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Abstract Measuring inconsistency degrees of inconsistent knowledge bases is an important

problem as it provides context information for facilitating inconsistency handling. Many

methods have been proposed to solve this problem and a main class of them is based on

some kind of paraconsistent semantics. In this paper, we consider the computational aspects

of inconsistency degrees of propositional knowledge bases under 4-valued semantics. We

first give a complete analysis of the computational complexity of computing inconsistency

degrees. As it turns out that computing the exact inconsistency degree is intractable, we then

propose an anytime algorithm that provides tractable approximations of the inconsistency

degree from above and below. We show that our algorithm satisfies some desirable properties

and give experimental results of our implementation of the algorithm.
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1 Introduction

Inconsistency handling is one of the central problems in the field of knowledge
representation. Recently, there is an increasing interest in quantifying inconsistency in
an inconsistent knowledge base. This is because it is not fine-grained enough to simply
say that two inconsistent knowledge bases contain the same amount of inconsistency.
Indeed, it has been shown that analyzing inconsistency is helpful to decide how to act
on inconsistency[1], i.e. whether to ignore it or to resolve it. Furthermore, measuring
inconsistency in a knowledge base can provide some context information which can
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be used to resolve inconsistency[2−4], and proves useful in different scenarios such as
Software Engineering[5].

Different approaches to measuring inconsistency are based on different views of
atomic inconsistency[3]. Syntactic ones put atomicity to formulae, such as taking
maximal consistent subsets of formulae[6] or minimal inconsistent sets[7]. Semantic
ones put atomicity to propositional letters, such as considering the conflicting propo-
sitional letters based on some kind of paraconsistent model [2,3,8−10]. In this paper,
we focus on the computational aspect of a 4-valued semantics based inconsistency
degree which is among the latter view.

The main contributions of this paper are two-folded. One is to give a complete
study of the computation complexity of the decision and functional problems related
to measuring inconsistency degree. We show that computing exact inconsistency
degrees is a computational problem of high complexity (Θp

2-complete). To conquer
such a high complexity in computation, we present an anytime algorithm that pro-
vides tractable approximations of the inconsistency degree from above and below, by
computing the lower and upper bounds. We show that our algorithm satisfies some
desirable properties. Furthermore, we give some experimental explanations of the
algorithm. Compared to many existing work on measuring inconsistency, our work
complements them in that (1) it analyzes the complexity issues of computing the in-
consistency degree and that (2) it attempts to alleviate the intractability of computing
the exact inconsistency degree for full propositional logic by approximating it from
above and from below in an anytime manner. Our results show that the computation
of approximating inconsistency degree can be done tractable; and can be performed
to full propositional knowledge bases, unlike the restriction to CNF for designing a
tractable paraconsistent reasoning under the Quasi-Classical semantics[11].

The paper is structured as follows. Section 2 gives a discussion of related work.
Then after recalling some preliminaries on Belnap’s four-valued semantics and knowl-
edge of inconsistency degree in Section 3, we give the complexity analysis of problems
of computing inconsistency degree in Section 4. We deal in turn with an approach
to approximating inconsistency degree and the corresponding anytime algorithm in
Section 5. The implementation of the anytime algorithm is given in Section 6. Finally
we conclude the work in Section 7.

2 Related Work

Most effort has been directed at theoretical accounts of inconsistency measures,
i.e. its definitions, properties, and possible applications. But few papers focus on
the computational aspect of inconsistency degree. Among the syntactic approaches,
Ref.[6] shows the possibility to compute inconsistency degrees using the simplex
method. Among the semantics methods, Refs.[13, 14] and Ref.[10] provide algo-
rithms for computing inconsistency degrees that can be implemented. The algo-
rithm in Ref.[10] only deals with KBs consisting of first-order formulas in the form
Q1x1, ..., Qnxn.

∧
i(Pi(t1, . . . , tmi

) ∧ ¬Pi(t1, . . . , tmi
)), where Q1, . . . , Qn are univer-

sal or existential quantifiers. In Ref.[13], an algorithm is proposed for full FOL logic.
Although it can be applied to measure inconsistency in propositional logic, its compu-
tational complexity is too high to be used in general cases. In Ref.[14], approximating
inconsistency degrees are defined but without detailed study of an anytime algorithm.
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The anytime algorithm proposed in this paper for computing approximating incon-
sistency degrees can avoid these shortcomings.

Although our algorithm is inspired by the algorithms given in Refs.[13, 14], it is
significantly different from the existing ones. Firstly, this paper develops the work
in Ref.[14] by an anytime algorithm which can return approximating inconsistency
degrees in tractable time. We show that for some special knowledge bases, this al-
gorithm will return their exact inconsistency degree in polynomial time. In contrast,
the algorithm in Ref.[13] is based on a reduction to hard SAT instances, which makes
it inherently intractable. Secondly, ours is designed towards obtaining an approxima-
tion with guaranteed lower and upper bounds that gradually converge to the exact
solution. The approximations have a meaningful sense in terms of bounding models.
Thirdly, based on the monotonicity of S-4 semantics, we implement a new trunca-
tion strategy to limit the search space for better polynomial time approximations.
We also present the preliminary evaluation results of the implementation of the algo-
rithm. Our evaluation results show our algorithm outperforms that given in Ref.[13]
and develops the results given in Ref.[14], which in all show that the approximating
values are reasonable to replace the exact inconsistency degree.

3 Preliminaries

Let P be a countable set of propositional letters. We concentrate on the classical
propositional language formed by the usual Boolean connectives ∧ (conjunction), ∨
(disjunction), → (implication), and ¬ (negation). A propositional knowledge base K

consists of a finite set of formulae over that language. We use Var(K) for the set of
propositional letters used in K and |S| for the cardinality of S for any set S.

Next we give a brief introduction on Belnap’s four-valued (4-valued) semantics
(See to Appendix section of this paper for more details that are used in the proofs).
Compared to two truth values used by classical semantics, the set of truth values for
four-valued semantics[15,16] contains four elements: true, false, unknown and both,
written by t, f, N, B, respectively. The truth value B stands for contradictory infor-
mation, hence four-valued logic leads itself to dealing with inconsistencies. The four
truth values together with the ordering ¹ defined below form a lattice, denoted by
FOUR = ({t, f, B, N},¹): f ¹ N ¹ t, f ¹ B ¹ t,N 6¹ B,B 6¹ N . The four-valued
semantics of connectives ∨,∧ are defined according to the upper and lower bounds of
two elements based on the ordering ¹, respectively, and the operator ¬ is defined as
¬t = f,¬f = t,¬B = B, and ¬N = N . The designated set of FOUR is {t, B}. So a
four-valued interpretation I is a 4-model of a knowledge base K if and only if for each
formula φ ∈ K, φI ∈ {t, B}. A knowledge base which has a 4-model is called 4-valued
satisfiable. A knowledge base K 4-valued entails a formula ϕ, written K |=4 ϕ, if and
only if each 4-model of K is a 4-model of ϕ.

Every propositional knowledge base containing only connectives from {∨,∧,¬,→
} has a 4-model which assigns B to each propositional letter[16]. Four-valued entail-
ment can be reduced to the classical entailment[17]. We write K for a knowledge
base, and M4(K) for the set of 4-models of K throughout this paper. Four-valued
semantics provides a novel way to define inconsistency measurements[1].

Definition 1. Let I be a four-valued model of K. The inconsistency degree
of K with respect to I, denoted IncI(K), is a value in [0, 1] defined as IncI(K) =
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|Conflict(I,K)|
|Var(K)| , where Conflict(I,K) = {p | p ∈ Var(K), pI = B}.

That is, the inconsistency degree of K w.r.t. I is the ratio of the number of
conflicting propositional letters under I divided by the amount of all propositional
letters used in K. It measures to what extent a given knowledge base K contains
inconsistencies with respect to its 4-model I. Preferred models defined below are used
to define inconsistency degrees and especially useful to explain our approximating
algorithm later.

In Ref.[1], instead of IncI(K), the concordance degree of a knowledge base is
defined as 1 − |Conflict(I,K)|

|Var(K)| , denoted ConcordanceI(K). It is clear that IncI(K) =
1−ConcordanceI(K). So all the results we get in this paper for IncI(K) can be easily
applied to the concordance degree in [1].

Definition 2 (Preferred Models). The set of preferred models, written
PreferModel(K), is defined as PreferModel(K) = {I | ∀I′ ∈ M4(K), IncI(K) 6
IncI′(K)}.

By this definition and the fact that every knowledge base K containing only con-
nectives from {∨,∧,¬,→} has 4-models, the inequation PreferModel(K) 6= ∅ always
holds, and the inconsistency degree of K with respect to two preferred models are
equal.

Definition 2 (Inconsistency Degree). The inconsistency degree of K, de-
noted by ID(K), is defined as the value IncI(K), where I ∈ PreferModels(K).

Example 1. Let K = {p,¬p∨ q,¬q, r}. Consider two 4-valued models I1 and
I2 of K with pI1 = t, qI1 = B, rI1 = t; and pI2 = B, qI2 = B, rI2 = t. We have
IncI1(K) = 1

3 , while IncI2(K) = 2
3 . Moreover, I1 is a preferred model of K because

there is no other 4-model I′ of K such that IncI′(K) < IncI1(K). Then ID(K) = 1
3 .

One way to compute inconsistency degree is to recast the algorithm proposed in
Ref.[13] to propositional knowledge bases, where S-4 semantics defined as follows is
used:

Definition 4 (S-4 Model). For any given set S ⊆ Var(K), an interpretation
I is called an S-4 model of K if and only if I ∈ M4(K) and satisfies the following
condition:

I(p) ∈
{
{B} if p ∈ Var(K) \ S,

{N, t, f} if p ∈ S.

That is, I is an S-4 model of K if it is a 4-valued model of K which assigns the
propositional letters not in S to the contradictory truth value, while it assigns others
to non-contradictory truth values.

For a given S ⊆ Var(K), the knowledge base K is called S-4 unsatisfiable iff. it
has no S-4 model. Let ϕ be a formula and Var({ϕ}) ⊆ Var(K). ϕ is S-4 entailed
by K, written K |=4

S ϕ, iff. each S-4 model of K is an S-4 model of ϕ. Obviously,
K |=4

S f if and only if K has no S-4 model, where f is the truth value symbol in
FOUR.

Theorem 1[14]. For any KB K, we have ID(K) = 1 − A/|Var(K)|, where
A = max{|S| : S ⊆ Var(K), K is S-4 satisfiable}.

Theorem 1 shows that the computation of ID(K) can be reduced to the problem
of computing the maximal cardinality of subsets S of Var(K) such that K is S-4
satisfiable.
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4 Computational Complexities

Apart from any particular algorithm, let us study the computational complexity
of the inconsistency degree to see how hard the problem itself is. First we define the
following computation problems related to inconsistency degrees:

• ID6d (resp. ID<d, ID>d,ID>d): Given a propositional knowledge base K and a
number d ∈ [0, 1], is ID(K) 6 d (resp. ID(K) < d, ID(K) > d, ID(K) > d)?

• EXACT-ID: Given a propositional knowledge base K and a number d ∈ [0, 1],
is ID(K) = d?

• ID: Given a propositional knowledge base K, what is the value of ID(K)?

Obviously, we have two trivial instances of these decision problems ID61 and
ID>0 with the answer “yes”; And another two trivial instances ID<0 and ID>1 with
the answer “no”.

In more general cases, the complexities of these computational problems are
indicated by following theorems.

Theorem 2. ID6d and ID<d are NP-complete; ID>d and ID>d are coNP-
complete.

Proof: We prove these results separately as follows:
ID6d is NP-complete:
The membership to NP is achieved by the following non-deterministic algorithm:

1. Guess a 4-valued interpretation I over Var(K);

2. Check that I is a 4-model of K and |Conflict(I)|
|Var(K)| 6 M , which can be done in

deterministic polynomial time.

The hardness to NP comes from the following reduction from checking the satis-
fiability of K under classical 2-valued semantics, which is known to NP-complete, to
this problem. The reduction is that K is 2-valued satisfiable if and only if ID(K) 6 0
which is obvious by the definition of inconsistency degree.

ID<d is NP-complete:
Similarly to the case of ID6d, the membership to NP holds obviously. The

hardness to NP holds by the reduction that K is 2-valued satisfiable if and only if
ID(K) < 1

2|Var| . This is because, by the definition of ID(K), the smallest value of
ID(K) for an inconsistent knowledge base is 1

|Var| .
ID>d and ID>d are coNP-complete:
This is because that ID>d is the complementary problem of ID<d and ID>d is

the complementary problem of ID6d.

Theorem 3. EXACT-ID is DP-complete1.
Proof: To show that it is in DP, we have to exhibit two languages L1 ∈ NP and

L2 ∈ coNP such that the set of all “yes” instances of EXACT-ID is L1 ∩L2. This is
easy by setting L1 = {K | ID(K) 6 M} and L2 = {K | ID(K) > M}.

1 A language L is in the class DP [18] iff there are two languages L1 ∈ NP and L2 ∈ coNP such

that L = L1 ∩ L2.
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To show the completeness, let L = L1 ∩ L2 be any language in DP. We have
to show that L can be reduced to EXACT-ID. To this end, recall that ID6 is NP-
complete and ID> is coNP-complete, that is, there is a reduction R1 from L1 to ID6
and a reduction R2 from L2 to ID>. Therefore, the reduction R from L to EXACT-ID
can be defined as follows, for any input x: R(x) = (R1(x), R2(x)). We have that R(x)
is a “yes” instance of EXACT-ID if and only if R1(x) is a “yes” instance of ID6 and
R2(x) is a “yes” instance of ID>, which is equal to x ∈ L.

Theorem 4. ID is FPNP[log n]-complete2.
Proof: To show that ID is in FPNP[log n], consider problems of the following form:

is the inconsistency degree less than i
|Var(K)| (NP-complete by Theorem 2)? Through

solving a logarithmic number of such problems (by dichotomy on i ∈ {0, . . . , |Var(K)|}),
we find an FPNP[log n] algorithm to compute the inconsistency degree, which shows
that the problem belongs to FPNP[log n].

Next we prove that ID is FPNP[log n]-hard, which is achieved by showing that
MaxSAT3 (the maximum satisfiability problem) can be polynomially reduced to an
instance of ID.

W.o.l.g, assume the inconsistent propositional knowledge base is K = {ϕ1, . . . , ϕn}.
Define a new knowledge base Knew as follows:

Knew = {ϕi ∨ ¬newi, newi | 1 6 i 6 n} ∪ {(pi ∧ ¬pi) ⊃ f | pi ∈ V ar(K)},

where ⊃ is the internal implication under four-valued semantics (see to Appendix
for details). Clearly, the reduction is polynomial with respect to the size of K and
Var(K). Next, we aim to show that the maximal size of consistent subsets of K is M

if and only if ID(Knew) = n−M
|Var(K)|+n , where |Var(K)|+n = |Var(Knew)|. That is, the

maximal size of consistent subsets of K is M if and only if |Conflict(I, Knew)| = n−M

for any preferred model I of Knew.
(Only If) First, we show that |Conflict(I, Knew)| 6 n − M . By the assump-

tion, there is an M -size consistent subset of K, without loss of generality, written as
Kcons = {ϕ1, . . . , ϕM}. Suppose J is a classical model of Kcons and define J ′ based
on J as follows:

pJ′ =





pJ , if p ∈ V ar(K),

t, if p = newi(i 6 M),

B, if p = newi(i > M).

By the fact that pJ′ = pJ for p ∈ V ar(K), we have that J ′ satisfies Kcons and in turn
satisfies {ϕ1 ∨ ¬new1, . . . , ϕM ∨ ¬newM}. Obviously, J ′ satisfies {new1, . . . , newM}.
Moreover, we have J ′ satisfies {ϕM+1 ∨¬newM+1, . . . , ϕn ∨¬newn} by the fact that
newJ′

i = B(i > M). Finally, note that J is a classical interpretation and J ′ equals
J on all propositional letters in Var(K). Therefore, J ′ interprets pi(pi ∈ Var(K))
classically. By the definition of semantics of internal implication, (pi ∧ ¬pi) ⊃ f is
satisfied by any classical interpretation, which means that J ′ satisfies {(pi ∧ ¬pi) ⊃

2 Complexity PNP[log n] is defined to be the class of all languages decided by a polynomial-time

oracle machine which on input x asks a total of O(log |x|) SAT (or any other problem in NP) queries.

FPNP[log n] is the corresponding class of functions. FPNP[log n] is also written as Θp
2.

3 A MaxSAT problem is to ask for the maximum number of clauses which are satisfiable of a

propositional knowledge base K.
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f | pi ∈ V ar(K)}. In all, we have that J ′ is 4-model of Knew. It is to see that
|Conflict(J ′,Knew)| = |{newi | M < i 6 n}| = n − m. Then, by the definition of
preferred model, we have |Conflict(I, Knew)| 6 n−M .

Next we show that |Conflict(I, Knew)| 6< n−M for preferred models I of Knew.
Otherwise, we can assume |Conflict(I, Knew)| < n − M . By noting that {(pi ∧
¬pi) ⊃ f | pi ∈ Var(K)} ⊆ Knew and by the semantics of internal implication, we
have pI

i 6= B for all pi ∈ V ar(K). That is, pi 6∈ Conflict(I, Knew), which means
Conflict(I, Knew) ⊆ {newi | 1 6 i 6 n}. By the assumption |Conflict(I, Knew)| <

n−M , there are at most n−M −1 letters in {newj | 1 6 j 6 n} values B in I. That
is, there are at least M +1 clauses ϕi1 ∨¬newi1 , . . . , ϕiM+1 ∨¬newiM+1 in Knew with
newI

ij
∈ {t, f, N} for j ∈ [1,M + 1]. By the assumption that I is a model of Knew

and newij ∈ Knew, we have newI
ij

= t. In all, newI
ij
∈ {t,N} (i.e. ¬newI

ij
∈ {f,N}).

Since ϕij ∨ ¬newij ∈ Knew, it holds that ϕI
ij
∈ {t, B}(1 6 j 6 M + 1). That is, I

satisfies at least M + 1 clauses of K. Consider the following classical interpretation
I ′ for each p ∈ Var(K):

pI′ =

{
t if pI = N,

pI otherwise.

Obviously, I <k I ′ where <k denotes the partial order w.r.t to amount of information
in four-valued logic (Refer to Appendix for details). By the monotonicity of classical
logical connectives (¬,∨,∧,→) under the four-valued semantics (See to Proposition
8 in Appendix), we have I ′ satisfies {ϕi1 , . . . , ϕiM+1}. Furthermore, by noting that
p 6∈ Conflict(I, Knew), we can see that I ′ is a classical model of {ϕi1 , .., ϕiM+1} ,
which conflicts with the fact that the maximal size of consistent subsets of K is M .

In all, we have |Conflict(I, Knew)| = n−M .
(If) Similar to the proof of “only if” direction, the “if” direction can be proved.

5 Anytime Algorithm

According to the results shown in the previous section, computing inconsistency
degrees is usually intractable. In this section, we propose an anytime algorithm to
approximate the exact inconsistency degree. Our results show that in P-time we can
get an interval containing the accurate value of ID(K).

Firstly, by borrowing the idea of guidelines for a theory of approximating reason-
ing[19], we precise the requirements that an anytime approximating algorithm for
computing inconsistency degrees should satisfy: It should be able to produce two
sequences r1, . . . , rm and r1, . . . , rk:

r1 6 · · · 6 rm 6 ID(K) 6 rk 6 · · · 6 r1, (1)

such that these two sequences have the following properties:

• The length of each sequence is polynomial w.r.t |K|;

• Computing r1 and r1 are both tractable. Generally, computing rj and rj be-
comes exponentially harder as j increases, but it is not harder than computing
ID(K).
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• Since computing ri and rj could become intractable as i and j increase, we
need to find functions f(|K|) and g(|K|) such that computing ri and rj both
stay tractable as long as i 6 f(|K|) and j 6 g(|K|).

• Each ri (rj) in the two sequences is meaningful (in terms of corresponding to
approximating preferred models in our case), which indicates the sense of the
two sequences.

For the notation clarity, some definitions are necessary as given in the next sec-
tion, which will be used to explain our algorithm.

5.1 Formal definitions

Definition 5. (Bounding Values[14]) A real number x (resp. y) is a lower (resp.
an upper) bounding value of the inconsistency degree of K, if and only if x 6 ID(K)
(resp. ID(K) 6 y).

Intuitively, a pair of lower and upper bounding values characterizes an interval
containing the exact inconsistency degree of a knowledge base. For simplicity, lower
(resp. an upper) bounding value is called lower (resp. upper) bound.

Corresponding to bounding values, we define a new concept called bounding mod-
els which are used to illustrate the sense of results of our anytime algorithm.

Definition 6. (Bounding Models) A four-valued interpretation I′ is a lower
(resp. an upper) bounding model of K if and only if for any preferred model I of K,
Condition 1 holds (resp. Condition 2 holds and I′ ∈M4(K)):

Condition 1: |Conflict(I′,K)| 6 |Conflict(I,K)|
Condition 2: |Conflict(I′,K)| > |Conflict(I,K)|

Intuitively, the lower and upper bounding models of K are approximations of
preferred models from below and above. We call two-valued interpretations J trivial
lower bounding models since Conflict(J,K) = 0 and ID(K) = 0 always holds. We
are only interested in nontrivial bounding models for inconsistent knowledge bases,
which can produce a nonzero lower bound of ID(K).

Example 2. (Example 1 continued) K has a lower bounding model I3 and an
upper bounding model I4 defined as: pI3 = t, qI3 = t, rI3 = t; and pI4 = B, qI4 =
B, rI4 = t.

Next proposition gives a connection between lower (resp. upper) bounds and
lower (resp. upper) bounding models.

Proposition 1. If I is a lower (an upper) bounding model of K, IncI(K) is a
lower (an upper) bounding value of ID(K).

Proof: If I is a lower bounding model of K, then |Conflict(I,K)| 6 |Conflict(I1,K)|
for any preferred model I1, which in turn leads to that IncI(K) = |Conflict(I,K)|

|Var(K)| 6
|Conflict(I1,K)|

|Var(K)| = ID(K). That is, IncI(K) is a lower bounding value of ID(K). Simi-
larly, we can prove the conclusion in the case that I is an upper bounding model of
K.
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5.2 Tractable approximations from above and below

By Theorem 1, we have an algorithm to compute inconsistency degrees via the
computation of S-4 satisfiability. However, next theorem shows that S-4 entailment
is generally intractable.

Theorem 5. The decision problem of the S-4 satisfiability is NP-hard.
Proof: This theorem easily follows from the following reduction from SAT problem

to S-4 satisfiability: A knowledge base K is classically two-valued satisfiable if and
only if K is S-4 satisfiable, where S = Var(K). The “only if” direction of the reduction
is obvious because a classical model of K is also an S-4 model of K with S = Var(K).
For the “if” direction, suppose that K has an S-4 model I with S = Var(K), that is,
for any p ∈ Var(K), I(p) ∈ {N, t, f}. Define the following classical interpretation I ′:

I ′(p) ∈
{

I(p) if I(p) ∈ {t, f},
t if I(p) = N.

By the monotonicity of classical logical connectives (¬,∨,∧,→) under the four-valued
semantics (See to Proposition 8 in Appendix), we have I ′ satisfies K, that is, K is
classically satisfiable.

This theorem shows that algorithms based on S-4 semantics to compute incon-
sistency degrees are time-consuming. In this section, by a tractable case of S-4 en-
tailment (proportional to the size of input knowledge base)[14], we give an algorithm
to compute approximating inconsistency degrees in tractable time.

Lemma 1 (Ref.[14]). Let S = {p1, . . . , pk} be a subset of V ar(K) and ϕ be
a formula such that Var(ϕ) ⊆ Var(K). K |=4

S ϕ if and only if

K ∧
∧

q∈Var(K)\S
(q ∧ ¬q) |=4 ϕ ∨ (c1 ∨ · · · ∨ ck)

holds for any combination {c1, . . . , ck}, where each ci is either pi or ¬pi(1 6 i 6 k).
This lemma shows a way to reduce the S-4 entailment to the 4-entailment. Spe-

cially note that if ϕ is in CNF (conjunctive normal formal), the righthand of the
reduced 4-entailment maintains CNF form by a little bit of rewriting, as follows: Sup-
pose ϕ = C1∧· · ·∧Cn. Then ϕ∨(c1∨· · ·∨ck) = (C1∨c1∨· · ·∨ck)∧· · ·∧(Cn∨c1∨· · ·∨ck)
which is still in CNF and its size is linear to that of ϕ ∨ (c1 ∨ · · · ∨ ck).

Lemma 2[20]. For K in any form and ϕ in CNF, there exists an algorithm for
deciding if K |=4 ϕ in O(|K| · |ϕ|) time.

By Lemma 1 and 2, we have the following theorem:

Theorem 6[14]. There exists an algorithm for deciding if K |=4
S ϕ and deciding

if K is S-4 satisfiable in O(|K||ϕ||S| · 2|S|) and O(|K||S| · 2|S|) time, respectively.
Theorem 6 shows that S-4 entailment and S-4 satisfiability can both be decided

in polynomial time w.r.t the size of K, exponential w.r.t that of S, though. So they
can be justified in P-time if |S| is limited by a logarithmic function of |K|.

The following results in Ref.[14] are useful for our anytime algorithm.

Theorem 7[14]. Given S ⊆ Var(K), if K is S-4 satisfiable, then ID(K) 6
1− |S|/|Var(K)|.
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Theorems 6 and 7 together show that for a monotonic sequence of sets S1,. . . ,Sk,
where |Si| < |Si+1| for any 1 6 i 6 k− 1, if we can show that K is Si-4 (i = 1, . . . , k)
satisfiable one by one, then we can get a sequence of decreasing upper bounding values
of the inconsistency degree of K in time O(|K||Si| · 2|Si|). If |Si| = O(log |K|), it is
easy to see that the computation of an upper bound is done in polynomial time with
respect to the size of K. In the worst case (i.e., when S = Var(K)), the complexity
of the method coincides with the result that ID6 is NP-complete (Theorem 2).

Theorem 8[14]. For a given w (1 6 w 6 |Var(K)|), if for each w-size subset S

of Var(K), K is S-4 unsatisfiable, then ID(K) > 1− (w − 1)/|Var(K)|.
Theorems 6 and 8 together show that for a monotonic sequence of sets S1, . . . , Sm

satisfying |Si| < |Si+1|, if we can prove that K is |Si|-4 unsatisfiable4 for each i ∈
[1,m], then we can get a series of increasing lower bounds of the inconsistency degree
of K. For each w, it needs at most

(|Var(K)|
w

)
times tests of S-4 unsatisfiability. So it

takes O(
(|Var(K)|

w

)|K|w · 2w) time to compute a lower bound 1− (w − 1)/|Var(K)|. If
w is limited by a constant, we have that each lower bound is obtained in polynomial
time.

Suppose ri, r
j in Inequation 1 are defined as follows:

rj = 1− |S|/|Var(K)|, where K is |S|-4 satisfiable, j = |S|;

ri = 1− |S| − 1
|Var(K)| , where K is |S|-4 unsatisfiable, i = |S|.

By Theorems 6, 7 and 8, we get a way to compute the upper and lower bounds of
ID(K) which satisfy: if j 6 log(|K|) and i 6 M (M is a constant independent of |K|),
rj and ri are computed in polynomial time; Both i and j cannot be greater than
|Var(K)|. This is a typical approximation process of a NP-complete problem ID>d

(resp. coNP-complete problem ID6d) via polynomial intermediate steps, because
each intermediate step provides a partial solution which is an upper (resp. lower)
bound of

Example 3. Suppose K = {pi ∨ qj ,¬pi,¬qj | 1 6 i, j 6 N}. So |Var(K)| =
2N . To know whether ID(K) < 3

4 , by Theorem 7 we only need to find an S of size
d 2N

4 e such that K is S-4 satisfiable. This is true by choosing S = {pi | 1 6 i 6
d 2N

4 e}. To know whether ID(K) > 1
3 , Theorem 8 tells us to check whether K is S-4

unsatisfiable for all S of size b 4N
3 c+ 1. This is true also. So ID(K) ∈ [ 13 , 3

4 ].
An interesting consequence of the above theoretical results is that we can compute

the exact inconsistency of some knowledge bases in P-time. Let us first look at an
example.

Example 4. Consider a knowledge base K = {(pi∨pi+1)∧ (¬pi∨¬pi+1), pi1 ∧
· · · ∧ piN−5 ,¬pj1 ∧ · · · ∧ ¬pjN−10 , p2t,¬p3j+1 ∨ ¬p5u+2, }(1 6 i 6 N − 1, 1 6 2t, 3j +
1, 5u + 2 6 N). Var(K) = N . To approximate ID(K), we can check whether K is l-4
satisfiable for l going larger from 1 by one increase on the value each time. Obviously,
K’s inconsistency degree is close to 1 if N À 10. By Theorem 6, we can see that all
of these operations can be done in P-time before the exact value obtained.

More formally, we have the following proposition.

4 For the sake of simplicity, we say that K is l-4 satisfiable for l ∈ N, if there is a subset S ⊆ Var(K)

such that K is S-4 satisfiable. We say that K is l-4 unsatisfiable if K is not l-4 satisfiable.
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Proposition 2. If ID(K) > 1−M/|Var(K)|, where M is an arbitrary constant
which is independent of |K|, then ID(K) can be computed in polynomial time.

Proof: By the definition of inconsistency degree and the assumption ID(K) >
1 − M

|Var(K)| , we know that |Conflict(I,K)|
|Var(K)| > 1 − M

|Var(K)| for any preferred model I of
K. That is,

|Conflict(I,K)| > |Var(K)| −M, (2)

We claim that K has no S-4 model for any S ⊆ Var(K) whose size is strictly greater
than M . If not, suppose |S0| > M makes K S0-4 satisfiable. By the definition of
S-4 semantics, we have |Conflict(I,K)| = |Var(K)| − |S| < |V ar(K)| −M . This is a
contradiction with Inequation 2. Let us check whether K is l-4 satisfiable for l going
larger from 1 by one increase on the value each time until K becomes l-4 unsatisfiable,
then the accurate inconsistency degree ID(K) = 1 − (l − 1)/|Var(K)|. By the claim
above, the first l which makes K l-4 unsatisfiable is for l = M + 1 and K keeps
l-unsatisfiable for l > M . Note that checking K l-4 satisfiability from l = 1 to M + 1
can be done in polynomial time by Theorem 6. Therefore, we find a way to get the
exact inconsistency degree of K in P-time.

5.3 The anytime algorithm

Given a knowledge base K with |Var(K)| = n, it is natural to perform dichotomy
on n to search for the maximal size of S ∈ Var(K) such that K is S-4 satisfiable.
However, we will see, in this section firstly, that it leads to intractability from the
beginning. To avoid this, subsequently, we give an anytime algorithm which can
return approximating inconsistency degrees in polynomial time.

By the analysis given after Theorem 7 and Theorem 8, we know that in the
worst case, given 0 6 w 6 n, it takes O(

(
n
w

)|K|w2w) time to get an upper (resp. a
lower) bounding value 1 − w

|Var(K)| (resp. 1 − w−1
|Var(K)| ). By Fermat’s Lemma5, the

maximal value of O(
(

n
w

)|K|w2w) is near w = d 2n+1
3 e when n is big enough. It means

that to do dichotomy directly on size n
2 will be of high complexity. To get upper and

lower bounding values in P-time instead of going to intractable computation directly,
we propose Algorithm 1, which consists of two stages: The first one is to localize
an interval [l1, l2] that contains the inconsistency degree (line 1-8), while returning
upper and lower bounding values in P-time; The second one is to pursue more accurate
approximations within the interval [l1, l2] by binary search (line 9-17).

Algorithm 1 is an anytime algorithm that can be interrupted at any time and
returns a pair of upper and lower bounding values of the exact inconsistency degree.
It has five parameters: the knowledge base K we are interested in; the precision
threshold ε which is used to control the precision of the returned results; the constant
M ¿ |Var(K)| to guarantee that the computation begins with tractable approxima-
tions; a pair of positive reals a, b which determines a linear function h(l2) = al2 + b

that updates the interval’s right extreme point l2 by h(l2) during the first stage (line
5). h(·) decides how to choose the sizes l to test l-4 satisfiability of K. For exam-
ple, if h(l2) = l2 + 2, line 5 updates l from i to i + 1 (suitable for ID(K) near 1);
If h(l2) = 2l2, line 5 updates l from i to 2i (suitable for ID(K) near 0.5); While if
h(l2) = 2(|Var(K)| −M), line 5 updates l by |Var(K)| −M (suitable for ID(K) near

5 V.A. Zorich, Mathematical Analysis, Springer, 2004.
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0). We remark that h(l2) can be replaced by other functions.

Algorithm 1 Approx Incons Degree(K, ε, M, a, b)
Input: KB K; precision threshold ε ∈ [0, 1[ ; constant M ¿ |Var(K)|; a, b ∈ R+

Output: Lower bound r− and upper bound r+ of ID(K)
1: r− ← 0; r+ ← 1 {Initial lower and upper bounds}
2: ε ← r+ − r−; n ← |Var(K)|; l1 ← 0; l2 ← M ; l ← d l2

2 e
3: while ε > ε and K is l-4 satisfiable do
4: r+ ← (1− l/n); ε ← r+ − r− {Update upper bound}
5: l1 ← l; l2 ← h(l2); l ← d l2

2 e {Update search interval}
6: end while
7: r− ← 1− (l − 1)/n; ε ← r+ − r−; l2 ← l

8: if ε 6 ε then return r+ and r− end if
9: while ε > ε do

10: l ← l1 + d l2−l1
2 e

11: if K is l-4 satisfiable then
12: r+ ← (1− l/n); ε ← r+ − r−; l1 ← l

13: else
14: r− ← 1− (l − 1)/n; ε ← r+ − r−; l2 ← l

15: end if
16: end while
17: return r+ and r−

Next we give detailed explanations about Algorithm 1. To guarantee that it runs
in P-time at the beginning to return approximations, we begin with a far smaller
search interval [l1, l2] = [0,M ] compared to |Var(K)|. The while block (line 3) it-
eratively tests whether the difference between upper and lower bounding values is
still lager than the precision threshold and whether K is l-satisfiable, where l = d l2

2 e.
If both yes, the upper bound r+ is updated, the testing interval becomes [l, h(l2)],
and the iteration continues; Otherwise (line 7), the lower bound r− is updated and
the search interval becomes [l1, l]. This completes the first part of the algorithm to
localize an interval. If r+− r− is already below the precision threshold, the algorithm
terminates (line 8). Otherwise, we get an interval [l1, l2] such that K is l1-4 satisfiable
and l2-4 unsatisfiable. Then the algorithm turns to the second ”while” iteration (line
9) which executes binary search within the search internal [l1, l2] found in the first
stage. If there is a subset |S| = l1 + d l2−l1

2 e such that K is S-4 satisfiable, then the
search internal shortens to the right half part of [l1, l2] (line 12), otherwise to the left
half part (line 14). During this stage, K keeps l2-4 unsatisfiable and l1-4 satisfiable
for [l1, l2]. Until r+ − r− below the precision threshold, the algorithm finishes and
returns upper and lower bounds.

Theorem 9 (Correctness of Algorithm 1). Let r+ and r− be values
computed by Algorithm 1. We have r− 6 ID(K) and r+ > ID(K). Moreover,
r+ = r− = ID(K) if ε = 0.

Proof: By analyzing Algorithm 1, r+ is updated as 1 − l/|Var(K)| only if K

is l-4 satisfiable. By Theorem 7, r+ > ID(K). Similarly, r− is updated as 1 −
(l − 1)/|Var(K)| only if K is l-4 unsatisfiable. By Theorem 8, r− 6 ID(K). Note
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that Algorithm 1 terminates only when ε 6 ε. If ε = 0, r+ − r− = ε 6 ε. So
r+ = r− = ID(K).

The following example gives a detailed illustration.

Example 5 (Example 3 contd). Let ε = 0.1, h(l2) = 2l2, and M = 4 ¿ N .
Algorithm 1 processes on K as follows:

Denote the initial search interval [l01, l
0
2] = [0, 4]. After initializations, l = 2 and

line 3 is executed. Obviously, K is S-4 satisfiable for some |S| = l (e.g. S = {p1, p2}).
So we get a newer upper bound r+ = 2N−l

2N . Meanwhile, the difference between
upper and lower bounds ε becomes 2N−l

2N > ε, and the search interval is updated as
[l11, l

1
2] = [l, 2l2] and l = 4.
Stage 1. The while iteration from line 3 is repeatedly executed with double size

increase of l each time. After c times such that 2c−1 6 N < 2c, l = 2c and K becomes
l-4 unsatisfiable. The localized interval is [2c−1, 2c]. It turns to line 7 to update the
lower bound by 1− l−1

2N . The newest upper bound is 1− 2c−2/N , so ε = 2c−2/N . If
ε 6 ε, algorithm ends by line 8. Otherwise, it turns to stage 2.

Stage 2. By dichotomy in the interval [2c−1, 2c], algorithm terminates until ε 6 ε.
Unlike Example 5, for the knowledge base in Example 4, since its inconsistency

degree is quite close to 1, it becomes S-4 satisfiable for an S such that |S| is less than a
constant M . Therefore, after the first stage of Algorithm 1 applying on this knowledge
base, the localized interval [l1, l2] is bounded by M . For such an interval, the second
stage of the algorithm runs in P-time according to Theorem 6. So Algorithm 1 is a
P-time algorithm for the knowledge base given in Example 4. However, it fails for
other knowledge bases whose inconsistency degrees are far less than 1. Fortunately,
the following proposition shows that by setting the precision threshold ε properly,
Algorithm 1 can be executed in P-time to return approximating values.

Proposition 3. Let s be an arbitrary constant independent of |K|. If ε >
1− hs(M)

2|Var(K)| , where hs(·) is s iterations of h(·), Algorithm 1 terminates in polynomial
time with the difference between upper and lower bounds less than ε (r+ − r− 6 ε).

Proof: Algorithm 1 terminates if and only if ε 6 ε. At the beginning of the
algorithm, r+ = 1, r− = 0, and ε = 1. Suppose r+ = 1 − l/|Var(K)| after the first
while block beginning line 3. At this moment, ε = r+ − r− = 1− l/|Var(K)|. It has
two cases:

• 1− l/|Var(K)| 6 ε holds such that the algorithm terminates. It is not difficult
to see that the while block (line 3) will end if l reaches to hs(M)/2 because
ε > 1− hs(M)

2|Var(K)| and ε = 1− l/|Var(K)|. Note that l = 0, dM/2e, dh(M)/2e, · · ·
in each iteration of the while block. Therefore, it takes s times of l-4 satisfiability
tests of K, each of which is P-time by Theorem 6. Because s is a constant
independent of |Var(K)|, the computation time is P-time in all.

• 1− l/|Var(K)| > ε which means that the while block runs for less than s times.
So the localized interval [l1, l2] satisfies 0 6 l2 − l1 6 hs(M)/2, that is, it is
bounded by a constant independent of |VarK|. Then the binary search in this
interval costs P-time because logarithmic times of P-time computations is still
in P-time.

In all, the algorithm terminates in P-time.
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The following proposition shows that r− and r+ computed by Algorithm 1 have
a sound semantics in terms of upper and lower bounding models defined in Definition
6.

Proposition 4. There is a lower (an upper) bounding model J′ (J′′) of K such
that IncJ′(K) = r− (IncJ′′(K) = r+).

Proof: For r+, there is an S ⊆ Σ such that K is S-4 satisfiable and r+ = 1− |S|
|Σ| .

Therefore, K has an S-4 model, written I′, and IncJ′(K) = 1− |S|
|Σ| . Obviously, I′ is

an upper bounded model and IncJ′(K) = r+.
For r−, if r− = 1 − l′−1

|Var(K)| , then by Algorithm 1, K is S′-unsatisfiable for all
l′-size subsets S′ and there is at least one S′′ such that |S′′| = l′ − 1 and K is S′′-4
satisfiable. So K has an S′′-4 model, written I′′. By the proof of Theorem 8, we know
that for any preferred model I of K, |Conflict(I,K)| > |Var(K)| − |S′′|, then I′′ is a
lower bounded model of K and IncI′′(K) = 1− |S′|−1

|Σ| = r−.
Summing up, we have achieved an anytime algorithm for approximately comput-

ing inconsistency degrees which is:

• computationally tractable: Each approximating step can be done in polynomial
time if |S| is limited by a logarithmic function for upper bounds (Theorems 6
and 7) and by a constant function for lower bounds (Theorems 6 and 8).

• dual and semantical well-founded: The accurate inconsistency degree is approx-
imated both from above and from below (Theorem 9), corresponding to incon-
sistency degrees of some upper and lower bounding models of K (Proposition
4).

• convergent: More computation resource available, more precise values returned
(Theorems 7 and 8). It always converges to the accurate value if there is no
limitation of computation resource (Theorem 9) and terminates in polynomial
time for special knowledge bases (Proposition 2).

Proposition 5. Given two sets S and S′ satisfying S ⊆ S′ ⊆ P, if a theory K
is S-4 unsatisfiable, then it is S′-4 unsatisfiable.

Proof: Assume that K is S-4 unsatisfiable and that there exists an S′-4 interpre-
tation IS′ satisfying K. We construct an S-4 interpretation IS as follows. For each
propositional letter p ∈ P:

pIS =

{
B if p ∈ S′ \ S,

pIS′ otherwise.

Obviously, IS is an S-4 model of K, a contradiction.
Proposition 5 says that if we have known that K is S-4 unsatisfiable, then there’s

no necessity to test its S′-4 satisfiability for S′ ⊂ S. By this proposition, we can get a
truncation strategy to limit the search space in the implementation of our algorithm
discussed in the next section:

Definition 7 (Truncation Strategy). For any knowledge base K, if an
S ∈ Var(K) is found which makes K being S-4 satisfiable, then all supersets S′ of S

are pruned.
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6 Evaluation

Our algorithm has been implemented in Java using a computer with Intel E7300
2.66G, 4G, Windows Server 2008. Algorithm 1 gives a general framework to approx-
imate inconsistency degrees from above and below. In our implementation, we set
M = 2, h(l2) = l2 + 2. That is, the first while loop (see line 3) keeps testing l-4
satisfiability of K from l = i to i+1. So the interval [l1, l2] localized in the first stage
of the algorithm satisfies l2 = l1 + 1 and the second binary search is not necessary.
According to our analysis in Section 5, this avoids direct binary search which needs
to test all n!

(n/2)!(n/2)! subsets of Var(K), where n = |Var(K)|.
There are tow main sources of complexity to compute approximating inconsis-

tency degrees: the complexities of S-4 satisfiability and of search space. The S-4
satisfiability that we implemented is based on the reduction given in Lemma 1 and
the tractable algorithm for 4-satisfiability in Ref.[20]. Our experiments told us that
search space could heavily affect efficiency. So we carefully designed a truncation
strategy to limit the search space based on the monotonicity of S-4 unsatisfiability.
That is, if we have found an S such that K is S-4 unsatisfiable, then we can prune all
supersets S′ of S which makes K S′-4 unsatisfiable. We implemented this strategy in
breadth-first search on the binomial tree[21,22] of subsets of Var(K).

Figure 1. Evaluation results over KBs in Example 3 with |K| = N2 + 2N and |Var(K)| = 2N

for N = 5, 7, 8, 9, 10.

Figure 1 shows the evaluation results over knowledge bases6 in Example 3 with
|K| = N2 + 2N and |Var(k)| = 2N for N = 5, 7, 8, 9, 10. The left part of the
figure shows how the preset precision threshold ε affects the run time performance
of our algorithm: the smaller ε is, the longer it executes. If ε > 0.7, the algorithm
terminated easily (at most 18.028s for N = 9 and much less for N < 9). The
quality of the approximations at different time points is shown on the right part of
the figure. The decreasing (resp. increasing) curves represent upper (resp. lower)
bounds for N = 5, 7, 10, respectively. Note that the inconsistency degrees of all the
three knowledge bases are 0.5.

For large knowledge bases, it is time-consuming to compute the exact inconsis-
tency degrees. For example, for N = 10, our algorithm took 239.935s to get the
accurate inconsistency degree. In contrast, by costing much less time, approximating

6 We use instances of Example 3 because they are the running examples through the paper and meet

the worst cases of the algorithm (e.g. the truncation strategy discussed later cannot be applied). We

want to show the performance of our algorithm in its worst case.



18 International Journal of Software and Informatics, Vol.4, No.1, March 2010

values (upper bounds for these examples) can provide a good estimation of the exact
value and are much easier to compute. For example, when N = 10, the algorithm
told us that the inconsistency degree is less than 0.8 at 3.9s; and when N = 5, we
got the upper bound 0.6 at 0.152s. Note that in these experiments, the lower bounds
were updated slowly. In fact, the exact inconsistency degrees were obtained as soon
as the first nonzero lower bounding values were returned. This is because we set
M = 2, h(l2) = l2 + 2 in our implementation. If we set M and h(·) differently, the
results will be changed, as shown in Example 3 in Section 5.

We need to point out that our truncation strategy cannot be applied to the test
data used in the experiments because no subsets can be pruned. Therefore, although
our experiments show the benefits of the approximations, our algorithm can increase
significantly when the truncation strategy is applicable and if we carefully set M and
h(·). Take {pi,¬pj | 0 6 i, j < 20, j is odd} for example, our optimized algorithm run
less than 1s whilst it run over 5min without the truncation strategy.

7 Conclusion

In this paper, we investigated computational aspects of the inconsistency degree.
We showed that the complexities of several decision problems about inconsistency
degree are high in general. To compute inconsistency degrees more practically, we
proposed an general framework of an anytime algorithm which is computationally
tractable, dual and semantical well-founded, and improvable and convergent. The
experimental results of our implementation show that computing approximating in-
consistency degrees is much faster than computing the exact inconsistency degrees in
general. The approximating inconsistency degrees can be useful in many applications,
such as knowledge base evaluation and merging inconsistent knowledge bases. We will
further study on the real applications of approximating inconsistency degrees in the
future work.
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Appendix. Four-valued Logic

Four-valued logic is based on the idea of having four truth values, instead of the
classical two. The four truth values stand for true, false, unknown (or undefined)
and both (or overdefined, contradictory). We use the symbols t, f, N, B, respectively,
for these truth values, and the set of these four truth values is denoted by FOUR.
The truth value B stands for contradictory information, hence four-valued logic lends
itself to dealing with inconsistent knowledge. The value B thus can be understood to
stand for true and false, while N stands for neither true nor false, i.e. for the absence
of any information about truth or falsity.

Syntactically, four-valued logic is very similar to classical logic. Care has to be
taken, however, in defining meaningful notions of implication, as there are several
ways to do this. Indeed, there are three major notions of implication in the litera-
ture, namely the material implication 7→, the internal implication ⊃, and the strong
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implication →, which are discussed in detail in Refs.[16, 23]. Thus the set of logical
connectives allowed in four-valued logic is {¬,∨,∧, 7→,⊃,→}.

Four-valued interpretations for formulae (i.e. 4-interpretations) are obviously
mappings from formulae to (the set of four) truth values, respecting the truth ta-
bles for the logical connectives, as detailed in Table 1

Table 1 Truth Table for 4-valued Connectives

α f f f f t t t t B B B B N N N N

β f t B N f t B N f t B N f t B N

¬α t t t t f f f f B B B B N N N

α ∧ β f f f f f t B N f B B f f N f N

α ∨ β f t B N t t t t B t B t N t t N

α 7→ β t t t t f t B N B t B t N t t N

α ⊃ β t t t t f t B N f t B N t t t t

α → β t t t t f t f N f t B N N t N t

Four-valued models (4-models) are defined in the obvious way, as follows, where
t and B are the designated truth values.

Definition 8. Let I be a 4-interpretation, let Σ be a theory (i.e. set of formulae)
and let ϕ be a formula in four-valued logic. Then we call that I is a 4-model of ϕ if
and only if I(ϕ) ∈ {t, B}; We say that I is a 4-model of Σ if and only if I is a 4-model
of each formula in Σ; And we name that Σ four-valued entails ϕ, written Σ |=4 ϕ, if
and only if every 4-model of Σ is a 4-model of ϕ.

Proposition 6. We note the following general properties.

• The language L = {¬,∨,∧,⊃, N,B} is functional complete for the set FOUR
of truth values, i.e. every function from FOURn to FOUR is representable by
some formula in L [16, Theorem 12].

• Any formula containing only connectives from {¬,∨,∧,⊃} always has a four-
valued model.

Some general remarks about the different notions of implication are in order. The
basic rationales behind them are the following: Material implication can be defined
by means of negation and disjunction as known from classical logic. However, it does
not satisfy Modus Ponens or the deduction theorem, and is thus of limited use as
an implication in the intuitive sense. Internal implication satisfies Modus Ponens
and the deduction theorem, but cannot be defined by means of other connectives.
Furthermore, internal implication does not satisfy contraposition. Strong implication
is stronger than internal implication, in that it additionally satisfies contraposition.
Indeed, an alternative view on the truth tables for the implication connectives is as
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follows.

ϕ 7→ ψ is definable as ¬ϕ ∨ ψ. (Material Implication)

ϕ ⊃ ψ evaluates to

{
ψ if ϕ ∈ {t, B}
t if ϕ ∈ {f,N}

(Internal Implication)

ϕ → ψ is definable as (ϕ ⊃ ψ) ∧ (¬ψ ⊃ ¬ϕ) (Strong Implication)

Further properties of the implication connectives are summarized in the following
proposition (as shown in Ref.[16, Corollary 9] and Ref.[23]).

Proposition 7[16]. The following claims hold, where Γ is a theory and ψ, φ are
formulae.

• Internal implication is not definable in terms of the connectives ¬,∨,∧.

• Γ, ψ |=4 φ iff Γ |=4 ψ ⊃ φ.

• If Γ |=4 ψ and Γ |=4 ψ ⊃ φ then Γ |=4 φ.

• ψ → φ implies that ¬φ → ¬ψ.

The other partial order defined on the four truth values {t, f, B, N}, denote <k,
is to reflect differences in the amount of knowledge or information that each truth
value exhibits: N <k t <k B,N <k f <k B, t 6<k f . That is, ({t, f, B, N}, <k) is
a lattice where <k is its minimal element N , its maximal element B, and t, f are
incomparable. The truth operators ∧, ∨, and ¬ are monotone with respect to <k.
For two four-valued interpretations I, I ′, we call I <k I ′ if and only if pI <k pI′ for
any propositional letter p in the considered language.

Proposition 8[16]. For any given four-valued interpretations I, I ′ and any
formula φ containing only connections from {∨,∧,¬,→}, suppose I <k I ′, then
φI <k φI′ . Moreover, if I |=4 φ, I ′ |=4 φ.


