statements about web content in such annotations refer to a commonly used domain model
by including the concepts, relations and instances of a domain ontology. The formality
of ontology languages allows to reason about semantic annotation from different sources,
connected to background knowledge in the domain of interest. There are a couple of char-
acteristics of the web which affect the use of ontologies for semantic annotation.

One aspect is the natural distributedness of content in the Semantic Web. The knowl-
edge captured in semantic annotation and ontologies is not locally available at a single node
but spread over different sites. This poses additional constraints on the use of ontologies
in the Semantic Web, taking into account distributedness of knowledge. To avoid the need
to transfer relevant knowledge to a central location, there should be techniques that allow
for a modularisation of the reasoning process by handling partial results that are computed
locally, based on a subset of all relevant information. This issue is addressed by current
research ondistributed reasoning.

Another related aspect is that content on the web is created in an evolutionary manner
and maintained in a decentralised way. There is no central control over semantic annotation
and ontologies that evolve in the Semantic Web, and information in one ontology can con-
flict with information in another one. To deal with conflicting pieces of knowledge, there
should be techniques that resolve such situations by e.g. preferring one or another consis-
tent sub view, similar to how humans would do. Such techniques are subject to investigation
in current research onparaconsistent reasoning, as mentioned in Section 3.2.6.

There is an extra chapter dedicated to the topic of semantic annotation, namely Chap-
ter 5, in which the usage of ontologies for annotating web content with meta data in the
Semantic Web context is further elaborated on.

3.4 Ontology Languages

To make ontologies available to information systems, various concrete ontology languages
have been designed and proposed for standardisation. In this section, we give an overview
of the most prevalent ontology languages that are important in the context of the Semantic
Web, and present some of them in detail.

64 Stephan Grimm, Pascal Hitzler, Andreas Abecker

3.4.1 Hierarchy of Languages for the Semantic Web

In the light of widespread impact and industrial usability, the standardisation of ontology
languages is of great importance to the Semantic Web community. Various different as-
pects are considered for language standardisation, such as issues of the underlying knowl-
edge representation formalism in terms of expressiveness and computational properties,
web-related features like global unique identification and XML serialisation syntax, or us-
ability add-ons like the inclusion of strings and numbers or non-functional meta data. The
influence of different research and user communities with manifold requirements have re-
sulted in a complex landscape of a multitude of languages backed by different past and
ongoing standardisation efforts. It is still an open topic stimulating lively discussions in
current research which languages are best suited for what purpose, how they can be effi-
ciently implemented, realised in a user-friendly way, or technically and semantically made
interoperable.

In Figure 3.4 we make an attempt to sketch this landscape of languages, giving an
overview of the most important ontology languages with respect to current trends in the
Semantic Web. Since some languages build on others and on formerly achieved standards,
this landscape can be perceived as a hierarchy of languages for the Semantic Web. However,
besides a hierarchical structure with some languages being clearly layered on top of others,
there are also parallel branches and cross-relations between languages and formalisms.13

One of the major distinctions of Semantic Web languages is by the knowledge repre-
sentation paradigm they follow. On the left-hand side in Figure 3.4 there is the description
logic family of languages that build on various DL dialects and their rule-extensions. They
adhere to the classical model-theoretic semantics of first-order predicate logic and to the
open-world assumption. On the right-hand side there is the family of logic programming
languages that build on rules with negation-as-failure. They typically follow a semantics
of minimal or preferred models and adhere to the closed-world assumption. There are also
languages in between these two main strands, which cannot be clearly assigned to either
paradigm. These have been designed with a focus set on aspects other than a logically clear
semantics, or are attempts to combine features from both worlds, while the pure DL and LP
family languages have well understood properties in terms of computability and inferential
behaviour.

Languages that are placed near to the top in Figure 3.4 are more expressive than lan-
guages that are placed close to the bottom, meaning that they allow for expressing more
complex knowledge and for richer inferencing through more sophisticated logical conse-
quences than less expressive languages do. Accordingly, high expressivity of a language is
traded for higher computational complexity of decision procedures for reasoning. Within
recent standardisation efforts, it is considered highly desirable to at least maintain decid-
ability as a design goal for a Semantic Web ontology language, and Figure 3.4 shows a
boundary for decidability, above of which languages do not meet this goal.

Three different kinds of arrows in Figure 3.4 express a relationship of embedment be-
tween languages. A solid arrow denotes complete semantic containedness of a less expres-
sive language in a more expressive one, meaning that anything that can be expressed in the

13 This figure shall convey a rough intuition about the relationships between major languages with
respect to their underlying knowledge representation formalisms and paradigms. It therefore ab-
stracts from certain language details and is necessarily imprecise and vague in some aspects.

3 Knowledge Representation and Ontologies 65

classical semantics

RDF(S)

OWL-Lite

OWL-DL

OWL-Full

DLP

First-Order
Predicate Logic

WSML-DL

WSML-Core

WSML-Flight

F-Logic (LP)

WSML-Rule

Datalog

SWRL

LP semantics

↓ decidable
↑ undecidable

WSML-Full
m

or
e

ex
pr

es
si

ve
le

ss
 e

xp
re

ss
iv

e

DL-Safe
Rules

semantically embedded
approximately sem. emb.
syntactically embedded

Fig. 3.4.An overview of Semantic Web languages

former can also be expressed in the latter by means of a direct mapping of languages con-
structs. A dashed arrow denotes a weaker form of embedding, where not all the features of
the less expressive language do completely fit the more expressive target language, mean-
ing that the former is in principle (approximately) covered by the latter apart from moderate
deficiencies in some language constructs and their semantic interpretation. A dash-dotted
arrow denotes a syntactic embedding such that the language constructs of the (syntacti-
cally) less expressive language can be directly used in the more expressive one, although
they may semantically be interpreted in a different way.

An early initiative to standardise a language for semantic annotation of web resources
by the World Wide Web consortium (W3C) resulted inRDF andRDFS, which form now
a well established and widely accepted standard for encoding meta data. TheRDF(S)
language is described in more detail in Section 3.4.2. It can be used to express class-
membership of resources and subsumption between classes but its peculiar semantics does
neither fit the classical nor the LP-style. If semantically restricted to a first-order setting,
RDF(S) can be mapped to a formalism named description logic programs (DLP) [18], that
is sometimes used to interoperate between DL and LP by reducing expressiveness to their
intersection.

On top of RDF(S), W3C standardisation efforts have produced theOWL family of lan-
guages for describing ontologies in the Semantic Web, which comes in several flavours with
increasing expressiveness. Only the most expressive language variant, namelyOWL-Full ,

66 Stephan Grimm, Pascal Hitzler, Andreas Abecker

has a semantically proper layering on top of RDF(S), allowing for features of metamod-
elling and reification. The less expressive variantsOWL-Lite andOWL-DL map to cer-
tain description logic dialects and fit the classical semantics as subsets offirst-order logic .
Besides the class membership and subsumption relations inherited from RDF(S), OWL
offers the construction of complex classes from simpler ones by means of DL-style con-
cepts constructors. Among ongoing standardisation efforts, OWL-DL is currently the most
prominent Semantic Web ontology language following the description logic paradigm, and
in Section 3.4.3 the OWL family is described in more detail.

A current trend in research on knowledge representation formalisms in the context of
the Semantic Web is to integrate DL-style ontologies with LP-style rules to be interoperable
on a semantic level. One attempt to do so is the Semantic Web Rule Language (SWRL14)
that extends the set of OWL axioms to include Horn-like rules interpreted under first-order
semantics. Interoperability with OWL ontologies is realised by referring to OWL classes
and properties within SWRL rules, however, the combination of OWL-DL and SWRL rules
results in an undecidable formalism. Another approach to amalgamate OWL ontologies
and rules are the so-calledDL-safe rules[38], which extend DL knowledge bases in a way
similar to SWRL. However, DL-safe rules preserve decidability of the resulting language
by imposing an additional safety restriction on SWRL rules which ensures that they are
only applied to individuals explicitly known to the knowledge base.

Languages that follow the logic programming paradigm mainly stem from deductive
database systems, which apply rules on the facts stored in a database to derive new facts by
means of logical inferencing. A common declarative language used in deductive databases
is Datalog [47], which is syntactically similar to Prolog [31]. In the Semantic Web context,
F-Logic is a more prominent rule language that combines logical formulas with object-
oriented and frame-based description features. In its logic programming variantF-Logic
(LP), it adopts the semantics of Datalog rules. In Section 3.4.4 we investigate F-Logic in
more detail.

Finally, the Web Service Modeling Language (WSML) family is the most recent at-
tempt to standardise ontology languages for the web, with a special focus on annotating
Semantic Web Services. Since WSML tries to cover all the major aspects of different
knowledge representation formalisms, its various language variants are spread over the
scheme of Figure 3.4. They fit semantically in between existing languages by being based
on similar formalisms in both the DL and the LP strands. We will have a closer look at the
WSML family of languages in Section 3.4.5.

3.4.2 RDF(S)

The Resource Description Framework (RDF) [30] is a language recommended by the W3C
standardisation body for representing information about resources in the World Wide Web.
It is particularly intended for the representation of meta data about identifiable web re-
sources, such as title and author of a web page, topic and copyright information of an
electronic document retrievable from the web, or functionality and access conditions of a
Web Service.

Abstracting from retrievable or electronically processable web resources to anything
that has identity, RDF can be used to represent information about just anything. In this

14 http://www.w3.org/Submission/SWRL/

3 Knowledge Representation and Ontologies 67

sense, RDF can serve as a language to represent knowledge as meta data about entities in
e.g. the business trips domain.

The RDF Vocabulary Description language RDF Schema (RDFS) [7] is an extension
to RDF which facilitates the formulation of vocabularies for RDF meta data. While RDF is
used to relate resources by means of properties, RDFS introduces the notions of resource
classes and their hierarchies. The combined use of both RDF and RDFS is often referred to
as RDF(S) and provides a simple ontology language for conceptual modelling with some
basic inferencing capabilities.

Basic Elements of RDF

The approach for representing meta data about resources in RDF is based on a few main
ideas.

Identity through URIs

Uniform Resource Identifiers (URIs) are used for naming entities. They exhibit some nam-
ing conventions that allow for partitioning of names into namespaces. For modelling on-
tologies in RDF, URIs may be used to identify the following kinds of entities: individuals,
such as the person MisterX or the company UbiqBiz; kinds of things, such as Employee or
Company; properties of those things, such as mailbox; and values of those properties, such
as the string “mailto:mrX@ubiqbiz.com ”.

By URIs, resources are uniquely identified throughout the web, which allows for a
decentralised organisation of knowledge about commonly referenced resources.

Sentences with Subject, Predicate and Object

Statements in RDF have the form of subject-predicate-object sentences, which are also
referred to as RDFtriples. A triple

subject predicate−−−−−−−−−−→ object

relates asubjectto anobjectvia apredicate, while the roles of subject, predicate and object
are played by resources identified by URIs. The subject is the resource to be described,
the predicate is a specific property of this resource, and the object serves as a value of this
property for this resource.

Examples for triples in RDF are15

btr:MrX btr:employedAt−−−−−−−−−−−−−−−→ btr:UbiqBiz ,

stating that MisterX is employed at UbiqBiz, or

http://ubiqbiz.com/web/MrX.html btr:hasAuthor−−−−−−−−−−−−−−→ btr:MrX ,

stating that MisterX is the author of his web page at the UbiqBiz web site.

15 In the examples,btr: refers to a namespace abbreviation for the business trips domain.

68 Stephan Grimm, Pascal Hitzler, Andreas Abecker

Graph Representation

Several triples taken together form an RDFgraph, whose nodes are resource URIs and
whose arcs are properties. A node in an object position can be either a resources or an RDF
literal, which represents a data value like the string “mailto:mrX@ubiqbiz.com ” or
some number. Furthermore, RDF graphs supportblank nodes, which represent anonymous
resources. From a knowledge representation view, an RDF graph can be seen as a semantic
network, similar to the one depicted in Figure 3.1.

Since RDF is a web language, the various triples in an RDF graph can originate from
different sites, with the idea that anybody can state anything about any resource. In this
sense, RDF is designed to capture knowledge and meta data that is spread over the web.

XML Serialisation

Another web-related aspect of RDF is its XML serialisation format in which RDF graphs
are encoded for machine processing and for transport over the wire. An example of the
above triples encoded in RDF/XML syntax is the following.

<rdf:Description rdf:about="http://ubiqbiz.com/web/MrX.html">
<btr:hasAuthor rdf:resource="btr:MisterX"/>

</rdf:Description>
<rdf:Description rdf:about="btr:MisterX">

<btr:employedAt rdf:resource="btr:UbiqBiz"/>
</rdf:Description>

Descriptions of resources are encoded using special XML tags from the RDF predefined
vocabulary.

Reification

RDF allows one to make statements about statements, which is referred to as reification. A
reified statement is a resource that represents an occurrence of an RDF triple. In this way,
meta statements can be formulated, which can be illustrated as follows.

subject predicate−−−−−−−−−−→ object predicate−−−−−−−−−−→ object

Here, the subject role is played by a resource that represents a whole statement.
Reification is particularly interesting in the context of the Semantic Web, where it can

be used to make statements about things that have been stated elsewhere by referring them
as resources.

Data Structuring Facilities

Furthermore, RDF specifies elements to represents basic data structures as known from
programming languages, namelycontainersand collections. Containers can be used to
realise open data structures, such as ordered and unordered sequences, whereas collections
allow for list structures that can be closed by stating that there are no more members.

3 Knowledge Representation and Ontologies 69

Typing Resources with RDFS

RDFS facilitates the specification of application-specific ontological vocabularies in form
of class and property hierarchies on top of RDF resources. For this purpose, it defines a set
of reserved keywords that can be used in RDF triples to relate resources to classes.

Classes

RDFS defines a type system for RDF resources by introducing the concept of aclass. The
reserved predicaterdf:type is used to indicate class membership, i.e. that a resource is of
a certain type. RDFS classes are organised in a hierarchy of types for RDF resources. The
reserved predicaterdfs:subClassOf is used to state a subclass relationship between two
types. The following RDF(S) graph illustrates the typing of resources.

btr:MrX rdf:type−−−−−−−−−→ btr:Employee rdfs:subClassOf−−−−−−−−−−−−−−−−→ btr:Person

Here, the resource that represents MisterX is stated to be of typebtr:Employee , i.e. Mis-
terX is a member of the class of employees, which is itself a subclass of persons.

These RDF(S) constructs for typing allow for the formulation of subsumption hierar-
chies and for the distinction between instances and concepts in the ontological sense. How-
ever, in RDF(S) there is no clear separation between classes and their members. Instead,
RDF(S) allows self-reference and classes being members of (meta) classes. Any resource
can be tagged as a class by relating it to the predefined meta typerdfs:Class .

Properties

By the semantics of RDF(S), any resource used in the predicate position of an RDF triple
is a member of the classrdfs:Property . Besides classes, also properties can be organ-
ised in a hierarchy by means of the keywordrdfs:subPropertyOf . An example is the
following triple,

btr:employedAt rdfs:subPropertyOf−−−−−−−−−−−−−−−−−−−→ btr:worksFor

which reflects the fact that anybody employed at some company works for this company.
With the predefined predicatesrdfs:domain and rdfs:range , one can define the

domain and range for a property. By setting the range of the propertybtr:employedAt in
the above example tobtr:Company , any resource that fills the object position of an RDF
triple with this property as predicate is a member of the company class.

Semantics of RDF(S)

RDF(S) comes with a formal semantics that is specified in a model-theoretic way in [24].
Here, we only sketch the basic ideas of the semantics defined there, giving an intuition on
the inferencing characteristics of RDF(S).

In logical terms, RDF is an assertional language in which each triple expresses a pos-
itive ground proposition. An RDF graph, as a set of triples, makes up a logical theory that
consists of positive ground assertions. Since there is no concept of negation, one cannot
express contradictory information in the language. Although it is possible to express or in-
fer that, for example, a person is both male and female, there is no way of stating that the
classes of males and females cannot have common resources as their members.

70 Stephan Grimm, Pascal Hitzler, Andreas Abecker

In [24], the semantics of RDF(S) is characterised in form of axiomatic triples and en-
tailment rules that derive new, inferred triples. To yield the set of all entailed statements for
an RDF graphGRDF, the rules are exhaustively applied to the triples ofGRDF together with
all axiomatic triples. In this sense, the RDF(S) semantics determines which implicit knowl-
edge is derived from explicitly stated assertions in a graph. To illustrate the most essential
parts of the RDF(S) semantics, we give examples of some of these entailment rules and
their application to triples.

For example, the semantics for class membership and inheritance is determined by the
following two entailment rules applied to the triples of an RDF graphGRDF.

(1)
IF GRDF contains(C, rdfs:subClassOf , D) and(R, rdf:type , C)
THEN derive(R, rdf:type , D)

(2)
IF GRDF contains(C, rdfs:subClassOf , D) and(D, rdfs:subClassOf , E)
THEN derive(C, rdfs:subClassOf , E)

Their reading is to derive the triple in theTHEN -part for any instantiation of triples in the
IF -part. The variables occurring inside the triples range over RDF resource URIs. Rule (1)
entails the membership of resources in superclasses, while rule (2) ensures the transitivity
of the subclass relationship. From the previous triple about MisterX being an employee as
a special kind of person, rule (1) would entail the following triple.

btr:MrX rdf:type−−−−−−−−−→ btr:Person

Thus, an implementation of an RDF system would include MisterX in the result for the
query asking for all persons.

As another example, the semantics for domains and ranges of properties is determined
by the following two entailment rules.

(3)
IF GRDF contains(P, rdfs:domain , C) and(R, P, S)
THEN derive(R, rdf:type , C)

(4)
IF GRDF contains(P, rdfs:range , C) and(R, P, S)
THEN derive(S, rdf:type , C)

By setting the domain and range of the propertybtr:employedAt to btr:Employee and
btr:Company , as follows,

btr:Employee rdfs:domain←−−−−−−−−−−−− btr:emp.At rdfs:range−−−−−−−−−−−→ btr:Company

the rules (3) and (4) apply to the triple

btr:MrX btr:employedAt−−−−−−−−−−−−−−−→ btr:UbiqBiz ,

deriving that MisterX is an employee and that UbiqBiz is a company.
The entailment rules also apply to the RDF(S) meta vocabulary, determining the rela-

tionship between predefined vocabulary resources likerdfs:Class or rdfs:Property .
For example, the axiomatic triple

rdf:type rdfs:range−−−−−−−−−−−→ rdfs:Class ,

already triggers rule (4) for any class membership assertion, deriving that the referred type
resource is a class.

3 Knowledge Representation and Ontologies 71

Software Support for RDF(S)

The RDF(S) language is used by various web-based applications for describing meta data,
and a number of tools are available that support visual editing and programmatic handling
of RDF(S) descriptions.

One of the most common visual editors for RDF(S) is Protéǵe16, although recently
its focus has been shifted towards OWL. Protéǵe allows to navigate and edit an RDF(S)
class hierarchy and has special support for populating an RDF Schema with instances using
customisable input forms. Other ontology editors that support RDF(S) are WebODE17 [10],
OntoEdit18 [46] and KAON19 OI-Modeler.

For in-memory processing and data base storage of RDF(S) descriptions, common tool
suites are Sesame20 [8] and Jena21 [32], which provide software libraries that enable soft-
ware developers to process RDF(S) descriptions within their applications. They comprise
parsing and serialisation for the RDF XML format, an in-memory object representation for
RDF(S) descriptions as well as data base persistency and querying functionality includ-
ing reasoning capabilities. Recently, also oracle include RDF(S) support in their data base
solutions22.

3.4.3 OWL

The Web Ontology Language (OWL) [40] has been standardised by the W3C consortium
as a language for semantic annotation of web content and is widely accepted within the
Semantic Web community.

An important issue for the design of OWL was the trade-off between expressivity of
the language on the one hand and scalability of reasoning on the other. To this end, OWL
comes in three different flavours, namely OWL-Lite, OWL-DL and OWL-Full, reflecting
different degrees of expressiveness. The design of OWL-Lite and OWL-DL has been sig-
nificantly influenced by descriptions logics, and hence these two variants correspond to the
description logic dialectsSHIF(D) 23 andSHOIN (D), respectively. OWL-Full, on the
contrary, departs from description logic semantics in order to provide compatibility with
RDF(S). The DL-based OWL variants benefit from well understood computational prop-
erties and decidability of description logic, while OWL-Full has shown to be undecidable
[36]. In our presentation of OWL we focus on OWL-DL as the most prominent language
variant with the most support by the Semantic Web community.

16 http://protege.stanford.edu/
17 http://webode.dia.fi.upm.es/WebODEWeb/index.html
18 Meanwhile OntoStudio –http://ontoedit.com/
19 http://sourceforge.net/projects/kaon
20 http://sourceforge.net/projects/sesame/
21 http://jena.sourceforge.net/
22 See the technical whitepaper athttp://www.oracle.com/technology/tech/

semantic technologies/pdf/semantic tech rdf wp.pdf
23 TheF stands for functional roles, i.e. it can be stated that role relationships must be functional.

72 Stephan Grimm, Pascal Hitzler, Andreas Abecker

Syntax and Intuitive Semantics

The OWL standard defines different syntaxes based on RDF(S), XML and proprietary text
format. TheOWL RDF/XML syntaxallows for an encoding of an OWL ontology within the
RDF(S) framework in RDF/XML serialisation. TheOWL XML presentation syntaxpro-
vides a more compact XML format for OWL ontologies, independent from RDF(S). In
contrast to these machine-oriented serialisations, theOWL abstract syntaxserves as a hu-
man readable text format to present OWL ontologies to knowledge engineers. Yet another
popular way to present OWL content to a reader in a more scientific context is to make use
of DL formulas. We choose to present examples in OWL abstract syntax as well as in the
more compact description logic formal notation.

Similar to RDF(S), OWL provides syntactic modelling constructs for the basic elements
of an ontology, i.e. concepts, relations and instances. In OWL these are calledclasses, prop-
ertiesandindividuals, respectively, and they correspond to concepts, roles, and individuals
in description logics. In contrast to RDF(S), OWL-DL strictly separates classes from in-
dividuals and allows for building complex classes out of simpler ones by means of class
constructors. In the following we go over a selection of the syntactic elements of OWL in-
cluding various such constructors. For each example statement, taken from the geographic
ontology depicted in Figure 3.2, we give its intuitive meaning in natural language as well
as notations in OWL abstract syntax and DL formulas.

OWL by Examples

Named classes are usually introduced by means of class declarations that correspond to DL
inclusion axioms with an atomic concept on the left-hand side, as in the following example.

1© “A continent is a geographic location different from a country.”
Class(Continent partial

intersectionOf(GeographicLocation
complementOf(Country))

Continentv GeographicLocationu ¬Country

Here the classContinentis introduced through apartial declaration, which specifies (some
of) its necessary conditions. By means of the constructorsintersectionOf andcomplementOf ,
a continent is declared to be a geographic region but not a country. Hence this syntac-
tic construct states both subclass relationship and disjointness, according to the respective
DL inclusion axiom. “Necessary” here means that any continent is also a geographic loca-
tion and not a country. However, not any geographic location that is not also a country is
necessarily a continent; the partial class declaration only works in one direction and does
not impose a “sufficient” condition, which can be achieved by using the keywordcomplete

instead ofpartial . The keywordcomplete specifies class equivalence.
Individuals are introduced based on class descriptions, as in the following example.

2© “Europe is a particular continent.”
Individual(Europe type(Continent)) Continent(Europe)

Here the individualEuropeis introduced as an instance of the classContinent. Although
this example shows the instantiation of a previously declared named class, the class de-
scription for thetype -clause can be arbitrarily complex using class constructors.

An alternative way to define a class is to enumerate all its individuals, as shown in the
following example.

3 Knowledge Representation and Ontologies 73

3© “The continents are America, Europe, Africa, Asia and Australia.”
EnumeratedClass(Continent

America Europe Africa Asia Australia)
Continent≡ {America, Europe, Africa, Asia, Australia}

Here the classContinentis defined by listing all its known members, i.e. all the different
continents.

Similar to classes, properties are introduced through explicit declarations with optional
domain and range classes and other modifiers, as shown in the following example.

4© “Geographic regions in general contain geographic regions.”
ObjectProperty(contains

domain(GeographicRegion)
range(GeographicRegion)
inverseOf(isContainedBy)
Transitive)

∃ contains.> v GeographicRegion,
> v ∀ contains.GeographicRegion,
locatedIn≡ isContainedBy−

Trans(contains)

Here the object propertycontainsis declared as a transitive containment relation between
geographic regions. It is linked to its inverse propertyisContainedBy. The domain - and
range -clauses are mapped to appropriate DL inclusion axioms: anything that contains some-
thing is a geographic region, as well as anything that is being contained. In addition to the
domain of individuals OWL also offers so-called concrete domains [3], i.e. properties can
alternatively range over datatypes such as integer, float or string.

Once properties have been introduced, complex class descriptions can be formed by
imposing restrictions on them. The following example shows a general subclass statement
including a restriction on the previously introduced property.

5© “A planar region only contains planar or linear regions.”
SubClassOf(PlanarRegion

restriction(contains allValuesFrom(
unionOf(PlanarRegion LinearRegion)))

PlanarRegionv
∀ contains.(PlanarRegiont LinearRegion)

Here planar regions are restricted to only contain planar or linear regions by means
of the restriction constructor. TheallValuesFrom -clause requires that all values for the
restricted property are of a certain type, which is specified as a disjunction by means of the
unionOf -constructor. Although this example states subclass relationship for a named class,
both parameters of thesubClassOf -clause can be arbitrarily complex class descriptions made
up of constructors.

Statements of class equivalence can also be quite sophisticated as in the following ex-
ample.

6© “A European city is a city whose geographic region is contained in that of Europe.”
EquivalentClasses(EuropeanCity intersectionOf(

City
restriction(locatedIn allValuesFrom(

restriction(isContainedBysomeValuesFrom(
restriction isRegionFor someValuesFrom(

oneOf(Europe))))))))

EuropeanCity≡ City u
∀ locatedIn.∃ isContainedBy.∃ isRegionFor.{Europe}

Here the classEuropeanCityis set equivalent to a complex class description with nested
restrictions on properties and their inverses. By this, a city can be concluded to be European
if its geographic region is contained by that of the European continent. ThesomeValuesFrom -
clause restricts a property such that there must exist a value of a certain type, while the
oneOf -constructor creates a class from an explicitly named individual, similar to the enu-
merated class in3©.

Another way to restrict properties is to constrain their cardinality, as shown in the fol-
lowing example.

74 Stephan Grimm, Pascal Hitzler, Andreas Abecker

7© “A city is a geographic location governed by a single country.”
SubClassOf(City

restriction(governedBymaxCardinality 1))
City v ≤ 1 governedBy

Here cities are restricted to be governed by at most one country by means of
the maxCardinality -clause. Similarly, minimal cardinality can be realised with the
minCardinality -clause, while both can be combined to require a fixed cardinality.

Another usage of introduced properties is to connect individuals to other individuals or
data values, as shown in the following example.

8© “Munich is a German city with 1288307 inhabitants.”
Individual(Munich type(City)

value(governedBy Germany)
value(numberOfInhabitants1288307))

City(Munich),
governedBy(Munich, Germany)
numberOfInhabitants(Munich, 1288307)

Here the individual Munich is stated to be a city that lies in Germany by an appropri-
ate connection to the individualGermany. It is asserted an integer value for the property
numberOfInhabitants.

Model-Theoretic Semantics

The exact semantics of the DL-based OWL variants is determined by the model-theoretic
semantics of the underlying description logic formalism. An OWL ontology consists of
a collection of statements as the ones shown in the examples1© - 8©. These statements
are interpreted as axioms of a DL knowledge base, as described in Section 3.2, and thus
OWL employs the open-world assumption. Table 3.4.3 shows the mapping of OWL abstract
syntax constructs to their corresponding description logic axioms.

Working with OWL Ontologies

Due to the connection of OWL to description logics, the basic reasoning services available
for DL knowledge bases also apply to OWL ontologies. Thus, an OWL ontology can be
checked for consistency or it can be queried for implicit knowledge.

Ontology Inconsistency

Consider the following OWL ontology consisting of three statements.

{ subClassOf(City restriction(governedBymaxCardinality(1))) ,
Individual(Nicosia type(City) value(governedBy Greece) value(governedBy Turkey)) ,
DifferentIndividuals(Greece Turkey) }

The first statement is taken from7© and says that cities are uniquely governed by a single
country. The second statement says that the city of Nicosia24 is governed by both Greece
and Turkey, while the third statement assures that these are two different countries. This
is clearly a contradiction and this OWL ontology is thereforeinconsistent. This can be
verified by using the reasoning service ofknowledge base satisfiability, offered by common
description logic reasoners. Notice that for practical reasons an inconsistent ontology is
quite useless, since it allows to conclude any arbitrary statement.

24 Nicosia is the capital of Cyprus and is split into a Greek and a Turkish part.

3 Knowledge Representation and Ontologies 75

OWL abstract syntax DL syntax
Axioms
Class(A partial C1 . . . Cn) A v C1 u . . . Cn

Class(A complete C1 . . . Cn) A ≡ C1 u . . . Cn

EnumeratedClass(A a1 . . . an) A ≡ {a1} t · · · t {an}
SubClassOf(C D) C v D
EquivalentClasses(C1 . . . Cn) C1 ≡ · · · ≡ Cn

DisjointClasses(C1 . . . Cn) Ci v ¬Cj , (1 ≤ i < j ≤ n)

ObjectProperty(r super(r1) . . .super(rn) r v r1 u · · · u rn

domain(C1) . . . domain(Cn) ∃ r.> v C1 u · · · u Cn

range(C1) . . . range(Cn) > v ∀ r.C1 u · · · u ∀ r.Cn

[inverseOf(s)] r ≡ s−

[Symmetric] r ≡ r−

[Functional] > v ≤ 1 r
[InverseFunctional] > v ≤ 1 r−

[Transitive]) Trans(r)
SubPropertyOf(r s) r v s
EquivalentProperties(r1 . . . rn) r1 ≡ · · · ≡ rn

Individual(a type(C1) . . . type(Cn) C1 u · · · u Cn(a)
value(r1 a1) . . . value(rn an)) r1(a, a1), . . . , rn(a, an)

SameIndividual(a1 . . . an) a1 = · · · = an

DifferentIndividuals(a1 . . . an) ai 6= aj , (1 ≤ i < j ≤ n)

Descriptions
Class(A) A
Class(owl:Thing) >
Class(owl:Nothing) ⊥
intersectionOf(C1 C2 . . .) C1 u C2

unionOf(C1 C2 . . .) C1 t C2

complementOf(C) ¬C
oneOf(a1 a2 . . .) {a1} t {a2}
restriction(r someValuesFrom(C)) ∃ r.C
restriction(r allValuesFrom(C)) ∀ r.C
restriction(r hasValue(a)) ∃ r.{a}
restriction(r minCardinality(n)) ≥ n r
restriction(r maxCardinality(n)) ≤ n r

Table 3.1.Translation of OWL abstract syntax to description logic formal notation

Ontology Coherency

Another kind of “problematic modelling” in ontologies is to introduce classes that cannot
have instances, which is the case in the following OWL ontology.

{ subClassOf(City restriction(governedBymaxCardinality(1))) ,
class(SplitCity complete

intersectionOf(City restriction(governedByminCardinality(2)))) }

Again, the first statement, taken from7©, restricts cities to be governed by at most one coun-
try. The second statement introduces a classSplitCity, requiring that split cities are cities
governed by at least two countries. However, by the first statement, this is not possible
and thus the classSplitCitycannot have an instance in any valid model of the correspond-
ing description logic knowledge base. In DL-terms this means that the conceptSplitCity is
unsatisfiable. Common description logic reasoners offer the service of checking concepts
for their satisfiability. An ontology that contains an unsatisfiable concept/class is said to
be incoherent. In contrast to inconsistent ontologies, an incoherent ontology is not useless

76 Stephan Grimm, Pascal Hitzler, Andreas Abecker

and many reasoning tasks might not be affected by the unsatisfiability of a particular class.
However, incoherence of an ontology indicates erroneous modelling, and once an unsatis-
fiable class is assigned an individual as an instance the ontology becomes inconsistent.

Querying for Subsumption

Besides checking an ontology for consistency or coherency, its main usage is to be queried
for implicit knowledge. Based on the notion of entailment, for any OWL statement we can
ask whether it follows from an OWL ontology, i.e. whether its corresponding DL axiom
is entailed by the respective DL knowledge base. Querying for subsumption between two
classes underlies the most important usage of reasoning in the OWL language, namely
classification. The following OWL ontology allows for the automatic classification of two
classes that are not explicitly put in subsumption relation.

{ class(SplitCity complete
intersectionOf(City restriction(governedByminCardinality(2)))) ,

class(GreekTurkishCitypartial
intersectionOf(City

restriction(governedBysomeValuesFrom(oneOf(Greece)))
restriction(governedBysomeValuesFrom(oneOf(Turkey))))) ,

DifferentIndividuals(Greece Turkey) }

The first statement introduces split cities as before, while the second statement introduces a
classGreekTurkishCityfor cities which are governed by both Greece and Turkey. The third
statement assures the two involved countries to be distinct, as before. Notice that this time
the ontology does not restrict cities to be governed by a single country. From the knowledge
specified in the ontology,GreekTurkishCityis a subclass ofSplitCity and a DL reasoner
would derive the statementsubClassOf(GreekTurkishCity SplitCity) as a logical consequence.

By checking subsumption between all the named classes in an OWL ontology, an in-
ferred class hierarchy can be established.

Querying for Assertion

The other kind of statements an OWL ontology can be queried for are assertion axioms.
For both role assertions and concept assertions we can ask whether they hold with respect
to an OWL ontology, as illustrated by the following example.

{ subClassOf(EUCountry restriction(officialCurrency hasValue(Euro))) ,
Individual(Germany type(EUCountry) ,
class(GermanCity partial

intersectionOf(City restriction(governedByhasValue(Germany)))) ,
Individual(Munich type(GermanCity) }

This ontology states that in countries in the EU, as for example Germany, the official
currency is Euro, and that German cities, as for example Munich, are cities governed
by Germany. From the knowledge specified in the ontology, it follows thatMunich is
governed byGermany, and a DL reasoner would derive the statementIndividual(Munich

value(governedBy Germany)) as a logical consequence, sinceMunich is assigned to be a
GermanCity. Furthermore, the ontology allows to conclude that in Munich one can
pay with Euro, i.e. Munich is governed by a country that has Euro as official cur-
rency. A reasoner would derive the statementIndividual(Munich type(restriction(governedBy

3 Knowledge Representation and Ontologies 77

someValuesFrom(restriction(officialCurrency hasValue(Euro)))))) , since, as aGermanyCity,
Munich is governed byGermanywhose official currency isEuro.

By iterating over all the individuals in an OWL ontology, querying for subsets of
named individuals with certain properties can be achieved. For example, in the above query
Munich can be subsequently replaced by other named individuals to retrieve all cities in
which one can pay with Euro.

Software Support for OWL

Since OWL is technically built on top of RDF(S), some RDF(S) specific tools can be readily
applied, e.g. for parsing and serialisation in the OWL RDF/XML format, while others have
also been upgraded to OWL versions.

The ontology editor Protéǵe [22] also supports OWL and comes with a variety of plu-
gins that allow for visualisation and management of OWL ontologies. In addition to dif-
ferent graphical views of the explicit class and property hierarchies, it facilitates the visual
editing of OWL axioms and enables the embedding of reasoning tools for computing in-
ferred subsumption hierarchies. Other visual editors for OWL ontologies that offer similar
functionality are SWOOP25 [28] or the commercial tools Altova Semantic Works26 and
TopBraid27.

For the programmatic handling of OWL ontologies, the OWL API28 [5] as well as
Jena [32] can be used by software developers to process OWL descriptions within their
applications. They provide means for parsing and serialisation of the different OWL syntax
formats and for in-memory manipulation of ontologies.

As OWL is an expressive knowledge representation language, reasoning plays an im-
portant role, and there are a number of description logic reasoners available that can be
used for querying OWL ontologies with respect to inferred knowledge or for verifying
their consistency. The most common description logic reasoners in the Semantic Web con-
text are based on the tableau calculus, and available systems that support the OWL lan-
guage are Racer29 [23], FaCT30 [25] and Pellet31 [44]. Recently, new DL reasoning algo-
rithms – based on deductive database technology – were devised for the development of the
KAON232 [37] system, which is particularly optimised for querying ontologies with large
A-Boxes.

3.4.4 F-Logic

Frame Logic (F-Logic) [29] is a deductive, object-oriented database language which aims
at combining the declarative semantics and expressiveness of logic programming with rich
and intuitive conceptual modelling capabilities, as provided by frame-based systems. The

25 http://www.mindswap.org/2004/SWOOP/
26 http://origin.altova.com/products semanticworks.html
27 http://www.topbraidcomposer.com/
28 http://owl.man.ac.uk/api.shtml
29 Meanwhile RacerPro –http://www.racer-systems.com/
30 Meanwhile FaCT++ –http://owl.man.ac.uk/factplusplus/
31 http://www.mindswap.org/2003/pellet/
32 http://kaon2.semanticweb.org/

78 Stephan Grimm, Pascal Hitzler, Andreas Abecker

most significant language features of F-Logic comprise object identity, complex objects,
classes, inheritance, polymorphic types, rules and queries. Besides the aspects of a frame-
based language for conceptual modelling, it can also be perceived as a logic with model-
theoretic semantics and a sound and complete resolution-based proof theory.

We give a short overview on syntax and informal semantics of the most important
features of F-Logic. In the original specification [29], F-Logic is given several semantics
and in its full version it is an extension of first-order logic. However, systems that support
the language do not implement full F-Logic but a logic programming variant based on the
well-founded semantics. Thus, we present F-Logic as a rule-based LP-style language, as it
is widely perceived.

F-Logic by Examples

Frame-Based Modelling

F-Logic allows to describeobjects– identified by an object ID – by grouping related in-
formation about the object in so-calledF-molecules. The following example illustrates the
use of F-molecules to describe some objects from our business trips scenario.

UbiqBiz[hasLegalName -> ‘Ubiquitous Business Ltd.’,
hasOfficesIn ->> {NewYork, London, Singapore},
hasPhones ->> {0017324747123, 00654564458},
hasEmployees ->> {MrX, MrY, MsZ}].

MrX[hasName -> ‘Mister X’,
hasAddress -> AddressMrX[hasStreet -> ‘Fifth Avenue’,

hasNumber -> 521,
hasCity -> NewYork].

BookingUbiqMrX[bookedBy -> UbiqBiz,
bookedFor -> MrX,
issuedFor -> FL4711].

In the example, objects, such asUbiqBiz , are described in terms of F-molecules that
assign them values for certain attributes, such as legal name, locations of offices, phone
numbers and associated employees. As values for attributes, F-Logic allows objects as
well as data values, such as strings or numbers. The symbol-> denotes an assignment of a
single value, while the symbol->> indicates the assignment of multiple values for set-valued
attributes. As illustrated by the attributehasAddress , attribute assignments in F-molecules
can be nested.

From an ontology point of view, the objects in the example can be seen as instances.
Besides these, F-Logic also provides language features for describingclassesof objects
with attachedattributesand relating them in class hierarchies, as shown next.

Company :: LegalEntity.
Company[hasLegalName => STRING,

hasOfficesIn =>> City,
hasPhones =>> NUMBER,
hasEmployees =>> Person].

Person :: LegalEntity.
Person[hasName => STRING,

hasAddress => Addresss].

Employee :: Person.
Employee[isEmployedAt => Company].

3 Knowledge Representation and Ontologies 79

Booking[bookedBy => LegalEntity,
bookedFor => Person,
issuedFor => Flight].

UbiqBiz : Company.
MrX : Person.
FL4711 : Flight.
BookingUbiqMrX : Booking.

In the example, the objectCompany is described as a class for company objects with ap-
propriate attribute ranges. The symbol=> indicates a single-valued range, while the symbol
=>> assigns a set-valued range for attributes with multiple values.

Both Company and Person are declared as subclasses ofLegalEntity by means of the
symbol:: , which denotes class inheritance and is used to build class hierarchies. The class
Employee is, in turn, a subclass ofPerson with an additional attribute for employment; it
inherits the attributes from its parent classPerson .

Objects can be assigned to classes using the symbol: . In the ontological view, this
means to relate an instance to a concept. Here, the symbol: is used to state that UbiqBiz
is a company, that MisterX is a person, etc. Since any object can serve as a class, classes
can be declared as instances of other classes, and thus, F-Logic supports metamodelling
facilities.

Rules

In the Semantic Web context, F-Logic is primarily perceived as a language following the
rule-based paradigm. Indeed, LP-style rules form the essential language feature for the
deductive aspects of F-Logic.

The keywordFORALL– to indicate universal quantification of involved variables – is used
together with the symbol<- to construct rules in F-Logic. A rule

FORALL <variables> <head> <- <body>.

has the typical reading: for any possible instantiation of variables in the rule body, derive
the corresponding instantiation of the rule head. By deriving new information, rules extend
an F-Logic object base by intensional knowledge, forming its deductive closure.

The following is an example of a rule that operates on the descriptions of the classes
and objects given before.

FORALL C,E C[hasEmployees ->> E] <- E : Employee[isEmployedAt -> C].

It captures a part of the inverse relationship between the attributeshasEmployees and
isEmployedAt . Whenever an employee can be derived to be employed at a certain com-
pany, the rule derives that this employee is among the list of employees of that particular
company.

Another, more complex example of a rule is the following, taken from Section 3.1.
FORALL B,C,P P : Employee[isEmployedAt -> C] <- P : Person AND

C : Company AND
B : Booking[bookedBy -> C,

bookedFor -> P].

It concludes a person to be an employee of a certain company whenever there is a booking
for this person by that particular company. From the concrete bookingBookingUbiqMrX for
flight FL4711, specified before, this rule would derive the F-molecule

80 Stephan Grimm, Pascal Hitzler, Andreas Abecker

MrX : Employee[isEmployedAt -> UbiqBiz].

stating that MisterX is an employee of UbiqBiz.

Queries

F-Logic provides queries as a language element for the retrieval of (tuples of) objects. Ob-
jects are bound to possible instantiations of variables that occur in the query. Syntactically,
queries in F-Logic are a special kind of rules with an empty head and have the following
form.

FORALL <variables> <- <body>.

As with rules, the variables that occur in the body of a query are universally quantified.
Whenever a tuple of objects is a possible instantiation of variables conform with the deduc-
tive closure of the object base, this tuple is part of the result for the query.

An example for an F-Logic query is the following,

FORALL E,A <- E : Employee[isEmployedAt -> UbiqBiz,
hasAddress -> A[hasCity -> NewYork]].

asking for all UbiqBiz employees who live in New York. Applied to the formerly described
objects and rules, the answer to this query would be the objectMrX because MisterX is
assigned an address in New York and he can also be derived to be an employee.

Queries can also ask for schema elements and bind variables to classes. The following
query asks for all classes which MisterX belongs to.

FORALL C <- MrX : C.

The answer to the query is the set{Person , Employee , LegalEntity } of classes.

Negation as Failure

Under the semantics of the logic programming variant, F-Logic makes the closed-world
assumption for the evaluation of queries and for the deductive closure on an object base.
For example, the query

FORALL E <- E : Employee.

that asks for all employees only yieldsMrX as a result. ForMrY andMsZ it has not been stated
that they are employees, nor can this information be derived from the specified knowledge.
Therefore, MisterY and MissZ are assumed to be no employees.

Furthermore, the negation operatorNOT, used in the bodies of rules and queries, is in-
terpreted as negation-as-failure. The following is an example of a query that contains a
negation operator, combined with a rule.

FORALL P P : FlightParticipant <- F : Flight AND
B : Booking[bookedFor -> P,

issuedFor -> F].
FORALL E <- UbiqBiz[hasEmployee ->> E] AND

NOT E : FlightParticipant.

It asks for all the employees of UbiqBiz who do not participate in any known flight, which
yields the set{MrY, MsZ}.

3 Knowledge Representation and Ontologies 81

Software Support for F-Logic

Since F-Logic sets a focus on rule-based inferencing rather than on web aspects, it does
not come in a web-style XML serialisation format like other ontology languages in the Se-
mantic Web. Its syntax rather resembles the style of typical programming languages and is
human-readable for people with a software development background. To this end, there is
not much support in graphical editing tools and F-Logic ontologies are typically developed
using text editors. An exception is OntoStudio33, which provides graphical editing capa-
bilities for F-Logic rules, while some other ontology editors also support F-Logic export
features.

There are two major inference engines available that perform reasoning on F-Logic
rules: the freely availableFLORA-234 [49] and the commercial OntoBroker35 [12]. Re-
cently, also the KAON236 system has included some support for F-Logic.

3.4.5 WSML

The WSMO37 initiative aims at providing an overarching framework for handling Seman-
tic Web Services (SWS). It comprises the WSMO conceptual model, as an upper-level
ontology for Semantic Web Services, the WSML language and the WSMX execution en-
vironment. WSMO (Web Service Modelling Ontology) is described in Part III Chapter 7
in more detail, while here we are concerned with ontology language aspects. WSML (Web
Service Modeling Language) is a language to formally describe the elements defined in the
WSMO conceptual model, providing syntax and formal semantics for them.

WSML is particularly designed for describing Semantic Web Services and is therefore
not a mere ontology language. Besides typical ontological notions, it also provides SWS-
specific language constructs, such as “goal”, “web service”, “interface”, “choreography”
or “capability”, to capture different aspects of Web Service semantics. One of the corner
stones in WSMO are the domain ontologies used to semantically annotate Web Services.
Hence, WSML also provides means to describe such ontologies, as any ordinary ontology
language does. Since here we are interested in the description of ontologies in general, we
present the ontology-related part of WSML only.

Syntax

The Syntax of WSML is split into aconceptualpart and alogical expressionpart. The con-
ceptual syntax allows typical conceptual modelling with concepts, relations and instances,
known from frame-based systems where information about a certain entity is specified lo-
cally in a single syntactic construct. The logical expression syntax allows the formulation of
complex axiomatic information using logical formulas. It is very similar to F-Logic syntax

33 http://www.ontoprise.de/content/e1171/e1249/index eng.html
34 http://flora.sourceforge.net/florahome.php
35 http://ontobroker.semanticweb.org/
36 http://kaon2.semanticweb.org/
37 http://www.wsmo.org

82 Stephan Grimm, Pascal Hitzler, Andreas Abecker

and provides the typical logical symbols as well as different forms of negation and impli-
cation, LP-style rules and constraints. WSML also supports datatypes like integer, float or
string, up to user-defined datatypes.

The following listing shows a fragment of our example geographic ontology in WSML
syntax in itshuman readableserialisation.

concept GeographicRegion
isRegionFor inverseOf (locatedIn) ofType GeographicLocation
contains inverseOf (isContainedBy) transitive impliesType GeographicRegion
boundedBy ofType (2 ∗) SurfacePoint

concept SurfacePoint
hasLongtitude ofType float
hasLatitude ofType float

concept City subConceptOf Infrastructure
locatedIn ofType PlanarRegion
officialName ofType string
numberOfInhabitants ofType integer

concept EuropeanCity subConceptOf City

instance Europe memberOf Continent

instance Munich memberOf City
officialName hasValue ”M ünchen”
numberOfInhabitants hasValue 1288307

axiom EuropeanCity sufficient condition definedBy
?c memberOf EuropeanCity :− ?c memberOf City and

?c[locatedIn hasValue ?rc] and
?rc[containedBy hasValue ?re] and
?re[isRegionFor hasValue Europe].

The upper part shows the conceptual syntax with bold-faced keywords for defining con-
cepts, instances and their membership relations.Attributes, i.e. relations defined in the
scope of a concept, are further restricted or filled with concrete values. They can be de-
clared as being transitive or as the inverse of another attribute, and they can be constrained
by their range type or cardinality. With the distinction between theofType andimpliesType con-
structs, WSML offers both range constraints that ensure attribute values to be of a certain
type, and range restrictions in the style of OWL that allow to conclude information about
attribute values. Attribute ranges can be concepts or datatypes, such asinteger, float or string.
The lower part of the listing shows an axiom defined by a logical expression in form of an
LP-style rule with variables preceded by a?-symbol. The rule concludes a city to be Euro-
pean if its geographic region lies within that of Europe, referring to the elements declared
in the conceptual part.

Besides the human readable form, there are other forms of serialisation for the WSML
syntax, similar to the different serialisation formats for OWL. These cover serialisation in
XML as well as in RDF.

Semantics

Similar to OWL, WSML comes in various language variants that have different expres-
siveness and that reflect different knowledge representation paradigms. The most basic and
least expressive variant is WSML-Core, which is based on DLP [18] as a least common

3 Knowledge Representation and Ontologies 83

denominator for description logic formalisms on the one hand and logic programming and
rule-based systems on the other hand. WSML-Core is separately extended in the directions
of these two paradigms by the variants WSML-DL and WSML-Flight/Rule, respectively.
Ultimately, the vision of WSML-Full is to semantically amalgamate the two paradigms in
a language with first-order model-theoretic semantics augmented by non-monotonic exten-
sions and typical LP-style features like default negation or constraints. At the current stage,
however, the WSMO initiative is an ongoing effort and the semantics of WSML-Full is yet
to be defined.

In Figure 3.5 the WSML language variants are positioned with respect to different
knowledge representation formalisms.

Fig. 3.5.WSML language variants in knowledge representation

WSML-Core

This variant is based on the DLP fragment described in [18]. It offers basic conceptual
modelling with concepts, attributes and instances, as well as taxonomic hierarchies and
the use of datatypes. Its semantics is defined by a mapping to function-free horn logic
interpreted in the classical model-theoretic way. Similar to RDF, it does not allow to express
any form of negative information, and thus no contradictory statements can be formulated.

WSML-DL

This variant extends WSML-Core to a description logic formalism, namely to the logic
SHIQ(D). In this sense, WSML-DL is very similar to the OWL language. The WSML
syntax does not provide the variable-free constructs that are typical for DLs. Thus, in

84 Stephan Grimm, Pascal Hitzler, Andreas Abecker

WSML-DL logical expressions with variables and logical connectives are interpreted as
in first-order logic, with the restriction to only allow unary and binary predicates for DL
concepts and roles.

WSML-Flight

This variant extends WSML-Core to an LP-style rule language with a closed-world seman-
tics. It is similar to F-Logic (LP) and offers features like negation-as-failure, constraints
and meta-modelling. The semantics of WSML-Flight is defined by a mapping to F-Logic
formulas interpreted under perfect model semantics.

WSML-Rule

This variant further extends WSML-Flight with more expressive logic programming fea-
tures, such as function symbols or unsafe rules. Its semantics is based on the well-founded
semantics.

WSML-Full

The still to be defined semantics of WSML-Full is envisioned to combine WSML-DL and
WSML-Rule. A candidate formalism to achieve integration of the two paradigms is au-
toepistemic logic.

Software Support for WSML

Since WSML is a relatively new language, tool development is in an early stage. However,
there are some tools available for handling and editing WSML ontologies, all driven by the
WSMO initiative.

The WSMO4J38 framework enables parsing, serialisation and in-memory processing of
WSML ontologies an other WSML elements.

The Web Services Modelling Toolkit (WSMT)39 is a graphical editor that allows for
visualisation and manipulation of WSML ontologies. Other tools for editing WSML ele-
ments are WSMO Studio40 [13] and DOME41.

3.5 Outlook

In this chapter we have presented an overview on the topics of knowledge representation,
ontologies and Semantic Web languages. Here we want to briefly sketch future research
and usability issues around these knowledge-based technologies.

Having reviewed various ontology languages and knowledge representation paradigms,
we have seen that there are multiple different ways of approaching the representation and
computational handling of knowledge. There is still room for research on which approach is

38 http://wsmo4j.sourceforge.net/
39 http://wsmt.sourceforge.net
40 http://www.wsmostudio.org/
41 http://dome.sourceforge.net/

3 Knowledge Representation and Ontologies 85

most suitable for which kind of application context. A current trend in ontology languages
is to perceive LP-based approaches as particularly suitable for data-intensive retrieval tasks
with rule-based inferencing on the one hand, and DL-based approaches for automated clas-
sification and for satisfiability problems on the other hand.

To achieve wide-spread use of ontologies, they have to be established as usable software
artefacts that are interchanged and traded between parties, similar to computer programs
or other forms of electronic content. As such, they can principally be plugged in systems
that make use of knowledge-based technology. However, the logics-based notions in which
ontologies are described are typically too technical and too onerous to handle to be widely
accepted. To overcome this deficiency, design methodologies and higher-level descriptive
languages should be introduced that abstract from the surfeit of logical details, presenting
the user a more intuitive view on domain knowledge. An analogous level of abstraction has
been achieved in the field of software engineering, where more and more abstract higher-
level languages have been build on to of machine codes and assembler languages.

In the Semantic Web context, also other techniques from the field of Artificial Intelli-
gence are used, such as lexical methods for natural language processing or statistics-based
methods for machine learning. There, the symbolic knowledge representation in ontolo-
gies should used complementarily to exploit synergies with such techniques in Semantic
Web applications. Moreover, there is a trend to forbear from the heavy-weight semantics of
logical formalisms, moving to the light-weight semantics of languages with decreased ex-
pressive power in applications where precision and exactness is not the main focus. In this
sense, some applications prefer, for example, RDF(S) over the semantically richer OWL
due to simplicity or scalability issues. Finally, there is much space for research on finding
the right degree of formality in semantics for a particular application scenario.

References

1. G. Antoniou.Nonmonotonic Reasoning. MIT Press, 1996.
2. F. Baader, S. Brandt, , and C. Lutz. Pushing the EL Envelope. InProceedings of the 19th

Int. Joint Conference on Artificial Intelligence (IJCAI-05), Edinburgh, UK. Morgan Kaufmann,
2005.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.The Descrip-
tion Logic Handbook. Cambridge University Press, January 2003.

4. F. Baader and B. Hollunder. Embedding Defaults into Terminological Knowledge Representation
Systems.Journal of Automated Reasoning, 14:149–180, 1995.

5. S. Bechhofer, R. Volz, and P. Lord. Cooking the Semantic Web with the OWL API. InProc.
of the First International Semantic Web Conference 2003 (ISWC 2003), October 21-23, 2003,
Sanibel Island, Florida, 2003.

6. P. Bonatti, C. Lutz, and F. Wolter. Description Logics with Circumscription. InProceedings
of the 10th Int. Conference on Principles of Knowledge Representation and Reasoning, KR-06,
2006.

7. D. Brickley and R.V. Guha. RDF Vocabulary Description Language – RDF Schema.http:
//www.w3.org/TR/rdf-schema/ , 2004.

8. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture for Storing
and Querying RDF and RDF Schema. InISWC ’02: Proceedings of the First International
Semantic Web Conference on The Semantic Web, pages 54–68, London, UK, 2002. Springer.

86 Stephan Grimm, Pascal Hitzler, Andreas Abecker

9. D. Calvanese, G. de Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite: Tractable
Description Logics for Ontologies. InProceedings of the 20th National Conference on Artificial
Intelligence (AAAI-2005), 2005.

10. Ó. Corcho, M. Ferńandez-Ĺopez, A. Ǵomez-Ṕerez, andÓ. Vicente. WebODE: An Integrated
Workbench for Ontology Representation, Reasoning, and Exchange. InEKAW, p. 138–153,
2002.

11. E. Craig. Ontology. In E. Craig, editor,Routledge Encyclopedia of Philosophy, pages 117–118.
Routledge, New York, 1998.

12. S. Decker, M. Erdmann, D. Fensel, and R. Studer. Ontobroker: Ontology Based Access to Dis-
tributed and Semi-Structured Information. InSemantic Issues in Multimedia Systems. Proceed-
ings of DS-8, pages 351–369, 1999.

13. M. Dimitrov, A. Simov, V. Momtchev, and D. Ognyanov. WSMO Studio - An Integrated Service
Environment for WSMO. InProc. of the 2nd WSMO Impl. Workshop, Innsbruck, Austria, 2005.

14. F.M. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal Knowledge and Negation
as Failure.ACM Transactions on Computational Logic, 3(2):177–225, 2002.

15. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-Order Rea-
soning and External Evaluations in Answer Set Programming. In L. P. Kaelbling and A. Saffiotti,
editors,Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-
05), 2005.

16. O. Etzioni, K. Golden, and D. Weld. Tractable Closed World Reasoning with Updates. In
Proceedings of the 4th International Conference on Knowledege Representation and Reasoning
(KR-1994), pages 178–189. Morgan Kaufmann, 1994.

17. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening Ontologies
with DOLCE. InEKAW-02: Proceedings of the 13th Int. Conference on Knowledge Engineering
and Knowledge Management. Ontologies and the Semantic Web, pages 166–181. Springer, 2002.

18. B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining Logic
Programs with Description Logics. InProceedings of WWW-2003, Budapest, Hungary, pages
48–57. ACM, 2003.

19. T.R. Gruber. A Translation Approach to Portable Ontology Specifications.Knowledge Acquisi-
tion, 6(2):199–221, 1993.

20. N. Guarino. Semantic Matching: Formal Ontological Distinctions for Information Organiza-
tion, Extraction, and Integration. In M.T. Pazienza, editor,Information Extraction: A Multi-
disciplinary Approach to an Emerging Information Technology, number 1299 in LNCS, pages
139–170. Springer-Verlag, 1997.

21. N. Guarino. Formal Ontology and Information Systems, Preface. In N. Guarino, editor,Proceed-
ings of the 1st International Conference on Formal Ontologies in Information Systems, FOIS-98,
Trento, Italy, pages 3–15. IOS Press, 1998.

22. N. Noy M. Musen H. Knublauch, R. Fergerson. The Protege OWL Plugin: An Open Develop-
ment Environment for Semantic Web Applications.Proceedings of the 3rd International Seman-
tic Web Conference (ISWC), 2004.

23. V. Haarslev and R. M̈oller. Description of the RACER System and its Applications. InInterna-
tional Workshop on Description Logics, 2001.

24. P. Hayes. RDF Semantics.http://www.w3.org/TR/rdf-mt/ , 2004.
25. I. Horrocks. Using an Expressive Description Logic: FaCT or Fiction? InProceedings of the

6th International Conference on Knowledege Representation and Reasoning (KR1998), pages
636–645. Morgan Kaufmann, 1998.

26. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language. InProceedings
of the 13th International World Wide Web Conference (WWW-2004). ACM, 2004.

27. U. Hustadt, B. Motik, and U. Sattler. Data Complexity of Reasoning in Very Expressive Descrip-
tion Logics. InProceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI-05), Edinburgh, UK, pages 466–471. Morgan Kaufmann, 2005.

3 Knowledge Representation and Ontologies 87

28. A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca Grau, and J. Hendler. Swoop: A Web Ontology
Editing Browser. Journal of Web Semantics, 4(2):144–153, 2006.http://dx.doi.org/
10.1016/j.websem.2005.10.001 .

29. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based
Languages.Journal of the ACM, 42(4):741–843, July 1995.

30. G. Klyne and J. Carroll. RDF Concepts and Abstract Syntax.http://www.w3.org/TR/
rdf-primer/ , 2004.

31. J.W. Lloyd.Foundations of Logic Programming. Springer-Verlag, 1988.
32. Brian McBride. Jena: Implementing the RDF Model and Syntax Specification. InSemWeb,

2001.http://CEUR-WS.org/Vol-40/mcbride.pdf .
33. J. McCarthy. Circumscription – A Form of Non-Monotonic Reasoning.Artificial Intelligence,

13(1):27–39, 1980.
34. J. Minker. Logic and Databases: Past, Present, and Future.AI Magazine, 18(3):21–47, 1997.
35. R. Moore. Semantical Considerations on Nonmonotonic Logic.Artificial Intelligence, 25(1),

1985.
36. B. Motik. On the Properties of Metamodeling in OWL. In Y. Gil, E. Motta, V.R. Benjamins, and

M. Musen, editors,Proceedings of the 4th International Semantic Web Conference (ISWC-2005),
volume 3729 ofLNCS, pages 548–562. Springer-Verlag, 2005.

37. B. Motik and U. Sattler. A Comparison of Reasoning Techniques for Querying Large Description
Logic ABoxes. In Miki Hermann and Andrei Voronkov, editors,Proc. of the 13th Int. Conf. on
Logic for Programming Artificial Intelligence and Reasoning (LPAR 2006), LNCS, Phnom Penh,
Cambodia, November 13–17 2006. Springer.

38. B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules. In S. A. McIl-
raith, D. Plexousakis, and F. van Harmelen, editors,Proc. of the 3rd Int. Semantic Web Conf.
(ISWC 2004), pages 549–563, Hiroshima, Japan, November 7–11 2004. Springer.

39. I. Niles and A. Pease. Towards a Standard Upper Ontology. In C. Welty and B. Smith, editors,
Proceedings of the 2nd International Conference on Formal Ontology in Information Systems
(FOIS-2001), 2001.

40. P.F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language; Semantics and
Abstract Syntax.http://www.w3.org/TR/owl-semantics/ , November 2002.

41. S. Pepper and G. Moore. XML Topic Maps (XTM) 1.0.http://www.topicmaps.org/
xtm/1.0/ .

42. R. Reiter. A Logic for Default Reasoning.Artificial Intelligence, 13:81–132, 1980.
43. S. Russel and P. Norvig.Artificial Intelligence – A Modern Approach. Prentice-Hall, 1995.
44. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A Practical OWL-DL

Reasoner. Technical report, University of Maryland Institute for Advanced Computer Studies
(UMIACS), 2005.http://mindswap.org/papers/PelletDemo.pdf .

45. J.F. Sowa.Knowledge Representation. Brooks Cole Publishing, Pacific Grove, CA, USA, 2000.
46. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit: Collaborative On-

tology Development for the Semantic Web. InISWC ’02: Proceedings of the First International
Semantic Web Conference on The Semantic Web, pages 221–235. Springer-Verlag, 2002.

47. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems: Volumes I and II.
Computer Science Press, 1989.

48. F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure. A Framework for Handling Incon-
sistency in Changing Ontologies. In Y. Gil, E. Motta, V.R. Benjamins, and M. Musen, editors,
Proceedings of the 4th International Semantic Web Conference (ISWC-2005), volume 3729 of
LNCS, pages 353–367. Springer-Verlag, 2005.

49. G. Yang, M. Kifer, and C. Zhao. Flora-2: A Rule-Based Knowledge Representation and Inference
Infrastructure for the Semantic Web. InCoopIS/DOA/ODBASE, pages 671–688, 2003.

50. M. Yue and L. Zuoquan. Infering with Inconsistent OWL DL Ontology: a Multi-valued Ap-
proach. InProceedings of the International Conference on Semantics in a Networked World,
ICSNW-2006, Munich, Germany. Springer-Verlag, 2006.

