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Abstract. Currently, the variety of expressive extensions and different
semantics created for logic programs with negation is diverse and hetero-
geneous, and there is a lack of comprehensive comparative studies which
map out the multitude of perspectives in a uniform way. Most recently,
however, new methodologies have been proposed which allow one to de-
rive uniform characterizations of different declarative semantics for logic
programs with negation. In this paper, we study the relationship between
two of these approaches, namely the level mapping characterizations due
to [17], and the selector generated models due to [24]. We will show that
the latter can be captured by means of the former, thereby supporting
the claim that level mappings provide a very flexible framework which is
applicable to very diversely defined semantics.

1 Introduction

Applications of logic programming in intelligent systems, knowledge manage-
ment, semantic web, and elsewhere, necessitate the extension of the core Horn
paradigm by expressive features such as non-monotonic negation, disjunctive
consequences, fuzziness, dynamic updating, aggregates, etc. As logic program-
ming is a declarative paradigm, it is of vital importance to provide model-
theoretic semantics for such extensions. This is usually done, but rarely in a
systematic way. Often, an existing semantics for a related syntactic paradigm
is transferred to an analogous semantics on the new paradigm, guided not by
systematic studies or results, but rather by the problem domain considered and
by intuitive insights into the knowledge modelling aspects.

As a result of this, there is a plethora of different proposals for semantics
which are somehow related, but whose exact relationships are rarely studied. The
lack of reconciliating work makes it difficult for students and young researcher to
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obtain a coherent picture of the subject area, and is a hindrance for a systematic
advance within the research community.

In order to address the need for charting the existing semantic landscape,
a methodology has been proposed in [17] for characterizing different semantics
in a uniform way. The approach is very flexible and allows to cast semantics of
very different origin and style into uniform characterizations using level map-
pings, i.e. mappings from atoms to ordinals, in the spirit of the definition of
acceptable programs [2], the use of stratification [1,22] and a characterization
of stable models by Fages [8]. These characterizations display syntactic and se-
mantic dependencies between language elements by means of the preorders on
ground atoms induced by the level mappings, and thus allow inspection of and
comparison between different semantics, as exhibited in [14,17].

For the syntactically restricted class of normal logic programs, the most im-
portant semantics — and some others — have already been characterized and
compared, and this was spelled out in [14,17]. Due to the inherent flexibility
of the framework, it is clear that studies of extended syntax are also possible,
but have so far not been carried out. In this paper, we will present a non-trivial
technical result which provides a first step towards a comprehensive comparative
study of different semantics for logic programs under extended syntax.

More precisely, among the many proposals for semantics for logic programs
under extended syntax we will study a very general approach due to Schwarz
[23,24]. In this framework, arbitrary formulae are allowed in rule heads and
bodies, and it encompasses the inflationary semantics [18], the stable semantics
for normal and disjunctive programs [11,21], and the stable generated semantics
[13]. It can itself be understood as a unifying framework for different semantics.

In this paper, we will provide a single theorem – and some corollaries thereof
– which gives a characterization of general selector generated models by means
of level mappings. It thus provides a link between these two frameworks, and
implicitly yields level mapping characterizations of the semantics encompassed
by the selector generated approach.

The plan of the paper is as follows. In Section 2 we will fix preliminaries and
notation. In Section 3 we will review selector generated models as introduced in
[23,24], and in Section 4 we recall main notions and results about level mapping
characterizations as studied in [14,17]. In Section 5, we present our main result,
Theorem 5, which gives a level-mapping characterization of general selector gen-
erated models. In Section 6 we study corollaries from Theorem 5 concerning
specific cases of interest encompassed by the result. Section 7 presents some
related work. We eventually conclude and discuss further work in Section 8.

This paper is a substantially revised and extended version of [16].

2 Preliminaries

Throughout the paper, we will consider a language L of propositional logic
over some set of propositional variables, or atoms, A, and connectives Σcl =



Table 1. Notions of specific types of rules.

rule is called set condition

definite LP body(r) ∈ Lg ({∧, t}, A) and head(r) ∈ A

normal NLP body(r) ∈ Lg ({∧, t}, Lit (A)) and head(r) ∈ A

head-atomic HALP body(r) ∈ Lg
(

Σcl, A
)

and head(r) ∈ A

pos. head disj. DLP+ body(r) ∈ Lg ({∧, t}, Lit (A)) and head(r) ∈ Lg ({∨}, A)
disjunctive DLP body(r) ∈ Lg ({∧, t}, Lit (A)), head(r) ∈ Lg ({∨, f}, Lit (A))
head-disjunctive HDLP body(r) ∈ Lg

(

Σcl, A
)

, head(r) ∈ Lg ({∨, f}, Lit (A))
generalized GLP no condition

{¬,∨,∧, t, f}, as usual. A rule r is a pair of formulae from L denoted by ϕ⇒ ψ.
ϕ is called the body of the rule, denoted by body(r), and ψ is called the head of
the rule, denoted by head(r). A program is a set of rules.1 A literal is an atom
or a negated atom, and Lit (A) denotes the set of all literals in L. For a set of
connectives C ⊆ Σcl we denote by Lg (C,A) the set of all formulae over L in
which only connectives from C occur.

Further terminology is introduced in Table 1. The abbreviations in the second
column denote the sets of all rules with the corresponding property. A program
containing only definite (normal, etc.) rules is called definite (normal, etc.).
Programs not containing the negation symbol ¬ are called positive. Facts are
rules r where body(r) = t, denoted by ⇒ head(r).

The base BP is the set of all atoms occurring in a program P . A two-valued
interpretation of a program P is represented by a subset of BP , as usual. By IP

we denote the set of all interpretations of P . It is a complete lattice with respect
to the subset ordering ⊆. For an interpretation I ∈ IP , we define ↑ I = {J ∈
IP | I ⊆ J} and ↓ I = {J ∈ IP | J ⊆ I}. Sets of the form [I, J ] = ↑ I ∩ ↓ J are
called intervals of interpretations.

The model relation M |= ϕ for an interpretation M and a propositional
formula ϕ is defined as usual in propositional logic, and Mod(ϕ) denotes the set
of all models of ϕ. Two formulae ϕ and ψ are logically equivalent, written ϕ ≡ ψ,
iff Mod(ϕ) = Mod(ψ).

A formula ϕ is satisfied by a set J ⊆ IP of interpretations if each interpre-
tation J ∈ J is a model of ϕ. For a program P , a set J ⊆ IP of interpretations
determines the set of all rules which fire under J, formally fire(P,J) = {r ∈ P |
∀J ∈ J : J |= body(r)}. An interpretation M is called a model of a rule r (or
satisfies r) if M is a model of the formula ¬body(r)∨head(r). An interpretation
M is a model of a program P if it satisfies each rule in P .

For conjunctions or disjunctions ϕ of literals, ϕ+ denotes the set of all atoms
occurring positively in ϕ, and ϕ− contains all atoms that occur negated in ϕ. For

1 Note that infinite sets of rules are allowed. This is important because it means that
the notion of program encompasses first-order logic programs with function symbols,
as they can be transformed into (infinite) propositional programs by grounding, as
usual.



instance, for the formula ϕ = (a ∧ ¬b ∧ ¬a) we have ϕ+ = {a} and ϕ− = {a, b}.
In heads ϕ consisting only of disjunctions of literals, we always assume without
loss of generality that ϕ+ ∩ ϕ− = ∅.

If ϕ is a conjunction of literals, we abbreviate M |=
∧

a∈ϕ+ a (i.e. ϕ+ ⊆ M)

by M |= ϕ+, and M |=
∧

a∈ϕ− ¬a (i.e. ϕ− ∩ M = ∅) by M |= ϕ−, abusing

notation. If ϕ is a disjunction of literals, we write M |= ϕ+ for M |=
∨

a∈ϕ+ a

(i.e. M ∩ ϕ+ 6= ∅), and M |= ϕ− for M |=
∨

a∈ϕ− ¬a (i.e. ϕ− 6⊆M).
By iterative application of rules from a program P ⊆ GLP starting in the

least interpretation ∅ ∈ IP , we can create monotonically increasing (transfinite)
sequences of interpretations of the program P , as follows.

Definition 1. A (transfinite) sequence C of length α of interpretations of a
program P ⊆ GLP is called a P -chain iff

(C0) C0 = ∅,
(Cβ) Cβ+1 ∈ Min(↑Cβ ∩ Mod(head(Qβ))) for all β with β + 1 < α and some

set of rules Qβ ⊆ P , and
(Cλ) Cλ =

⋃

{Cβ | β < λ} for all limit ordinals λ < α.

CP denotes the collection of all P -chains.

Note that all P -chains increase monotonically with respect to ⊆.
In the proof of Theorem 5, we will make use of the following straightforward

lemma from [24].

Lemma 1. For any set of interpretations J ⊆ IP and any interpretation K ∈ IP

we have Min(J ∩ ↓K) = Min(J) ∩ ↓K. ⊓⊔

3 Selector generated models

In [23,24], a framework for defining declarative semantics of generalized logic
programs was introduced, which encompasses several other semantics, as already
mentioned in the introduction. Parametrization within this framework is done
via so-called selector functions, defined as follows.

Definition 2. A selector is a function Sel : CP × IP → 2IP , satisfying ∅ 6=
Sel(C, I) ⊆ [I, sup(C)] for all P -chains C and each interpretation I ∈ ↓ sup(C).

Example 1. In this paper, we will have a closer look at the following selectors.

lower bound selector Sell(C, I) = {I}
lower and upper bound selector Sellu(C, I) = {I, sup(C)}
interval selector Seli(C, I) = [I, sup(C)]
chain selector Selc(C, I) = [I, sup(C)] ∩ C

We use selectors Sel to define nondeterministic successor functions ΩP on
IP , as follows.



Definition 3. Given a selector Sel : CP × IP → 2IP and a program P , the
function ΩP : (CP × IP → 2IP ) × CP × IP → 2IP is defined by

ΩP (Sel, C, I) = Min ([I, sup (C)] ∩ Mod (head (fire (P, Sel (C, I))))) .

ΩP (Sel, C, ·) simulates a step in a reasonig process guided by P with the
goal to achieve the interpretation sup(C) along a chain C of interpretations.
All rules whose bodies are satisfied in all interpretations chosen by Sel(C, I) are
applied simultaneously to construct potential successor interpretations of I. To
keep ΩP (Sel, C, ·) monotonic in the last argument, we discard all interpretations
J where J ⊂ I or sup(C) ⊂ J and collect the minimal among all remaining
interpretations in ΩP (Sel, C, I).

With the first two arguments (the selector Sel and the chain C) fixed, the
function ΩP (Sel, C, I) can be understood as a nondeterministic consequence op-
erator. Iteration of the function ΩP (Sel, C, ·) from the least interpretation ∅
creates sequences of interpretations. This leads to the following definition of
(P,M, Sel)-chains.

Definition 4. A (P,M, Sel)-chain is a P -chain satisfying

(C sup) M = sup(C) and
(CβSel) Cβ+1 ∈ ΩP (Sel, C, Cβ) for all β, where β+ 1 < κ and κ is the length of

the transfinite sequence C.

Thus, (P,M, Sel)-chains are monotonically increasing sequences C of inter-
pretations of P , that reproduce themselves by iterating ΩP . Note that this def-
inition is non-constructive.

The main concept of the selector semantics is fixed in the following definition.

Definition 5. A model M of a program P ⊆ GLP is Sel-generated if and only
if there exists a (P,M, Sel)-chain C. The Sel-semantics of the program P is the
set ModSel(P ) of all Sel-generated models of P .

Example 2. The program P consisting of the rules

⇒ a (1)

a⇒ b (2)

(a ∨ ¬c) ∧ (c ∨ ¬a) ⇒ c (3)

has the only Sell-generated model {a, b, c}, namely via the chain C1 = (∅
1,3
→

{a, c}
2
→ {a, b, c})), where the rules applied in each step are denoted above

the arrows. {a, b} and {a, b, c} are Sellu-generated (and Selc-generated) models,

namlely via the chains C2 = (∅
1
→ {a}

2
→ {a, b}) and C1). {a, b} is the only

Seli-generated model of P , namely via C2.

Some properties of semantics generated by the selectors in Example 1 were
studied in [23,24]. For all ∗ ∈ {l, lu, i, c}, we abbreviate ModSel∗ by Mod∗(P ) (for
instance ModSellu by Modlu(P )). In Section 6, we will make use of the following
results.



Theorem 1 ([24]).

1. For definite programs P ⊆ LP, the unique element contained in Modl(P ) =
Modlu(P ) = Modc(P ) = Modi(P ) is the least model of P .

2. For normal programs P ⊆ NLP, the unique element of Modl(P ) is the infla-
tionary model of P (as introduced in [18]).

3. For normal programs P ⊆ NLP, the set Modlu(P ) = Modc(P ) = Modi(P )
contains exactly all stable models of P (as defined in [11]).

4. For positive head disjunctive programs P ⊆ DLP+, the minimal elements
in Modlu(P ) = Modc(P ) = Modi(P ) are exactly all stable models of P (as
defined in [21]), but for generalized programs P ⊆ GLP, the sets Modlu(P ),
Modc(P ), and Modi(P ) may differ.

5. For generalized programs P ⊆ GLP, Modi(P ) is the set of stable generated
models of P (as defined in [13]). ⊓⊔

Theorem 1 shows that the framework of selector semantics covers some of
the most important declarative semantics for normal logic programs. Further
characterizations of semantics can be found in [24], where the approach has
also been lifted to many-valued logics and corresponding semantics, e.g. well-
founded and paraconsistent semantics. Selector generated models thus provide
a consistent unifying framework which also allows to derive natural extension of
known or new semantics to generalized logic programs and enables systematic
comparisons of new and known semantics.

4 Level mapping characterizations

In [14,17], a uniform approach to different semantics for logic programs was given
which has been developed independently to that of selector generated models.
It is based on the notion of level mapping, as follows.

Definition 6. A level mapping for a logic program P ⊆ GLP is a function
l : BP → α, where α is an ordinal.2

The general goals of level characterizations of semantics are similar to those
for studying selector generated models: to obtain a unifying framework which
encompasses different semantics, in order to make them comparable, to recon-
cile the many heterogeneous approaches to logic programming semantics, and to
provide general guidance for further developments in the field. In order to dis-
play the style of level-mapping characterizations for semantics, we recall some
examples which we will further discuss later on.

Theorem 2 ([17]). Every definite program P ⊆ LP has exactly one model M ,
such that there exists a level mapping l : BP → α satisfying

2 Note that transfinite ordinals are needed in order to treat infinite programs. Cf. also
Footnote 1.



(Fd) for every atom a ∈ M there exists a rule
∧

b∈B b ⇒ a ∈ P such that
B ⊆M and max {l(b) | b ∈ B} < l(a).

Furthermore, M coincides with the least model of P . ⊓⊔

Example 3. Let P be the ground instantiation of the program consisting of the
rules

⇒ p(0)

p(X) ⇒ p(s(X))

where X denotes a variable and 0 a constant symbol. Write sn(0) for the term
s(. . . s(0) . . . ) in which the symbol s appears n times. Then {p(sn(0)) | n ∈ N}
is the least model of P . A level mapping corresponding to Theorem 2 is given
by l(p(sn(0))) = n for all n ∈ N.

The following theorem is actually due to Fages.

Theorem 3 ([8]). Let P be a normal program and M be a model for P . Then
M is a stable model of P iff there exists a level mapping l : BP → α satisfying

(Fs) for each atom a ∈M there exists a rule r ∈ P with head(r) = a, body(r)+ ⊆
M , body(r)− ∩M = ∅, and max {l(b) | b ∈ body(r)+} < l(a). ⊓⊔

Example 4. Let P be the program consisting of the following rules.

q ⇒ s

¬p⇒ q

p⇒ p

For the stable model {s, q} of P a level mapping l corresponding to Theorem 3
satisfies l(q) = 0 and l(s) = 1, while l(p) can be an arbitrary value.

It is evident, that among the level mappings satisfying the respective condi-
tions in Theorems 2 and 3, there exist pointwise minimal ones.

The paper [17], where level mapping characterizations were originally intro-
duced, covers further semantics including the well-founded [25] and the Fitting
semantics [9]. It also provides a general proof scheme for obtaining level mapping
characterizations.

The following result and example are taken from [15].

Theorem 4. Let P be a positive head disjunctive program. Then a model M of
P is a disjunctive stable model of P if and only if there exists a total level mapping
l : BP → α such that for each a ∈M there exists a rule r in P with body(r)

+ ⊆
M , body(r)

−∩M = ∅, head(r)
+∩M = {a} and max {l(b) | b ∈ body(r)+} < l(a).

⊓⊔



Example 5. Let P be the following disjunctive program:

¬c ⇒ a ∨ b

¬a ∧ ¬b⇒ c

a⇒ d ∨ e

d ∧ ¬e⇒ f

Program P has the four (disjunctive) stable models {b}, {c}, {a, d, f} and {a, e}.
Corresponding level mappings as in Theorem 4 are l(a) = l(b) = l(c) = l(d) =
l(e) = l(f) = 0 for {b} and {c}, l(a) = l(b) = l(c) = l(e) = 0, l(d) = 1,l(f) = 2
for {a, d, f} and l(a) = l(b) = l(c) = l(d) = l(f) = 0, l(e) = 1 for {a, e}.

5 Selector generated models via level mappings

We set out to prove a general theorem which characterizes selector generated
models by means of level mappings, in the style of the results displayed in Section
4. The following notion will ease notation considerably.

Definition 7. For a level mapping l : BP → α for a program P ⊆ GLP and an
interpretation M ⊆ BP , the elements of the (transfinite) sequence Cl,M consist-
ing of interpretations of P are for all β < α defined by

C
l,M
β = {a ∈M | l(a) < β} = M ∩

⋃

γ<β

l−1(γ).

Remark 1. Definition 7 implies that

1. the (transfinite) sequence Cl,M is monotonically increasing,

2. C
l,M
0 = ∅, and

3. M =
⋃

β<α C
l,M
β = supCl,M .

The following theorem provides a translation between the definition of selector
semantics and a level mapping characterization. This theorem and its general-
ization in Corollary 1 are the main results of this paper.

Theorem 5. Let P ⊆ HDLP be a head disjunctive program and M ∈ IP . Then
M is a Sel-generated model of P iff there exists a level mapping l : BP → α

satisfying the following properties.

(L1) M = sup
(

Cl,M
)

∈ Mod (P ).
(L2) For all β with β + 1 < α we have

C
l,M
β+1

\ C
l,M
β ∈ Min

{

J ∈ IP

∣

∣

∣

∣

J |= head
(

R
(

C
l,M
β , J

))+
}

, where

R
(

C
l,M
β , J

)

=

{

r ∈ fire
(

P, Sel
(

Cl,M ,C
l,M
β

))

∣

∣

∣

∣

∣

C
l,M
β 6|= head (r)+ and

J ∪ C
l,M
β 6|= head (r)

−

}

.



(L3) For all limit ordinals λ < α we have C
l,M
λ =

⋃

β<λ C
l,M
β .

Example 6. For the program in Example 2 level mappings corresponding to
Theorem 5 satisfy l1(a) = l1(b) = 0 and l1(b) = for Sell, and l2(a) = 0,
l2(b) = l2(c) = 1 for Seli. For the two Sellu-generated models the level map-
pings l1 respectively l2 can also be used.

Remark 2. As P is a head disjunctive program, we have C
l,M
β 6|= head (r)

+
iff

head (r)+ ∩ C
l,M
β = ∅, and J ∪ C

l,M
β 6|= head (r)− iff head (r)− ⊆ J ∪ C

l,M
β , thus

R
(

C
l,M
β , J

)

=

{

r ∈ fire
(

P, Sel
(

Cl,M ,C
l,M
β

))

∣

∣

∣

∣

∣

head (r)
+ ∩ C

l,M
β = ∅ and

head (r)
− ⊆ J ∪ C

l,M
β

}

.

Also note that for every rule r ∈ fire
(

P, Sel
(

Cl,M ,C
l,M
β

))

\ R
(

C
l,M
β , J

)

, we

have ↓
(

C
l,M
β ∪ J

)

⊆ Mod
(

head (r)
−

)

or ↑C
l,M
β ⊆ Mod

(

head (r)
+
)

. Thus all

of these rules are satisfied in the interval
[

C
l,M
β ,C

l,M
β ∪ J

]

.

Proof. (of Theorem 5)
First assume that M is a Sel-generated model of P , and recall that by Def-

inition 5, an interpretation M is a Sel-generated model of P iff there exists a
(P,M, Sel)-chain C. Let α be the length of C. l(a) = min {β | a ∈ Cβ} − 1 for
all a ∈ BP . We show that this function l satisfies (L1),(L2) and (L3).

We first show Cl,M = C for the sequence Cl,M determined by l and M ac-
cording to Definition 7. From Remark 1, we know C

l,M
0 = ∅ and sup

(

Cl,M
)

=
M . Moreover, for each β < α, we have by definition of l and Definition 7
C

l,M
β = {a ∈M | l (a) < β} = {a ∈M | min {γ | a ∈ Cγ} − 1 < β} = Cβ . For

all limit ordinals λ < α we have C
l,M
λ =

⋃

β<λ C
l,M
β =

⋃

β<λCβ = Cλ. This

proves C = Cl,M . Since C is a (P,M, Sel)-chain, it satisfies (L1) and (L3).
It remains to show that C satisfies (L2). For all β with β + 1 < α, we show

(a) Cβ+1 \ Cβ |= head (R (Cβ , Cβ+1 \ Cβ))
+

for

R (Cβ , Cβ+1 \ Cβ) =

{

r ∈ fire (P, Sel (C,Cβ))

∣

∣

∣

∣

Cβ 6|= head (r)+ and

Cβ ∪ Cβ+1 \ Cβ 6|= head (r)
−

}

=
{

r ∈ fire (P, Sel (C,Cβ)) | Cβ ∩ head (r)+ = ∅ and head (r)− ⊆ Cβ+1

}

(b) J ⊆ Cβ+1 \Cβ and J |= head (R (Cβ , J))+ implies J = Cβ+1 \ Cβ .

We know Cβ+1 |= head (fire (P, Sel (C,Cβ))) since C is a (P,M, Sel)-chain. For
each r ∈ R (Cβ , Cβ+1 \ Cβ), by R (Cβ , Cβ+1 \ Cβ) ⊆ fire (P, Sel (C,Cβ)) we have
Cβ+1 |= head (r). By Remark 2, the set R (Cβ , Cβ+1 \ Cβ) does not contain
any rule r ∈ fire (P, Sel (C,Cβ)), where Cβ+1 |= head (r) is satisfied by Cβ+1 |=

head (r)
−

or Cβ |= head (r)
+
, i.e. head (r)

+ ∩ Cβ 6= ∅. Hence all rules r from
R (Cβ , Cβ+1 \ Cβ) ⊆ fire (P, Sel (C,Cβ)) satisfy Cβ |= head (r) by Cβ+1 \ Cβ ∩

head (r)+ 6= ∅, i.e. Cβ+1 \ Cβ |= head (r)+. This proves (a).



Now assume J ⊆ Cβ+1 \ Cβ and J |= head (R (Cβ , J))+. We show J ∪ Cβ ⊇
Cβ+1 which implies J ⊇ Cβ+1 \ Cβ . First note that J ∪ Cβ ⊆ [Cβ ,M ] ∩
Mod (head (fire (P, Sel (C,Cβ)))). Indeed J ∪Cβ ∈ ↑Cβ is obvious and J ∪Cβ ∈
↓M is implied by J ⊆ Cβ+1 \Cβ , i.e. J ∪Cβ ⊆ Cβ+1, and Cβ+1 ⊆M by mono-
tonicity of the chain C. Now we show J ∪Cβ |= head (fire (P, Sel (C,Cβ))). Note
first that all rules r in the set fire (P, Sel (C,Cβ)) satisfy one of the following
conditions.

1. Cβ ∩ head (r)
+ 6= ∅ and therefore J ∪ Cβ |= head (r) by Cβ ⊆ J ∪ Cβ or

2. J ∪Cβ |= head (r)− and therefore J ∪Cβ |= head (r) or

3. none of 1. or 2. Then r ∈ R (Cβ , J) and due to J ∈ Mod
(

head (R (Cβ , J))
+
)

we have J ∪ Cβ |= head (r)
+

and thus J ∪ Cβ |= head (r).

We can now conclude J ∪ Cβ ⊇ Cβ+1 because Cβ+1 is a minimal element of
[Cβ ,M ] ∩ Mod (head (fire (P, Sel (C,Cβ)))), which proves (b). Together, we have

shown that Cβ+1\Cβ is a minimal element in
{

J ∈ IP | J |= head (R (Cβ , J))
+

}

,

which shows that the level mapping l satisfies (L2). This finishes the first part
of the proof.

For the converse, we show that for every level mapping l for a program P

and an interpretation M satisfying (L1),(L2) and (L3) the sequence Cl,M is a
(P,M, Sel)-chain. Let l : BP → α be a level mapping and M an interpretation
for a program P . According to Definition 4, we show that the the sequence Cl,M

satisfies:

(C0) C
l,M
0 = ∅ (holds obviously by Remark 1.),

(Cλ) C
l,M
λ =

⋃

{

C
l,M
β | β < λ

}

for all limit ordinals λ < α,

(C sup) M =
⋃

{

C
l,M
β | β < α

}

= supCl,M and

(CβSel) C
l,M
β+1

∈ ΩP

(

Sel,Cl,M ,C
l,M
β

)

for all β with β + 1 < α.

By Remark 1 we know that Cl,M increases monotonically. By condition (L1) we
have M = sup

(

Cl,M
)

∈ Mod (P ), i.e. (C sup), and condition (L3) implies (Cλ).
It remains to show (CβSel), i.e. for all β with β + 1 < α holds

C
l,M
β+1

∈ Min
([

C
l,M
β ,M

]

∩ M
)

for M = Mod
(

head
(

fire
(

P, Sel
(

Cl,M ,C
l,M
β

))))

.

By Lemma 1 and monotonicity of Cl,M (i.e. C
l,M
β+1

∈ ↓M), it suffices to show

C
l,M
β+1

∈ Min
(

↑C
l,M
β ∩M

)

. We proceed in two steps:

(a) C
l,M
β+1

∈ ↑C
l,M
β ∩ M (i.e. C

l,M
β+1

∈ M by monotonicity of Cl,M ).

(b) J ⊆ C
l,M
β+1

and J ∈ ↑C
l,M
β ∩ M implies J = C

l,M
β+1

.

Note that for every r ∈ fire
(

P, Sel
(

Cl,M ,C
l,M
β

))

one of the following holds:

1. C
l,M
β |= head (r)

+
, and therefore C

l,M
β+1

|= head (r) by C
l,M
β ⊆ C

l,M
β+1

or

2. C
l,M
β+1

|= head (r)
−

and therefore C
l,M
β+1

|= head (r) or

3. none of 1. or 2. Then r ∈ R
(

C
l,M
β ,C

l,M
β+1

\ C
l,M
β

)

and thus C
l,M
β+1

|= head (r) by



C
l,M
β+1

\ C
l,M
β |= head (r)+ and condition (L2).

Hence C
l,M
β+1

|= head (r) for each rule r ∈ fire
(

P, Sel
(

Cl,M ,C
l,M
β

))

and thus

C
l,M
β+1

∈ M = Mod
(

head
(

fire
(

P, Sel
(

Cl,M ,C
l,M
β

))))

, which shows (a).

Now assume J ⊆ C
l,M
β+1

and J ∈ ↑C
l,M
β ∩M. Since J ⊇ C

l,M
β we obtain J ⊇ C

l,M
β+1

by showing J \ C
l,M
β ⊇ C

l,M
β+1

\ C
l,M
β . Indeed

J \ C
l,M
β ∈

{

K ∈ IP | K |= head
(

R
(

C
l,M
β ,K

))+
}

and therefore J \C
l,M
β |= head

(

R
(

C
l,M
β , J \ C

l,M
β

))+

. Condition (L2), i.e. min-

imality of Cβ+1 \ C
l,M
β in this set, implies J \ C

l,M
β ⊇ C

l,M
β+1

\ C
l,M
β as desired.

By J ∈ Mod
(

head
(

fire
(

P, Sel
(

Cl,M ,C
l,M
β

))))

we have J |= head (r) for

all rules r ∈ fire
(

P, Sel
(

Cl,M ,C
l,M
β

))

. For each of these rules r, J |= head (r) is

satisfied by J |= head (r)
−

or by C
l,M
β |= head (r)

+
and in both cases we have

r 6∈ R
(

C
l,M
β , J

)

. For all remaining rules, we know that J |= head (r) is satisfied

by J \ C
l,M
β ∩ head (r)+ 6= ∅, i.e. J \ C

l,M
β |= head (r)+, and therefore we know

J \ C
l,M
β ∈

{

K ∈ IP | K |= head
(

R
(

C
l,M
β ,K

))+
}

. By J \ C
l,M
β ⊆ C

l,M
β+1

\ C
l,M
β

and minimality of C
l,M
β+1

\C
l,M
β in the set

{

K ∈ IP | K |= head
(

R
(

C
l,M
β ,K

))+
}

we have J \ C
l,M
β = C

l,M
β+1

\ C
l,M
β and therefore J = C

l,M
β+1

, which shows (b).

Thus, C
l,M
β+1

∈ ΩP

(

Sel,Cl,M ,C
l,M
β

)

. Hence Cl,M is a (P,M, Sel)-chain.This

proves M ∈ ModSel (P ) and concludes the proof. ⊓⊔

For all selectors Sel, it was shown in [23,24] that the Sel-semantics of programs
in GLP is invariant with respect to the following transformations: the replacement
(→eq) of the body and the head of a rule by logically equivalent formulae and the
splitting (→hs) of conjunctive heads, more precisely the replacement P ∪ {ϕ ⇒
ψ ∧ ψ′} →hs P ∪ {ϕ⇒ ψ, ϕ⇒ ψ′}.

Since every formula head(r) is logically equivalent to a formula in conjunc-
tive normal form, each selector sematics ModSel of a generalized program P is
equivalent to the selector semantics ModSel of all head disjunctive programs Q
where P →∗

eq,hs Q. Note that in the transformation →∗

eq,hs, no shifting of subfor-
mulas between the body and the head of a rule is involved. Therefore, Theorem 5
immediately generalizes to the following result.

Corollary 1. Let P be a generalized program and M an interpretation of P .
Then M is a Sel-generated model of P iff for any head disjunctive program Q

with P →∗

eq,hs Q there exists a level mapping l : BQ → α satisfying (L1), (L2)
and (L3) of Theorem 5. ⊓⊔



6 Corollaries

We can now apply Theorem 5 in order to obtain level mapping characterizations
for every semantics generated by a selector, in particular for those semantics
generated by the selectors defined in Example 1 and listed in Theorem 1. For
syntactically restricted programs, we can furthermore simplify the properties
(L1),(L2) and (L3) in Theorem 5.

Programs with positive disjunctions in all heads

For rules r ∈ HDLP, where head(r) is a disjunction of atoms, we have head(r)− =
∅. Hence we have head(r)− ⊆ I, i.e. I 6|= head(r)−, for all interpretations I ∈ IP .

Thus the set R
(

C
l,M
β , J

)

from (L2) in Theorem 5 can be specified by

R
(

C
l,M
β , J

)

=
{

r ∈ fire
(

P, Sel
(

Cl,M ,C
l,M
β

))

| C
l,M
β 6|= head(r)+

}

.

We furthermore observe that the set R
(

C
l,M
β , J

)

does not depend on the inter-

pretation J , so we obtain

R′

(

C
l,M
β

)

=
{

r ∈ fire
(

P, Sel
(

Cl,M ,C
l,M
β

))

| C
l,M
β ∩ head(r)+ = ∅

}

and hence

Min

{

J ∈ IP

∣

∣

∣

∣

J |= head
(

R
(

C
l,M
β , J

))+
}

= Min
(

Mod
(

head
(

R′

(

C
l,M
β

))))

.

Thus for programs containing only rules whose heads are disjunctions of
atoms we can rewrite condition (L2) in Theorem 5, as follows:

(L2d) for every β with β + 1 < α:

C
l,M
β+1

\ C
l,M
β ∈ Min

(

Mod
(

head
(

R′

(

C
l,M
β

))))

,where

R′

(

C
l,M
β

)

=
{

r ∈ fire
(

P, Sel
(

Cl,M ,C
l,M
β

))
∣

∣

∣
C

l,M
β ∩ head(r)+ = ∅

}

.

Programs with atomic heads

Single atoms are a specific kind of disjunctions of atoms. Hence for programs
with atomic heads we can replace condition (L2) in Theorem 5 by (L2d), and
further simplify it as follows.

For rules with atomic heads we have head ({r ∈ P | head(r) 6∈ I}) = head(P )\
I and therefore

head
(

R′

(

C
l,M
β

))

= head
({

r ∈ fire
(

P, Sel
(

Cl,M ,C
l,M
β

))

| head(r) ∩ C
l,M
β = ∅

})

= head
({

r ∈ fire
(

P, Sel
(

Cl,M ,C
l,M
β

))

| head(r) 6∈ C
l,M
β

})

= head
(

fire
(

P, Sel
(

Cl,M ,C
l,M
β

)))

\ C
l,M
β .



Because all formulae in head(P ) are atoms we obtain

Min
(

Mod
(

head
(

R′

(

C
l,M
β

))))

= Min
(

↑
(

head
(

R′

(

C
l,M
β

))))

=
{

head
(

R′

(

C
l,M
β

))}

and this allows us to simplify (L2) in Theorem 5 to the following:

(L2a) for each β with β + 1 < α:

C
l,M
β+1

\ C
l,M
β = head

(

fire
(

P, Sel
(

Cl,M ,C
l,M
β

)))

\ C
l,M
β .

Inflationary models From Theorem 1 we know that for normal programs
P the selector Sell generates exactly the inflationary model of P as defined in
[18]. The generalizations of the definition of inflationary models and this result
to head atomic programs are immediate. From [24] we also know that every
Sell-generated model is generated by a (P,M, Sell)-chain of length ω. Thus level
mappings l : BP → ω are sufficient to characterize inflationary models of head
atomic programs. In this case, condition (L3) applies only to the limit ordinal
0 < ω. But by Remark 1, all level mappings satisfy this property. Therefore we
do not need condition (L3) in the characterization of inflationary models.

Using Theorem 5 and the considerations above, we obtain the following char-
acterization of inflationary models.

Corollary 2. Let P ⊆ HALP be a head atomic program and M be an inter-
pretation for P . Then M is the inflationary model of P iff there exists a level
mapping l : BP → ω with the following properties.

(L1) M = sup
(

Cl,M
)

∈ Mod(P ).

(L2i) for all n < ω: C
l,M
n+1 \ Cl,M

n = head
(

fire
(

P,Cl,M
n

))

\ Cl,M
n . ⊓⊔

Normal programs

For normal programs, the heads of all rules are single atoms. Hence the simpli-
fication (L2a) of condition (L2) in Theorem 5 applies for all selector generated
semantics for normal programs.

The special structure of the bodies of all rules in normal programs allows an
alternative formulation of (L2a). In every normal rule, the body is a conjunc-
tion of literals. Thus for any set of interpretations J we have J |= body(r) iff
body(r)+ ⊆ J and body(r)− ∩ J = ∅ for all interpretations J ∈ J.

Stable models We develop next a characterization for stable models of normal
programs, as introduced in [11]. The selector Sellu generates exactly all stable
models for normal programs. In [24], it was also shown that all Sellu-generated
models M of a program P are generated by a (P,M, Sel)-chain of length ≤ ω. So



for the same reasons as discussed for inflationary models, level mappings with
range ω are sufficient to characterize stable models and condition (L3) can be
neglected.

For a normal rule r and two interpretations I,M ∈ IP with I ⊆ M we
have {I,M} |= body(r), i.e. I |= body(r) and M |= body(r), iff body(r)+ ⊆ I

and body(r)− ∩ M = ∅. Combining this with (L2a) we obtain the following
characterization of stable models for normal programs.

Corollary 3. Let P ⊆ NLP be a normal program and M an interpretation for
P . Then M is a stable model of P iff there exists a level mapping l : BP → ω

satisfying the following properties:

(L1) M = sup
(

Cl,M
)

∈ Mod(P ).
(L2s) for all n < ω:

C
l,M
n+1\C

l,M
n = head

({

r ∈ P | body(r)+ ⊆ Cl,M
n , body(r)− ∩M = ∅

})

\Cl,M
n . ⊓⊔

Comparing this with Theorem 3, we note that both theorems characterize
the same set of models. Thus for a model M of P there exists a level mapping
l : BP → ω satisfying (L1) and (L2s) iff there exists a level mapping l : BP → α

satisfying (Fs). The condition imposed on the level mapping in Theorem 3,
however, is weaker than the condition in Corollary 3, because level mappings
defined by (P,M, Sel)-chains are always pointwise minimal.

Positive head disjunctive programs

For positive head disjunctive programs using Sellu, chains of length ≤ ω suffice
and condition (L3) becomes redundant. We can further refine condition (L2d).
Rule bodies are as for normal programs, so so (L2d) can be replaced by:

(L2ds) for all n < ω:

C
l,M
n+1 \ Cl,M

n ∈ Min
(

Mod
(

head
(

R′
(

Cl,M
n

))))

,where

R′
(

Cl,M
n

)

=
{

r | body(r)+ ⊆ Cl,M
n , body(r)− ∩M = ∅ = Cl,M

n ∩ head(r)+
}

.

We can now easily compare this with Theorem 4 and therefore with the stable
model semantics for positive head disjunctive programs. The first and minor
difference is as for normal programs, namely that the Sellu-characterization forces
the considered level mapping to be pointwise minimal. The second difference
displays the distinction between the two semantics: While the Sellu-semantics
enforces minimality at each step in the chain, the stable model semantics does
so globally, in a more implicit manner. This causes the connection between stable
and Sellu-generated models stated in Theorem 1 (4.). We give an example.

Example 7. Consider the program P consisting of the following rules.

⇒ p ∨ q

p⇒ q

Then P has unique stable model {q}, while both {q} and {p, q} are Sellu-
generated models.



Definite programs

In order to characterize the least model of definite programs, we can further
simplify condition (L2) in Theorem 5. Definite programs are a particular kind
of head atomic programs. For definite programs, the inflationary and the least
model coincide. We can replace condition (L2) in Theorem 5 by (L2i) in Corol-
lary 2. Since the body of every definite rule is a conjunction of atoms we obtain

fire(P, I) =
{

r ∈ P | body(r)+ ⊆ I
}

for every interpretation I ∈ IP . Thus we get the following result.

Corollary 4. Let P ⊆ LP be a definite program and let M be an interpretation
for P . Then M is the least model of P iff there exists a level mapping l : BP → ω

satisfying the following conditions.

(L1) M = sup
(

Cl,M
)

∈ Mod(P ).

(L2l) for all n < ω: C
l,M
n+1 \Cl,M

n = head
({

r ∈ P | body(r)+ ⊆ Cl,M
n

})

\Cl,M
n ⊓⊔

Comparing this to Theorem 2, we note that the relation between the condi-
tions (L2l) and (Fd) are similar to those of the conditions (Fs) und (L2s).

7 Related Work

Recently, a number of comparative studies of semantics for logic programs and
non-monotonic reasoning have appeared, addressing the lack of systematicity in
the subject. We refer to [14,17] for a comprehensive treatment of related work,
and only point out some more recent developments.

[19,20] provide studies concerning the definition of semantics which combine
the open and the closed world assumption in a flexible way. We believe that
their approach can be captured by level mappings in a systematic manner, but
details remain to be investigated.

[4,5] use bilattices in the spirit of [10] to arrive at a unified theory encom-
passing some of the major semantics for non-disjunctive programs. The loosely
related [6,7] capture major semantics by means of a framework for inductive def-
initions. The unification obtained by these approaches is stronger than that by
level mappings, but at the loss of flexibility which results in limited applicability
to certain semantics only.

[3] provides a comparative study of different modifications of Reiter’s default
logic, which is related to the stable model semantics. The impact of this work in
logic programming, however, remains to be investigated.

8 Conclusions and Further Work

Our main result, Corollary 1 respectively Theorem 5 in Section 5, provides a
characterization of selector generated models – in general form – by means of



level mappings in accordance with the uniform approach proposed in [14,17]. As
corollaries from this theorem, we have also achieved level mapping characteriza-
tions of several semantics encompassed by the selector generated approach due
to [23,24].

Our contribution is technical, and provides a first step towards a comprehen-
sive comparative study of different semantics of logic programs under extended
syntax by means of level mapping characterizations. Indeed, a very large num-
ber of syntactic extensions for logic programs are currently being investigated in
the community, and even for some of the less fancy proposals there is often no
agreement on the preferable way of assigning semantics to these constructs.

A particularly interesting case in point is provided by disjunctive and ex-
tended disjunctive programs, as studied in [21,12]. While there is more or less
general agreement on an appropriate notion of stable model, as given by the
notion of answer set in [12], there exist various different proposals for a corre-
sponding well-founded semantics, see e.g. [26]. We expect that recasting them
by means of level-mappings will provide a clearer picture on the specific ways of
modelling knowledge underlying these semantics.

Eventually, we expect that the study of uniform characterizations of different
semantics will lead to methods for extracting other, e.g. procedural, semantic
properties from the characterizations, like complexity or decidability results.
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