Nichtmonotone, neuro-symbolische

und begrifliche Wissensverarbeitung

Zusammenfassung wissenschaftlicher Arbeiten von

Dr. Pascal Hitzler

zum Zwecke der Habilitation
eingereicht bei der
Fakultat Informatik der Technischen Universitat Dresden
im Dezember 2004

Vorwort

Diese Schrift dient dem Bericht iiber die Hauptaspekte meiner Forschertétig-
keit an der TU Dresden seit der Promotion. In diesen dreieinhalb Jahren war
es mein Bestreben, selbststdndig aktuelle, theoretisch fundierte und anwen-
dungsbezogene Fragestellungen zu entwickeln und zu verfolgen.

Naturgeméfl war meine Forschung in dieser Zeit vor allem zu Anfang
sehr explorativ. Meine Suche konzentrierte sich dabei auf das Herausarbei-
ten theoretischer Zusammenhénge. Ob ich einen Ansatz dann weiterverfolgte
entschied sich anschlieBend aufgrund einer Evaluation aus angewandter Sicht.

Die in dieser Schrift dargestellten Forschungsansétze gedenke ich in Zu-
kunft fortzufithren. Sie bilden die Keimzellen fiir langfristig angelegte an-
gewandte und theoretische Untersuchungen. Ich werde in dieser Schrift ihr
Potenzial ausfiihrlich diskutieren und anhand der bereits abgeschlossenen
Untersuchungen belegen.

In erster Linie sind meine Arbeiten der Wissensverarbeitung zuzuordnen.
Methodisch fithren sie jedoch weit iiber diese hinaus und bemiihen unter an-
derem Teile der Theoretischen Informatik. Auf der Anwendungsebene zielen
sie auf implementierbare und praktisch einsetzbare Systeme fiir verschiedene
Bereiche der Kiinstlichen Intelligenz.

Einige der vorgelegten Arbeiten sind in Zusammenarbeit mit Koautoren,
darunter einige von mir betreute Studenten, entstanden. Im Anhang habe
ich dargelegt, worauf sich mein Anteil an Arbeiten mit mehreren Autoren
jeweils erstreckt.

Danksagungen

Mein Dank gilt zuallererst Steffen Holldobler. Die inhaltliche Arbeit zu mei-
ner Habilitation entstand wéhrend der dreieinhalb Jahre, in denen ich zu
seiner Arbeitsgruppe gehorte. Ich danke vor allem fiir den Freiraum, den er
mir schuf, und in dem ich mein kreatives Forscherpotenzial meinen eigenen
Interessen folgend entfalten konnte.

Meine Zeit dort wurde auch entscheidend geprédgt von drei Studenten
— Sebastian Bader, Markus Krotzsch, Matthias Wendt — nur einige der
Friichte der vielen Diskussionen und Arbeitstreffen sind aus gemeinsamen
Veroffentlichungen ersichtlich.

Ursula Hans — Uschi — mit der ich das Biiro und auch einige Arbeit in
der Lehre teilen durfte, trug ganz entscheidend zu meinem Wohlbefinden bei
der Arbeit bei.

Es sind viele Menschen, die fiir meinen ,, Dresdner Lebensabschnitt in
privater oder beruflicher Hinsicht wichtig waren. Ich versuche mich an einer
Aufzédhlung — und entschuldige mich schon jetzt fiir die Unvollstandigkeit
dieses Unterfangens: Franz Baader, Federico Banti, Howard Blair, Gerd
Brewka, Kai Briinnler, Paola Bruscoli, Kathrin Dornbusch, Manfred Dro-
ste, Sylvia Epp, Matthias Fichtner, Bertram Fronhofer, Bernhard Ganter,
Horst Graupner, Axel Groimann, Sandra Gromann, Alessio Guglielmi, Mi-
guel Gutierrez-Naranjo, Achim Jung, Reinhard Kahle, Uwe Kahler, Ozan
Kahramanogullari, Matthias Knorr, Torsten Linss mit Poldi, Ai(mee) Liu,
Carsten Lutz, Yves Martin, Judith und Reto Merges, Kristin Mitte, Rainer
Osswald, Luis Pereira, Ralf Riethmiiller, Kersten Schéfer, Dietlind Scharlach
mit Jochen und Amelie, Sybille Schwarz, Tony and Martine Seda, Oxana Ser-
gueeva, Olga Skvortsova, Mariana Stantcheva, Mike Stange, Charles Stewart,
Rike, Friedrich und Moritz Stolzel, Hans-Peter Storr, Lutz Straburger, Mi-
chael Thielscher, Pawel Waszkiewicz, Kerstin und Jiirgen Weber, Maja von
Wedelstedt, Guo-Qiang Zhang.

Seit August 2004 habe ich am AIFB, Institut fiir Angewandte Informatik
und Formale Beschreibungsverfahren, Universitiat Karlsruhe, eine neue beruf-
liche Heimat gefunden, die mich sehr bereichert. Fiir Diskussionen, Hilfe und
Vertrauen danke ich Rudi Studer, Andreas Abecker, Andreas Eberhart, Lars
Schmidt-Thieme, Steffen Staab, York Sure, Wolfgang Sperling, Sudhir Agar-
wal, Ernst Biesalski, Stephan Bloehdorn, Saartje Brockmans, Philipp Cimi-
ano, Marc Ehrig, Stephan Grimm, Peter Haase, Sigfried Handschuh, Jens
Hartmann, Mark Hefke, Steffen Lamparter, Guido Lindner, Daniel Oberle,
Gisela Schillinger, Nenad und Ljiljana Stojanovic, Bernhard Tausch, Chri-
stoph Tempich, Zdenko (Denny) Vrandecic, Max Volkel, Johanna Vélker,
Susanne Winter, Valentin Zacharias.

i

Von Gerd Brewka, Bernhard Ganter und Steffen Holldobler bekam ich
hilfreiches Feedback zu einem ersten Entwurf dieser Schrift. Gudrun Eber-
hardt half meinem Deutsch auf die Spriinge. Fiir verbleibende inhaltliche,
formelle und sprachliche Schwichen liegt jegliche Verantwortung bei mir.

Im Laufe meiner ,Dresdner® Zeit erhielt ich finanzielle Unterstiitzung
von folgenden Organisationen: Deutscher Akademischer Austauschdienst
(DAAD), Boole Center for Research in Informatics Cork (BCRI), Centro
de Inteligencia Artificial Lisboa (CENTRIA), Graduiertenkolleg Wissensre-
priasentation Leipzig, Bonn International Graduate School (BIGS). Ein be-
willigtes Stipendium der Foundation for Polish Science und des Mianowski
Fund Warschau konnte ich leider aus terminlichen Griinden nicht antreten.
Das International Quality Network Rational Mobile Agents and Systems of
Agents (IQN) des Bundesministeriums fiir Bildung und Forschung (BMBF)
und des DAAD machte Einladungen von Gastwissenschaftlern nach Dresden
moglich. Dem DAAD, dem Graduiertenkolleg Specification of discrete pro-
cesses and systems of processes by operational models and logics und dem
Verein der Freunde und Foérderer der TU Dresden danke ich fiir die finan-
zielle Hilfe fiir einige von mir betreute Studenten bei Auslandsaufenthalten
und Konferenzbesuchen.

Auf meiner Stelle in Karlsruhe werde ich seit August 2004 finanziert vom
Bundesministerium fiir Bildung und Forschung (BMBF) im SmartWeb Pro-
jekt und von der EU iiber das KnowledgeWeb Network of Excellence.

Ich danke meiner Mutter Renate Hitzler, ihren Geschwistern Hannelo-
re Hauber und Rolf Hauber, meinem Schwager Friedemann Eberhardt, und
meinen Schwiegereltern Gudrun und Raimund Eberhardt, fiir ihre uneinge-
schrankte Hilfe und Unterstiitzung in allen Aspekten des Lebens.

Und ich danke Anne. Fiir Hilfe und Ratschlige. Aber vor allem fiirs da-
sein.

il

Inhaltsverzeichnis

Einfiihrung
1 Semantik nichtmonotoner Logikprogrammierung
1.1 Kurzfassungo
1.2 Forschungskontext: Logikprogrammierung und nichtmonoto-
nes Schliefeno
1.3 Technische Hinfiithrung: Syntax und Semantik von Logikpro-
GTaMIMEN o v e v e e e
1.4 Eigene Resultate: Uberblick iiber die eingereichten Arbeiten
1.5 Ausblick: Weiterfithrungen und Anwendungen
2 Neuro-symbolische Integration
2.1 Kurzfassungo
2.2 Forschungskontext: Logik und kiinstliche neuronale Netzwerke
2.3 Technische Hinfiihrung: Konnektionistische Représentationen
von Logikprogrammen erster Stufe
2.4 Eigene Resultate: Uberblick iiber die eingereichten Arbeiten
2.5 Ausblick: Weiterfithrung und Anwendungen
3 Schlieflen iiber begrifflichem Wissen
3.1 Kurzfassungo
3.2 Forschungskontext: Logik und begriffliches Wissen
3.3 Technische Hinfithrung: Formale Begriffsanalyse und
Doménentheorie Lo
3.4 Eigene Resultate: Uberblick iiber die eingereichten Arbeiten
3.5 Ausblick: Schlieen iiber dem Semantic Web

Anteil des Autors an den eingereichten Arbeiten

Literatur

Vorgelegte Verosffentlichungen

12
13

17
17
18

19
22
25

27
27
27

29
32
34

35

39

53

Einfiihrung

Der Kiinstlichen Intelligenz zugehorig befindet sich die Wissensverarbeitung
traditionell im Spannungsfeld zwischen biologischer Motivation und Plau-
sibilitdt einerseits und maschineller Umsetzung andererseits. Eine Abgren-
zung zur einen oder anderen Seite mag fiir umgrenzte Forschungsprojekte
adédquat sein, eine ideologische Verfestigung und Separierung verschiedener
Forschungsgebiete jedoch wird weder der Entwicklung intelligenter Syste-
me noch der Erkenntnis um das Wesen der menschlichen Intelligenz dienen.
Das Ringen um eine Integration biologischer Plausibilitiat mit technologischer
Umsetzbarkeit gehort somit zu den zentralen Aufgaben der Wissensverarbei-
tung.

Wissensverarbeitung bedarf notwendigerweise der Wissensrepréasentation.
Die Reprasentation von Wissen muss auf eine solche Weise geschehen, dass
das Wissen einer maschinellen Verarbeitung zumindest grundsétzlich zu-
gefithrt werden kann. Die Wahl verschiedener Verarbeitungsmethoden zur
selben syntaktischen Repréasentationsform mag wiederum verschiedene In-
terpretationen des syntaktisch représentierten Wissens nahelegen.

Die Logik ist die wohl <este und in der Kiinstlichen Intelligenz verbrei-
tetste Form der formalen Wissensrepréasentation. Durch sie wird die deklara-
tive Beschreibung von Wissen in vom Menschen handhabbarer symbolischer
Form moglich. Logische Kalkiile erlauben auflerdem den formalen Umgang
mit Schlussfolgerungen, und damit eine Modellierung menschlicher kognitiver
Fahigkeiten.

Die Logik in ihren klassischen Ausprigungen wie zum Beispiel der
Pradikatenlogik erster Stufe, ist jedoch fiir die Modellierung von Wissen und
Schlussfolgern und der maschinellen Umsetzung desselben nur bedingt direkt
geeignet. Je nach Anwendungsdoméne wird eine direkte Modellierung sehr
umsténdlich und deshalb unpraktisch und anwendungsfern, oder bleibt an-
deren, z.B. subymbolischen Ansétzen in der Leistung unterlegen. Seit jeher
werden also in der Wissensverarbeitung Systeme entwickelt, analysisert und
angewendet, die zwar symbolisch und im weitesten Sinne logikbasiert sind,
aber doch den Rahmen der klassischen Logik in gewissem Mafle verlassen. An-

2 Einfiithrung

dere in manchen Anwendungsdoménen erfolgreiche Systeme wiederum sind
im Ansatz nicht logikbasiert, werden aber durch ein Studium ihrer logischen
Aspekte auch in wissensbasierten Bereichen anwendbar.

Das Studium und die Anwendung logischer Aspekte verschiedener
Ansétze zur Wissensverarbeitung ist das Thema dieser Schrift. Insbeson-
dere werde ich Ergebnisse zu drei Arten von Wissensreprasentation untersu-
chen, die in der Wissensverarbeitung eine Rolle spielen. Meine vorgestellten
Arbeiten konzentrieren sich dabei auf den Vergleich und das Zusammen-
spiel verschiedener Methoden, auf die Herausarbeitung fundamentaler Zu-
sammenhénge und zielen auf Umsetzungen in Anwendungsdoménen. Syste-
matisch lassen sie sich drei Formen der Wissensverarbeitung zuordnen.

Die erste dieser Arten der Wissensverarbeitung ist die des nichtmono-
tonen Schlieffens. Entstanden um 1980 handelt es sich dabei um eine lo-
gikbasierte Methodik zur Modellierung der menschlichen Fahigkeit zur Infe-
renz aus unsicherer und unvollsténdiger Faktenlage. Eine Leitintuition dieses
Fachgebietes ist die Annahme, dass der Mensch in Abwesenheit préziseren
Wissens auf Grundregeln zugreift, die in den meisten Féllen zutreffend sind,
zu denen es aber Ausnahmen geben kann. Solange also nicht bekannt ist, dass
es sich um einen Ausnahmefall handelt, wird die Grundregel herangezogen.

Diese Form der Wissensrepriasentation bedient sich héufig der Syntax
der Logikprogrammierung. Aus diesem syntaktischen Paradigma sind dann
verschiedene Ansétze zur nichtmonotonen Wissensverarbeitung hervorgegan-
gen, die miteinander konkurrieren aber auch verwandt sind. Diese Ansétze
entstanden aus Anforderungen der Praxis, wo je nach Anwendungsbereich
verschiedene Formalisierungen der Leitintuition angemessen erscheinen. Der
erste Teil meiner Arbeit behandelt Beziehungen verschiedener solcher nicht-
monotoner Semantiken fiir Logikprogramme, mit dem Ziel, die Eigenheiten
der unterschiedlichen Formalisierungen herauszustellen und greifbar zu ma-
chen. Insbesondere entwickle ich einen Ansatz zur uniformen Beschreibung
verschiedener Semantiken, der im Vergleich zu anderen solchen Methoden
sehr viel flexibler ist und eine groflere Klasse verschiedener Semantiken um-
fasst.

Die zweite Art der Wissensverarbeitung, die ich behandle, ist die der
kiinstlichen neuronalen Netze. Diese in der Praxis der Kiinstlichen Intelli-
genz sehr erfolgreiche Methodik entstand aus der Abstraktion biologischer
neuronaler Netze, wie sie im Nervensystem von Menschen und Tieren vorlie-
gen. Seine praktischen Erfolge verdankt dieser Ansatz vor allem der Tatsache,
dass kiinstliche neuronale Netzwerke auf effiziente Weise anhand von Beispie-

Einfiihrung 3

len trainiert werden kénnen, komplexe Aufgaben wie z.B. Mustererkennung
zu bewiéltigen.

In biologischen Systemen werden elektrische Potenziale durch ein ge-
richtetes Netzwerk propagiert und auf bisher nicht vollstdndig verstandene
Weise massiv parallel verarbeitet. Fiir die kiinstlichen Gegenstiicke werden
Netzwerke und Verarbeitungsprinzipien abstrahiert und dadurch stark ver-
einfacht. Dennoch entzieht sich das Verstéindnis der immer noch komplexen
Vorgénge in kiinstlichen Netzen unserem Verstdndnis im Sinne einer deklara-
tiven oder logischen Lesbarkeit. Kiinstliche neuronale Netze stellen dadurch
eine subsymbolische Art der Wissensverarbeitung dar, die von der logikba-
sierten stark verschieden ist. Letztere, insbesondere die auf Logikprogram-
men basierende, ist deklarativ, entzieht sich aber vergleichbar erfolgreichen
Lernmethoden. Ein weiterer Unterschied besteht in der Robustheit neuro-
naler Netzwerke, die — im Gegensatz zu Logikprogrammen — auch nach
Austall eines Teils der reprasentierenden Strukturen in der Regel noch zu-
friedenstellend arbeiten. Anforderungen der Praxis machen eine integration
logikbasierter und neuronaler Systeme wiinschenswert. Systeme, die die Ro-
bustheit und Lernfdhigkeit kiinstlicher neuronaler Netze mit der deklarativen
Ausdrucksstéirke logikbasierter Wissensverarbeitung kombinieren, sind von
besonderem Interesse.

Im zweiten Teil dieser Schrift wende ich mich also Fragen der neuro-
symbolischen Integration zu. Dabei geht es um die Frage nach Mdoglichkeiten
zur Integration logikbasierter Wissensverarbeitung mit solcher, basierend auf
kiinstlichen neuronalen Netzen. Insbesondere widme ich mich der Frage einer
Integration von Logik erster Stufe, die besondere Schwierigkeiten mit sich
bringt. Die vorgestellten Ergebnisse beschreiben Représentationsmethoden
fiir den semantischen Gehalt von Logikprogrammen mit Hilfe von Standard-
architekturen fiir kiinstliche neuronale Netze. Zum Teil werden dabei wieder-
um nichtmonotone Semantiken betrachtet. Die von meinen Koautoren und
mir erarbeiteten Resultate konstituieren den aktuellen Stand der Forschung
auf diesem Gebiet.

Die dritte Form der Wissensverarbeitung, der ich mich zuwende, basiert
auf der abstrakten Beschreibung begrifflicher Inhalte und Ontologien, wie
sie z.B. im Bereich des Semantic Web zum Einsatz kommen. Begriffliche
Inhalte werden dabei zunéchst durch Ordnungsstrukturen, genauer als Be-
griffshierarchien, dargestellt. Im Forschungsbereich Semantic Web stellt sich
aber zunehmend heraus, dass zu einer fiir Anwendungen gentigend reichhal-
tigen Représentation ontologischen Wissens Begriffshierarchien durch Regeln
im Sinne der Logikprogrammierung erweiterbar sein miissen.

Im dritten Teil dieser Schrift wende ich mich daher Fragen des Zusam-

4 Einfiithrung

menspiels von Begriffshierarchien, Logikprogrammierung und nichtmonoto-
nem Schlieflen zu. Genauer entwerfe ich ein generisches Paradigma zum inte-
grierten nichtmonotonen Schliefen auf Ordnungsstrukturen und zeige, dass
es mit Standardansdtzen aus den Bereichen nichtmonotones Schliefen und
Begriffsstrukturen voll vertréaglich ist.

Struktur dieser Schrift

Die drei Kapitel dieser Schrift entsprechen den genannten drei Formen der
Wissensverarbeitung. Jedes Kapitel besteht aus fiinf Teilen.

1. Eine knappen Zusammenfassung des Kapitels: Problemstellung,
Losung, Ausblick.

2. Eine Darstellung des Forschungskontextes, in dem meine Arbeiten an-
gesiedelt sind.

3. Eine technisch gehaltene Hinfiihrung zu einigen Grundbegriffe, die zum
Verstandnis der allgemeinen Diskussion meiner Resultate hilfreich sind.
Es werden auch exemplarisch eigene Resultate formal beschrieben.

4. Ein allgemeiner gehaltener Uberblick iiber eigene Resultate in den ein-
gereichten Arbeiten.

5. Ein Ausblick auf Weiterfithrungen und Anwendungen aus meinen Ar-
beiten heraus.

Ein Leser mit Vorkenntnissen im Themenbereich eines Kapitels mag sich
zunéchst durch die Lektiire der Kurzfassung am Anfang des Kapitels sowie
der Aufstellung der Resultate in den eingereichten Arbeiten orientieren.

Im Anhang findet sich eine Aufstellung meines Eigenanteils an den mit
Koautoren publizierten Arbeiten. Die Arbeiten selbst sind beigefiigt.

Kapitel 1

Semantik nichtmonotoner
Logikprogrammierung

1.1 Kurzfassung

Es gibt viele verschiedene Auspridgungen nichtmonotonen Schlielens, die
sich in verschiedenen Semantiken fiir Logikprogramme niederschlagen. Diese
modellieren verschiedene Intuitionen, die sich wiederum jeweils aus Anwen-
dungsbeispielen motivieren.

Eine Systematisierung dieser verschiedenen Semantiken wird in jiingster
Zeit von vielen Autoren versucht. Ziel dieser Untersuchungen ist zum einen
ein vertieftes Verstédndnis verschiedener Semantiken fiir Fragen der Anwen-
dung, und zum anderen die Suche nach geeigneten Semantiken fiir syntakti-
sche Erweiterungen der Standardparadigmen, wie sie durch Anforderungen
der Praxis vonnoten sind.

In meinen eigenen Arbeiten wird ein konzeptionell neuer Ansatz zur Sy-
stematisierung und vereinheitlichten Beschreibung verschiedener Semantiken
— mit Hilfe von Stufenfunktionen — ausgefiihrt. Im Vergleich zu anderen
Ansétzen konnen damit sehr viel mehr verschiedenartige Semantiken syste-
matisch charakterisiert werden. Die Arbeiten zeigen aulerdem, dass der An-
satz auf praxisrelevante syntaktische Erweiterungen iibertragbar ist.

Zukiinftige Arbeiten umfassen Methoden zum Herausarbeiten von pra-
xisrelevanten Eigenschaften von Semantiken wie Berechenbarkeit und Kom-
plexitat, die Behandlung syntaktischer Erweiterungen fiir anwendungsnahe
Modellierungen, sowie die Ableitung von Algorithmen zur automatischen De-
duktion unter diesen Semantiken.

6 Kapitel 1. Semantik nichtmonotoner Logikprogrammierung

1.2 Forschungskontext: Logikprogrammierung und
nichtmonotones Schlief3en

Logikprogrammierung ist — Programmieren mit Logik. Kurz gesagt beruht
sie auf der Idee, Logik als Wissensreprésentationssprache zu verwenden, um
damit ein vorliegendes Problem zu spezifizieren und Losungen mit Hilfe ma-
schineller Deduktion herzuleiten. Die bahnbrechenden Arbeiten von Robert
Kowalski [80], die wiederum auf der von Alan Robinson [106] entwickelten
Resolutionsmethode als Grundlage fiir das Forschungsgebiet der Deduktion
aufbauen, konnen als die Urspriinge der Logikprogrammierung angesehen
werden. Kowalski entwickelte die SLD-Resolution als Verfeinerung der Reso-
lutionsmethode, die es einem erlaubt, logische Formeln erster Stufe direkt als
Programme fiir maschinelle Verarbeitung zu verwenden. Daraus entwickelte
sich dann die Programmiersprache Prolog, die von Alain Colmerauer als er-
stem realisiert wurde [24].

Mittlerweile wurde die Logikprogrammierung zu einem der Standardpro-
grammierparadigmen und wurde in eine Vielzahl verschiedener Richtungen
weiterentwickelt und zur Anwendung gefiihrt. Als einige wenige Beispiele
seien Natural Language Processing, (Deduktive) Datenbanken, maschinelle
Deduktion, Wissensverarbeitung, Kognitive Robotik, Semantic Web, Rechts-
wesen und maschinelles Lernen genannt. Die Zahl der industriellen Anwen-
dungen der zugrundeliegenden Techniken — vor allem Prolog, aber auch
Constraint und Induktive Logikprogrammierung — wichst sténdig, und es
kann erwartet werden, dass der Trend sich fortsetzt. In [7] findet man einen
hervorragenden Uberblick iiber einige der wichtigsten Themen, die augen-
blicklich in der Logikprogrammierung behandelt werden. Standardreferenzen
fiir die Prolog zugrundeliegende Theorie sind [85, 5].

Das Forschungsgebiet Nichtmonotones Schlieffen entstand aus der Idee,
Aspekte des menschlichen Schliefens zu formalisieren, die sich mit Hilfe klas-
sischer logischer Methoden nur schwer ausdriicken lassen. Vor allem ging es
um eine Formalisierung der Tatsache, dass Menschen in vielen Féllen da-
zu neigen, zwar logisch unscharfe, aber der Situation dennoch in praktischen
Belangen hochst angemessene Schliisse zu ziehen, eine wiinschenswerte Figen-
schaft, iiber die intelligente Systeme zur Zeit nur sehr beschriankt verfiigen.
Formaler betrachtet neigen Menschen dazu, aus einer gegebenen Wissens-
basis mehr Schliisse zu ziehen, als es mit den Mitteln der Pradikatenlogik
erster Stufe eigentlich moglich wére, was aber wiederum zur Folge hat, dass
solche Schlussfolgerungen bei Bekanntwerden weiteren Wissens eventuell wie-
der zuriickgenommen werden miissen. Im Gegensatz dazu sind klassische Lo-
giken wie die Aussagen- oder die Pradikatenlogik monoton in dem Sinne,

1.2. Forschungskontext 7

dass aus dem Schluss einer Formel F' aus einer Theorie I' folgt, dass F' auch
aus jeder Theorie folgt, die I' enthélt.

Es stellte sich jedoch heraus, dass sich diese nichtmonotonen Aspekte des
menschlichen Schliefens nur schwer auf befriedigende Weise formalisieren
lassen. Frithe Arbeiten auf diesem Gebiet basierten im Wesentlichen auf drei
grundsétzlich verschiedenen Anséitzen, zu denen z.B. in [38] eine exzellente
Diskussion vorliegt: Circumscription von John McCarthy [91, 92|, basierend
auf Logik zweiter Stufe, Autoepistemische Logik von Robert Moore [94, 95]
mit modallogischen Operatoren fiir geglaubte aber nicht notwendig gewusste
Annahmen und die Defaultlogik von Ray Reiter [105], die auf der Idee ba-
siert, dass manche Schliisse immer dann (by default) gezogen werden sollten,
wenn kein explizites Wissen gegen diese Schliisse spricht, d.h. keine bekannte
Ausnahme zum Schluss vorliegt.

In der zweiten Halfte der 1980er Jahre erhielt die Forschung zum nichtmo-
notonen Schliefen entscheidenden Aufwind durch Versuche, diese Methoden
zur semantischen Analyse von Prolog und verwandten Logikprogrammierpa-
radigmen einzusetzen. Tatséchlich enthélt Prolog schon immer eine nichtmo-
notone Funktionalitit: Wenn das System zeigen kann, dass ein Faktum A
nicht aus einer gegebenen Wissensbasis — oder einem Programm — folgt,
dann wird A als falsch angesehen, d.h. —A ist eine Schlussfolgerung, die von
Prolog gezogen wird. Nach Erweiterung der Wissensbasis um das Faktum A
kann jedoch A abgeleitet werden, was die Riicknahme des vorhergehenden
Schlusses = A notwendig macht. Es sei bemerkt, dass die in = A auftretende
Negation nicht im Sinne z.B. der Prédikatenlogik erster Sufe interpretiert
werden sollte. Vielmehr steht —A fiir Negation als Fehlschlag (des Beweises
von A).

Aus diesen und &dhnlichen Griinden ist es nicht wirklich klar, ob Nega-
tion als Fehlschlag eine Negation in einem verniinftigen logischen Sinne ist
oder vielmehr als eine extralogische Funktionalitdt von Prologsystemen auf-
gefasst werden sollte. Untersuchungen dieser Frage haben jedoch viele Ideen
und Fragestellungen hervorgebracht, die die Forschung im Bereich Logikpro-
grammierung und Wissensverarbeitung nach wie vor inspirieren. Das oben-
genannte nichtmonotone Verhalten der Negation als Fehlschlag zum Beispiel
veranlasste Untersuchungen, ob es nicht mit Hilfe etablierter nichtmonotoner
Schlussparadigmen einer logischen Interpretation zugefiithrt werden konne.
Diese Studien brachten zwar nur Teilerfolge hervor insofern Negation als
Fehlschlag betroffen war. Doch sie fithren auch zu der Beobachtung, dass
Logikprogramme — mdglicherweise ausgestattet mit zuséitzlichen syntakti-
schen Erweiterungen — eine hervorragende Sprache fiir die Wissensverarbei-
tung unter Nichtmonotonie liefern.

Um 1990 verschob sich darum der Fokus in Richtung der Erforschung

8 Kapitel 1. Semantik nichtmonotoner Logikprogrammierung

von Logikprogrammen als Wissensreprasentationssprache fiir nichtmonoto-
nes Schliefen, unter Inkorporation der allgemeineren Resultate und Einsich-
ten, die bis zu diesem Zeitpunkt erzielt worden waren. Die entstehenden
Paradigmen waren viel einfacher zu verstehen und aus maschineller Sicht
handzuhaben und fiihrten schlieflich zu einer Reihe von Systemimplementie-
rungen, bekannt als Answer Set Programming Systeme, deren Wichtigste zur
Zeit DLV und SMODELS sind [30, 89, 113]. Diese Paradigmen und Systeme
werden zur Zeit ausgebaut und verfeinert. Auflerdem laufen ausgiebige Un-
tersuchungen zur Anwendbarkeit in verschiedenen Bereichen der Kiinstlichen
Intelligenz.

Answer Set Programming beruht dabei auf einer bestimmten semanti-
schen Interpretation von Logikprogrammen, nédmlich der durch stabile Mo-
delle [45, 46] gegebenen. Diese ist wiederum nur eine der semantischen Les-
arten, der Logikprogramme zugefiihrt werden kénnen. Das Studium von An-
wendungsbeispielen legt verschiedene Semantiken nahe, die auch tatséchlich
vorgeschlagen und untersucht wurden. Die Semantik der stabilen Modelle hat
sich Ende der 90er Jahre gegen eine Reihe von Konkurrenten als praktika-
belste Losung weitgehend durchgesetzt. Die verschiedenen vorgeschlagenen
Semantiken sind jedoch zum grofien Teil eng miteinander verwandt, und man-
che davon werden nach wie vor zur theoretischen Analyse oder zur Ableitung
von Algorithmen herangezogen. Fiir syntaktische Erweiterungen von Answer
Set Programming ist die Diskussion um geeignete semantische Lesarten wei-
terhin im Gange.

Eine Systematisierung dieser verschiedenen Semantiken wird in jiingster
Zeit von vielen Autoren versucht, darunter [27, 28, 26, 36, 88, 86, 108]. Ziel
dieser Untersuchungen ist zum einen ein vertieftes Verstdndnis verschiedener
Semantiken fiir Fragen der Anwendung, und zum anderen die Suche nach
geeigneten Semantiken fiir syntaktische Erweiterungen der Standardparadig-
men, wie sie durch Anforderungen der Praxis vonnéten sind.

In meinen eigenen Arbeiten wird ein konzeptionell neuer Ansatz zur Sy-
stematisierung und vereinheitlichten Beschreibung verschiedener Semantiken
— mit Hilfe von Stufenfunktionen — ausgefiihrt. Im Vergleich zu anderen
Ansétzen konnen damit sehr viel mehr verschiedenartige Semantiken syste-
matisch charakterisiert werden. Die Arbeiten zeigen auflerdem, dass der An-
satz auf praxisrelevante syntaktische Erweiterungen iibertragbar ist.

1.3. Technische Hinfiihrung 9

1.3 Technische Hinfiihrung: Syntax und Semantik
von Logikprogrammen

Zur vereinheitlichten Behandlung verschiedener Semantiken in der Logikpro-
grammierung bedienen wir uns des Hilfsmittels der Stufenfunktionen (engl.
Level Mappings). Eine Stufenfunktion ist dabei eine Abbildung von Grund-
instanzen von Atomen in eine wohlgeordnete Menge und dient informell der
Beschreibung von rekursiven Abhéngigkeiten innerhalb von Logikprogram-
men. Wir fithren zunéchst Terminologie und Notation ein. Die meisten der
folgenden Begrifflichkeiten werden auch in den restlichen Kapiteln der Schrift
zur Verwendung kommen. Wir arbeiten im Folgenden iiber einer gegebenen
Sprache der Pradikatenlogik erster Stufe und folgen im Wesentlichen [85].
Eine Regel ist eine Formel der Form

VX, VXp(A—= AN NARLA-BL A~ A0By)

der Prédikatenlogik erster Stufe, wobei Xi,..., X, genau die in der For-
mel vorkommenden Variablen sind. Die Reihenfolge der Atome auf der rech-
ten Seite des Implikationssymbols ist dabei unbedeutend. Eine solche Regel
schreiben wir abgekiirzt als

A<—A1,...,Am,_\Bl,...,_|Bn.

A wird als Kopf der Regel bezeichnet, Ay,..., A,,,—B1,...,B, als Rumpf
der Regel. Eine Regel heifit ein Faktum, wenn m = n = 0 ist. Eine Regel
heifit definit, wenn n = 0 ist. Ein (normales) Logikprogramm P besteht aus
einer endlichen Menge von Regeln. Ein Logikprogramm heifit definit, wenn
es nur aus definiten Regeln besteht. Wir gehen stets (ohne Beschrinkung
der Allgemeinheit) davon aus, dass die verwendete Sprache erster Stufe ge-
nau die in einem gegebenen Logikprogramm P vorkommenden Konstanten-,
Funktions- und Pradikatensymbole beinhaltet. Die zugehorige Herbrandbasis
Bp bezeichnet die Menge aller Grundatome iiber der gegebenen Sprache. Die
Menge aller zu P gehorigen Grundinstanzen von Regeln bezeichnen wir mit
ground(P).

Eine Stufenfunktion | : Bp — « fiir ein Programm P ist eine Abbildung
[von der Herbrandbasis Bp in eine (abzihlbare) Ordinalzahl «.

Herbrandinterpretationen fiir ein Logikprogramm P koénnen kanonisch
mit Teilmengen von Bp identifiziert werden. Die Menge all dieser Teilmen-
gen wird mit Ip bezeichnet. Die Menge [p ist durch Teilmengeninklusion
geordnet. Ist I C Bp, dann definieren wir - = {—=A | A € I}. Der Kon-
sequenzoperator Tp ist eine Abbildung auf Ip, wobei Tp(I) fur I € Ip die

10 Kapitel 1. Semantik nichtmonotoner Logikprogrammierung

Menge der A € Bp ist, fiir die eine Regel A < body in ground(P) existiert,
fiir die body wahr unter I ist.

Wir betrachten auch dreiwertige Logiken, in denen neben wahr und falsch
noch der Wahrheitswert unbekannt zur Verfiigung steht. Negation, Konjunk-
tion und Disjunktion werden auf naheliegende Weise (wie in Kleenes starker
dreiwertiger Logik [32]) interpretiert: nicht wahr ergibt falsch, nicht falsch er-
gibt wahr, und nicht unbekannt ergibt unbekannt. Eine Konjunktion ist wahr
genau dann, wenn alle ihre Komponenten wahr sind. Sie ist falsch genau
dann, wenn mindestens eine ihrer Komponenten falsch ist. Eine Disjunktion
ist wahr genau dann, wenn mindestens eine ihrer Komponenten wahr ist. Sie
ist falsch genau dann, wenn alle ihre Komponenten falsch sind. Eine Implika-
tion p — ¢ ist wahr genau dann, wenn aus der Wahrheit von ¢ die Wahrheit
von p folgt. Letzteres geniigt fiir unsere Darstellung, das sonstige Verhalten
der Implikation ist nicht relevant.

Die (Herbrand-)Interpretationen in dreiwertiger Logik konnen mit den
konsistenten Teilmengen von Bp U —Bp identifiziert werden. Eine Teilmenge
I von Bp U —Bp heifit dabei konsistent, wenn fiir jedes A € Bp hochstens
eines von A und —A in [ist. Die Menge aller dreiwertigen Interpretationen
bezeichnen wir mit Ip3, sie ist durch Teilmengeninklusion geordnet.

Ein (zweiwertiges bzw. dreiwertiges) Modell fiir ein Logikprogramm P
ist eine (zweiwertige bzw. dreiwertige) (Herbrand-)Interpretation, die alle
Regeln in ground(P) (beziiglich zweiwertiger bzw. dreiwertiger Logik) wahr
macht. Wird nicht explizit darauf verwiesen, dass eine Interpretation oder
ein Modell dreiwertig ist, so ist ein klassisches zweiwertiges gemeint.

Semantiken fiir Logikprogramme sind in der Literatur auf sehr verschie-
dene Arten definiert und charakterisiert worden. Oft liegt dabei ein semanti-
scher Operator wie der oben eingefiihrte Konsequenzoperator zugrunde. Fiir
definite Programme zum Beispiel wird meist die Semantik betrachtet, die
sich aus dem kleinsten (Herbrand-)Modell des Programms ergibt. Die in mei-
nen Arbeiten vorgeschlagene vereinheitlichte Beschreibung von Semantiken
ermoglicht Charakterisierungen verschiedenster Semantiken unter Verwen-
dung von Stufenfunktionen als einzigem Hilfsmittel. Fiir definite Programme
ist diese Charakterisierung wie folgt. Sie kann als prototypisch angesehen
werden.

Satz 1.1 ([68])

Sei P ein definites Programm. Dann gibt es ein eindeutiges (zweiwertiges)
Modell M fiir P, fiir das eine Stufenfunktion [: Bp — « existiert, so dass
die folgende Bedingung erfiillt ist: Fiir jedes A € M gibt es eine Regel A «+
Ay, .. A, in ground(P) mit A; € M und I[(A) > I(4;) fiir alle i. AuBlerdem
ist M dann das kleinste (zweiwertige) Modell fiir P.

1.3. Technische Hinfiihrung 11

Satz 1.1 enthilt eine Charakterisierung des kleinsten Modells fiir defi-
nite Programme mit Hilfe von Stufenfunktionen. Die Charakterisierung ist
semi-syntaktischer Natur: Die Stufenfunktion beschreibt syntaktische Bedin-
gungen zur rekursiven Abhéngigkeit von Atomen in ground(P). Durch das
zu charakterisierende Modell selbst wird festgelegt, wann diese syntaktischen
Bedingungen beriicksichtigt werden miissen. Man vergleiche Satz 1.1 mit dem
folgenden, welcher stabile Modelle [45] beschreibt und fiir andere Zwecke be-
wiesen wurde.

Satz 1.2 ([31])

Sei P ein normales Programm und M ein (zweiwertiges) Modell fir P. Dann
ist M genau dann ein stabiles Modell von P, wenn eine Stufenfunktion [:
Bp — « existiert, so dass die folgende Bedingung erfiillt ist: Fiir jedes A € M
gibt es eine Regel A «— Ay,..., A,,—By,...,7B,, in ground(P) mit A, € M
und [(A) > I(4;) fir alle 1.

Die Sétze 1.1 und 1.2 unterscheiden sich nur geringfiigig; vor allem ist die
behandelte Programmklasse eine andere. Der formale Vergleich legt nahe,
dass stabile Modelle fiir normale Programme eine dhnliche Rolle spielen wie
das kleinste Modell fiir definite Programme. In der Tat haben sich stabile
Modelle dafiir durchgesetzt.

Der Beweis von Satz 1.1 folgt einem bestimmten Raster, welches auch fiir
die meisten anderen Resultate unseres vereinheitlichten Ansatzes Verwen-
dung finden kann. Zunéchst ist bekannt, dass sich das kleinste Modell eines
definiten Programms P als Vereinigung (J,,.y 75(0) von Iterationen von ()
unter T beschreiben lasst. Der Konsequenzoperator Tp ist in diesem Falle
monoton, d.h. wir erhalten T%(0) C Tpt'(0) fiir alle n € N. Wir definieren
nun die Menge [~!(n), fiir n € N, als T2 \ T%. Man kann dann die charak-
terisierende Bedingung nachweisen. Umgekehrt zeigt man induktiv, dass aus
der charakterisierenden Bedingung die Aussage [~'(n) N M C Ta*! fiir alle
n € N folgt.

Das Raster fiir andere Beweise unseres Ansatzes erhélt man durch
Verénderung des betrachteten Operators. Die Beweisdetails gestalten sich
dennoch in vielen Féllen als schwierig.

Andere Ansétze zur vereinheitlichten Beschreibung verschiedener Seman-
tiken verwenden abstraktere Ansétze zur Charakterisierung nichtmonotoner
Logiken [27, 28, 88], oder basieren auf Biverbéanden [26, 36, 86]. Erstere sind
sehr abstrakt, zweitere sehr restriktiv. Vor allem aber zeigt sich, dass alle an-
deren versuchten Ansétze nicht ausreichen, um die vielfiltigen syntaktische
Erweiterungen zu erfassen, die zur Zeit diskutiert werden. Eine Ausnahme
ist der Vorschlag in [108], das Verhéltnis dieser Arbeit mit dem auf Stufen-
funktionen basierenden Ansatz ist in einer der eingereichten Arbeiten ([60])

12 Kapitel 1. Semantik nichtmonotoner Logikprogrammierung

untersucht worden.

1.4 Eigene Resultate: Uberblick iiber die einge-
reichten Arbeiten

In [68] wird der vereinheitlichende Ansatz erstmalig entwickelt und vorge-
schlagen. Das oben genannte Beweisraster wird entwickelt. Die Flexibilitét
des Verfahrens wird demonstriert, indem die folgenden Semantiken charak-
terisiert werden: kleinstes Modell fiir definite Programme (Satz 1.1), Fittings
Semantik [32], die wohlfundierte Semantik [119] und die schwach stratifizierte
Semantik [103]. Mit Ausnahme der kleinsten Modellsemantik sind dies drei-
wertige Semantiken. Das bereits zitierte Resultat von Fages (Satz 1.2) rundet
die Darstellung ab.

Insbesondere durch die Behandlung der schwach stratifizierten Seman-
tik zeigt sich, wie allgemein das beschriebene Verfahren ist. Andere Ansétze
zur vereinheitlichten Beschreibung sind in der Regel nicht in der Lage, diese
inzwischen weniger wichtig gewordene Semantik mit einzubeziehen. Die Dar-
stellung lasst auch erwarten, dass unser Ansatz auf die meisten Semantiken,
die sich mit monotonen Operatoren oder anderen monotonen Konstruktionen
beschreiben lassen, iibertragbar ist.

Das Hauptresultat der Veroffentlichung besteht in der Darstellung des
konzeptionell neuen Ansatzes zur vereinheitlichten Beschreibung verschiede-
ner Semantiken. Gleichzeitig ergeben sich aus den technischen Resultaten
noch einige interessante Nebeneinsichten. Zum einen wird die Ahnlichkeit
zwischen der kleinsten Modellsemantik fiir definite Programme und der sta-
bilen Modellsemantik fiir normale Programme formalisiert und deutlich —
wie bereits oben argumentiert. Eine dhnliche Parallele ergibt sich aus den
Resultaten zu Fittings Semantik und der wohlfundierten Semantik: Letztere
wird als eine stratifizierte Version (im Sinne von [6, 104]) der ersteren er-
kannt. Interessanterweise war es eigentlich die schwach stratifizierte Seman-
tik, die aus dieser Motivation heraus konstruiert wurde. Die Resultate zeigen
aber, dass sie — im Gegensatz zu der aus anderen Motiven entstandenen
wohlfundierten Semantik — diesen Anspruch nicht erfiillt.

Die Verdffentlichung ist eine stark {iberarbeitete und erweiterte Version
von [66].

In [54] werden Fragen behandelt, die durch die in [68] hergeleiteten Cha-
rakterisierungen verschiedener Semantiken aufgeworfen werden. Insbesonde-
re zeigt sich in [68], dass die wohlfundierte Semantik aus Fittings Semantik

1.5. Ausblick 13

abgeleitet werden kann, indem bestimmte Selbstbeziiglichkeiten, die in Fit-
tings Semantik zum Wahrheitswert unbekannt fithren, als falsch ausgewertet
werden. Diese Beobachtung deckt sich mit der sehr viel &dlteren, aber bis
dahin hauptséichlich informellen Einsicht, dass die wohlfundierte Semantik
Falschheit bevorzugt [35].

Der vereinheitlichte Ansatz erlaubt nun durch einfache formale
Verénderungen der Charakterisierungen bekannter Semantiken, die Bevorzu-
gung von Falschheit zugunsten von Wahrheit oder Unbestimmtheit aufzuge-
gen. In [54] wird gezeigt, dass eine solche Behandlung zu einer Theorie fiihrt,
die vollig analog zur iiblichen aufgebaut ist. Die Resultate zeigen, dass eine
Entwicklung neuer und interessanter Semantiken mit Hilfe von Charakteri-
sierungen durch Stufenfunktionen grundsétzlich méglich ist. Es ist natiirlich
nicht zu erwarten, dass die fiir diese Demonstration neu entwickelten Seman-
tiken direkt praktische Relevanz haben werden; erst fiir die Behandlung noch
nicht so eingehend studierter syntaktischer Erweiterungen sind entsprechen-
de Ergebnisse zu erwarten.

Diese Veroffentlichung ist leicht {iberarbeitet beim Journal of Logic and
Computation eingereicht worden.

In [60] wird unser Ansatz zur vereinheitlichten Charakterisierung von Se-
mantiken mit einem anderen, in [108] entwickelten Ansatz &hnlicher Zielge-
bung, verglichen. Es wird bewiesen, dass samtliche mit Hilfe von [108] be-
handelbaren Semantiken auch mit Hilfe von Stufenfunktionen charakterisiert
werden konnen. Der formal anspruchsvolle Beweis wirft auflerdem eine Reihe
von Korollaren ab. In diesen werden verschiedene Semantiken fiir disjunktive
Logikprogramme charakterisiert. Letztere sind eine syntaktische Erweiterung
normaler Logikprogramme, indem statt eines einzigen Atoms im Kopf von
Regeln auch Disjunktionen von Atomen zugelassen werden.

Die Resultate demonstrieren die Stédrke und Allgemeinheit des auf Stu-
fenfunktionen beruhenden Ansatzes.

Diese Veroffentlichung ist beim 19. Workshop on (Constraint) Logic Pro-
gramming eingereicht worden.

1.5 Ausblick: Weiterfithrungen und Anwendungen

Ein vereinheitlichter Ansatz zur Charakterisierung verschiedener Semantiken
fithrt direkt zu einem vertieften Verstéandnis der Modellierungsprinzipien in
der Logikprogrammierung. Es ist zu erwarten, dass durch eine Weiterentwick-
lung Einsichten gewonnen werden koénnen, die zu konkreten Anwendungen
fithren.

14 Kapitel 1. Semantik nichtmonotoner Logikprogrammierung

Zunéchst ist zu vermuten, dass unser Ansatz durch die Verwendung von
Wohlordnungen Relevanz fiir Entscheidbarkeitsfragen hat. Tatséchlich ist das
im Bereich nichtmonotonen Schliefens zur Zeit vorherrschende Paradigma
Answer Set Programming nur fiir aussagenlogische oder vergleichbar end-
liche Problemstellungen implementiert, was Ausdrucksstirke und Anwend-
barkeit fiir die Wissensverarbeitung stark einschréankt. Trotz hohen Bedarfs
wird an diesem Punkt kaum geforscht, wohl vor allem aus Mangel an innova-
tiven Ideen. Die prominenteste Ausnahme sind die Arbeiten von Bonatti [17].
Da das Schlielen mit nichtmonotonen Semantiken wie der der stabilen oder
der wohlfundierten Modelle im Allgemeinen nicht semi-entscheidbar ist, ist
die Identifizierung entscheidbarer oder semi-entscheidbarer Fragmente eine
naheliegende Vorgehensweise. Mit Hilfe der Charakterisierungen durch Stu-
fenfunktionen kénnen solche Fragmente in etwa wie folgt gewonnen werden:
Zunéchst charakterisiert man eine Semantik mit Hilfe von Stufenfunktionen.
Dann beschreibt man Bedingungen, unter denen die Herleitung des Wahr-
heitswertes von Atomen der Stufe n + 1 aus denen der Stufe n entscheidbar
ist und terminiert. Es folgt dann, dass die Wahrheitswerte aller Atome bis
zur Stufe w entscheidbar sind.! Sind entscheidbare Fragmente solcherart cha-
rakterisiert, ist eine Algorithmisierung entsprechender Beweis- oder Entschei-
dungsverfahren unproblematisch. Eine vergleichbare Konstruktion wurde in
[83] fiir SLD-Resolution verfolgt.

Eine andere Forschungsrichtung, die sich aus dem vereinheitlichten An-
satz erofinet, ist die semantische Untersuchung syntaktischer Erweiterungen
fiir die Logikprogrammierung. Vor allem sind dazu disjunktive Programme
zu untersuchen, was in der von mir betreuten Arbeit [79] schon im Ansatz ge-
schehen ist. Von besonderem Interesse ist dabei allerdings die Untersuchung
der verschiedenen konkurrierenden Vorschldge fiir wohlfundierte Semantiken
fiir disjunktive Programme. Mit Hilfe unseres Ansatzes lassen sich diese dann
vergleichen und Anhaltspunkte herausarbeiten, welche Semantiken in wel-
chem Kontext zu bevorzugen sind. Andere syntaktische Erweiterungen, die
dhnlichen Analysen zugefiihrt werden sollen, sind geordnete Disjunktion [18],
Préferenzen [19], quantitative Erweiterungen [118, 77, 122, 90, 87] und an-
dere.

Ist eine kritische Masse an Beschreibungen verschiedener Semantiken mit
unserem Verfahren erst vorhanden, dann liegt natiirlich auch die Entwicklung
einer Metatheorie auf der Hand, mit deren Hilfe z.B. Komplexitatsklassen
und andere Eigenschaften direkt aus den vereinheitlichten Charakterisierun-
gen ablesbar sein konnten.

Zuletzt sei erwéihnt, dass auch im Zusammenhang approximativer Deduk-

Lw ist die kleinste unendliche Ordinalzahl.

1.5. Ausblick 15

tionsverfahren Charakterisierungen mit Hilfe von Stufenfunktionen hilfreich
sein konnen. In [59] zum Beispiel wird ein Verfahren zur approximativen
Deduktion mit Hilfe von Stufenfunktionen semantisch beschrieben.

Kapitel 2

Neuro-symbolische Integration

2.1 Kurzfassung

Neuro-symbolische Integration befasst sich mit der Entwicklung intelligenter
Systeme, die wiinschenswerte Eigenschaften logikbasierter und konnektio-
nistischer Wissensverarbeitung vereinen. Diese Forschung ist motiviert aus
Anforderungen der Praxis, in der die Entscheidung fiir eines der beiden Pa-
radigmen meist eine Entscheidung gegen die wiinschenswerten Eigenschaften
des anderen notwendig macht. Wahrend erste Systeme fiir die konnektioni-
stische Behandlung von Aussagenlogik bereits vorliegen, gestaltet sich die
Integration mit der Priadikatenlogik als eine sehr schwierige Herausforderung
fiir die Forschung.

Meine Arbeiten befassen sich mit der Integration von Logikprogrammen
erster Stufe mit kiinstlichen neuronalen Netzen in Standardarchitekturen.
In ihnen werden die zur Zeit einzigen vorliegenden Techniken beschrieben,
wie solche Logikprogramme konnektionistisch repréasentiert werden konnen.
Konkret behandelt werden Repréasentationen mit dreischichtigen Perzeptro-
nen, mit RBF-Netzwerken, und mit fibred Netzwerken, wobei die konkreten
Umsetzungen mit jeweils anderen Methoden erfolgen.

Zukiinftige Arbeiten betreffen die Erweiterung dieser Techniken zu intel-
ligenten Systemen mit Lern- und Erklarungsfdhigkeiten, sowie die konkrete
Umsetzung derselben und das Studium von Anwendungsszenarien.

17

18 Kapitel 2. Neuro-symbolische Integration

2.2 Forschungskontext: Logik und kiinstliche neu-
ronale Netzwerke

Intelligente Systeme, die auf kiinstlichen neuronalen Netzen (auch konnektio-
nistische Systeme genannt) basieren, unterscheiden sich grundlegend von lo-
gikbasierten. Logikprogramme zum Beispiel sind normalerweise stark rekur-
siv und sind deklarativ gut verstanden. Die zugrundeliegende Sprache ist die
der Préadikatenlogik, die es aufgrund ihrer symbolischen Natur einfach macht,
Programmspezifikationen mehr oder weniger direkt als Programme aufzufas-
sen. Der Erfolg von kiinstlichen neuronalen Netzen ist darin begriindet, dass
sie mit Hilfe von Rohdaten trainiert werden kénnen, und sich in wichtigen
Anwendungsgebieten die erlernten Funktionalitéiten als hochst niitzlich und
anwendbar herausstellen — selbst wenn die Rohdaten verrauscht sind. Erfolg-
reiche Netzarchitekturen verwenden jedoch kaum rekurrente (d.h. rekursive)
Strukturen. Ausserdem ist Wissen in einem trainierten Netz nur sehr impli-
zit repréisentiert, und addquate Verfahren zur Extraktion dieses Wissens in
symbolischer Form konnten bis heute nicht entwickelt werden.

Eine Integration der robusten auf neuronalen Netzen basierenden Lern-
verfahren mit symbolischen Wissensverarbeitungsverfahren wie der Logik-
programmierung ist daher erstrebenswert, insbesondere wenn die jeweiligen
Stéirken der beiden Paradigmen erhalten werden konnen. Der aktuelle Stand
der Forschung auf diesem Gebiet ist jedoch von diesem Ziel noch weit ent-
fernt. Eines der Hauptprobleme bei der Entwicklung integrierter Systeme ist
die Frage, wie symbolisches Wissen mit Hilfe kiinstlicher neuronaler Netze
repréasentiert werden kann. Zufriedenstellende Antworten auf diese Frage wer-
den auf natiirliche Weise zu Wissensextraktionsverfahren und anwendbaren
integrierten neuro-symbolischen Systemen fithren.

Bisher waren die Ansédtze zur Integration logischer und konnektioni-
stischer Systeme hauptséchlich aussagenlogischer Natur oder beschrankt
auf pradikatenlogische Logikprogramme ohne Funktionssymbole oder auf
dhnliche endliche Einschriankungen, die sich auf eine aussagenlogische Be-
handlung zuriickfiihren lassen. Diese Ansétze reichen zuriick bis zu den bahn-
brechenden Arbeiten von McCulloch und Pitts [93] und fithrten in den 80er
und 90er Jahren zu einer Reihe von Systemen wie KBANN [117], SHRU-
TI [112, 111}, BUR [73] und anderen Arbeiten wie z.B. [84, 97, 70, 41, 44].
Uberblicksarbeiten zu diesem Gebiet sind z.B. [20, 42, 49].

Die Entwicklung integrierter neuro-symbolischer Systeme wird sehr
viel schwieriger, wenn man die Einschrénkung auf endliche Systeme zu
iiberwinden sucht. Ein prinzipielles Hindernis besteht dabei in der Notwen-
digkeit, eine im Grunde unendliche Sprache (z.B. der Prédikatenlogik) mit

2.3. Technische Hinfiihrung 19

Hilfe endlich vieler Netzwerkknoten zu behandeln. Neben den Arbeiten zu
Autoassoziativspeichern (RAAM), die von Pollack initiiert wurden [100] und
lediglich das Lernen von Termen erster Ordnung betreffen, und den verwand-
ten holographic reduced representations [98] gibt es dazu im Grunde nur einen
einzigen Ansatz, der auf [72] zuriickgeht, welcher wiederum von der aussagen-
logischen Arbeit [71] motiviert ist. Er basiert auf der Idee, Logikprogramme
mit Hilfe ihres Konsequenzoperators zu repréasentieren. Der Operator wird
dazu in eine reellwertige Funktion iibertragen, die unter gewissen Bedingun-
gen durch neuronale Netze mit Standardarchitekturen berechnet oder appro-
ximiert werden kann.

Von zentraler Wichtigkeit fiir diesen Ansatz ist ein Approximationssatz
von Funahashi [37], welcher grob gesprochen aussagt, dass sich jede auf
einem Kompaktum definierte stetige reellwertige Funktion durch Eingabe-
Ausgabe-Funktionen von neuronalen Netzwerken in Standardarchitektur —
mehrschichtige Perzeptronen mit sigmoidalen Aktivierungsfunktionen — be-
liebig genau in der Maximumsnorm approximieren lésst. In [72] wird gezeigt,
dass sich dieses Resultat verwenden ldsst, um in diesem Sinne die Appro-
ximierbarkeit einer eingeschrinkten Programmklasse, ndmlich der von Pro-
grammen, die azyklisch beziiglich einer bijektiven Stufenfunktion sind, zu
zeigen. Der Beweis in [72] ist jedoch ein reiner Existenzbeweis, d.h. konkrete
Angaben, wie ein approximierendes Netzwerk gefunden werden kann, kénnen
daraus nicht direkt abgeleitet werden.

Schon in meiner Dissertation [51], bzw. in [63], findet sich eine erste ge-
ringfiigige Verallgemeinerung dieser Resultate. Meine Anstrengungen seither
verfolgten zum einen das Ziel, die in [72] behandelte sehr eingeschrinkte Pro-
grammklasse zu verallgemeinern, und zum anderen auf konstruktive — und
daher praktisch anwendbare — Représentationen hinzuarbeiten. In meinen
Arbeiten werden die zur Zeit einzigen vorliegenden Techniken beschrieben,
wie solche Logikprogramme konnektionistisch repréasentiert werden konnen.
Konkret behandelt werden Reprisentationen mit dreischichtigen Perzeptro-
nen, mit RBF-Netzwerken, und mit fibred Netzwerken, wobei die konkreten
Umsetzungen mit jeweils anderen Methoden erfolgen.

2.3 Technische Hinfitlhrung: Konnektionistische
Reprisentationen von Logikprogrammen er-
ster Stufe

Biologische neuronale Netze bestehen aus einer Menge von Neuronen, die aus
Soma, Azon und Dendriten bestehen und miteinander verbunden sind. Elek-

20 Kapitel 2. Neuro-symbolische Integration

trische Potenziale konnen durch molekulare Mechanismen entlang der Den-
driten zum Soma gelangen und ein elektrisches Erregungspotenzial auslosen,
welches dann entlang des Axons zu den Dendriten anderer Neuronen trans-
portiert wird.

Kiinstliche neuronale Netzwerke sind Abstraktionen der biologischen. Die
Neuronen entsprechen einer Menge von Knoten in einem gerichteten Gra-
phen; die Kanten des Graphen entsprechen den Verbindungen der Neuro-
nen durch Axone und Dendriten. Anstelle elektrischer Potenziale werden in
kiinstlichen Netzen in der Regel reelle Zahlen entlang der Verbindungen wei-
tergegeben. Zu jedem Zeitpunkt wird also mit jedem Knoten oder Neuron
eine reelle Zahl assoziiert, die wir die Erreqgung des Knotens nennen. Die
Kanten sind zudem mit reellwertigen sogenannten Gewichten ausgestattet,
deren Funktion noch erklart werden wird. Mit jedem Knoten wird aulerdem
eine reellwertige Aktivierungsfunktion assoziiert.

Die Weiterleitung von FErregungen geschieht nun wie folgt. Sind
Ny, ..., N, die Vorgingerknoten eines Knotens N, und ist x; die Erregung
von N, fiir alle 7, dann errechnet sich die Erregung = von N nach der Formel

wobei w;, fiir alle ¢, das reellzahlige Gewicht der Verbindung von N; nach
N ist, und ¢ : R — R die Aktivierungsfunktion von N. Die Weiterleitung
von Erregung im Netzwerk ist meist synchronisiert, d.h. die Aktualisierung
der Erregung von allen oder von Gruppen von Knoten geschieht gleichzeitig
in diskreten Zeitschritten. Ist der zugrundeliegende Graph azyklisch, dann
sprechen wir von einem wvorwdrtsgerichteten Netz; in diesem Falle sind die
Knoten meist in Schichten angeordnet, Verbindungen gehen immer nur von
einer Schicht zur néchsten, und die Schichten werden nacheinander aktuali-
siert. Ist der zugrundeliegende Graph nicht azyklisch, sprechen wir von ei-
nem rekurrenten Netz. In vielen Fillen werden auflerdem gewisse Knoten
als Eingangsknoten und andere als Ausgangsknoten betrachtet. Mit ihrer
Hilfe werden Eingaben ins Netzwerk gemacht und Ausgaben abgelesen. In
vorwértsgerichteten Netzen sind meist die Knoten der ersten Schicht die Ein-
gangsknoten und die der letzten Schicht die Ausgangsknoten. In einem sol-
chen Fall assoziiert man mit einem Netzwerk eine Eingabe-Ausgabefunktion,
die folgendermaflen bestimmt ist: Sind x4, ..., z, die Erregungen der n Ein-
gangsknoten, und sind y1, ..., y,, die Erregungen der m Ausgangsknoten, so
bildet die Eingabe-Ausgabefunktion des Netzwerks das Tupel (x1,...,z,)
auf das Tupel (y1,...,ymn) ab, sie ist also eine Funktion von R™ nach R™.
Eine Vielzahl verschiedener Weiterleitungsmechanismen und Architektu-

2.3. Technische Hinfiihrung 21

ren werden in der Theorie behandelt und in der Praxis angewandt; nicht alle
von ihnen fallen unter das vorgestellte Schema, das aber fiir unsere Diskussion
geniigen wird. Eine der meistverbreiteten Architekturen ist die des dreischich-
tigen Perzeptrons. Es handelt sich dabei um ein vorwértsgerichtetes Netz
mit drei Schichten, einer Eingabeschicht, einer versteckten Schicht und einer
Ausgabeschicht. Die Aktivierungsfunktion ist sigmoidal, d.h. sie ist nichtkon-
stant, beschrinkt, monoton steigend und stetig. Meist wird die Funktion

1
1+e®

¢:x—
oder eine ahnliche dafiir verwendet.

Der auf [72] zuriickgehende Ansatz zur Repréasentation logischer Program-
me durch kiinstliche neuronale Netze verwendet folgendes Resultat:

Satz 2.1 ([37])

Sei ¢ : R — R eine nichtkonstante, beschrankte, monoton steigende und
stetige Funktion, K C R"™ kompakt, f : K — R stetig und ¢ > 0. Dann
existiert ein dreischichtiges Perzeptron mit Aktivierungsfunktion ¢, dessen
Eingabe-Ausgabefunktion f : K — R die Bedingung max,cx d(f(z), f(z)) <
¢ erfiillt, wobei d eine die natiirliche Topologie auf R erzeugende Metrik ist.

Zur Reprisentation eines Logikprogrammes P verwenden wir nun den
zugehorigen Konsequenzoperator Tp : [p — Ip und repréasentieren ihn mit
Hilfe der Eingabe-Ausgabefunktion F': K — R mit K C R kompakt, eines
mehrschichtigen Perzeptrons. Dazu muss zunédchst die Menge [p aller Inter-
pretationen als eine kompakte Teilmenge von R verstanden werden. Dazu
bedienen wir uns einer bijektiven Stufenfunktion [: Bp — N, wihlen eine
natiirliche Zahl B > 2 und definieren die Einbettung

t:lp = R:[— iB"[(ll(n)).

n=0

Dabei ist I1(A) =1 wenn [= A, und I(A) =0 wenn [j= A.

Die Bilder «(/p) sind wohlbekannte Teilmengen von [0, 1], ndmlich Can-
tormengen, die zum einen in der mathematischen Topologie (z.B. [124]), zum
anderen in der Theorie der Fraktale (z.B. [13]) und anderswo Verwendung
finden.

Mit Hilfe der Einbettung ¢ kénnnen wir nun den Operator Tp auf die
reellen Zahlen iibertragen: Wir definieren

U(Tp) : t(Ip) — t(Ip) : x +— o(Tp(1™!(2))).

22 Kapitel 2. Neuro-symbolische Integration

Die Funktion ¢(7p) ist nun nach Funahashis Satz durch dreischichtige Per-
zeptronen approximierbar, wenn sie stetig ist. Versiecht man /p mit der durch
¢ vermittelten Initialtopologie* @, dann ist «(Tp) approximierbar, wenn Tp
stetig beziiglich @ ist.

Die Cantortopologie) auf Ip hat unabhéngig davon in die Theorie der
Logikprogrammierung zur Behandlung nichtmonotoner Konsequenzoperato-
ren Eingang gefunden (z.B. [14, 110, 65]), ist also eine in der Logikprogram-
mierung natiirlich auftretende Struktur. Zur Charakterisierung der Stetigkeit
von Tp beziiglich @) sei das folgende Resultat angefiihrt.

Satz 2.2 (Spezialisierung eines Resultats aus [57])

Sei P ein Logikprogramm. Dann ist Tp genau dann stetig in der Cantorto-
pologie, wenn fiir alle A € Bp und I € Ip mit A ¢ I eine endliche Menge
S C Bp existiert, so dass fiir alle J € Ip, die mit I auf S iibereinstimmen,
gilt: A € Tp(J) genau dann, wenn A € Tp(I).

Zusammenfassend erhalten wir folgenden Satz, der als Ausgangspunkt fiir
die Diskussion meiner Beitrége zu diesem Forschungsgebiet dient.

Satz 2.3 (Spezialisierung eines Resultats aus [57])

Sei P ein Logikprogramm, so dass Tp die Bedingungen aus Satz 2.2 erfiillt.
Dann ist 7 im Sinne von Satz 2.1 durch Eingabe-Ausgabefunktionen von
dreischichtigen Perzeptronen approximierbar.

Die durch Satz 2.3 behandelbaren Programme sind z.B. alle aussagenlogi-
schen, sowie alle tiberdeckten; das sind solche, bei denen jede in einem Rumpf
auftretende Variable auch im zugehorigen Kopf auftritt. Nach [50] ist diese
Einschrinkung fiir definite Programme unerheblich.

2.4 Eigene Resultate: Uberblick iiber die einge-
reichten Arbeiten

In [57] wird der in [72] behandelte Spezialfall zur Représentation von Lo-
gikprogrammen mit dreischichtigen Perzeptronen bedeutend erweitert. Dies
wird ermoglicht durch eine sehr viel umfassendere Behandlung des Themas
aus topologischer Sicht. Dadurch wird dieses Forschungsthema eingebettet in
den groferen Forschungskontext der Arbeiten um topologische Methoden in
der Logikprogrammierung, zu denen z.B. [14, 34, 110, 16, 101, 65] gehoren.

In [57] werden neben dem iiblichen Konsequenzoperator Tp eine ganze
Klasse von verwandten semantischen Operatoren behandelt, die in der Lo-

2[124]

2.4. Figene Resultate 23

gikprogrammierung auftreten. Darunter féllt zum Beispiel der iiblicherweise
mit Fittings Semantik assoziierte Operator aus [32], aber auch andere, wie
in [33, 61, 36].

Gleichzeitig wird in [57] die Behandlung aller Programme mit Cantor-
stetigem semantischem Operator ermoglicht, und Stetigkeitscharakterisie-
rungen fiir diese erarbeitet. Es wird aulerdem gezeigt, dass unter gewissen
Bedingungen an das Logikprogramm auch das Iterationsverhalten semanti-
scher Operatoren mit Hilfe der approximierenden Netzwerke simuliert wer-
den kann. Dafiir werden unter Anderem genaue Fehlerabschitzungen fiir die
Approximationen abgeleitet.

Es wird auch kurz eine Alternative zum Satz von Funahashi betrachtet,
die auf [74] zuriickgeht. In diesem Approximationsresultat wird fiir die zu ap-
proximierende Funktion nur Messbarkeit vorausgesetzt, die Approximation
selbst ist dann jedoch auch nur beziiglich einer aus dem zugrundeliegenden
Maf} abgeleiteten Metrik zu gewéahrleisten. In [57] wird gezeigt, dass die ent-
sprechend in R eingebetteten semantischen Operatoren fiir alle Programme
stets messbar sind. Aufgrund der genannten Einschrinkungen beziiglich der
zu gewahrleistenden Approximation bleibt die Anwendbarkeit dieser Einsicht
jedoch zunéchst zweifelhaft.

In der Veroffentlichung werden aulerdem ausfiihrlich aussagenlogische
Resultate behandelt, die auf [71] zuriickgehen.

Die Veroffentlichung ist eine Zusammenfithrung, Uberarbeitung und Er-
weiterung von [71, 64].

In [11] wird das Problem der Reprisentation beziehungsweise Approxima-
tion von ¢(Tp) mit Hilfe von kiinstlichen neuronalen Netzen auf grundsétzlich
andere Weise und unter Umgehung des Satzes von Funahashi behandelt. Aus-
gangspunkt ist die Beobachtung, dass ndherungsweise Darstellungen des Gra-
phen der Funktion ¢(7p) fiir beliebige P selbstihnlich im Sinne der Fraktal-
und Chaostheorie erscheinen. Solche selbstdhnlichen Strukturen treten als
Attraktoren von iterierten Funktionensystemen im Sinne von [13] auf.

Da sich iterierte Funktionensysteme recht einfach mit Hilfe rekurrenter
Netze bestimmter Architektur darstellen lassen, liegt es auf der Hand, ein
Verfahren zu entwickeln, mit dem sich aus einem gegebenen Programm P
ein iteriertes Funktionensystem ableiten liasst, dessen Attraktor ¢(Tp) ist oder
approximiert. Durch Uberfiihrung in ein rekurrentes Netz erhédlt man dann
eine konnektionistische Darstellung von P.

Es stellt sich nun heraus, dass Stetigkeit von «(7p) fiir eine solche Be-
handlung nur bedingt ausreicht. Gewéhrleisten lésst sich die Existenz eines
iterierten Funktionensystems, dessen Attraktor der Graph von «(7p) ist, nur

24 Kapitel 2. Neuro-symbolische Integration

unter der Bedingung, dass «(Tp) Lipschitz-stetig [124] ist. Das gewonnene Re-
sultat ist jedoch stark genug, um die experimentell gewonnene Beobachtung
der Selbstéhnlichkeit der Graphen zu begriinden.

Das genannte Resultat liefert jedoch keine befriedigende Darstellung ei-
nes approximierenden iterierten Funktionensystems. In einer technisch sehr
aufwandigen Darstellung wird daher gezeigt, wie unter der genannten Be-
dingung der Lipschitz-stetigkeit zu P eine Folge von iterierten Funktionen-
systemen gewonnen werden kann, deren Folge von Attraktoren gegen den
Graphen von Tp konvergiert. Die verwendete Technik ist eine Abwandlung
der fraktalen Interpolation aus [13].

Abschlielend wird in der Verdffentlichung dargelegt, wie konnektionisti-
sche Systeme aus den erhaltenen iterierten Funktionensystemen gewonnen
werden konnen.

Die Arbeit fithrt die Forschung um die konnektionistische Behandlung
von pradikatenlogischen Logikprogrammen insofern entscheidend weiter, als
in ihr erstmalig konkrete Algorithmen zur Konstruktion approximierender
Netzwerke vorstellt werden.

[65] ist eine Weiterfithrung der unter meiner Betreuung entstandenen Ar-
beit [123]. In letzterer wird ein Ergebnis iiber die Fizpunktvervollstindigung
fix(P) eines Programms P, wie in [29] eingefiihrt, vorgetragen. Es besagt
unter anderem, dass der die stabile Modellsemantik charakterisierende zu
P gehorige Gelfond-Lifschitz-Operator mit Tgyp) identisch ist, d.h. die Be-
handlung des ersteren Operators lédsst sich auf den einfacheren letzteren
zuriickfithren. Gleichzeitig wird auch einer der zur wohlfundierten Semantik
gehorenden Operatoren auf den einfacheren zu Fittings Semantik gehérenden
Operator zuriickgefiihrt.

In [55] werden verschiedene Korollare aus diesen Resultaten gezogen. Ob-
wohl der Gelfond-Lifschitz-Operator nicht unter die in [57] behandelten Ope-
ratoren fillt, werden mit Hilfe des in [123] erzielten Resultats die Ergebnisse
dennoch tibertragbar, und ebenso die Ergebnisse aus [11]. Gleiches gilt auch
fiir den genannten, zur wohlfundierten Semantik gehorenden Operator, der
sich mit den in [57] genannten Methoden nicht direkt behandeln ldsst — der
zu Fittings Semantik gehorende Operator aber schon.

In der Verdffentlichung werden auflerdem weitere Korollare behandelt, die
auf dhnliche Weise aus einigen in meiner Dissertation gezeigten Ergebnissen
abgeleitet werden kénnen.

In dieser Arbeit wird erstmalig vorgestellt, wie pradikatenlogische Logik-
programme unter stabiler Modellsemantik konnektionistisch behandelt wer-
den konnen.

2.5. Ausblick 25

[12] ist eine Ubersichtsarbeit, in der der Stand der aktuellen Forschung zu
neuro-symbolischer Integration jenseits der Aussagenlogik dargestellt wird.
Dabei wird ein Fragenkatalog vorgestellt, der aktuelle Herausforderungen in
diesem Gebiet aufzeigt und zukiinftige vorausgreift.

Von dieser Veroffentlichung ist eine Zeitschriftversion in Vorbereitung.

In [10] wird die Suche nach geeigneten konnektionistischen Darstellungs-
formen fiir Logikprogramme weitergefithrt. Ausgangspunkt sind neueste Ar-
beiten zu sogenannten fibring Netzwerken [43], bei denen Erregungen von
Knoten die Gewichte oder Aktivierungsfunktionen anderswo im Netzwerk
kontrolliert verdndern kénnen.

In [10] wird exemplarisch vorgestellt, wie Programme mit Hilfe von ein-
fachen fibring Netzwerken dargestellt werden konnen. Die Vorgehensweise
ist konstruktiv, d.h. es werden Verfahren angegeben, mit denen konkret die
entsprechenden Netzwerke gewonnen werden konnen.

Diese Veroffentlichung ist bei der FLAIRS 2005 im Special Track on In-
tegrated Intelligent Systems eingereicht worden.

2.5 Ausblick: Weiterfiihrung und Anwendungen

In jlingster Zeit wurden auf dem Gebiet der neuro-symbolischen Integration
Fortschritte erzielt, die eine Uberfithrung dieser Technologie in den Anwen-
dungsbereich attraktiv machen. Ein Anwendungsgebiet, das ich in absehbarer
Zeit dafiir erschliefen mochte, ist das automatische Erlernen ontologischen
Wissens, wie es zur Zeit im Zusammenhang mit dem Semantic Web erforscht
wird. Dabei geht es um die Bereitstellung von Hintergrundwissen in Form
von Ontologien, um das Internet, dessen Inhalte bis heute nur von Men-
schen erschlossen werden konnen, fiir die intelligente maschinelle Verarbei-
tung zugénglich zu machen.

Beim Lernen von Ontologien geht es um die Generierung dieses ontolo-
gischen Hintergrundwissens mit Hilfe von maschinellen Lernverfahren, moti-
viert durch die verniinftige Annahme, dass auch in Zukunft viele Webseiten,
wenn nicht die meisten, ohne entsprechende Annotation mit Ontologien im
Internet bereitgestellt, also automatisch erschlossen werden miissen. Es kann
angenommen werden, dass sich die fiir Ontologien verwendeten Wissensre-
préasentationssprachen, insbesondere das auf Beschreibungslogiken basierende
OWL [96, 4], fiir eine konnektionistische Behandlung eignen. Bei OWL han-
delt es sich z.B. um ein entscheidbares Fragment der Priadikatenlogik erster
Stufe und es sollte deshalb mit endlichen Netzen abbildbar sein. Einen Aus-
gangspunkt fiir solche Untersuchungen bietet das in [48, 121] beschriebene

26 Kapitel 2. Neuro-symbolische Integration

Fragment. Das zur Zeit entstehende Gebiet des Lernens von Ontologien ist
ausserdem noch in der Phase der Konsolidierung, in der geeignete Techniken
zum maschinellen Lernen gesucht werden, und die erfolgreichen Techniken
der kiinstlichen neuronalen Netze konnen nicht ohne eine neuro-symbolische
Briicke fiir diese Zwecke genutzt werden.

Parallel zur praktischen Umsetzung der bekannten Techniken der neuro-
symbolischen Integration stellen sich auch noch einige grundsétzliche Fragen,
die durch die oben diskutierten Arbeiten aufgeworfen werden. Zum einen
fehlen noch immer in vielen Féllen konkrete Algorithmen zur Konstruktion
von approximierenden Netzen. Zum anderen ist die behandelbare Programm-
klasse immer noch eingeschrénkt und sollte erweitert werden, in etwa durch
geeignete Transformation der Programme vor der Approximation durch Netz-
werke.

Ein weiterer naheliegender néchster Schritt ist die Bereitstellung von Wis-
sensextraktionsverfahren aus neuronalen Netzen, basierend auf den diskutier-
ten Représentationen, sowie die Entwicklung von Lernalgorithmen, z.B. Mo-
difikationen des Backpropagation-Algorithmus (siehe [15]), die représentiertes
symbolisches Wissen respektieren. Diese Arbeiten sollten jedoch in enger Ver-
kniipfung mit der Entwicklung angewandter Verfahren vorgenommen werden.

Kapitel 3

Schlief3en iiber begrifflichem
Wissen

3.1 Kurzfassung

Anforderungen aus der Praxis im Umfeld des Semantic Web zeigen, dass eine
Integration begrifflichen Wissens — z.B. in Form von Ontologien — mit re-
gelbasierten Systemen — z.B. der Logikprogrammierung — erforderlich ist.
Wie diese Integration am besten zu bewerkstelligen ist, ist zur Zeit Gegen-
stand intensiver Forschungsanstrengungen.

In meinen Arbeiten verfolge ich systematisch die Frage der Integration
von Begriffshierarchien und regelbasiertem nichtmonotonem Schlieflen. Mei-
ne Resultate liefern konkrete normative Charakterisierungen der erstrebens-
werten Systeme und ihrer Semantiken. Sie zeichnen sich dadurch aus, dass
sie die einzigen Arbeiten sind, die diese Frage von einem systematischen
und strukturorientierten Standpunkt aus betrachten und eine Integration
aus grundlegenden Prinzipien ableiten.

Zukiinftige Arbeiten befassen sich mit der konkreten Algorithmisierung
und praktischen Umsetzung der Integration auf Anwendungsszenarien im
Bereich der Formalen Begriffsanalyse und des Semantic Web.

3.2 Forschungskontext: Logik und begriffliches
Wissen

Die Darstellung begrifflichen Wissens nimmt gerade in jiingster Zeit in der
Wissensverarbeitung an Bedeutung zu. Insbesondere im Umfeld der Semantic
Web-Forschung entstanden und entstehen Représentationssprachen, die spe-

27

28 Kapitel 3. Schlieflen iiber begrifflichem Wissen

ziell auf explizite oder implizite Darstellung und Verarbeitung begrifflichen
Wissens ausgelegt sind [115]. Prominente Vertreter sind Beschreibunslogiken
8], insbesondere OWL [96, 4], F-Logik [76, 3], aber auch Begriffsgraphen
und andere. Die entsprechenden begrifflichen Wissensbasen werden meist als
Ontologien bezeichnet. In der Semantic Web-Forschung interessiert unter an-
derem, welche Reprisentationsmittel grundsatzlich fiir die Praxis am geeig-
netsten sind.

Die entsprechenden Représentationssprachen sind logischer Natur, ob-
gleich dieser Sachverhalt nicht immer im Vordergrund steht. Tatséchlich las-
sen sie sich oft als Fragmente der Prédikatenlogik erster Stufe auffassen.
Gleichzeitig werden aber auch Reprasentationsmittel benttigt, die iiber die-
se hinausgehen und zum Beispiel arithmetische Aspekte oder nichtmonotones
Schliefen mdéglich machen. Die Diskussion um geeignete Mittel dazu ist im
Augenblick in vollem Gange.

Begriffliches Wissen handelt von Begriffen und ihren Beziehungen zuein-
ander, zum Beispiel in Form von Taxonomien. Durch die natiirlichen Be-
ziechungen zwischen Unterbegriffen und Oberbegriffen ist begriffliches Wissen
daher in erster Linie hierarchisch organisiert, d.h. kann mit Hilfe von Ord-
nungsstrukturen dargestellt werden. Die Formale Begriffsanalyse [40] stellt
mathematische Methoden zur Erzeugung von Begriffshierarchien aus Rohda-
ten zur Verfiigung und findet dazu immer weitere Verbreitung in der Informa-
tik und im Bereich des Semantic Web [116]. Durch die ihr zugrunde liegende
reichhaltige Theorie der Verbandsstrukturen eréffnen sich Begriffshierarchien
somit einer formalen Analyse mit diesen Mitteln. Da die logische Lesart von
Begriffshierarchien fiir die Wissensverarbeitung von entscheidender Bedeu-
tung ist, ergibt sich auflerdem ein Zusammenspiel von Ordnungsstrukturen
und Logik in diesem Gebiet, das formal zwangsldufig mit Themen und Me-
thoden aus dem Bereich der Stone-Dualitit [75] eng verwandt ist.

Fiir die Informatik relevante Aspekte der Stone-Dualitdt und — allgemei-
ner — des Zusammenspiels zwischen Ordnungsstrukturen und Logik werden
in der Domdnentheorie |2, 47] untersucht, die die formalen Grundlagen zur
Untersuchung von denotationellen Semantiken fiir Programmiersprachen zur
Verfiigung stellt. Sie befasst sich mit Ordnungsstrukturen, die zur Modellie-
rung von Aspekten der Berechenbarkeit verwendet werden konnen. Elemen-
te einer Ordnungsstruktur werden dabei als nach ihrem Informationsgehalt
geordnet verstanden und formal in maschinell représentierbare und approxi-
mierbare unterteilt.

In dem mit Stone-Dualitit eng verwandten Teilbereich der
Domdnenlogiken werden logische Repréasentationsformen fiir in der
Doménentheorie auftretende Ordnungsstrukturen untersucht. Diese Vor-
gehensweise wurde schon von Scott [109] initiiert, dessen Arbeiten auch

3.3. Technische Hinfiihrung 29

mafgeblich fiir die Entstehung der Doménentheorie als Forschungsgebiet wa-
ren. Arbeiten, die diese Gedanken fortfithren, sind z.B. [120, 1, 126, 114, 25].
Die auftretenden logischen Formalismen erinnern dabei oft an regelbasierte
Systeme, wie sie in der Logikprogrammierung vorkommen. Die Verwendung
doménentheoretischer Methoden im Bereich des nichtmonotonen Schlieens
mit Logikprogrammen liegt daher auf der Hand und wurde ansatzweise
ebenfalls untersucht, z.B. in [78, 62, 107, 128, 65, 127].

Meine jiingsten Beitrdge zu diesem Gebiet zielen auf die Erarbeitung von
theoretisch sauber fundierten Grundlagen zur Behandlung von hierarchisch
strukturiertem begrifflichem Wissen, die als normativ fiir die Entwicklung
von anwendbaren Verfahren gelten kénnen. Mein Interesse gilt dabei insbe-
sondere der Verbindung von regelbasiertem nichtmonotonem Schlieflen und
hierarchischem Wissen, aber auch Methoden zur Verkniipfung von heteroge-
nen ontologischen Wissensbasen. Meine Resultate liefern konkrete normative
Charakterisierungen der erstrebenswerten Systeme und ihrer Semantiken. Sie
zeichnen sich dadurch aus, dass sie die einzigen Arbeiten sind, die diese Frage
von einem systematischen und strukturorientierten Standpunkt aus betrach-
ten und eine Integration aus grundlegenden Prinzipien ableiten.

3.3 Technische Hinfiihrung: Formale Begriffsana-
lyse und Dominentheorie

Zur formalen Behandlung begrifflichen Wissens bedienen wir uns der For-
malen Begriffsanalyse [40]. Sie entstand aus philosophischem Gedankengut
[125] und dient in Anwendungsgebieten vor allem der Erzeugung und visu-
ellen Darstellung von Begriffshierarchien aus Rohdaten, die in der Form von
Gegenstands-Merkmals-Beziehungen vorliegen.

Ein formaler Kontext (G, M,I) besteht aus einer Menge G von Ge-
genstinden, einer Menge M von Merkmalen und einer infix notierten In-
zidenzrelation I C G x M. Fir A C G und B C M definieren wir

a(A)={m e M | alm fir alle a € A} und
w(B) ={g € G| gIb fiir alle b € B}.

Ein Paar (A, B) mit A C G und B C M heifit ein formaler Begriff, wenn
a(A) = B und w(B) = A ist. Wir nennen A den Extent und B den Intent
des Begriffs (A, B). Die Menge B(G, M, I) aller formalen Begriffe des forma-
len Kontexts (G, M, I) lasst sich auch dquivalent beschreiben als die Menge
aller Paare (w(B),a(w(B))) fir B € M. Fiir unsere Diskussion kénnen wir
deshalb formale Begriffe mit ihren Intenten identifizieren. Fiir zwei Begriffe

30 Kapitel 3. Schlieflen iiber begrifflichem Wissen

(d.h. Beggriffsintenten) B und C' schreiben wir B < C, falls C' C B. Wir be-
trachten B(G, M, I) als geordnet durch <. Es stellt sich heraus, dass die so
zu erhaltenden Ordnungsstrukturen genau die vollstdndigen Verbénde sind.
(B(G, M, I), =) heifit entsprechend der zu (G, M, I) gehorige Begriffsverband.
Die geordnete Teilmenge, die aus (B(G, M, I), <) durch Einschrankung auf
alle Elemente der Form a(g) oder a(w(m)), fir g € G bzw. m € M, entsteht,
heiBt die Galois-Teilhierarchie von B(G, M, I).

In Anwendungsszenarien in der Informatik, den Natur- und Sozialwissen-
schaften (siche z.B. [116, 81, 102]) stellen sich die durch formale Begriffsanaly-
sen gewonnenen Begriffshierarchien meist fiir den menschlichen Experten als
intuitiv einsichtige Form der Wissensrepréasentation dar. Durch ihre dadurch
begriindete hohe Anwendungsrelevanz und ihre saubere formale Grundlegung
in der Mathematik ist sie daher fiir das Studium begrifflichen Wissens bestens
geeignet. Entsprechend gibt es bereits zahlreiche Arbeiten z.B. im Kontext
der Beschreibungslogiken [9] und anderer Bereiche der Wissensrepréasentation
mit Ontologien (z.B. [23, 22, 21]).

Auch logische Aspekte der formalen Begriffsanalyse wurden schon un-
tersucht (z.B. [39]). Wir suchen allerdings die Nidhe zu den fiir die Infor-
matik relevanten Strukturen im Umfeld der Stone-Dualitdt. Als das geeig-
nete Werkzeug stellt sich die urspriinglich fiir die Charakterisierung von
Smyth-Powerdoménen entwickelte Doménenlogik RZ heraus. Wir benétigen
zunéchst etwas Begriffsbildung. Sie folgt [107].

Eine kohdrente algebraische Cpo ist eine Ordnungsstruktur (D, C), die
folgenden Bedingungen geniigt:

(i) (D,E) ist eine partiell geordnete Menge mit einem kleinsten Element
1.

(ii) D enthélt das Supremum jeder gerichteten Teilmenge.

(iii) Fir alled € D gilt d = sup (| d NK(D)), wobei |d = {c € D | ¢ C d} ist
und K(D) die Menge aller ¢ € D ist, so dass fiir jede gerichtete Menge
AC D mit ¢c CsupA ein a € A mit ¢ C a existiert. K(D) heifit die
Menge der kompakten Elemente von D.

(iv) Die Schnittmenge endlich vieler Scott-kompakt-offener Teilmengen von
D ist wieder Scott-kompakt-offen. Scott-kompakt-offen bezieht sich da-
bei auf die Scott-Topologie auf (D, C), zu der eine Basis durch die Men-
gen der Form {y | z C y} fir z € K(D) gegeben ist.

Intuitiv erschliefit sich die gerade gegebene Definition in etwa fol-
gendermaflen. Die Menge D besteht aus Informationseinheiten, die nach

3.3. Technische Hinfiihrung 31

Informations- oder Wissensgehalt geordnet sind. Das kleinste Element L ist
das Element ohne Information. Hat man eine vertrigliche (gerichtete) Teil-
menge an Informationseinheiten, so existiert auch eine Einheit (das Supre-
mum), die die Gesamtinformation dieser Teilmenge reprisentiert (Bedingung
(ii)). Kompakte Elemente stehen fiir maschinell reprisentierbare, d.h. in ei-
nem gewissen Sinne endliche Einheiten. In D ldsst sich somit jede Informa-
tion durch reprasentierbare Informationen annéhern. Die letzte Bedingung
(iv) ist eine technische Bedingung, die einen zusétzlichen finitistischen Cha-
rakter von D erzwingt. Ubersetzt im Sinne von [107] steht es in etwa fiir
die Aussage: Endliche Disjunktionen reprasentierbarer Einheiten sind wieder
repréasentierbar.

Ein Hauptbeispiel fiir eine kohérente algebraische Cpo ist die Menge
(Ip3,C) aus Abschnitt 1.3. Die Menge K(Ip3) besteht dabei wie intuitiv
zu erwarten genau aus den endlichen Teilmengen von Ip3, und es ist L = ().
Die Menge (Ip3, C) ist auch als T% in der Doménentheorie bekannt [99].

Auflerdem ist jede endliche partiell geordnete Menge mit kleinstem Ele-
ment eine kohérente algebraische Cpo.

Die Logik RZ wird nun folgendermafen definiert, folgend [107].

Sei (D, C) eine kohéarente algebraische Cpo. Eine Klausel oder Disjunktion
iiber D ist eine endliche Teilmenge von K(D). Wir nennen w € D ein Modell
fiir eine Klausel X und schreiben d = X, wenn es ein € X gibt mit z C d.
Eine Theorie T ist eine Menge von Klauseln, und wir schreiben w = T,
wenn w = X fir alle X € T gilt. Wir schreiben T' = X, wenn aus w = T
immer w = X folgt, und nennen die Klausel X in diesem Fall eine logische
Konsequenz aus T.

Die gerade gegebene Definition wird unmittelbar einsichtig, wenn man
sich Beispiele aus (Ip3, C) vor Augen fiihrt. Zum Beispiel gelten {{{p, ¢}}} E
{{p}} und {{{p},{—q}},{{¢}}} E {{p}}. Ersteres entspriiche in etwa der
Implikation von p aus p A ¢q. Das Zweite sagt aus, dass aus (p V —=¢q) A g die
Aussage p folgt.

Das Verhéltnis zwischen Formaler Begriffsanalyse und der Logik RZ er-
schlielt sich nun z.B. aus folgendem Resultat:

Satz 3.1 ([56])

Sei (D, C) eine kohérente algebraische Cpo, (G, M,) ein formaler Kontext
und (L, <) die Galois-Teilhierarchie von B(G, M, I). Sei auflermdem ¢ : L —
D eine ordnungsumkehrende injektive Funktion mit K(D) C «(L). Ist nun
A={mq,...,m,} € M eine Menge von Merkmalen mit «(m;) € K(D) fiir
alle 7, dann gilt

a(w(A)) = {m | {{elm)}, ... {lma}} = {e(m)}}.

32 Kapitel 3. Schlieflen iiber begrifflichem Wissen

Informell ausgedriickt sagt Satz 3.1, dass (endlicher) Begriffsabschluss
in der Formalen Begriffsanalyse dem konjunktiven Fragment der Logik RZ
entspricht.

3.4 FEigene Resultate: Uberblick iiber die einge-
reichten Arbeiten

In [56] werden die Formale Begriffsanalyse und Answer Set Programming
als nichtmonotones Wissensverarbeitungsparadigma zum ersten Mal mit Hil-
fe der Doménenlogik RZ verkniipft. Satz 3.1 bietet dabei den Ausgangspunkt.
Die Logik RZ wird zu einem disjunktiven Logikprogrammierparadigma auf
kohérenten algebraischen Cpos erweitert und mit nichtmonotonen Aspekten
im Sinne des Answer Set Programming ausgestattet. Mittels der Logik RZ
wird jedem solchen RZ-Logikprogramm eine Semantik zugeordnet.

Das so erhaltene Logikprogrammierparadigma ist eine Verallgemeine-
rung von Answer Set Programming in folgendem Sinne: Jedes Answer-Set-
Programm im Sinne von [46] kann direkt in ein RZ-Logikprogramm {iber
T tibersetzt werden, so dass die beziiglich RZ erhaltene Semantik genau
der stabilen Modellsemantik des urspriinglichen Programms entspricht. In
diesem Sinne sind RZ-Logikprogramme eine konservative Verallgemeinerung
von Answer Set Programming auf (geeignete) Ordnungsstrukturen. Die Ein-
schrankung der Ordnungsstrukturen auf kohérente algebraische Cpos ist da-
bei nicht bedenklich, da in der Praxis der Wissensverarbeitung auftretende
Hierarchien dieser Bedingung meist trivialerweise geniigen.

Das soeben diskutierte grundlegende Resultat liefert nun zum einen ein
Paradigma zur Fragebeantwortung {iber begrifflichem Wissen im Sinne der
Formalen Begriffsanalyse. Dabei kénnen RZ-Logikprogramme wahlweise als
komplexe Anfragen oder als regelbasierte Erweiterung der hierarchischen
Wissensbasis verstanden werden. Eine entsprechende nicht veroffentlichte
Prototypimplementierung in Prolog hat gezeigt, dass die erhaltenen Ant-
worten wie zu erwarten intuitiv einleuchten. Es sei auch bemerkt, dass die
zugrundeliegende Ordnungsstruktur keineswegs aus einem formalen Kontext
gewonnen sein muss — Klassenhierarchien iiber OWL-Ontologien kénnen
genauso dafiir verwendet werden wie Taxonomien und anderes ontologisches
Wissen.

Zum anderen und Wesentlicheren ist das diskutierte Resultat aber funda-
mentaler und normativer Natur. Die erfolgreiche und kohérente Verkniipfung
fortgeschrittener Techniken und Resultate aus verschiedenen Disziplinen ist
ein starker Hinweis darauf, dass ein sauberes Verfahren zum Answer Set

3.4. Eigene Resultate 33

Programming iiber begrifflichem Wissen semantisch dem vorgestellten ent-
sprechen sollte. Die Entwicklung von konkreten Umsetzungen dieser Einsicht
steht allerdings noch aus.

Von dieser Veroffentlichung ist eine Zeitschriftenversion in Vorbereitung.

In [58] wird das Verhéltnis von Formaler Begriffsanalyse und Doménenlogik
ausgiebig beleuchtet. Zentral ist dabei der neu eingefithrte Begriff der ap-
proximierbaren Begriffsverbinde. Ein approximierbarer Begriff ist dabei eine
Menge B von Merkmalen, so dass fiir jede endliche Teilmenge £ C B die Be-
ziehung a(w(F)) C B gilt. Fiir approximierbare Begriffe B, C' definiert man
wieder B < C' wenn C' C B gilt. Jeder (herkommliche) formale Begriff ist
approximierbar. Die aus formalen Kontexten erhéltlichen approximierbaren
Begriffsverbénde sind genau die vollstdndigen algebraischen Verbénde.

Auf der doménenlogischen Seite kommen spezielle Scott-
Informationssysteme [109] zum Einsatz, die sich als deduktive Systeme iiber
Konjunktionen von Aussagen verstehen lassen. Formal wird gezeigt, dass
die Kategorie der Scott-Informationssyteme mit den iiblichen Morphismen
und trivialer Konsistenzrelation dquivalent zur Kategorie Cxt der formalen
Kontexte ist, wobei letztere mit Hilfe von zu approximierbaren Begriffen
passenden, intuitiv einleuchtenden und natiirlichen Morphismen gebildet
wird. Aus bekannten Resultaten folgt damit sofort, dass Cxt dquivalent zur
Kategorie der in der Domé&nentheorie wichtigen vollstdndigen algebraischen
Verbénde ist.

In der Veroffentlichung wird dieser Sachverhalt von logischer und alge-
braischer Seite weiter beleuchtet durch Bezugnahme und Einbindung in das
Umfeld der Stone-Dualitdt und durch eine Diskussion von Satz 3.1 in diesem
Kontext.

Diese Veroffentlichung ist eine sehr stark iiberarbeitete und erweiterte
Version von [69]. Sie wurde bei Theoretical Computer Science eingereicht.

In [52] werden im Wesentlichen zwei Resultate bewiesen. Zum einen wird
die zur Logik RZ gehorende Beweistheorie vereinfacht. Zum anderen wird
gezeigt, unter welchen Nebenbedingungen sich logische Konsequenz in RZ
durch ein Resolutionsverfahren berechnen lésst. Diese Ansétze bieten Poten-
zial fiir Anwendungen, wurden aber noch nicht weiterentwickelt.

Eine Kurzversion dieser Verdffentlichung erschien in [53].

In [67] wird der zu Satz 3.1 gehorige Fall endlicher Kontexte und Ordnungs-
strukturen durchleuchtet. Die formalen Resultate sind in diesem Fall dhnlich,
aber wie zu erwarten sehr viel stiarker. Da in Anwendungen der Formalen Be-

34 Kapitel 3. Schlieflen iiber begrifflichem Wissen

griffsanalyse meist nur endliche Kontexte auftreten, ist diese Beschrankung
fiir die Praxis kaum von Relevanz.

3.5 Ausblick: Schlie3en iiber dem Semantic Web

Aus meinen Arbeiten ergeben sich mindestens die folgenden drei Ansétze zur
Umsetzung in Anwendungsgebieten.

Zum Ersten liefern RZ-Logikprogramme ein Paradigma fiir Regelerweite-
rungen begrifflicher Wissensbasen, zusammen mit einer komplexen Anfra-
gesprache fiir dieselben. Vor allem im Umfeld erfolgreicher Anwendungs-
szenarien der Formalen Begriffsanalyse erscheinen entsprechende Fallstudien
lohnenswert. Insbesondere kann dadurch das implizit in groflen als formale
Kontexte vorliegenden Rohdatenmengen enthaltene Wissen ohne vorherige
aufwandige Berechnung des Begiffsverbandes erschlossen werden. Die algo-
rithmische Umsetzung kann durch Kombination der Beweistheorie der Logik
RZ mit erfolgreichen Methoden des Answer Set Programming erfolgen.

Zum Zweiten geben die in [56] angestellten Untersuchungen Hinweise dar-
auf, wie eine formal saubere Verkniipfung von hierarchischem Wissen und
regelbasiertem nichtmonotonem Schliefen auf semantischer Ebene zu gestal-
ten ist. Um konkrete Paradigmen zu entwickeln ist eine Ubertragung auf die
im Umfeld des Semantic Web verwendeten Wissensreprasentationssprachen
vorzunehmen und sind entsprechende Deduktionsalgorithmen zu entwerfen.

Zum Dritten beriihrt [58] Fragen des Zusammenfiihrens von ontologischen
Wissensbasen. Wie z.B. in [82] ausfiihrlich dargelegt, lassen sich solche Ver-
fahren aus kategorientheoretischen Konstruktionen herleiten. Die Identifika-
tion geeigneter Kategorien von fiir die Semantic-Web-Forschung relevanten
Wissensreprisentationsformalismen zielt daher auf Anwendungen in diesem
Bereich.

Anteil des Autors an den
eingereichten Arbeiten

Pascal Hitzler and Matthias Wendt. A uniform approach to logic program-
ming semantics. Theory and Practice of Logic Programming, 5(1-2), 2005,
123-159. Im Druck. [68]. Stark iiberarbeitete und erweiterte Fassung von [66].

Mein Koautor war zum Zeitpunkt der Entstehung dieser Arbeit Student
im Hauptstudium an der Fakultédt fiir Informatik der TU Dresden. Unter
meiner Anleitung erarbeitete er Spezialfille der Resultate, die ich dann ver-
allgemeinerte und in einen grofleren Kontext einbettete. Die Fragestellung
stammt von mir.

Pascal Hitzler. Towards a systematic account of different logic program-
ming semantics. In Proceedings of the 26th German Conference on Artificial
Intelligence, KI2003, Hamburg, September 2003, Lecture Notes in Artificial
Intelligence. Springer, Berlin, 2003. [54]. Leicht iiberarbeitet beim Journal of
Logic and Computation eingereicht.

Ich bin alleiniger Autor dieser Arbeit.

Pascal Hitzler and Sibylle Schwarz. Level mapping characterizations of
selector-generated models for logic programs. Technical Report WV-04-04,
Knowledge Representation and Reasoning Group, Department of Computer
Science, Dresden University of Technology, 2004. [60]. Beim 19. Workshop
on (Constraint) Logic Programming eingereicht.

Meine Koautorin war zur Zeit der Entstehung dieser Arbeit Doktorandin
unter Prof. Herre an der Fakultdt fiir Mathematik und Informatik an der
Universitét Leipzig. Die Arbeit entstand in enger Kooperation und ist beiden
Autoren zu gleichen Teilen zuzurechnen.

Pascal Hitzler, Steffen Holldobler, and Anthony K. Seda. Logic programs
and connectionist networks. Journal of Applied Logic, 2(3), 2004, 245-
272, Special Issue on Neural-Symbolic Systems. [57]. Zusammenfiithrung und
Uberarbeitung von [71, 64].

35

36 Anteil des Autors an den eingereichten Arbeiten

Die Arbeit besteht im Wesentlichen aus einem aussagenlogischen und ei-
nem pradikatenlogischen Teil. Am aussagenlogischen Teil war ich kaum betei-
ligt. Die Fragestellung und die Resultate zum préadikatenlogischen Teil — mit
Ausnahme einer kurzen Diskussion von Ergebnissen aus [72] — wurden von
mir erdacht, entworfen und in erster Naherung ausgefithrt. Die detaillierte
Ausarbeitung dieses Teils wurde zusammen mit Anthony K. Seda vorgenom-
men.

Sebastian Bader and Pascal Hitzler. Logic programs, iterated function sy-
stems, and recurrent radial basis function networks. Journal of Applied
Logic 2(3), 2004, 273-300, Special Issue on Neural-Symbolic Systems. [11].

Zum Zeitpunkt der Entstehung dieser Arbeit arbeitete mein Koautor un-
ter meiner Anleitung an seiner Masterarbeit im Studiengang Computational
Logic an der TU Dresden. Die Fragestellung entstand bei ausfiihrlichen Dis-
kussionen zur Thematik, wobei Sebastian Bader dabei die massgeblichen Ide-
en einbrachte. In die Ausfithrung der zum Teil sehr anspruchsvollen Beweise
war ich an vielen Punkten lenkend und korrigierend involviert und ebenso
bei der Ausarbeitung und Verallgemeinerung der Resultate zu einem fiir eine
gehobene Zeitschrift angemessenen Beitrag.

Pascal Hitzler. Corollaries on the fixpoint completion: studying the sta-
ble semantics by means of the Clark completion. In D. Seipel, M. Hanus,
U. Geske, and O. Bartenstein, editors, Proceedings of the 15th Internatio-
nal Conference on Applications of Declarative Programming and Knowled-
ge Management and the 18th Workshop on Logic Programming, Potsdam,
Germany, March 4-6, 2004, Technichal Report 327, pages 13-27. Bayerische
Julius-Maximilians-Universitat Wiirzburg, Institut fiir Informatik, 2004. [55].
Ich bin alleiniger Autor dieser Arbeit.

Sebastian Bader, Pascal Hitzler and Steffen Hélldobler. The integration of
connectionism and knowledge representation and reasoning as a challenge
for artificial intelligence. In: L. Li and K.K. Yen, Proceedings of the Third In-
ternational Conference on Information, Tokyo, Japan, November/December
2004, pages 22-33. ISBN 4-901329-02-2, International Information Institute,
2004. Eine Zeitschriftversion ist in Vorbereitung.

Der Erstautor war zum Zeitpunkt der Entstehung dieser Arbeit Dokto-
rand unter meiner Anleitung. Sie entstand aus einem dhnlichen <eren Ent-
wurf von Steffen Holldobler, den ich substantiell ergédnzte, auf den neuesten
Stand brachte und nach Diskussionen mit meinen Koautoren erweiterte.

Sebastian Bader, Artur S. d’Avila Garcez and Pascal Hitzler. Computing
first-order logic programs by fibring artificial neural networks. Technical

Anteil des Autors an den eingereichten Arbeiten 37

Report, Institute AIFB, University of Karlsruhe, 2004. [10]. Eingereicht bei
FLAIRS 2005, Special Session on Integrated Systems.

Der Erstautor war zum Zeitpunkt der Entstehung dieser Arbeit Dokto-
rand unter meiner Anleitung. Sie entstand aus einer Diskussion der ersten
beiden Autoren und wurde vom Erstautor und mir ausgefiihrt.

Pascal Hitzler. Default reasoning over domains and concept hierarchies.
In Biundo, Friihwirth and Palm, Proceedings of the 27th German conference
on Artificial Intelligence, KI’2004, Ulm, Germany, September 2004, Lecture
Notes in Artificial Intelligence 3238, pages 351-365. Springer, Berlin, 2004.
[56]. Eine Zeitschriftversion ist in Vorbereitung.

Ich bin alleiniger Autor dieser Arbeit.

Pascal Hitzler, Markus Krotzsch, and Guo-Qiang Zhang. A categorical view
on algebraic lattices in formal concept analysis. Technischer Bericht, AIFB,
Universitat Karlsruhe. [58]. Bei Theoretical Computer Science eingereicht. Sie
ist eine stark iiberarbeitete und erweiterte Fassung von [69].

Markus Krotzsch arbeitete zum Zeitpunkt der Entstehung dieser Arbeit
an seiner Masterarbeit im Studiengang Computational Logic an der TU Dres-
den unter der Anleitung der anderen beiden Autoren. Die Arbeit ist eine Aus-
arbeitung von [69], in der die wesentlichen neuen Resultate enthalten sind.
Zu diesen stammt die Fragestellung von Guo-Qiang Zhang, die Ausarbeitung
im Wesentlichen von mir. Die Erweiterungen zu [58] wurden in erster Linie
von Markus Krotzsch mit Ergédnzungen von mir eingebracht.

Pascal Hitzler. A generalized resolution theorem. Journal of Electrical En-
gineering, Slovak Academy of Sciences, 55(1-2):25-30, 2003. [52]. Eine Kurz-
version erschien in [53].

Ich bin alleiniger Autor dieser Arbeit.

Pascal Hitzler and Matthias Wendt. Formal concept analysis and resolution
in algebraic domains. In Aldo de Moor and Bernhard Ganter, editors, Using
Conceptual Structures — Contributions to ICCS 2003, pages 157-170. Shaker
Verlag, Aachen, 2003. [67].

Zum Zeitpunkt der Entstehung dieser Arbeit war mein Koautor Student
im Masterstudiengang Computational Logic an der TU Dresden. Die Fra-
gestellung und ersten Ergebnisse stammen von mir, wurden von meinem
Koautor verallgemeinert und dann in enger Zusammenarbeit ausgearbeitet.

Literaturverzeichnis

1]

2]

Samson Abramsky. Domain theory in logical form. Annals of Pure and
Applied Logic, 51:1-77, 1991.

Samson Abramsky and Achim Jung. Domain theory. In Samson Ab-
ramsky, Dov Gabbay, and Thomas S.E. Maibaum, editors, Handbook
of Logic in Computer Science, volume 3. Clarendon, Oxford, 1994.

Jiirgen Angele and Georg Lausen. Ontologies in F-logic. In Steffen
Staab and Rudi Studer, editors, Handbook on Ontologies, pages 29-50.
Springer, 2004.

Grigoris Antoniou and Frank van Harmelen. Web Ontology Langua-
ge: OWL. In Steffen Staab and Rudi Studer, editors, Handbook on
Ontologies, pages 67-92. Springer, 2004.

Krzysztof R. Apt. From Logic Programming to Prolog. International
Series in Computer Science. Prentice Hall, 1997.

Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a
theory of declarative knowledge. In Jack Minker, editor, Foundations
of Deductive Databases and Logic Programming, pages 89-148. Morgan
Kaufmann, Los Altos, CA, 1988.

Krzysztof R. Apt, V. Wiktor Marek, Miroslav Truszczynski, and Da-
vid S. Warren, editors. The Logic Programming Paradigm: A 25-Year
Perspective. Springer, Berlin, 1999.

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nar-
di, and Peter Patel-Schneider, editors. The Description Logic Hand-
book: Theory, Implementation, and Applications. Cambridge University
Press, 2003.

Franz Baader and Ralf Molitor. Building and structuring descripti-
on logic knowledge bases using least common subsumers and concept

39

40

[11]

[12]

[13]

[14]

[15]

[16]

Literaturverzeichnis

analysis. In B. Ganter and G. Mineau, editors, Conceptual Structu-
res: Logical, Linguistic, and Computational Issues — Proceedings of the
8th International Conference on Conceptual Structures (ICCS2000),
volume 1867 of Lecture Notes in Artificial Intelligence, pages 290-303.
Springer Verlag, 2000.

Sebastian Bader, Artur S. d’Avila Garcez, and Pascal Hitzler. Com-
puting first-order logic programs by fibring artificial neural networks.
Technical report, Institute AIFB, University of Karlsruhe, September
2004. Submitted to FLAIRS 2005, Special Track on Integrated Sy-
stems.

Sebastian Bader and Pascal Hitzler. Logic programs, iterated functi-

on systems, and recurrent radial basis function networks. Journal of
Applied Logic, 2(3):273-300, 2004.

Sebastian Bader, Pascal Hitzler, and Steffen Holldobler. The integrati-
on of connectionism and knowledge representation and reasoning as a
challenge for artificial intelligence. In L. Li and K.K. Yen, editors, Pro-
ceedings of the Third International Conference on Information, Tokyo,
Japan, November/December 2004, pages 22-33. International Informa-
tion Institute, 2004. ISBN 4-901329-02-2.

Michael Barnsley. Fractals Everywhere. Academic Press, San Diego,

CA, USA, 1993.

Aida Batarekh and V.S. Subrahmanian. Topological model set defor-
mations in logic programming. Fundamenta Informaticae, 12:357-400,
1989.

Christopher M. Bishop. Neural Networks for Pattern Recognition. Ox-
ford University Press, 1995.

Howard A. Blair, Fred Dushin, David W. Jakel, Angel J. Rivera, and
Metin Sezgin. Continuous models of computation for logic programs.
In Krzysztof R. Apt, V. Wiktor Marek, Miroslav Truszczynski, and
David S. Warren, editors, The Logic Programming Paradigm: A 25-
Year Persepective, pages 231-255. Springer, Berlin, 1999.

Piero A. Bonatti. Reasoning with infinite stable models. Artificial
Intelligence, 156(1):75-111, 2004.

Literaturverzeichnis 41

[18]

[26]

[27]

Gerhard Brewka. Logic programming with ordered disjunction. In
Proceedings of the Fighteenth National Conference on Artificial Intel-
ligence and Fourteenth Conference on Innovative Applications of Ar-
tificial Intelligence, July/August, 2002, Edmonton, Alberta, Canada,
pages 100-105. AAAI Press, 2002.

Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended
logic programs. Artificial Intelligence, 109:297-356, 1999.

Anthony Browne and Ron Sun. Connectionist inference models. Neural
Networks, 14(10):1331-1355, 2001.

Philipp Cimiano, Andreas Hotho, and Steffen Staab. Clustering onto-
logies from text. In Proceedings of the Conference on Lexical Resources
and FEvaluation (LREC), 2004.

Philipp Cimiano, Gerd Stumme, Andreas Hotho, and Julien Tane. Con-
ceptual knowledge processing with formal concept analysis and onto-

logies. In Proceedings of the The Second International Conference on
Formal Concept Analysis (ICFCA 04), 2004.

Richard J. Cole, Peter W. Eklund, and Gerd Stumme. Document re-
trieval for email search and discovery using formal concept analysis.
Journal of Applied Artificial Intelligence (AAI), 17(3):257-280, 2003.

Alain Colmerauer and Philippe Roussel. The birth of Prolog. In ACM
SIGPLAN Notices, volume 28(3), pages 37-52. ACM Press, 1993.

Thierry Coquand and Guo-Qiang Zhang. Sequents, frames, and com-
pleteness. In 1jth International Workshop on Computer Science Logic,
Fischbachau, Germany, August 2000, volume 1862 of Lecture Notes in
Computer Science, pages 277-291. Springer, 2000.

Marc Denecker, V. Wiktor Marek, and Miroslaw Truszczynski. Appro-
ximating operators, stable operators, well-founded fixpoints and appli-
cations in non-monotonic reasoning. In Jack Minker, editor, Logic-based
Artificial Intelligence, chapter 6, pages 127-144. Kluwer Academic Pu-
blishers, Boston, 2000.

Jiirgen Dix. A classification theory of semantics of normal logic pro-
grams: . Strong properties. Fundamenta Informaticae, 22(3):227-255,
1995.

42

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Literaturverzeichnis

Jiirgen Dix. A classification theory of semantics of normal logic pro-
grams: I1. Weak properties. Fundamenta Informaticae, 22(3):257-288,
1995.

Phan Minh Dung and Kanchana Kanchanasut. A fixpoint approach to
declarative semantics of logic programs. In Ewing L. Lusk and Ross A.
Overbeek, editors, Logic Programming, Proceedings of the North Ame-
rican Conference 1989, NACLP’89, Cleveland, Ohio, pages 604—625.
MIT Press, 1989.

Thomas FEiter, Nicola Leone, Christinel Mateis, Gerald Pfeifer, and
Francesco Scarcello. A deductive system for nonmonotonic reasoning.
In Jiirgen Dix, Ulrich Furbach, and Anil Nerode, editors, Proceedings
of the 4th International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’97, volume 1265 of Lecture Notes in
Artificial Intelligence. Springer, Berlin, 1997.

Frangois Fages. Consistency of Clark’s completion and existence of
stable models. Journal of Methods of Logic in Computer Science, 1:51—
60, 1994.

Melvin Fitting. A Kripke-Kleene-semantics for general logic programs.
The Journal of Logic Programming, 2:295-312, 1985.

Melvin Fitting. Bilattices and the semantics of logic programming. The
Journal of Logic Programming, 11:91-116, 1991.

Melvin Fitting. Metric methods: Three examples and a theorem. The
Journal of Logic Programming, 21(3):113-127, 1994.

Melvin Fitting. A theory of truth that prefers falsehood. Journal of
Philosophical Logic, 26:477-500, 1997.

Melvin Fitting. Fixpoint semantics for logic programming — A survey.
Theoretical Computer Science, 278(1-2):25-51, 2002.

Ken-Ichi Funahashi. On the approximate realization of continuous
mappings by neural networks. Neural Networks, 2:183-192, 1989.

Dov M. Gabbay, C.J. Hogger, and J.A. Robinson. Nonmonotonic Re-
asoning and Uncertain Reasoning, volume 3 of Handbook of Logic in
Artificial Intelligence and Logic Programming. Clarendon Press, Ox-
ford, 1994.

Literaturverzeichnis 43

[39]

[40]

[41]

[42]

[44]

[45]

[46]

Bernhard Ganter and Rudolf Wille. Contextual attribute logic. In Wil-
liam M. Tepfenhart and Walling R. Cyre, editors, Conceptual Structu-
res: Standards and Practices. Proceedings of the Tth International Con-
ference on Conceptual Structures, ICCS °99, July 1999, Blacksburgh,
Virginia, USA, volume 1640 of Lecture Notes in Artificial Intelligence,
pages 377-388. Springer, Berlin, 1999.

Bernhard Ganter and Rudolf Wille. Formal Concept Analysis — Ma-
thematical Foundations. Springer, Berlin, 1999.

Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. Symbolic
knowledge extraction from trained neural networks: A sound approach.
Artificial Intelligence, 125:155-207, 2001.

Artur S. d’Avila Garcez, Krysia B. Broda, and Dov M. Gabbay. Neural-
Symbolic Learning Systems — Foundations and Applications. Perspec-
tives in Neural Computing. Springer, Berlin, 2002.

Artur S. d’Avila Garcez and Dov M. Gabbay. Fibring neural networks.
In In Proceedings of the 19th National Conference on Artificial Intelli-
gence (AAAI 04). San Jose, California, USA, July 2004. AAAI Press,
2004. To appear.

Artur S. d’Avila Garcez and Gerson Zaverucha. The connectionist
inductive learning and logic programming system. Applied Intelligence,
Special Issue on Neural networks and Structured Knowledge, 11(1):59—
77, 1999.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics
for logic programming. In Robert A. Kowalski and Kenneth A. Bowen,
editors, Logic Programming. Proceedings of the 5th International Con-

ference and Symposium on Logic Programming, pages 1070-1080. MIT
Press, 1988.

Michael Gelfond and Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing, 9:365—
385, 1991.

G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S.
Scott. Continuous Lattices and Domains, volume 93 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2003.

Benjamin Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. De-
scription logic programs: Combining logic programs with description

44

[50]

[55]

[56]

Literaturverzeichnis

logics. In Proc. of WWW 2003, Budapest, Hungary, May 2003, pages
48-57. ACM, 2003.

Hans W. Giisgen and Steffen Hoélldobler. Connectionist inference sy-
stems. In Bertram Fronhofer and Graham Wrightson, editors, Paralle-
lization in Inference Systems, volume 590 of Lecture Notes in Artificial
Intelligence, pages 82-120. Springer, Berlin, 1992.

Michael Hanus. On extra variables in (Equational) Logic Programming.
In Leon Sterling, editor, Logic Programming, Proceedings of the Twelfth
International Conference on Logic Programming, June 1995, Tokyo,
Japan, pages 665-679. MIT Press, 1995.

Pascal Hitzler. Generalized Metrics and Topology in Logic Program-
ming Semantics. PhD thesis, Department of Mathematics, National
University of Ireland, University College Cork, 2001.

Pascal Hitzler. A generalized resolution theorem. Journal of Electrical
Engineering, Slovak Academy of Sciences, 55(1-2):25-30, 2003.

Pascal Hitzler. A resolution theorem for algebraic domains. In Georg
Gottlob and Toby Walsh, editors, Proceedings of the 18th International
Joint Conference on Artificial Intelligence, Acapulco, Mexico, August
2003, pages 1339-1340. Morgan Kaufmann Publishers, 2003.

Pascal Hitzler. Towards a systematic account of different logic pro-
gramming semantics. In Andreas Giinter, Rudolf Kruse, and Bernd
Neumann, editors, Proceedings of the 26th German Conference on Ar-
tificial Intelligence, KI2003, Hamburg, September 2003, volume 2821 of
Lecture Notes in Artificial Intelligence, pages 355-369. Springer, Berlin,
2003.

Pascal Hitzler. Corollaries on the fixpoint completion: studying the sta-
ble semantics by means of the clark completion. In D. Seipel, M. Ha-
nus, U. Geske, and O. Bartenstein, editors, Proceedings of the 15th
International Conference on Applications of Declarative Programming
and Knowledge Management and the 18th Workshop on Logic Pro-
gramming, Potsdam, Germany, March 4-6, 200/, volume 327 of Tech-
nichal Report, pages 13-27. Bayerische Julius-Maximilians-Universitét
Wiirzburg, Institut fiir Informatik, 2004.

Pascal Hitzler. Default reasoning over domains and concept hierar-
chies. In Susanne Biundo, Thom Frithwirth, and Giinther Palm, editors,

Literaturverzeichnis 45

[60]

[61]

[62]

[63]

Proceedings of the 27th German conference on Artificial Intelligence,
KI1'2004, Ulm, Germany, September 2004, volume 3238 of Lecture No-
tes in Artificial Intelligence, pages 351-365. Springer, Berlin, 2004.

Pascal Hitzler, Steffen Holldobler, and Anthony K. Seda. Logic pro-
grams and connectionist networks. Journal of Applied Logic, 3(2):245—
272, 2004.

Pascal Hitzler, Markus Krotzsch, and Guo-Qiang Zhang. A catego-
rical view on algebraic lattices in formal concept analysis. Technical
report, AIFB, Universitat Karlsruhe, 2004. Submitted to Theoretical
Computer Science.

Pascal Hitzler and Boris Motik. Towards resolution-based approximate
reasoning for OWL-DL. In: Perry Groot, Pascal Hitzler, Boris Motik,
Holger Wache, Methods for Approximate Reasoning. EU Knowledge-
Web Network of Excellence deliverable D2.1.2, 2004. To appear.

Pascal Hitzler and Sibylle Schwarz. Level mapping characterizations of
selector-generated models for logic programs. Technical Report WV—
04-04, Knowledge Representation and Reasoning Group, Department
of Computer Science, Dresden University of Technology, 2004. Submit-
ted to the 19th Workshop on (Constraint) Logic Programming,.

Pascal Hitzler and Anthony K. Seda. Characterizations of classes of
programs by three-valued operators. In Michael Gelfond, Nicola Leo-
ne, and Gerald Pfeifer, editors, Logic Programming and Nonmonotonic
Reasoning, Proceedings of the 5th International Conference on Logic
Programming and Non-Monotonic Reasoning, LPNMR’99, El Paso,
Texas, USA, volume 1730 of Lecture Notes in Artificial Intelligence,
pages 357-371. Springer, Berlin, 1999.

Pascal Hitzler and Anthony K. Seda. Some issues concerning fixed
points in computational logic: Quasi-metrics, multivalued mappings
and the Knaster-Tarski theorem. In Proceedings of the 14th Summer
Conference on Topology and its Applications: Special Session on Topo-
logy in Computer Science, New York, volume 24 of Topology Procee-
dings, pages 223-250, 1999.

Pascal Hitzler and Anthony K. Seda. A note on relationships between
logic programs and neural networks. In Paul Gibson and David Sinclair,
editors, Proceedings of the Fourth Irish Workshop on Formal Methods,

46

[64]

[65]

[66]

Literaturverzeichnis

IWFM’00, Electronic Workshops in Comupting (eWiC). British Com-
puter Society, 2000.

Pascal Hitzler and Anthony K. Seda. Continuity of semantic operators
in logic programming and their approximation by artificial neural net-
works. In Andreas Giinter, Rudolf Kruse, and Bernd Neumann, editors,
Proceedings of the 26th German Conference on Artificial Intelligence,
KI2003, volume 2821 of Lecture Notes in Artificial Intelligence, pages
105-119. Springer, 2003.

Pascal Hitzler and Anthony K. Seda. Generalized metrics and unique-
ly determined logic programs. Theoretical Computer Science, 305(1—
3):187-219, 2003.

Pascal Hitzler and Matthias Wendt. The well-founded semantics is
a stratified Fitting semantics. In Matthias Jarke, Jana Koehler, and
Gerhard Lakemeyer, editors, Proceedings of the 25th Annual German
Conference on Artificial Intelligence, KI2002, Aachen, Germany, Sep-
tember 2002, volume 2479 of Lecture Notes in Artificial Intelligence,
pages 205-221. Springer, Berlin, 2002.

Pascal Hitzler and Matthias Wendt. Formal concept analysis and re-
solution in algebraic domains. In Aldo de Moor and Bernhard Ganter,
editors, Using Conceptual Structures — Contributions to ICCS 2003,
pages 157-170. Shaker Verlag, Aachen, 2003.

Pascal Hitzler and Matthias Wendt. A uniform approach to logic pro-
gramming semantics. Theory and Practice of Logic Programming, 5(1—
2):123-159, 2005. To appear.

Pascal Hitzler and Guo-Qiang Zhang. A cartesian closed category of ap-
proximable concept structures. In Karl-Erich Wolft, Heather D. Pfeiffer,
and Harry S. Delugach, editors, Proceedings of the International Con-
ference On Conceptual Structures, Huntsville, Alabama, USA, Lecture
Notes in Computer Science, pages 170-185. Springer, July 2004.

Steffen Holldobler. Automated Inferencing and Connectionist Models.
Fakultat Informatik, Technische Hochschule Darmstadt, 1993. Habili-
tationsschrift.

Steffen Holldobler and Yvonne Kalinke. Towards a massively parallel
computational model for logic programming. In Proceedings ECAI94
Workshop on Combining Symbolic and Connectionist Processing, pages

68-77. ECCAL 1994.

Literaturverzeichnis 47

[72]

[30]

[81]

Steffen Holldobler, Yvonne Kalinke, and Hans-Peter Storr. Approxi-
mating the semantics of logic programs by recurrent neural networks.
Applied Intelligence, 11:45-58, 1999.

Steffen Holldobler, Yvonne Kalinke, and Jorg Wunderlich. A recursive
neural network for reflexive reasoning. In Stefan Wermter and Ron
Sun, editors, Hybrid Neural Systems. Springer, Berlin, 1999.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer
feedforward networks are universal approximators. Neural Networks,
2:359-366, 19809.

Peter T. Johnstone. Stone Spaces. Number 3 in Cambridge studies in
advanced mathematics. Cambridge University Press, 1982.

Michael Kifer, Georg Lausen, and James Wu. Logical foundations
of object-oriented and frame-based languages. Journal of the ACM,
42:741-843, 1995.

Michael Kifer and V.S. Subrahmanian. Theory of generalized anno-
tated logic programming and its applications. The Journal of Logic
Programming, 1993.

Eric Klavins, William C. Rounds, and Guo-Qiang Zhang. Experimen-
ting with power default reasoning. In Proceedings of the Fifteenth Na-
tional Conference on Artificial Intelligence and Tenth Innovative App-
lications of Artificial Intelligence Conference, AAAI 98, IAAI 98, July
1998, Madison, Wisconsin, USA, pages 846-852. AAAI Press / The
MIT Press, 1998.

Matthias Knorr. Level mapping characterizations for quantitative and
disjunctive logic programs. Bachelor’s Thesis, Department of Computer
Science, Technische Universitéit Dresden, Germany, 2003.

Robert A. Kowalski. Predicate logic as a programming language. In
Proceedings IFIP’74, pages 569-574. North-Holland, 1974.

Sabine Krolak-Schwerdt and Bernhard Ganter. Cognitive organizati-
on of person attributes: Measurement procedures and statistical mo-
dels. In FExploratory Data Analysis in Empirical Research, volume 22 of
Studies in Classification, Data Analysis, and Knowledge Organization,
pages 472-482. Springer, 2002.

48

[82]

[91]

[92]

[93]

Literaturverzeichnis

Markus Krotzsch, Pascal Hitzler, Marc Ehrig, and York Sure. What
is ontology merging? — a category-theoretical perspective using pu-
shouts. Technical report, AIFB, Universitat Karlsruhe, 2004. Submit-
ted to the 2nd European Semantic Web Conference.

Kenneth Kunen. Negation in logic programming. The Journal of Logic
Programming, 4:289-308, 1987.

Trent E. Lange and Michael G. Dyer. Frame selection in a connectionist
model of high-level inferencing. In COGSCI, pages 706-713, 1989.

John W. Lloyd. Foundations of Logic Programming. Springer, Berlin,
1988.

Yann Loyer, Nicolas Spyratos, and Daniel Stamate. Parametrized se-
mantics of logic programs — a unifying framework. Theoretical Com-
puter Science, 308(1-3):429-447, 2003.

Thomas Lukasiewicz. Fixpoint characterizations for many-valued dis-
junctive logic programs with probabilistic semantics. In Proceedings
of the 6th International Conference on Logic Programming and Non-
Monotonic Reasoning, Vienna, Austria, September 2001.

David Makinson. Bridges between classical and nonmonotonic logic.
Logic Journal of the IGPL, 11(1):69-96, 2003.

V. Wiktor Marek and Miroslav Truszczynski. Stable models and an al-
ternative logic programming paradigm. In Krzysztof R. Apt, V. Wiktor
Marek, Miroslav Truszczynski, and David S. Warren, editors, The Lo-
gic Programming Paradigm: A 25-Year Persepective, pages 375—-398.
Springer, Berlin, 1999.

Cristinel Mateis. Quantitative disjunctive logic programming: Seman-
tics and computation. Al communications, 13(4):225-248, 2000.

John McCarthy. Epistemological problems of artificial intelligence. In
Proceedings of IJCAI-77, pages 1038-1044, 1977.

John McCarthy. Circumscription — a form of non-monotonic reaso-
ning. Artificial Intelligence, 13(1):27-39, 1980.

Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biophysics,
5:115-133, 1943.

Literaturverzeichnis 49

[94]

[95]

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Robert Moore. Possible-worlds semantics for autoepistemic logic. In
Proceedings of the 1984 Non-monotonic Reasoning Workshop. AAAI,
Menlo Park, CA, 1984.

Robert Moore. Semantical considerations on nonmonotonic logic. Ar-
tificial Intelligence, 25(1), 1985.

Web ontology language (OWL). www.w3.0rg/2004/OWL/, 2004.

Gadi Pinkas. Propositional non-monotonic reasoning and inconsisten-
cy in symmetric neural networks. In John Mylopoulos and Raymond
Reiter, editors, Proceedings of the 12th International Joint Conference
on Artificial Intelligence, pages 525-530. Morgan Kaufmann, 1991.

Tony A. Plate. Holographic reduced representations. In Proceedings
of the International Joint Conference on Artificial Intelligence, pages
30-35, 1991.

Gordon Plotkin. 7% as a universal domain. Journal of Computer and
System Sciences, 17:209-236, 1978.

Jordan B. Pollack. Recursive distributed representations. AlJ, 46:77—
105, 1990.

Sibylla Prie-Crampe and Paolo Ribenboim. Ultrametric spaces and
logic programming. The Journal of Logic Programming, 42:59-70, 2000.

Uta Priss. Linguistic applications of formal concept analysis. In Pro-
ceedings of ICFCA 2003, 2003. To appear.

Halina Przymusinska and Teodor C. Przymusinski. Weakly stratified
logic programs. Fundamenta Informaticae, 13:51-65, 1990.

Teodor C. Przymusinski. On the declarative semantics of deductive
databases and logic programs. In Jack Minker, editor, Foundations of
Deductive Databases and Logic Programming, pages 193-216. Morgan
Kaufmann, Los Altos, CA, 1988.

Raymond Reiter. A logic for default reasoning. Artificial Intelligence,
13:81-132, 1980.

J. Alan Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23-41, 1965.

20

[107]

[108)]

109]

[110]

111

[112]

[113]

[114]

115)

[116]

[117)

Literaturverzeichnis

William C. Rounds and Guo-Qiang Zhang. Clausal logic and logic
programming in algebraic domains. Information and Computation,
171(2):156-182, 2001.

Sibylle Schwarz. Selektor-erzeugte Modelle verallgemeinerter logischer
Programme. PhD thesis, Universitiat Leipzig, 2004.

Dana S. Scott. Domains for denotational semantics. In Magens Nielsen
and Erik M. Schmidt, editors, Automata, Languages and Programming,
9th Collogquium, July 1982, Aarhus, Denmark, Proceedings, volume 140
of Lecture Notes in Computer Science, pages 577-613. Springer, Berlin,
1982.

Anthony K. Seda. Topology and the semantics of logic programs. Fun-
damenta Informaticae, 24(4):359-386, 1995.

Lokenda Shastri. Advances in Shruti — A neurally motivated model of
relational knowledge representation and rapid inference using temporal
synchrony. Applied Intelligence, 11:78-108, 1999.

Lokendra Shastri and Venkat Ajjanagadde. From associations to syste-
matic reasoning: A connectionist representation of rules, variables and
dynamic bindings using temporal synchrony. Behavioural and Brain
Sciences, 16(3):417-494, September 1993.

Patrik Simons, Ilkka Niemeld, and Timo Soininen. Extending and im-
plementing the stable model semantics. Artificial Intelligence, 138(1-
2):181-234, 2002.

Michael B. Smyth. Topology. In Samson Abramsky, Dov M. Gabbay,
and Thomas S.E. Maibaum, editors, Handbook of Logic in Computer
Science, volume 1, pages 641-761. Clarendon, Oxford, 1994.

Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. In-
ternational Handbooks on Information Systems. Springer, 2004.

Gerd Stumme. Formal concept analysis on its way from mathematics
to computer science. In U. Priss, D. Corbett, and G. Angelova (eds.),
editors, Conceptual Structures: Integration and Interfaces, Proc. ICCS
2002, LNAI, pages 2-19. Springer, 2002.

Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based artificial
neural networks. Artificial Intelligence, 70(1-2):119-165, 1994.

Literaturverzeichnis 51

[118] Maarten H. van Emden. Quantitative deduction and its fixpoint theory.
The Journal of Logic Programming, 1:37-53, 1986.

[119] Allen van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-
founded semantics for general logic programs. Journal of the ACM,
38(3):620-650, 1991.

[120] Steven Vickers. Topology via Logic. Cambridge University Press, Cam-
bridge, UK, 1989.

[121] Raphael Volz. Web Ontology Reasoning with Logic Databases. PhD
thesis, AIFB, University of Karlsruhe, 2004.

[122] Gerd Wagner. Negation in fuzzy and possibilistic logic programs. In
Trevor Martin and Francesca Arcelli, editors, Logic Programming and
Soft Computing. Research Studies Press, 1998.

[123] Matthias Wendt. Unfolding the well-founded semantics. Journal of
FElectrical Engineering, Slovak Academy of Sciences, 53(12/s):56-59,
2002. (Proceedings of the 4th Slovakian Student Conference in Applied
Mathematics, Bratislava, April 2002).

[124] Stephen Willard. General Topology. Addison-Wesley, Reading, MA,
1970.

[125] Rudolf Wille. Restructuring lattice theory: An approach based on hier-
archies of concepts. In Ivan Rival, editor, Ordered Sets, pages 445-470.
Reidel, Dordrecht-Boston, 1982.

[126] Guo-Qiang Zhang. Logic of Domains. Birkhauser, Boston, 1991.

[127] Guo-Qiang Zhang and William Rounds. Reasoning with power
defaults. Theoretical Computer Science, 323(1-3):321-350, 2004.

[128] Guo-Qiang Zhang and William C. Rounds. Semantics of logic programs
and representation of Smyth powerdomains. In Klaus Keimel et al.,
editors, Domains and Processes, pages 151-179. Kluwer, 2001.

Vorgelegte Veroffentlichungen

53

Theory and Practice of Logic Programming 5(1-2) pp 93-121, 2005, in print.

To appear in Theory and Practice of Logic Programming 1

A uniform approach to logic programmaing
semantics

Pascal Hitzler and Matthias Wendt

Knowledge Representation and Reasoning Group, Artificial Intelligence Institute
Department of Computer Science, Dresden University of Technology
Dresden, Germany
(e-mail: {phitzler ,mw177754}@inf.tu-dresden.de)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Part of the theory of logic programming and nonmonotonic reasoning concerns the study of
fixed-point semantics for these paradigms. Several different semantics have been proposed
during the last two decades, and some have been more successful and acknowledged than
others. The rationales behind those various semantics have been manifold, depending
on one’s point of view, which may be that of a programmer or inspired by commonsense
reasoning, and consequently the constructions which lead to these semantics are technically
very diverse, and the exact relationships between them have not yet been fully understood.
In this paper, we present a conceptually new method, based on level mappings, which
allows to provide uniform characterizations of different semantics for logic programs. We
will display our approach by giving new and uniform characterizations of some of the
major semantics, more particular of the least model semantics for definite programs, of
the Fitting semantics, and of the well-founded semantics. A novel characterization of the
weakly perfect model semantics will also be provided.

KEYWORDS: Level mapping, Fitting semantics, well-founded semantics, least model se-
mantics, stable semantics, weak stratification

Contents
1 Introduction 2
2 Preliminaries and Notation 4
3 Least and Stable Model Semantics 7
4 Fitting Semantics 9
5 Well-Founded Semantics 11
6 Weakly Perfect Model Semantics 15
7 Related Work 23
8 Conclusions and Further Work 26

References 27

phi
Theory and Practice of Logic Programming 5(1-2) pp 93-121, 2005, in print.

2 P. Hitzler and M. Wendt

1 Introduction

Negation in logic programming differs from the negation of classical logic. Indeed,
the quest for a satisfactory understanding of negation in logic programming is still
inconclusive — although the issue has cooled down a bit recently — and has proved
to be very stimulating for research activities in computational logic, and in partic-
ular amongst knowledge representation and reasoning researchers concerned with
commonsense and nonmonotonic reasoning. During the last two decades, differ-
ent interpretations of negation in logic programming have lead to the development
of a variety of declarative semantics, as they are called. Some early research ef-
forts for establishing a satisfactory declarative semantics for negation as failure
and its variants, as featured by the resolution-based Prolog family of logic pro-
gramming systems, have later on been merged with nonmonotonic frameworks for
commonsense reasoning, culminating recently in the development of so-called an-
swer set programming systems, like SMODELS or DLV (Eiter et al. 1997; Marek and
Truszezynski 1999; Lifschitz 2002; Simons et al. 200x).

Systematically, one can understand Fitting’s proposal (Fitting 1985) of a Kripke-
Kleene semantics — also known as Fitting semantics — as a cornerstone which plays
a fundamental role both for resolution-based and nonmonotonic reasoning inspired
logic programming. Indeed, his proposal, which is based on a monotonic semantic
operator in Kleene’s strong three-valued logic, has been pursued in both commu-
nities, for example by Kunen (Kunen 1987) for giving a semantics for pure Prolog,
and by Apt and Pedreschi (Apt and Pedreschi 1993) in their fundamental paper
on termination analysis of negation as failure, leading to the notion of acceptable
program. On the other hand, however, Fitting himself (Fitting 1991a; Fitting 2002),
using a bilattice-based approach which was further developed by Denecker, Marek,
and Truszczynski (Denecker et al. 2000), tied his semantics closely to the major
semantics inspired by nonmonotonic reasoning, namely the stable model semantics
due to Gelfond and Lifschitz (Gelfond and Lifschitz 1988), which is based on a non-
monotonic semantic operator, and the well-founded semantics due to van Gelder,
Ross, and Schlipf (van Gelder et al. 1991), originally defined using a different mono-
tonic operator in three-valued logic together with a notion of unfoundedness.

Another fundamental idea which was recognised in both communities was that
of stratification, with the underlying idea of restricting attention to certain kinds
of programs in which recursion through negation is prevented. Apt, Blair, and
Walker (Apt et al. 1988) proposed a variant of resolution suitable for these pro-
grams, while Przymusinski (Przymusinski 1988) and van Gelder (van Gelder 1988)
generalized the notion to local stratification. Przymusinski (Przymusinski 1988) de-
veloped the perfect model semantics for locally stratified programs, and together
with Przymusinska (Przymusinska and Przymusinski 1990) generalized it later to
a three-valued setting as the weakly perfect model semantics.

The semantics mentioned so far are defined and characterized using a variety
of different techniques and constructions, including monotonic and nonmonotonic
semantic operators in two- and three-valued logics, program transformations, level
mappings, restrictions to suitable subprograms, detection of cyclic dependencies

Uniform LP semantics 3

etc. Relationships between the semantics have been established, but even a simple
comparison of the respective models in restricted cases could be rather tedious. So,
in this paper, we propose a methodology which allows to obtain uniform character-
izations of all semantics previously mentioned, and we believe that it will scale up
well to most semantics based on monotonic operators, and also to some nonmono-
tonic operators, and to extensions of the logic programming paradigm including
disjunctive conclusions and uncertainty. The characterizations will allow immedi-
ate comparison between the semantics, and once obtained we will easily be able
to make some new and interesting observations, including the fact that the well-
founded semantics can formally be understood as a Fitting semantics augmented
with a form of stratification. Indeed we will note that from this novel perspective
the well-founded semantics captures the idea of stratification much better than the
weakly perfect model semantics, thus providing a formal explanation for the historic
fact that the latter has not received as much attention as the former.

The main tool which will be employed for our characterizations is the notion
of level mapping. Level mappings are mappings from Herbrand bases to ordinals,
i.e. they induce orderings on the set of all ground atoms while disallowing infinite
descending chains. They have been a technical tool in a variety of contexts, including
termination analysis for resolution-based logic programming as studied by Bezem
(Bezem 1989), Apt and Pedreschi (Apt and Pedreschi 1993), Marchiori (Marchiori
1996), Pedreschi, Ruggieri, and Smaus (Pedreschi et al. 2002), and others, where
they appear naturally since ordinals are well-orderings. They have been used for
defining classes of programs with desirable semantic properties, e.g. by Apt, Blair,
and Walker (Apt et al. 1988), Przymusinski (Przymusinski 1988) and Cavedon
(Cavedon 1991), and they are intertwined with topological investigations of fixed-
point semantics in logic programming, as studied e.g. by Fitting (Fitting 1994;
Fitting 2002), and by Hitzler and Seda (Seda 1995; Seda 1997; Hitzler 2001; Hitzler
and Seda 2003b). Level mappings are also relevant to some aspects of the study of
relationships between logic programming and artificial neural networks, as studied
by Hélldobler, Kalinke, and Storr (Holldobler et al. 1999) and by Hitzler and Seda
(Hitzler and Seda 2000; Hitzler and Seda 2003a). In our novel approach to uniform
characterizations of different semantics, we will use them as a technical tool for
capturing dependencies between atoms in a program.

The paper is structured as follows. Section 2 contains preliminaries which are
needed to make the paper relatively self-contained. The subsequent sections contain
the announced uniform characterizations of the least model semantics for definite
programs and the stable model semantics in Section 3, of the Fitting semantics in
Section 4, of the well-founded semantics in Section 5, and of the weakly perfect
model semantics in Section 6. Related work will be discussed in Section 7, and we
close with conclusions and a discussion of further work in Section 8.

Part of this paper was presented at the 25th German Conference on Artificial
Intelligence, KI2002, Aachen, Germany, September 2002 (Hitzler and Wendt 2002).

Acknowledgement. We thank Tony Seda for pointing out some flaws in a previous
version of the proof of Theorem 5.2.

4 P. Hitzler and M. Wendt

2 Preliminaries and Notation

A (normal) logic program is a finite set of (universally quantified) clauses of the
form V(A «— Ay A ... AN A, AN =By A ... A By,), commonly written as A «—
Ay,..., Ay, 0By, ..., 7By, where A, A;, and Bj, fori=1,...,nandj=1,...,m,
are atoms over some given first order language. A is called the head of the clause,
while the remaining atoms make up the body of the clause, and depending on con-
text, a body of a clause will be a set of literals (i.e. atoms or negated atoms) or
the conjunction of these literals. Care will be taken that this identification does not
cause confusion. We allow a body, i.e. a conjunction, to be empty, in which case it
always evaluates to true. A clause with empty body is called a unit clause or a fact.
A clause is called definite, if it contains no negation symbol. A program is called
definite if it consists only of definite clauses. We will usually denote atoms with A
or B, and literals, which may be atoms or negated atoms, by L or K.

Given a logic program P, we can extract from it the components of a first order
language. The corresponding set of ground atoms, i.e. the Herbrand base of the
program, will be denoted by Bp. For a subset I C Bp, we set =1 = {-A | A €
I}. The set of all ground instances of P with respect to Bp will be denoted by
ground(P). For I C Bp U —~Bp we say that A is true with respect to (or in) I if
A € I, we say that A is false with respect to (or in) I if A € I, and if neither
is the case, we say that A is undefined with respect to (or in) I. A (three-valued
or partial) interpretation I for P is a subset of Bp U = Bp which is consistent, i.e.
whenever A € I then —=A ¢ I. A body, i.e. a conjunction of literals, is true in an
interpretation I if every literal in the body is true in I, it is false in I if one of
its literals is false in I, and otherwise it is undefined in I. For a negative literal
L = A we will find it convenient to write =L € I if A € I and say that L is false in
I etc. in this case. By Ip we denote the set of all (three-valued) interpretations of
P. Tt is a complete partial order (cpo) via set-inclusion, i.e. it contains the empty
set as least element, and every ascending chain has a supremum, namely its union.
A model of P is an interpretation I € Ip such that for each clause A < body we
have that body true in I implies A true in I, and body undefined in I implies A
true or undefined in I. A total interpretation is an interpretation I such that no
A € Bp is undefined in 1.

For an interpretation I and a program P, an [-partial level mapping for P is
a partial mapping | : Bp — « with domain dom(l) = {A | A € [or =A € I},
where « is some (countable) ordinal. We extend every level mapping to literals by
setting [(—=A) = I(A) for all A € dom(l). A (total) level mapping is a total mapping
l: Bp — « for some (countable) ordinal .

Given a normal logic program P and some I C BpU—Bp, we say that U C Bp is
an unfounded set (of P) with respect to I if each atom A € U satisfies the following
condition: For each clause A < body in ground(P) (at least) one of the following
holds.

(Ui) Some (positive or negative) literal in body is false in I.
(Uii) Some (non-negated) atom in body occurs in U.

Given a normal logic program P, we define the following operators on Bp U—Bp.

Uniform LP semantics 5

Tp(I)isthe set of all A € Bp such that there exists a clause A «— body in ground(P)
such that body is true in I. Fp([I) is the set of all A € Bp such that for all clauses
A «— body in ground(P) we have that body is false in I. Both Tp and Fp map
elements of Ip to elements of Ip. Now define the operator ®p : Ip — Ip by

®p(I) = Tp(I)U—Fp(I)-

This operator is due to Fitting (Fitting 1985) and is monotonic on the cpo Ip,
hence has a least fixed point by the Tarski fixed-point theorem, and we can obtain
this fixed point by defining, for each monotonic operator F, that F 10 = (), F |
(a4 1) = F(F1a) for any ordinal o, and F 18 = U'v<5 F 7+ for any limit ordinal
B, and the least fixed point Ifp(F) of F' is obtained as F' T « for some ordinal a.
The least fixed point of ®p is called the Kripke-Kleene model or Fitting model of
P, determining the Fitting semantics of P.

FEzxzample 2.1
Let P be the program consisting of the two clauses p «— p and ¢ < —r. Then
®p11={-r} and ®p12={q,~r} = ®p13 is the Fitting model of P.

Now, for I C Bp U —Bp, let Up(I) be the greatest unfounded set (of P) with
respect to I, which always exists due to van Gelder, Ross, and Schlipf (van Gelder
et al. 1991). Finally, define

Wp(I) = Tp(I)U—~Up(I)

for all I C Bp U~ Bp. The operator Wp, which operates on the cpo Bp U —-Bp,
is due to van Gelder et al. (van Gelder et al. 1991) and is monotonic, hence has a
least fixed point by the Tarski fixed-point theorem, as above for ®p. It turns out
that Wp T« is in Ip for each ordinal «, and so the least fixed point of Wp is also
in Ip and is called the well-founded model of P, giving the well-founded semantics
of P.

Example 2.2
Let P be the program consisting of the following clauses.
s «— q
qg <~ p
p < D
roo— ar

Then {p} is the largest unfounded set of P with respect to () and we obtain

WpTl = {-p},
Wp12 = {-p,q}, and
WPT3 = {ﬂpaQas}

= Wpl4

Given a program P, we define the operator T on subsets of Bp by T{(I) =
Tp(I U—=(Bp\I)). It is well-known that for definite programs this operator is
monotonic on the set of all subsets of Bp, with respect to subset inclusion. Indeed
it is Scott-continuous (Lloyd 1988; Abramsky and Jung 1994; Stoltenberg-Hansen

6 P. Hitzler and M. Wendt

et al. 1994) and, via Kleene’s fixed-point theorem, achieves its least fixed point M
as the supremum of the iterates T; T n forn € N. So M = Ifp(T;Dr) = T; Tw
is the least two-valued model of P. In turn, we can identify M with the total
interpretation M U—(Bp \ M), which we will call the definite (partial) model of P.

Example 2.3
Let P be the program consisting of the clauses

p(0) —
p(s(X)) < p(X),

where X denotes a variable and 0 a constant symbol. Write s™(0) for the term
s(--+s(0)---) in which the symbol s appears n times. Then

TETn={p (sk(O)) |k <n}

for all n € N and {p(s™(0)) | n € N} is the least two-valued model of P.

In order to avoid confusion, we will use the following terminology: the notion of
interpretation will by default denote consistent subsets of Bp U —Bp, i.e. interpre-
tations in three-valued logic. We will sometimes emphasize this point by using the
notion partial interpretation. By two-valued interpretations we mean subsets of Bp.
Given a partial interpretation I, weset IT =INBpand [~ ={4A € Bp | "A € I}.
Each two-valued interpretation I can be identified with the partial interpretation
I' = TU~(Bp\I). Both, interpretations and two-valued interpretations, are ordered
by subset inclusion. We note however, that these two orderings differ: If I C Bp,
for example, then I’ is always a maximal element in the ordering for partial inter-
pretations, while I is in general not maximal as a two-valued interpretation. The
two orderings correspond to the knowledge- and the truth-ordering due to Fitting
(Fitting 1991a).

There is a semantics using two-valued logic, the stable model semantics due to
Gelfond and Lifschitz (Gelfond and Lifschitz 1988), which is intimately related to
the well-founded semantics. Let P be a normal program, and let M C Bp be a
set of atoms. Then we define P/M to be the (ground) program consisting of all
clauses A « Aq,..., A, for which there is a clause A — Ay,..., A,,—By,...,7 B,
in ground(P) with By,...,B,, &€ M. Since P/M does no longer contain negation,
it has a least two-valued model T; /M Tw. For any two-valued interpretation I we
can therefore define the operator GLp(I) = T;/] Tw, and call M a stable model
of the normal program P if it is a fixed point of the operator GLp, i.e. if M =
GLp(M) = T;/M Tw. As it turns out, the operator GLp is in general not monotonic
for normal programs P. However it is antitonic, i.e. whenever I C J C Bp then
GLp(J) € GLp(I). As a consequence, the operator GL%, obtained by applying
GLp twice, is monotonic and hence has a least fixed point Lp and a greatest
fixed point Gp. Van Gelder (van Gelder 1989) has shown that GLp(Lp) = Gp,
Lp = GLp(Gp), and that Lp U—(Bp \ Gp) coincides with the well-founded model
of P. This is called the alternating fixed point characterization of the well-founded
semantics.

Uniform LP semantics 7

Ezxample 2.4

Consider the program P from Example 2.2. The subprogram () consisting of the
first three clauses of the program P has stable model M = {s, ¢}, which can be
verified by noting that @/M consists of the clauses

s — q
q —
p <~ Db

and has M as its least two-valued model.
For the program P we obtain

GLp(0) {g,5,7},
GLp({g,s,7}) = {g¢,s}

GL:({g,s}), and
GLp(Bp) = 0

So Lp = {q,s} while Gp = {¢,s,7}, and Lp U—(Bp \ Gp) = {q,s,—p} is the
well-founded model of P.

3 Least and Stable Model Semantics

The most fundamental semantics in logic programming is based on the fact men-
tioned above that the operator Tf; has a least fixed point M = T; 1w whenever P
is definite. The two-valued interpretation M turns out to be the least two-valued
model of the program, and is therefore canonically the model which should be con-
sidered for definite programs. Our first result characterizes the least model using
level mappings, and serves to convey the main ideas underlying our method. It is a
straightforward result but has, to the best of our knowledge, not been noted before.

Theorem 3.1

Let P be a definite program. Then there is a unique two-valued model M of P
for which there exists a (total) level mapping ! : Bp — « such that for each atom
A € M there exists a clause A «— Aj,..., A, in ground(P) with A; € M and
I(A) > I(A;) for all i = 1,..., n. Furthermore, M is the least two-valued model of
P.

Proof

Let M be the least two-valued model T,;" Tw, choose a = w, and define [: Bp — «
by setting I[(A) = min{n | A € T# T(n+ 1)}, if A € M, and by setting I(A) = 0, if
A ¢ M. From the fact that 0 C T 11 C ... C THTnC...C THTw=U,, TF 1
m, for each n, we see that [is well-defined and that the least model T; Tw for P
has the desired properties.

Conversely, if M is a two-valued model for P which satisfies the given condition
for some mapping [: Bp — «, then it is easy to show, by induction on I(4), that
A € M implies A € T3 1 (I(A) + 1). This yields that M C T{ Tw, and hence that
M = T; Tw by minimality of the model T]DL Tw. O

8 P. Hitzler and M. Wendt

Ezxample 3.2
For the program P from Example 2.3 we obtain [(p(s™(0))) = n for the level
mapping [defined in the proof of Theorem 3.1.

The proof of Theorem 3.1 can serve as a blueprint for obtaining characterizations
if the semantics under consideration is based on the least fixed point of a monotonic
operator F', and indeed our results for the Fitting semantics and the well-founded
semantics, Theorems 4.2 and 5.2, together with their proofs, follow this scheme.
In one direction, levels are assigned to atoms A according to the least ordinal «
such that A is not undefined in F 1 (a 4 1), and dependencies between atoms of
some level and atoms of lower levels are captured by the nature of the considered
operator, which will certainly vary from case to case. In Theorem 3.1, the condition
thus obtained suffices for uniquely determining the least model, whereas in other
cases which we will study later, so for the Fitting semantics and the well-founded
semantics, the level mapping conditions will not suffice for unique characterization
of the desired model. However, the desired model will in each case turn out to be
the greatest among all models satisfying the given conditions. So in these cases it
will remain to show, by transfinite induction on the level of some given atom A,
that the truth value assigned to A by any model satisfying the given conditions is
also assigned to A by F'7(I(4) + 1), which at the same time proves that Ifp(F) is
the greatest model satisfying the given conditions. For the proof of Theorem 3.1,
the proof method just described can be applied straightforwardly, however for more
sophisticated operators may become technically challenging on the detailed level.

We now turn to the stable model semantics, which in the case of programs with
negation has come to be the major semantics based on two-valued logic. The fol-
lowing characterization is in the spirit of our proposal, and is due to Fages (Fages
1994). Tt is striking in its similarity to the characterization of the least model for
definite programs in Theorem 3.1. For completeness of our exhibition, we include a
proof of the fact.

Theorem 3.3

Let P be normal. Then a two-valued model M C Bp of P is a stable model of P
if and only if there exists a (total) level mapping ! : Bp — « such that for each
A € M there exists A «— Ay,...,A,,"B1,...,7B,, in ground(P) with A; € M,
B; ¢ M,and [(A) > I(A;) foralli=1,...,nand j =1,...,m.

Proof

Let M be a stable model of P, i.e. GLp(M) = T;/M Tw = M. Then M is the least
model for P/M, hence is also a model for P, and, by Theorem 3.1, satisfies the
required condition with respect to any level mapping ! with [(A) = min{n | A €
Tpym 1 (n+1)} for each A € M. Conversely, let M be a model which satisfies the
condition in the statement of the theorem. Then, for every A € M, there is a clause
C in ground(P) of the form A «— Ay,..., A,,—~By,...,~ By such that the body of
C is true in M and satisfies [(A) > I(A;) for all i = 1,...,n. But then, for every
A € M, there is a clause A «— Ay,..., A, in P/M whose body is true in M and

Uniform LP semantics 9

such that [(A) > I(A;) for all i = 1,...,n. By Theorem 3.1, this means that M is
the least model for P/M, that is, M = T;/M Tw=GL(M). O

The proof of Theorem 3.3 just given partly follows the proof scheme discussed
previously, by considering the monotonic operator T}J{ /M which is used for defining
stable models.

Ezample 3.4

Recall the program P from Example 2.2, and consider the program () consisting
of the first three clauses of P. We already noted in Example 2.4 that @ has stable
model {s, ¢}. A corresponding level mapping, as defined in the proof of Theorem
3.3, satisfies I(¢) = 0 and I(s) = 1, while {(p) can be an arbitrary value.

4 Fitting Semantics

We next turn to the Fitting semantics. Following the proof scheme which we de-
scribed in Section 3, we expect levels [(A) to be assigned to atoms A such that
I(A) is the least « such that A is not undefined in ®p 1 (a+ 1). An analysis of the
operator ®p eventually yields the following conditions.

Definition 4.1

Let P be a normal logic program, I be a model of P, and [be an [-partial level
mapping for P. We say that P satisfies (F) with respect to I and l, if each A €
dom(l) satisfies one of the following conditions.

(Fi) A € I and there exists a clause A < Ly,..., L, in ground(P) with L; € I and
I(A) > I(L;) for all 4.

(Fii) = A € I and for each clause A « Ly,..., L, in ground(P) there exists ¢ with
-L; € I and I(A) > I(L;).

If A € dom(l) satisfies (Fi), then we say that A satisfies (Fi) with respect to I and
[, and similarly if A € dom(!) satisfies (Fii).

We note that condition (Fi) is stronger than the condition used for characterizing
stable models in Theorem 3.3. The proof of the next theorem closely follows our
proof scheme.

Theorem 4.2

Let P be a normal logic program with Fitting model M. Then M is the greatest
model among all models I, for which there exists an I-partial level mapping [for
P such that P satisfies (F) with respect to I and I.

Proof

Let Mp be the Fitting model of P and define the Mp-partial level mapping lp as
follows: Ip(A) = «, where « is the least ordinal such that A is not undefined in
®p T (a+1). The proof will be established by showing the following facts: (1) P
satisfies (F') with respect to Mp and lp. (2) If I is a model of P and [an I-partial
level mapping such that P satisfies (F) with respect to I and [, then I C Mp.

10 P. Hitzler and M. Wendt

(1) Let A € dom(lp) and Ip(A) = . We consider two cases.

(Case i) If A € Mp, then A € Tp(®p Ta), hence there exists a clause A <+ body
in ground(P) such that body is true in ®p T a. Thus, for all L; € body we have that
L; € ®pTa, and hence Ip(L;) < o and L; € Mp for all i. Consequently, A satisfies
(Fi) with respect to Mp and Ip.

(Case ii) If =4 € Mp, then A € Fp(®p T «), hence for all clauses A < body in
ground(P) there exists L € body with =L € ®p T« and Ip(L) < a, hence =L € Mp.
Consequently, A satisfies (Fii) with respect to Mp and lp, and we have established
that fact (1) holds.

(2) We show via transfinite induction on o = I(A4), that whenever A € T (respec-
tively, 74 € I), then A € ®p T (v + 1) (respectively, -4 € ®p T (a + 1)). For the
base case, note that if [(4) = 0, then A € I implies that A occurs as the head of
a fact in ground(P), hence A € ®p 11, and —A € I implies that there is no clause
with head A in ground(P), hence =A € ®p T1. So assume now that the induction
hypothesis holds for all B € Bp with I(B) < a. We consider two cases.

(Case i) If A € I, then it satisfies (Fi) with respect to I and [. Hence there is a
clause A < body in ground(P) such that body C I and [(K) < « for all K € body.
Hence body € Mp by induction hypothesis, and since Mp is a model of P we obtain
A€ Mp.

(Case ii) If =A € I, then A satisfies (Fii) with respect to I and [. Hence for all
clauses A — body in ground(P) we have that there is K € body with =K € I and
I(K) < a. Hence for all these K we have =K € Mp by induction hypothesis, and
consequently for all clauses A < body in ground(P) we obtain that body is false in
Mp. Since Mp = ®p(Mp) is a fixed point of the ® p-operator, we obtain A € Mp.
This establishes fact (2) and concludes the proof. [

Ezxzample 4.3
Consider the program P from Example 2.1. Then the level mapping [, as defined
in the proof of Theorem 4.2, satsifies [(r) = 0 and I(¢) = 1.

It is interesting to consider the special case where the Fitting model is total.
Programs with this property are called ®-accessible (Hitzler and Seda 1999; Hitzler
and Seda 2003b), and include e.g. the acceptable programs due to Apt and Pedreschi
(Apt and Pedreschi 1993).

Corollary 4.4

A normal logic program P has a total Fitting model if and only if there is a total
model I of P and a (total) level mapping [for P such that P satisfies (F) with
respect to I and .

The result follows immediately as a special case of Theorem 4.2, and is closely
related to results reported in (Hitzler and Seda 1999; Hitzler and Seda 2003b).
The reader familiar with acceptable programs will also note the close relationship
between Corollary 4.4 and the defining conditions for acceptable programs. Indeed,
the theorem due to Apt and Pedreschi (Apt and Pedreschi 1993), which says that
every acceptable program has a total Fitting model, follows without any effort from

Uniform LP semantics 11

our result. It also follows immediately, by comparing Corollary 4.4 and Theorem
3.3, that a total Fitting model is always stable, which is a well-known fact.

5 Well-Founded Semantics

The characterization of the well-founded model again closely follows our proof
scheme. Before discussing this, though, we will take a short detour which will even-
tually reveal a surprising fact about the well-founded semantics: From our new
perspective the well-founded semantics can be understood as a stratified version of
the Fitting semantics.

Let us first recall the definition of a (locally) stratified program, due to Apt, Blair,
Walker, and Przymusinski (Apt et al. 1988; Przymusinski 1988): A normal logic
program is called locally stratified if there exists a (total) level mapping [: Bp — a,
for some ordinal «, such that for each clause A «— Ai,...,A,,—By,...,m By, in
ground(P) we have that [(4) > I(A;) and I[(A) > {(B;) for all + = 1,...,n and
7=1,...,m.

The notion of (locally) stratifed program, as already mentioned in the introduc-
tion, was developed with the idea of preventing recursion through negation, while
allowing recursion through positive dependencies. There exist locally stratified pro-
grams which do not have a total Fitting model and vice versa. Indeed, the program
consisting of the single clause p < p is locally stratified but p remains undefined in
the Fitting model. Conversely, the program consisting of the two clauses ¢ « and
q < —q is not locally stratified but its Fitting model assigns to ¢ the truth value
true.

By comparing Definition 4.1 with the definition of locally stratified programs, we
notice that condition (Fii) requires a strict decrease of level between the head and a
literal in the rule, independent of this literal being positive or negative. But, on the
other hand, condition (Fii) imposes no further restrictions on the remaining body
literals, while the notion of local stratification does. These considerations motivate
the substitution of condition (Fii) by the condition (WFii), as given in the following
definition.

Definition 5.1

Let P be a normal logic program, I be a model of P, and [be an [-partial level
mapping for P. We say that P satisfies (WF) with respect to I and I, if each
A € dom(l) satisfies one of the following conditions.

(WFi) A € I and there exists a clause A «— Ly,..., L, in ground(P) with L; € I and
1(A) > I(L;) for all s.

(WFii) = A € I and for each clause A «— Ay,...,A,,~B1,...,7 By, in ground(P) (at
least) one of the following conditions holds:

(WFiia) There exists ¢ € {1,...,n} with =A; € I and I(A4) > I(4;).
(WFiib) There exists j € {1,...,m} with B; € I and [(A) > I(B;).

If A € dom(l) satisfies (WFi), then we say that A satisfies (WF1i) with respect to I
and [, and similarly if A € dom({) satisfies (WFii).

12 P. Hitzler and M. Wendt

We note that conditions (Fi) and (WFi) are identical. Indeed, replacing (WFi)
by a stratified version such as the following seems not satisfactory.

(SFi) A € I and there exists a clause A «+— Ay,...,A,,~B1,...,~ By, in ground(P)
with A, B; € I, I(A) > I(4;), and I(A) > I(B;) for all i and j.

If we replace condition (WFi) by condition (SFi), then it is not guaranteed that
for any given program there is a greatest model satisfying the desired properties:
Consider the program consisting of the two clauses p < p and ¢ < —p, and the two
(total) models {p, —q} and {—p, ¢}, which are incomparable, and the level mapping
I with I(p) = 0 and I(¢q) = 1. A detailed analysis of condition (SFi) in the context
of our approach can be found in (Hitzler 2003).

So, in the light of Theorem 4.2, Definition 5.1 should provide a natural “stratified
version” of the Fitting semantics. And indeed it does, and furthermore, the resulting
semantics coincides with the well-founded semantics, which is a very satisfactory
result. The proof of the fact again follows our proof scheme, but is slightly more
involved due to the necessary treatment of unfounded sets.

Theorem 5.2

Let P be a normal logic program with well-founded model M. Then M is the
greatest model among all models I, for which there exists an [-partial level mapping
[for P such that P satisfies (WF) with respect to I and [.

Proof

Let Mp be the well-founded model of P and define the Mp-partial level mapping
Ip as follows: Ip(A) = «, where « is the least ordinal such that A is not undefined
in Wp T (a+1). The proof will be established by showing the following facts: (1) P
satisfies (WF) with respect to Mp and Ip. (2) If I is a model of P and [an I-partial
level mapping such that P satisfies (WF) with respect to I and I, then I C Mp.

(1) Let A € dom(lp) and Ip(A) = a. We consider two cases.

(Case i) If A€ Mp, then A € Tp(WpTa), hence there exists a clause A < body
in ground(P) such that body is true in Wp T a. Thus, for all L; € body we have that
L; € Wp1a. Hence, Ip(L;) < a and L; € Mp for all i. Consequently, A satisfies
(WFi) with respect to Mp and Ip.

(Case ii) If mA € Mp, then A € Up(Wp 1), i.e. A is contained in the greatest
unfounded set of P with respect to Wp T . Hence for each clause A < body in
ground(P), at least one of (Ui) or (Uii) holds for this clause with respect to Wp T«
and the unfounded set Up(Wp 1 «). If (Ui) holds, then there exists some literal
L € body with =L € Wp T . Hence Ip(L) < o and condition (WFiib) holds relative
to Mp and lp if L is an atom, or condition (WFiia) holds relative to Mp and Ip if L
is a negated atom. On the other hand, if (Uii) holds, then some (non-negated) atom
B in body occurs in Up(Wp T). Hence Ip(B) < [p(A) and A satisfies (WFiia)
with respect to Mp and lp. Thus we have established that fact (1) holds.

(2) We show via transfinite induction on o = I(A), that whenever A € I (re-
spectively, =A € I), then A € Wp 1 (o + 1) (respectively, =A € Wp 1 (a+ 1)). For
the base case, note that if [(4) = 0, then A € I implies that A occurs as the head

Uniform LP semantics 13

of a fact in ground(P). Hence, A € Wp 1. If =A € I, then consider the set U of
all atoms B with [(B) = 0 and B € I. We show that U is an unfounded set of
P with respect to Wp 10, and this suffices since it implies =4 € Wp 11 by the
fact that A € U. Solet C' € U and let C' < body be a clause in ground(P). Since
—C € I, and I(C) = 0, we have that C satisfies (WFiia) with respect to I and I,
and so condition (Uii) is satisfied showing that U is an unfounded set of P with
respect to I. Assume now that the induction hypothesis holds for all B € Bp with
I(B) < a.. We consider two cases.

(Case i) If A € I, then it satisfies (WF1i) with respect to I and I. Hence there is a
clause A < body in ground(P) such that body C I and [(K) < « for all K € body.
Hence body C Wp T, and we obtain A € Tp(Wp Ta) as required.

(Case ii) If =A € I, consider the set U of all atoms B with [(B) = o and =B € I.
We show that U is an unfounded set of P with respect to Wp T, and this suffices
since it implies =A € Wp T (o + 1) by the fact that A € U. So let C € U and
let C' — body be a clause in ground(P). Since ~C' € I, we have that C satisfies
(WFii) with respect to I and [. If there is a literal L € body with =L € I and
I(L) < I(C), then by the induction hypothesis we obtain =L € Wp 1, so condition
(Ui) is satisfied for the clause C' < body with respect to Wp T« and U. In the
remaining case we have that C satisfies condition (WFiia), and there exists an atom
B € body with =B € I and I(B) = [(C). Hence, B € U showing that condition
(Uii) is satisfied for the clause C' « body with respect to Wp Ta and U. Hence U
is an unfounded set of P with respect to WpTa. [

Ezample 5.3
Consider the program P from Example 2.2. With notation from the proof of The-
orem 5.2, we obtain [(p) =0, I(¢) =1, and I(s) = 2.

As a special case, we consider programs with total well-founded model. The
following corollary follows without effort from Theorem 5.2.

Corollary 5.4

A normal logic program P has a total well-founded model if and only if there is a
total model I of P and a (total) level mapping ! such that P satisfies (WF) with
respect to I and .

As a further example for the application of our proof scheme, we use Theorem
5.2 in order to prove a result by van Gelder (van Gelder 1989) which we mentioned
in the introduction, concerning the alternating fixed-point characterization of the
well-founded semantics. Let us first introduce some temporary notation, where P
is an arbitrary program.

Lo =0

Go = Bp

Loy1 = GLp(G,) for any ordinal o
Gor1 = GLp(L,) for any ordinal «
L, = UpcaLp for limit ordinal «
Ga = N s<a G for limit ordinal «

14 P. Hitzler and M. Wendt

Since) C Bp, we obtain Ly C L1 C G; C Gy and, by transfinite induction,
it can easily be shown that L, C Lg C G C G, whenever a < (3. In order to
apply our proof scheme, we need to detect a monotonic operator, or at least some
kind of monotonic construction, underlying the alternative fixed-point character-
ization. The assignment (Ly, Go) — (La+1, Gat1), using the temporary notation
introduced above, will serve for this purpose. The proof of the following theorem is
based on it and our general proof scheme, with modifications where necessary, for
example for accomodating the fact that G441 is not defined using G, but rather
L, and that we work with the complements Bp \ G, instead of the sets G,.

Theorem 5.5
Let P be a normal program. Then M = LpU—(Bp \ Gp) is the well-founded model
of P.

Proof

First, we define an M-partial level mapping I. For convenience, we will take as
image set of [, pairs («, n) of ordinals, where n < w, with the lexicographic ordering.
This can be done without loss of generality because any set of pairs of ordinals,
lexicographically ordered, is certainly well-ordered and therefore order-isomorphic
to an ordinal. For A € Lp, let [(A) be the pair (o, n), where « is the least ordinal
such that A € L1, and 7 is the least ordinal such that A € Tp,¢, T (n + 1). For
B & Gp,let I(B) be the pair (3, w), where (3 is the least ordinal such that B € Gg1.
We show next by transfinite induction that P satisfies (WF) with respect to M and
.

Let A € L1 = Tp/p, T w. Since P/Bp consists of exactly all clauses from
ground(P) which contain no negation, we have that A is contained in the least
two-valued model for a definite subprogram of P, namely P/Bp, and (WF1i) is sat-
isfied by Theorem 3.1. Now let =B € —(Bp \ Gp) be such that B € (Bp \ G1) =
Bp\ TpspTw. Since P/ contains all clauses from ground(P) with all negative lit-
erals removed, we obtain that each clause in ground(P) with head B must contain
a positive body literal C' € G, which, by definition of I, must have the same level
as B, hence (WFiia) is satisfied.

Assume now that, for some ordinal «, we have shown that A satisfies (WF) with
respect to M and [for all n <w and all A € Bp with [(A) < (a, n).

Let A € Loy1 \ La = Tpyg, Tw\ La. Then A € Tp,q, T n\ Ly for some
n € N; note that all (negative) literals which were removed by the Gelfond-Lifschitz
transformation from clauses with head A have level less than («,0). Then the
assertion that A satisfies (WF) with respect to M and [follows again by Theorem
3.1.

Let A € (Bp \ Gat1) N Go. Then A ¢ Tp,p, T w. Now for any clause A «
Ay, ..., Ag,~ By, ..., By, in ground(P), if B; € L, for some j, then I(A) > I(B;).
Otherwise, since A ¢ Tp,, Tw, we have that there exists A; with A; € Tp,1, Tw,
and hence [(A4) > I(4;), and this suffices.

This finishes the proof that P satisfies (WF) with respect to M and [. It therefore
only remains to show that M is greatest with this property.

Uniform LP semantics 15

So assume that M; # M is the greatest model such that P satisfies (WF) with
respect to M; and some M;-partial level mapping /.

Assume L € M; \ M and, without loss of generality, let the literal L be chosen
such that I; (L) is minimal. We consider the following two cases.

(Case i) If L = A is an atom, then there exists a clause A < body in ground(P)
such that I (L) < I;(A) for all literals L in body, and such that body is true in Mj.
Hence, body is true in M and A < body transforms to a clause A «+— A4y,..., A, in
P/Gp with Ay,..., A, € Lp = Tp;¢, Tw. But this implies A € M, contradicting
Ae M \ M.

(Case ii) If L=—-A4 € M; \ M is a negated atom, then =A € M; and A € Gp =
Tp/rpTw, 50 A€ Tpyr, Tn for some n € N. We show by induction on n that this
leads to a contradiction, to finish the proof.

If A€ Tp/p, 11, then there is a unit clause A < in P/Lp, and any corresponding
clause A «— —By,..., By in ground(P) satisfies By, ..., By € Lp. Since =A € M,
we also obtain by Theorem 5.2 that there is ¢ € {1,...,k} such that B; € M; and
L(B;) < h(A). By minimality of l;(A), we obtain B; € M, and hence B; € Lp,
which contradicts B; € Lp.

Now assume that there is no =B € M; \ M with B € Tp;r, T k for any
k<n+1,and let ~A € My \ M with A€ Tp,r, T (n+ 1). Then there is a clause
A« Ay,..., Ay in P/Lp with Ay,..., Ay, € Tpyr,, Tn C Gp, and we note that we
cannot have =A; € My \ M for any i € {1,..., m}, by our current induction hypoth-
esis. Furthermore, it is also impossible for —A; to belong to M for any ¢, otherwise
we would have A; € Bp\ Gp. Thus, we conclude that we cannot have = A; € M; for
any i. Moreover, there is a corresponding clause A «— Ai,...,Ap,2B1,...,7Bp,
in ground(P) with Bi,..., By, € Lp. Hence, by Theorem 5.2, we know that there
is i € {1,...,my} such that B; € M; and ;;(B;) < l;(A). By minimality of ;(A4),
we conclude that B; € M, so that B; € Lp, and this contradicts B; € Lp. [

Ezxample 5.6
Consider again the program P from Examples 2.2, 2.4, and 5.3. With notation from
the proof of Theorem 5.5 we get I(q) = (1,0), I(s) = (1,1), and I(p) = (0,w).

6 Weakly Perfect Model Semantics

By applying our proof scheme, we have obtained new and uniform characteriza-
tions of the Fitting semantics and the well-founded semantics, and argued that
the well-founded semantics is a stratified version of the Fitting semantics. Our ar-
gumentation is based on the key intuition underlying the notion of stratification,
that recursion should be allowed through positive dependencies, but be forbidden
through negative dependencies. As we have seen in Theorem 5.2, the well-founded
semantics provides this for a setting in three-valued logic. Historically, a different se-
mantics, given by the so-called weakly perfect model associated with each program,
was proposed by Przymusinska and Przymusinski (Przymusinska and Przymusinski
1990) in order to carry over the intuition underlying the notion of stratification to
a three-valued setting. In the following, we will characterize weakly perfect models

16 P. Hitzler and M. Wendt

via level mappings, in the spirit of our approach. We will thus have obtained uni-
form characterizations of the Fitting semantics, the well-founded semantics, and the
weakly perfect model semantics, which makes it possible to easily compare them.

Definition 6.1

Let P be a normal logic program, I be a model of P and [be an I-partial level
mapping for P. We say that P satisfies (WS) with respect to I and I, if each
A € dom(l) satisfies one of the following conditions.

(WSi) A € I and there exists a clause A < Ly, ..., L, € ground(P) such that L; € I
and [(A) > I(L;) forall i =1,...,n.

(WSii) =A € I and for each clause A — Ay,...,A,,—By,...,~B,, € ground(P) (at
least) one of the following three conditions holds.

(WSiia) There exists ¢ such that —=A4; € I and I(A4) > I(4;).

(WSiib) For all k& we have I(A) > I(Ay), for all j we have [(A4) > I(B;), and
there exists 7 with —A4; € I.

(WSiic) There exists j such that B; € I and [(4) > I(B;).

We observe that the condition (WSii) in the above theorem is more general than
(Fii), and more restrictive than (WFii).

We will see below in Theorem 6.4, that Definition 6.1 captures the weakly perfect
model, in the same way in which Definitions 4.1 and 5.1 capture the Fitting model,
respectively the well-founded model.

In order to proceed with this, we first need to recall the definition of weakly
perfect models due to Przymusinska and Przymusinski (Przymusinska and Przy-
musinski 1990), and we will do this next. For ease of notation, it will be convenient
to consider (countably infinite) propositional programs instead of programs over
a first-order language. This is both common practice and no restriction, because
the ground instantiation ground(P) of a given program P can be understood as a
propositional program which may consist of a countably infinite number of clauses.
Let us remark that our definition below differs slightly from the original one, and
we will return to this point later. It nevertheless leads to exactly the same notion
of weakly stratified program.

Let P be a (countably infinite propositional) normal logic program. An atom
A € Bp refers to an atom B € Bp if B or =B occurs as a body literal in a clause
A — body in P. A refers negatively to B if =B occurs as a body literal in such a
clause. We say that A depends on B if the pair (A, B) is in the transitive closure
of the relation refers to, and we write this as B < A. We say that A depends
negatively on B if there are C, D € Bp such that C refers negatively to D and the
following hold: (1) C < A or C = A (the latter meaning identity). (2) B < D or
B = D. We write B < A in this case. For A, B € Bp, we write A ~ B if either
A = B, or A and B depend negatively on each other, i.e. if A < Band B < A
both hold. The relation ~ is an equivalence relation and its equivalence classes are
called components of P. A component is trivial if it consists of a single element A
with A £ A.

Uniform LP semantics 17

Let C; and Cy be two components of a program P. We write C; < C5 if and
only if Cy # C; and for all A; € C; there is Ay € C; with A7 < As. A component
(1 is called minimal if there is no component Cs with Cy < (.

Given a normal logic program P, the bottom stratum S(P) of P is the union of
all minimal components of P. The bottom layer of P is the subprogram L(P) of P
which consists of all clauses from P with heads belonging to S(P).

Given a (partial) interpretation I of P, we define the reduct of P with respect
to I as the program P/I obtained from P by performing the following reductions.
(1) Remove from P all clauses which contain a body literal L such that =L € I or
whose head belongs to I. (2) Remove from all remaining clauses all body literals
L with L € I. (3) Remove from the resulting program all non-unit clauses, whose
heads appear also as unit clauses in the program.

Definition 6.2

The weakly perfect model Mp of a program P is defined by transfinite induction
as follows. Let Py = P and My = . For each (countable) ordinal a > 0 such that
programs Pjs and partial interpretations Ms have already been defined for all § < «,
let

No = U0<6<a Mg,
P, = P/N,,
R, is the set of all atoms which are undefined in N,
and were eliminated from P by reducing it with respect to N,
Soa = S(P,), and
L, = L(P,)-

The construction then proceeds with one of the following three cases. (1) If P,
is empty, then the construction stops and Mp = N, U —~R,, is the (total) weakly
perfect model of P. (2) If the bottom stratum S, is empty or if the bottom layer L,
contains a negative literal, then the construction also stops and Mp = N, U—-R, is
the (partial) weakly perfect model of P. (3) In the remaining case L, is a definite
program, and we define M, = H U—R,, where H is the definite (partial) model of
L., and the construction continues.

For every «, the set S, U R,, is called the a-th stratum of P and the program L,
is called the a-th layer of P.

A weakly stratified program is a program with a total weakly perfect model. The
set of its strata is then called its weak stratification.

Example 6.3
Consider the program P which consists of the following six clauses.

—b
c,a
c,—d
b, —e
e

d

O QO =D

[|

18 P. Hitzler and M. Wendt

Then Ny = My = {—~d,—e} and P/N; consists of the clauses
—b

c,a
c
b-

oSS 2

T

Tts least component is {a, b, c}. The corresponding bottom layer, which is all
of P/Ny, contains a negative literal, so the construction stops and My = N; =
{—d, —e} is the (partial) weakly perfect model of P.

Let us return to the remark made earlier that our definition of weakly perfect
model, as given in Definition 6.2, differs slightly from the version introduced by
Przymusinska and Przymusinski (Przymusinska and Przymusinski 1990). In order
to obtain the original definition, points (2) and (3) of Definition 6.2 have to be
replaced as follows: (2) If the bottom stratum S, is empty or if the bottom layer
L., has no least two-valued model, then the construction stops and Mp = N,U—-R,,
is the (partial) weakly perfect model of P. (3) In the remaining case L, has a least
two-valued model, and we define M, = H U R, where H is the partial model of
L., corresponding to its least two-valued model, and the construction continues.

The original definition is more general due to the fact that every definite program
has a least two-valued model. However, while the least two-valued model of a definite
program can be obtained as the least fixed point of the monotonic (and even Scott-
continuous) operator T; , we know of no similar result, or general operator, for
obtaining the least two-valued model, if existent, of progams which are not definite.
The original definition therefore seems to be rather awkward, and indeed, for the
definition of weakly stratified programs (Przymusinska and Przymusinski 1990), the
more general version was dropped in favour of requiring definite layers. So Definition
6.2 is an adaptation taking the original notion of weakly stratified program into
account, and appears to be more natural. In the following, the notion of weakly
perfect model will refer to Definition 6.2.

To be pedantic, there is another difference, namely that we have made explicit
the sets R, of Definition 6.2, which were only implicitly treated in the original
definition. The result is the same.

We show next that Definition 6.1 indeed captures the weakly perfect model. The
proof basically follows our proof scheme, with some alterations, and the monotonic
construction which defines the weakly perfect model serves in place of a monotonic
operator. The technical details of the proof are very involved.

Theorem 6.4

Let P be a normal logic program with weakly perfect model Mp. Then Mp is the
greatest model among all models I, for which there exists an [-partial level mapping
[for P such that P satisfies (WS) with respect to I and [.

We prepare the proof of Theorem 6.4 by introducing some notation, which will
make the presentation much more transparent. As for the proof of Theorem 5.5, we
will consider level mappings which map into pairs (3, n) of ordinals, where n < w.

Uniform LP semantics 19

Let P be a normal logic program with (partial) weakly perfect model Mp. Then
define the Mp-partial level mapping [p as follows: Ip(A) = (8, n), where A € SzURg
and n is least with A € T; 1 (n + 1), if such an n exists, and n = w otherwise.
We observe that if [p(A) = [p(B) then there exists a with 4, B € S, U R,, and if
A€ Sy UR, and B € SgU Rg with o < 3, then I(A) < I(B).

The following definition is again technical and will help to ease notation and
arguments.

Definition 6.5

Let P and @ be two programs and let I be an interpretation.

1. ¥ Gy =(A« Ly,...,L,) and C, = (B «— Kj,...,K,) are two clauses, then
we say that C; subsumes Ca, written €y < Co, if A= B and {L;,...,L,,} C
{Ki,...,K,}.

2. We say that P subsumes @, written P < @, if for each clause C} in P there
exists a clause Cy in @ with C; < Cs.

3. We say that P subsumes @ model-consistently (with respect to I), written
P <5 Q, if the following conditions hold. (i) For each clause C; = (4 «
Ly,...,Ly) in P there exists a clause Cy = (B <« Ki,...,K,) in Q with
Cy < Cyand ({Ky,..., K.} \ {L1,...,Ln}) C I. (ii) For each clause Cy =
(B — Ki,...,K,) in Q with {K1,...,K,} € I and B ¢ I there exists a
clause (4 in P such that C; < (.

A clause C) subsumes a clause C; if both have the same head and the body
of C5 contains at least the body literals of Ci, e.g. p < ¢ subsumes p «— ¢, 7.
A program P subsumes a program @ if every clause in P can be generated this
way from a clause in @, e.g. the program consisting of the two clauses p «+ ¢ and
p < r subsumes the program consisting of p < ¢,—s and p « r,p. This is also
an example of a model-consistent subsumption with respect to the interpretation
{=s, p}. Concerning Example 6.3, note that P/N; <, P, which is no coincidence.
Indeed, Definition 6.5 facilitates the proof of Theorem 6.4 by employing the follow-
ing lemma.

Lemma 1
With notation from Definiton 6.2, we have P/N, <y, P for all a.

Proof
Condition 3(i) of Definition 6.5 holds because every clause in P/N, is obtained
from a clause in P by deleting body literals which are contained in N,. Condition

3(ii) holds because for each clause in P with head A ¢ N, whose body is true under
N, we have that A — is a fact in P/N,. [

The next lemma establishes the induction step in part (2) of the proof of Theorem
6.4.

20 P. Hitzler and M. Wendt

Lemma 2

If I is a non-empty model of a (infinite propositional normal) logic program P’ and
[an [-partial level mapping such that P’ satisfies (WS) with respect to I and I,
then the following hold for P = P’/{.

1. The bottom stratum S(P) of P is non-empty and consists of trivial components
only.

2. The bottom layer L(P) of P is definite.

3. The definite (partial) model N of L(P) is consistent with I in the following
sense: we have I’ C N, where I’ is the restriction of I to all atoms which are
not undefined in N.

4. P/N satisfies (WS) with respect to I\ N and I/N, where [/ N is the restriction
of [to the atoms in I\ N.

Proof

(a) Assume there exists some component C C S(P) which is not trivial. Then
there must exist atoms A, B € C with A < B, B < A, and A # B. Without loss
of generality, we can assume that A is chosen such that {(A4) is minimal. Now let
A’ be any atom occuring in a clause with head A. Then A > B > A > A’, hence
A > A’, and by minimality of the component we must also have A" > A, and we
obtain that all atoms occuring in clauses with head A must be contained in C. We
consider two cases.

(Case i) If A € I, then there must be a fact A « in P, since otherwise by
(WSi) we had a clause A < Ly,..., L, (for some n > 1) with Ly,..., L, € I and
I(4) > I(L;) for all 4, contradicting the minimality of [(A4). Since P = P'/() we
obtain that A < is the only clause in P with head A, contradicting the existence
of B# A with B < A.

(Case ii) If A4 € I, and since A was chosen minimal with respect to I, we obtain
that condition (WSiib) must hold for each clause A «— A;,...,4,,—-B1,...,7 B,
with respect to I and [, and that m = 0. Furthermore, all A; must be contained in
C, as already noted above, and [(A) > I(A;) for all i by (WSiib). Also from (Case
i) we obtain that no A; can be contained in I. We have now established that for
all 4; in the body of any clause with head A, we have I(A) = I(4;) and =4, € I.
The same argument holds for all clauses with head A;, for all ¢, and the argument
repeats. Now from A > B we obtain that there are D,E € C with A > E (or
A=FE), D> B (or D= B), and FE refers negatively to D. As we have just seen,
we obtain ~F € I and I[(E) = I(A). Since E refers negatively to D, there is a clause
with head E and —D contained in the body of this clause. Since (WSii) holds for
this clause, there must be a literal L in the body with level less than [(E), hence
I(L) < I(A) and L € C which is a contradiction. We thus have established that all
components are trivial.

We show next that the bottom stratum is non-empty. Indeed, let A be an atom
such that [(A) is minimal. We will show that {A} is a component. So assume it is
not, i.e. that there is B with B < A. Then there exist Dy,..., Dy, for some k € N,
such that D, = A, D; refers to D; 41 forallj =1,...,k—1, and Dy, refers negatively
to some B’ with B’ > B (or B’ = B).

Uniform LP semantics 21

We show next by induction that for all j = 1,.. ., k the following statements hold:
-D; € I, B < Dj,and [(D;) = I(A). Indeed note that for j = 1,i.e. D; = A, we have
that B < D; = A and {(D;) = I(A). Assuming A € I, we obtain by minimality
of I(A) that A < is the only clause in P = P’/{) with head A, contradicting
the existence of B < A. So =A € I, and the assertion holds for j = 1. Now
assume the assertion holds some j < k. Then obviously D;y; > B. By -D; € I
and I(D;) = I(A), we obtain that (WSii) must hold, and by the minimality of
[(A) we infer that (WSiib) must hold and that no clause with head D; contains
negated atoms. So [(D;y1) = I(D;) = I(A) holds by (WSiib) and minimality of
[(A). Furthermore, the assumption D;4q € I can be rejected by the same argument
as for A above, because then D;y; < would be the only clause with head Dj;q,
by minimality of [(Dj41) = I(A), contradicting B < D;4q. This concludes the
inductive proof.

Summarizing, we obtain that Dy refers negatively to B’, and that =D, € I.
But then there is a clause with head Dy, and =B’ in its body which satisfies (WSii),
contradicting the minimality of I(Dy) = I(A). This concludes the proof of statement
(a).

(b) According to (Przymusinska and Przymusinski 1990) we have that whenever
all components are trivial, then the bottom layer is definite. So the assertion follows
from (a).

(c) Let A € I’ be an atom with A ¢ N, and assume without loss of generality
that A is chosen such that [(A) is minimal with these properties. Then there must
be a clause A < body in P such that all literals in body are true with respect to I’,
hence with respect to N by minimality of [(A). Thus body is true in N, and since
N is a model of L(P) we obtain A € N, which contradicts our assumption.

Now let A € N be an atom with A ¢ I’, and assume without loss of generality
that A is chosen such that n is minimal with A € T;'(P) 7(n + 1). But then there
is a definite clause A < body in L(P) such that all atoms in body are true with
respect to TZF() 1 n, hence also with respect to I’, and since I’ is a model of L(P)
we obtain A € I, which contradicts our assumption.

Finally, let =A € I’. Then we cannot have A € N since this implies A € I’. So
—A € N since N is a total model of L(P).

(d) From Lemma 1, we know that P/N <y P. We distinguish two cases.

(Case i) If A € I'\ N, then there must exist a clause A < Ly,..., L; in P such
that L; € I and I(A) > I(L;) for all i. Since it is not possible that A € N, there
must also be a clause in P/N which subsumes A « Ly, ..., L, and which therefore
satisfies (WSi). So A satisfies (WSi).

(Case ii) If =A € T\ N, then for each clause A < body1l in P/N there must be
a clause A « body in P which is subsumed by the former, and since -4 € I, we
obtain that condition (WSii) must be satisfied by A, and by the clause A < body.
Since reduction with respect to N removes only body literals which are true in NV,
condition (WSii) is still met. [

We can now proceed with the proof.

22 P. Hitzler and M. Wendt

Proof of Theorem 6.4

The proof will be established by showing the following facts: (1) P satisfies (WS)
with respect to Mp and lp. (2) If T is a model of P and [an I-partial level mapping
such that P satisfies (WS) with respect to I and [, then I C Mp.

(1) Let A € dom(lp) and Ip(A) = (o, n). We consider two cases.

(Case i) If A € Mp, then A € T/ 1 (n+ 1). Hence there exists a definite
clause A — Ay,..., A in L, with Aq,..., A} € TZ;Tn, so Aq,..., A € Mp with
Ip(A4) > Ip(A;) for all 4. Since P/N, <y, P by Lemma 1, there must exist a clause
A — Ay,... Ay, Ly,..., Ly in P with literals Ly,...,L,, € N, € Mp, and we
obtain lp(L;) < Ip(A) for all j =1,...,m. So (WSi) holds in this case.

(Case ii) If A € Mp, then let A — Ay,..., Ax,~By,...,—B,, be a clause in P,
noting that (WSii) is trivially satisfied in case no such clause exists. We consider
the following two subcases.

(Subcase ii.a) Assume A is undefined in N, and was eliminated from P by re-
ducing it with respect to N,, i.e. A € R,. Then, in particular, there must be
some -4, € N, or some B; € N,, which yields lp(A4;) < Ip(A), respectively
Ip(B;) < lp(A), and hence one of (WSiia), (WSiic) holds.

(Subcase ii.b) Assume =4 € H, where H is the definite (partial) model of L.
Since P/N, subsumes P model-consistently with respect to N,, we obtain that
there must be some A; with =A; € H, and by definition of [p we obtain Ip(A4) =
Ip(4;) = (a,w), and hence also Ip(A;) < Ip(A;) for all i’ # 4. Furthermore, since
P/N, is definite, we obtain that —B; € N, for all j, hence [p(B;) < Ip(A) for all
j. So condition (WSiib) is satisfied.

(2) First note that for all models M, N of P with M C N we have (P/M)/N =
P/(MUN)=P/N and (P/N)/0 = P/N.

Let I, denote I restricted to the atoms which are not undefined in N, U R,. It
suffices to show the following: For all &« > 0 we have I, C N,UR,, and I\ Mp = .

We next show by induction that if a > 0 is an ordinal, then the following state-
ments hold. (a) The bottom stratum of P/N, is non-empty and consists of trivial
components only. (b) The bottom layer of P/N, is definite. (¢) I, C Ny U Rq. (d)
P /N, satisfies (WS) with respect to I\ Ny41 and I/ Ngi1.

Note first that P satisfies the hypothesis of Lemma 2, hence also its consequences.
So P/N; = P/ satisfies (WS) with respect to I\ N and [/N;, and by application
of Lemma 2 we obtain that statements (a) and (b) hold. For (c), note that no atom
in Ry can be true in I, because no atom in R; can appear as head of a clause in P,
and apply Lemma 2 (c). For (d), apply Lemma 2, noting that P/Ns <y, P.

For « being a limit ordinal, we can show exactly as in the proof of Lemma 2 (d),
that P satisfies (WS) with respect to I \ N, and [/N,. So Lemma 2 is applicable
and statements (a) and (b) follow. For (c), let A € R,. Then every clause in P with
head A contains a body literal which is false in N,. By induction hypothesis, this
implies that no clause with head A in P can have a body which is true in I. So
A & I. Together with Lemma 2 (c), this proves statement (c). For (d), apply again
Lemma 2 (d), noting that P/Nyi1 <n,., P.

For a = 3 + 1 being a successor ordinal, we obtain by induction hypothesis that
P/Ng satisfies the hypothesis of Lemma 2, so again statements (a) and (b) follow

Uniform LP semantics 23

immediately from this lemma, and (c), (d) follow as in the case for « being a limit
ordinal.

It remains to show that I\ Mp = (). Indeed by the transfinite induction argument
just given we obtain that P/Mp satisfies (WS) with respect to I\ Mp and I/ Mp. If
I\ Mp is non-empty, then by Lemma 2 the bottom stratum S(P/Mp) is non-empty
and the bottom layer L(P/Mp) is definite with definite (partial) model M. Hence
by definition of the weakly perfect model Mp of P we must have that M C Mp
which contradicts the fact that M is the definite model of L(P/Mp). Hence I\ Mp
must be empty which concludes the proof. []

Of independent interest is again the case, where the model in question is total.
We see immediately, for example, in the light of Theorem 3.3, that the model is
then stable.

Corollary 6.6

A normal logic program P is weakly stratified, i.e. has a total weakly perfect model,
if and only if there is a total model I of P and a (total) level mapping [for P such
that P satisfies (WS) with respect to I and .

We also obtain the following corollary as a trivial consequence of our uniform
characterizations by level mappings.

Corollary 6.7
Let P be a normal logic progam with Fitting model Mp, weakly perfect model
MWP’ and well-founded model MWF' Then MF C MWP C MWF'

Example 6.8
Consider the program P from Example 6.3. Then Mp = 0, Myyp = {—d, —e}, and
My = {a,-b,~c,~d, —e}.

7 Related Work

As already mentioned in the introduction, level mappings have been used for study-
ing semantic aspects of logic programs in a number of different ways. Our presen-
tation suggests a novel application of level mappings, namely for providing uniform
characterizations of different fixed-point semantics for logic programs with nega-
tion. Although we believe our perspective to be new in this general form, there
nevertheless have been results in the literature which are very close in spirit to our
characterizations.

A first noteable example of this is Fages’ characterization of stable models (Fages
1994), which we have stated in Theorem 3.3. Another result which uses level map-
pings to characterize a semantics is by Lifschitz, Przymusinski, Stark, and McCain
(Lifschitz et al. 1995, Lemma 3). We briefly compare their characterization of the
well-founded semantics and ours. In fact, this discussion can be based upon two dif-
ferent characterizations of the least fixed point of a monotonic operator F. On the
one hand, this least fixed point is of course the least of all fixed points of F', and on
the other hand, this least fixed point is the limit of the sequence of powers (F' T «)q,

24 P. Hitzler and M. Wendt

and in this latter sense is the least iterate of F' which is also a fixed point. Our
characterizations of definite, Fitting, well-founded, and weakly stratified semantics
use the latter approach, which is reflected in our general proof scheme, which de-
fines level mappings according to powers, or iterates, of the respective operators.
The results by Fages (Fitting 1994) and Lifschitz et al. (Lifschitz et al. 1995) hinge
upon the former approach, i.e. they are based on the idea of characterizing the fixed
points of an operator — GLp, respectively ¥p (Przymusinski 1989; Bonnier et al.
1991) — and so the sought fixed point turns out to be the least of those. Conse-
quently, as can be seen in the proof of Theorem 3.3, the level mapping in Fages’
characterization, and likewise in the result by Lifschitz et al., arises only indirectly
from the operator — GLp, respectively ¥ p — whose fixed point is sought. Indeed,
the level mapping by Fages is defined according to iterates of T'p,r, which is the
operator for obtaining GLp(I), for any I. The result by Lifschitz et al. is obtained
similarly based on a three-valued operator Up.

Unforunately, these characterizations by Fages, in Theorem 3.3, respectively by
Lifschitz et al. (Lifschitz et al. 1995), seem to be applicable only to operators which
are defined by least fixed points of other operators, as is the case for GLp and
U p, and it seems that the approach by Lifschitz et al. is unlikely to scale to other
semantics. For example, we attempted a straightforward characterization of the
Fitting semantics in the spririt of Lifschitz et al. which failed.

On a more technical level, a difference between our result, Theorem 5.2, and
the characterization by Lifschitz et al. (Lifschitz et al. 1995) of the well-founded
semantics is this: In our characterization, the model is described using conditions on
atoms which are true or false (i.e. not undefined) in the well-founded model, whereas
in theirs the conditions are on those atoms which are true or undefined (i.e. not
false) in the well-founded model. The reason for this is that we consider iterates
of Wp, where Wp 1 0 = (), while they use the fact that each fixed point of ¥p
is a least fixed point of ®p,; with respect to the truth ordering on interpretations
(note that in this case P/I denotes a three-valued generalization of the Gelfond-
Lifschitz transformation due to Przymusinski (Przymusinski 1989)). In this ordering
we have ®p,; T 0 = =Bp. It is nevertheless nice to note that in the special case of
the well-founded semantics there exist two complementary characterizations using
level mappings.

Since our proposal emphasizes uniformity of characterizations, it is related to
the large body of work on uniform approaches to logic programming semantics, of
which we will discuss two in more detail: the algebraic approach via bilattices due
to Fitting, and the work of Dix.

Bilattice-based semantics has a long tradition in logic programming theory, start-
ing out from the four-valued logic of Belnap (Belnap 1977). The underlying set of
truth values, a four-element lattice, was recognized to admit two ordering rela-
tions which can be interpreted as truth- and knowledge-order. As such it has the
structure of a bilattice, a term due to Ginsberg (Ginsberg 1986), who was the first
to note the importance of bilattices for inference in artificial intelligence (Gins-
berg 1992). This general approach was imported into logic programming theory
by Fitting (Fitting 1991a). Although multi-valued logics had been used for logic

Uniform LP semantics 25

programming semantics before (Fitting 1985), bilattices provided an interesting
approach to semantics as they are capable of incorporating both reasoning about
truth and reasoning about knowledge, and, more technically, because they have
nice algebraic behaviour. Using this general framework Fitting was able to show
interesting relationships between the stable and the well-founded semantics (Fitting
1991b; Fitting 1993; Fitting 2002).

Without claiming completeness we note two current developments in the bilattice-
based approach to logic programming: Fitting’s framework has been extended
to an algebraic approach for approximating operators by Denecker, Marek, and
Truszczynski (Denecker et al. 2000). The inspiring starting point of this work was
the noted relationship between the stable model semantics and the well-founded
semantics, the latter approximating the former. The other line of research was pur-
sued mainly by Arieli and Avron (Arieli and Avron 1994; Arieli and Avron 1998;
Arieli 2002), who use bilattices for paraconsistent reasoning in logic programming.
The above outline of the historical development of bilattices in logic programming
theory suggests a similar kind of uniformity as we claim for our approach. The exact
relationship between both approaches, however, is still to be investigated. On the
one hand, bilattices can cope with paraconsistency — an issue of logic programming
and deductive databases, which is becoming more and more important — in a very
convenient way. On the other hand, our approach can deal with semantics based on
multi-valued logics, whose underlying truth structure is not a bilattice. A starting
point for investigations in this direction could be the obvious meeting point of both
theories: the well-founded semantics for which we can provide a characterization
and which is a special case of the general approximation theory of Denecker et al.
(Denecker et al. 2000).

Another very general, and uniform, approach to logic programming pursues a
different point of view, namely logic programming semantics as nonmonotonic in-
ference. The general theory of nonmonotonic inference and a classification of prop-
erties of nonmonotonic operators was developed by Kraus, Lehmann, and Magidor
(Kraus et al. 1990), leading to the notion KLM-axioms for these properties, and
developed further by Makinson (Makinson 1994). These axioms were adopted to
the terminology of logic programming and extended to a general theory of logic pro-
gramming semantics by Dix (Dix 1995a; Dix 1995b). In this framework, different
known semantics are classified according to strong properties — the KLM-axioms
which hold for the semantics — and weak properties — specific properties which
deal with the irregularities of negation-as-failure. As such Dix’ framework is indeed
a general and uniform approach to logic programming, its main focus being on
semantic properties of logic programs. Our approach in turn could be called semi-
syntactic in that definitions that employ level mappings naturally take the structure
of the logic program into account. As in the case of the bilattice-based approaches,
it is not yet completely clear whether these two approaches can be amalgamated
in the sense of a correspondence between properties of level mappings, e.g. strict
or semi-strict descent of the level, etc., on the one hand, and KLM-properties of
the logic program on the other. However, we believe that it is possible to develop
a proof scheme for nonmonotonic properties of logic programs in the style of the

26 P. Hitzler and M. Wendt

proof scheme presented in the paper, which can be used to cast semantics based on
monotonic operators into level mapping form.

We finally mention the work by Hitzler and Seda (Hitzler and Seda 1999), which
was the root and starting point for our investigations. This framework aims at
the characterization of program classes, such as (locally) stratified programs (Apt
et al. 1988; Przymusinski 1988), acceptable programs (Apt and Pedreschi 1993),
or P-accessible programs (Hitzler and Seda 1999). Such program classes appear
naturally whenever a semantics is not defined for all logic programs. In these cases
one tries to characterize those programs, for which the semantics is well-defined or
well-behaved. Their main tool were monotonic operators in three-valued logic, in
the spirit of Fitting’s ®p, rather than level mappings. With each operator comes
a least fixed point, hence a semantics, and it is easily checked that these semantics
can be characterized using our approach, again by straightforward application of
our proof scheme. Indeed, preliminary steps in this direction already led to an
independent proof of a special case of Corollary 6.7 (Hitzler and Seda 2001).

8 Conclusions and Further Work

We have proposed a novel approach for obtaining uniform characterizations of dif-
ferent semantics for logic programs. We have exemplified this by giving new alterna-
tive characterizations of some of the major semantics from the literature. We have
developed and presented a methodology for obtaining characterizations from mono-
tonic semantic operators or related constructions, and a proof scheme for showing
correctness of the obtained characterizations. We consider our contribution to be
fundamental, with potential for extension in many directions.

Our approach employs level mappings as central tool. The uniformity with which
our characterizations were obtained and proven to be correct suggests that our
method should be of wider applicability. In fact, since it builds upon the well-
known Tarski fixed point theorem, it should scale well to most, if not all semantics,
which are defined by means of a monotonic operator. The main contribution of this
paper is thus, that we have developed a novel way of presenting logic programming
semantics in some kind of normal or standard form. This can be used for easy
comparison of semantics with respect to the syntactic structures that can be used
with a certain semantics, i.e. to what extent the semantics is able to 'break up’
positive or negative dependencies or loops between atoms in the program, as in
Corollary 6.7.

However, there are many more requirements which a general and uniform ap-
proach to logic program semantics should eventually be able to meet, including (i)
a better understanding of known semantics, (ii) proof schemes for deriving prop-
erties of semantics, (iii) extendability to new programming constructs, and (iv)
support for designing new semantics for special purposes.

Requirement (i) is met to some extent by our appoach, since it enables easy
comparison of semantics, as discussed earlier. However, in order to meet the other
requirements, i.e. to set up a meta-theory of level-mapping-based semantics, a lot
of further research is needed. We list some topics to be pursued in the future,

Uniform LP semantics 27

some of which are under current investigation by the authors. There are many
properties which are interesting to know about a certain semantics, depending on
one’s perspective. For the nonmonotonic reasoning aspect of logic programming
it would certainly be interesting to have a proof scheme as flexible and uniform
as the one presented in this paper. Results and proofs in the literature (Fages
1994; Dix 1995a; Turner 2001) suggest that there is a strong dependency between
notions of ordering on the Herbrand base, as expressed by level mappings, and
KLM-properties satisfied by a semantics, which constitutes some evidence that a
general proof scheme for proving KLM-properties from level mapping definitions can
be developed. Other interesting properties are e.g. the computational complexity of
a semantics, but also logical characterizations of the behaviour of negation in logic
programs, a line of research initiated by Pearce (Pearce 1997).

For (iii), it would be desirable to extend our characterizations also to disjunc-
tive programs, which could perhaps contribute to the discussion about appropriate
generalizations of semantics of normal logic programs to the disjunctive case.

We finally want to mention that the elegant mathematical framework of level
mapping definitions naturally gives rise to the design of new semantics. However,
at the time being this is only a partial fulfillment of (iv): As long as a meta-theory
for level-mapping-based semantics is missing, one still has to apply conventional
methods for extracting properties of the respective semantics from its definition.

References

ABRAMSKY, S. AND JUNG, A. 1994. Domain theory. In Handbook of Logic in Computer
Science, S. Abramsky, D. Gabbay, and T. S. Maibaum, Eds. Vol. 3. Clarendon, Oxford,
1-168.

Apt, K. R., BLAlrR, H. A., AND WALKER, A. 1988. Towards a theory of declarative
knowledge. In Foundations of Deductive Databases and Logic Programming, J. Minker,
Ed. Morgan Kaufmann, Los Altos, CA, 89-148.

AprT, K. R. AND PEDRESCHI, D. 1993. Reasoning about termination of pure Prolog
programs. Information and Computation 106, 109-157.

ARIELL, O. 2002. Paraconsistent declarative semantics for extended logic programs. Annals
of Mathematics and Artificial Intelligence 36(4), 381-417.

ARIELI, O. AND AVRON, A. 1994. Logical bilattices and inconsistent data. In Proceedings
of the 9th Annual IEEE Symposium on Logic in Computer Science. IEEE Press, 468
476.

ARIELI, O. AND AVRON, A. 1998. The value of the four values. Artificial Intelligence 102, 1,
97-141.

BELNAP, N. D. 1977. A useful four-valued logic. In Modern Uses of Multiple-Valued
Logic, J. M. Dunn and G. Epstein, Eds. Reidel, Dordrecht, 5-37.

BEzEM, M. 1989. Characterizing termination of logic programs with level mappings. In
Proceedings of the North American Conference on Logic Programming, E. L. Lusk and
R. A. Overbeek, Eds. MIT Press, Cambridge, MA, 69-80.

BONNIER, S., NILSSON, U., AND NASLUND, T. 1991. A simple fixed point characterization
of three-valued stable model semantics. Information Processing Letters 40, 2, 73-78.
CAVEDON, L. 1991. Acyclic programs and the completeness of SLDNF-resolution. Theo-

retical Computer Science 86, 81-92.

28 P. Hitzler and M. Wendt

DENECKER, M., MAREK, V. W., AND TRUSZCZYNSKI, M. 2000. Approximating operators,
stable operators, well-founded fixpoints and applications in non-monotonic reasoning. In
Logic-based Artificial Intelligence, J. Minker, Ed. Kluwer Academic Publishers, Boston,
Chapter 6, 127-144.

Dix, J. 1995a. A classification theory of semantics of normal logic programs: I. Strong
properties. Fundamenta Informaticae 22, 3, 227-255.

Dix, J. 1995b. A classification theory of semantics of normal logic programs: II. Weak
properties. Fundamenta Informaticae 22, 3, 257—288.

E1TER, T., LEONE, N., MATEIS, C., PFEIFER, G., AND SCARCELLO, F. 1997. A deductive
system for nonmonotonic reasoning. In Proceedings of the 4th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’97), J. Dix, U. Furbach,
and A. Nerode, Eds. Lecture Notes in Artificial Intelligence, vol. 1265. Springer, Berlin,
364-375.

Faces, F. 1994. Consistency of Clark’s completion and existence of stable models. Journal
of Methods of Logic in Computer Science 1, 51-60.

Frrring, M. 1985. A Kripke-Kleene-semantics for general logic programs. The Journal
of Logic Programming 2, 295-312.

FrrTing, M. 1991a. Bilattices and the semantics of logic programming. The Journal of
Logic Programming 11, 91-116.

FrrTing, M. 1991b. Well-founded semantics, generalized. In Logic Programming, Pro-
ceedings of the 1991 International Symposium. MIT Press, Cambridge, MA, 71-84.
FrrTiNGg, M. 1993. The family of stable models. Journal of Logic Programming 17,

197-225.

FirTiNGg, M. 1994. Metric methods: Three examples and a theorem. The Journal of Logic
Programming 21, 3, 113-127.

FirTiNg, M. 2002. Fixpoint semantics for logic programming — A survey. Theoretical
Computer Science 278, 1-2, 25-51.

GELFOND, M. AND LirscHITZ, V. 1988. The stable model semantics for logic program-
ming. In Logic Programming. Proceedings of the 5th International Conference and
Symposium on Logic Programming, R. A. Kowalski and K. A. Bowen, Eds. MIT Press,
1070-1080.

GINSBERG, M. L. 1986. Bilattices. Tech. Rep. 86-72, Stanford University, KSL.

GINSBERG, M. L. 1992. Multivalued logics: A uniform approach to inference in artificial
intelligence. Computational Intelligence 4, 3, 256-316.

HiTzLER, P. 2001. Generalized metrics and topology in logic programming semantics.
Ph.D. thesis, Department of Mathematics, National University of Ireland, University
College Cork.

HiTzLER, P. 2003. Towards a systematic account of different logic programming seman-
tics. In Proceedings of the 26th German Conference on Artificial Intelligence, KI2003,
Hamburg, September 2003, A. Giinter, R. Krause, and B. Neumann, Eds. Lecture Notes
in Artificial Intelligence, vol. 2821. Springer, Berlin, 355-369.

HiTzLER, P. AND SEDA, A. K. 1999. Characterizations of classes of programs by three-
valued operators. In Logic Programming and Nonmonotonic Reasoning, Proceedings of
the 5th International Conference on Logic Programming and Non-Monotonic Reasoning,
LPNMR’99, El Paso, Texas, USA, M. Gelfond, N. Leone, and G. Pfeifer, Eds. Lecture
Notes in Artificial Intelligence, vol. 1730. Springer, Berlin, 357-371.

HitzLER, P. AND SEDA, A. K. 2000. A note on relationships between logic programs
and neural networks. In Proceedings of the Fourth Irish Workshop on Formal Methods,
IWFEFM’00, P. Gibson and D. Sinclair, Eds. Electronic Workshops in Comupting (eWiC).
British Computer Society.

Uniform LP semantics 29

HiTzLER, P. AND SEDA, A. K. 2001. Unique supported-model classes of logic programs.
Information 4, 3, 295-302.

HiTzLER, P. AND SEDA, A. K. 2003a. Continuity of semantic operators in logic pro-
gramming and their approximation by artificial neural networks. In Proceedings of the
26th German Conference on Artificial Intelligence, KI2003, A. Giinter, R. Krause, and
B. Neumann, Eds. Lecture Notes in Artificial Intelligence, vol. 2821. Springer, 105-119.

HiTtzLER, P. AND SEDA, A. K. 2003b. Generalized metrics and uniquely determined logic
programs. Theoretical Computer Science 305, 1-3, 187-219.

HitzLER, P. AND WENDT, M. 2002. The well-founded semantics is a stratified Fitting
semantics. In Proceedings of the 25th Annual German Conference on Artificial Intelli-
gence, KI2002, Aachen, Germany, September 2002, M. Jarke, J. Koehler, and G. Lake-
meyer, Eds. Lecture Notes in Artificial Intelligence, vol. 2479. Springer, Berlin, 205-221.

HOLLDOBLER, S., KALINKE, Y., AND STORR, H.-P. 1999. Approximating the semantics
of logic programs by recurrent neural networks. Applied Intelligence 11, 45-58.

KRrAUS, S., LEHMANN, D., AND MAGIDOR, M. 1990. Nonmonotonic reasoning, preferential
models and cumulative logics. Artificial Intelligence 44, 1, 167-207.

KUuNEN, K. 1987. Negation in logic programming. The Journal of Logic Programming 4,
289-308.

LirscHITZ, V. 2002. Answer set programming and plan generation. Artificial Intelli-
gence 138, 39-54.

LirscHITZ, V., McCaIN, N., Przymusinski, T. C., AND STARK, R. F. 1995. Loop
checking and the well-founded semantics. In Logic Programming and Non-monotonic
Reasoning, Proceedings of the 3rd International Conference, LPNMR’95, Lexington,
KY, USA, June 1995, V. W. Marek and A. Nerode, Eds. Lecture Notes in Computer
Science, vol. 928. Springer, 127-142.

Lroyp, J. W. 1988. Foundations of Logic Programming. Springer, Berlin.

MAKINSON, D. 1994. General patterns of nonmonotonic reasoning. In Handbook of Logic
in Artificial Intelligence and Logic Programming, Vol. 3, Nonmonotonic and Uncertain
Reasoning, D. M. Gabbay, C. J. Hogger, and J. A. Robinson, Eds. Oxford University
Press.

MARCHIORI, E. 1996. On termination of general logic programs with respect to construc-
tive negation. The Journal of Logic Programming 26, 1, 69-89.

MAREK, V. W. AND TRUSZCZYNSKI, M. 1999. Stable models and an alternative logic
programming paradigm. In The Logic Programming Paradigm: A 25-Year Persepective,
K. R. Apt, V. W. Marek, M. Truszczynski, and D. S. Warren, Eds. Springer, Berlin,
375-398.

PEARCE, D. 1997. A new logical characterisation of stable models and answer sets. In
Non-Monotonic Extensions of Logic Programming, NMELP ’96, J. Dix, L. M. Pereira,
and T. C. Przymusinski, Eds. Lecture Notes in Computer Science, vol. 1216. Springer,
57-70.

PEDRESCHI, D., RUGGIERI, S., AND SMAUS, J.-G. 2002. Classes of terminating logic
programs. Theory and Practice of Logic Programs 2, 3, 369-418.

PRrzYMUSINSKA, H. AND PrzZYMUSINSKI, T. C. 1990. Weakly stratified logic programs.
Fundamenta Informaticae 13, 51-65.

Przymusinskl, T. C. 1988. On the declarative semantics of deductive databases and logic
programs. In Foundations of Deductive Databases and Logic Programming, J. Minker,
Ed. Morgan Kaufmann, Los Altos, CA, 193-216.

Przymusinski, T. C. 1989. Well-founded semantics coincides with three-valued stable
semantics. Fundamenta Informaticae 13, 4, 445-464.

30 P. Hitzler and M. Wendt

SEDA, A. K. 1995. Topology and the semantics of logic programs. Fundamenta Informat-
icae 24, 4, 359-386.

SEDA, A. K. 1997. Quasi-metrics and the semantics of logic programs. Fundamenta
Informaticae 29, 1, 97-117.

SiMoONs, P., NIEMELA, I., AND SOININEN, T. 200x. Extending and implementing the stable
model semantics. Artificial Intelligence. To appear.

STOLTENBERG-HANSEN, V., LINDSTROM, I., AND GRIFFOR, E. R. 1994. Mathematical
Theory of Domains. Cambridge University Press.

TURNER, H. 2001. Order-consistent programs are cautiously monotonic. Journal of Theory
and Practice of Logic Programming 1, 4, 487—495.

VAN GELDER, A. 1988. Negation as failure using tight derivations for general logic pro-
grams. In Foundations of Deductive Databases and Logic Programming, J. Minker, Ed.
Morgan Kaufmann, Los Altos, CA, 149-176.

VAN GELDER, A. 1989. The alternating fixpoint of logic programs with negation. In
Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, Philadelphia, Pennsylvania. ACM Press, 1-10.

VAN GELDER, A., Ross, K. A.; AND ScHLIPF, J. S. 1991. The well-founded semantics for
general logic programs. Journal of the ACM 38, 3, 620-650.

Towards a Systematic Account of Different Logic
Programming Semantics

Pascal Hitzler

Department of Computer Science, Dresden University of Technology
www.wv.inf.tu-dresden.de/ pascal/
phitzler@inf.tu-dresden.de

Abstract. In [I|2], a new methodology has been proposed which allows
to derive uniform characterizations of different declarative semantics for
logic programs with negation. One result from this work is that the well-
founded semantics can formally be understood as a stratified version
of the Fitting (or Kripke-Kleene) semantics. The constructions leading
to this result, however, show a certain asymmetry which is not readily
understood. We will study this situation here with the result that we will
obtain a coherent picture of relations between different semantics.

1 Introduction

Within the past twenty years, many different declarative semantics for logic pro-
grams with negation have been developed. Different perspectives on the question
what properties a semantics should foremost satisfy, have led to a variety of di-
verse proposals. From a knowledge representation and reasoning point of view it
appears to be important that a semantics captures established non-monotonic
reasoning frameworks, e.g. Reiters default logic [3], and that they allow intu-
itively appealing, i.e. “common sense”, encodings of Al problems. The seman-
tics which, due to common opinion by researchers in the field, satisfy these
requirements best, are the least model semantics for definite programs [, and
for normal programs the stable [5] and the well-founded semantics [6]. Of lesser
importance, albeit still acknowledged in particular for their relation to resolution-
based logic programming, are the Fitting semantics [7] and approaches based on
stratification [8/9)].

The semantics just mentioned are closely connnected by a number of well-
(and some lesser-) known relationships, and many authors have contributed to
this understanding. Fitting [I0] provides a framework using Belnap’s four-valued
logic which encompasses supported, stable, Fitting, and well-founded semantics.
His work was recently extended by Denecker, Marek, and Truszczynski [IT].
Przymusinsky [12] gives a version in three-valued logic of the stable semantics,
and shows that it coincides with the well-founded one. Van Gelder [13] constructs
the well-founded semantics unsing the Gelfond-Lifschitz operator originally asso-
ciated with the stable semantics. Dung and Kanchanasut [14] define the notion
of fixpoint completion of a program which provides connections between the

A. Giinter et al. (Eds.): KI 2003, LNAI 2821, pp. 105-[I19] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 24000 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 10.0
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

106 P. Hitzler

supported and the stable semantics, as well as between the Fitting and the well-
founded semantics, studied by Fages [15] and Wendt [16]. Hitzler and Wendt [
2] have recently provided a unifying framework using level mappings, and results
which amongst other things give further support to the point of view that the
stable semantics is a formal and natural extension to normal programs of the
least model semantics for definite programs. Furthermore, it was shown that the
well-founded semantics can be understood, formally, as a stratified version of the
Fitting semantics.

This latter result, however, exposes a certain asymmetry in the construc-
tion leading to it, and it is natural to ask the question as to what exactly is
underlying it. This is what we will study in the sequel. In a nutshell, we will
see that formally this asymmetry is due to the well-known preference of false-
hood in logic programming semantics. More importantly, we will also see that
a “dual” theory, obtained from prefering truth, can be stablished which is in
perfect analogy to the close and well-known relationships between the different
semantics mentioned above. We want to make it explicit from the start that we
do not intend to provide new semantics for practical purpose. We rather want
to focus on the deepening of the theoretical insights into the relations between
different semantics, by painting a coherent and complete picture of the depen-
dencies and interconnections. We find the richness of the theory very appealing,
and strongly supportive of the opinion that the major semantics studied in the
field are founded on a sound theoretical base.

The plan of the paper is as follows. In Section 2] we will introduce notation
and terminology needed for proving the results in the main body of the paper. We
will also review in detail those results from [IJ2] which triggered and motivated
our investigations. In Section [3] we will provide a variant of the stable semantics
which prefers truth, and in Section [we will do likewise for the well-founded
semantics. Throughout, our definitions will be accompanied by results which
complete the picture of relationships between different semantics.

2 Preliminaries and Notation

A (normal) logic program is a finite set of (universally quantified) clauses of
the form V(A « Ay A--- AN A, A =By A --+- A =B,,), commonly written as
A~ Ay,...,A,,—B1,...,nBy, where A, A;, and B, for i = 1,...,n and
j =1,...,m, are atoms over some given first order language. A is called the
head of the clause, while the remaining atoms make up the body of the clause,
and depending on context, a body of a clause will be a set of literals (i.e. atoms
or negated atoms) or the conjunction of these literals. Care will be taken that
this identification does not cause confusion. We allow a body, i.e. a conjunction,
to be empty, in which case it always evaluates to true. A clause with empty
body is called a unit clause or a fact. A clause is called definite, if it contains
no negation symbol. A program is called definite if it consists only of definite

! Although there may be some virtue to this perspective, see [17].

Towards a Systematic Account of Different Logic Programming Semantics 107

clauses. We will usually denote atoms with A or B, and literals, which may be
atoms or negated atoms, by L or K.

Given a logic program P, we can extract from it the components of a first
order language, and we always make the mild assumption that this language
contains at least one constant symbol. The corresponding set of ground atoms,
i.e. the Herbrand base of the program, will be denoted by Bp. For a subset
I C Bp, weset -] ={-A| A€ Bp}. The set of all ground instances of P with
respect to Bp will be denoted by ground(P). For I C Bp U—Bp, we say that A
is true with respect to (or in) I if A € I, we say that A is false with respect to
(or in) I if =A € I, and if neither is the case, we say that A is undefined with
respect to (or in) I. A (three-valued or partial) interpretation I for P is a subset
of Bp U—Bp which is consistent, i.e. whenever A € I then =A ¢ I. A body, i.e.
a conjunction of literals, is true in an interpretation I if every literal in the body
is true in I, it is false in I if one of its literals is false in I, and otherwise it is
undefined in I. For a negated literal L = = A we will find it convenient to write
-Lelif Ael. ByIp wedenote the set of all (three-valued) interpretations of
P. Both Ip and Bp U ~Bp are complete partial orders (cpos) via set-inclusion,
i.e. they contain the empty set as least element, and every ascending chain has
a supremum, namely its union. A model of P is an interpretation I € Ip such
that for each clause A < body we have that body C I implies A € I. A total
interpretation is an interpretation I such that no A € Bp is undefined in I.

For an interpretation I and a program P, an I-partial level mapping for P
is a partial mapping [: Bp — « with domain dom(l) = {A| A € I or A € I},
where « is some (countable) ordinal. We extend every level mapping to literals
by setting I(—=A) = I[(A) for all A € dom(l). A (total) level mapping is a total
mapping [: Bp — « for some (countable) ordinal a.

Given a normal logic program P and some I C Bp U —~Bp, we say that
U C Bp is an unfounded set (of P) with respect to I if each atom A € U satisfies
the following condition: For each clause A < body in ground(P) (at least) one
of the following holds.

(Ui) Some (positive or negative) literal in body is false in I.
(Uii) Some (non-negated) atom in body occurs in U.

Given a normal logic program P, we define the following operators on Bp U
—Bp. Tp(I) is the set of all A € Bp such that there exists a clause A < body
in ground(P) such that body is true in I. Fp(I) is the set of all A € Bp such
that for all clauses A < body in ground(P) we have that body is false in I.
Both Tp and Fp map elements of Ip to elements of Ip. Now define the operator
&p:Ip— Ip by

Pp(I) =Tp(I)U—Fp(I).
This operator is due to [7] and is well-defined and monotonic on the cpo Ip,

hence has a least fixed point by the Knaster-TarskiZ fixed-point theorem, and
we can obtain this fixed point by defining, for each monotonic operator F', that

2 We follow the terminology from [18]. The Knaster-Tarski theorem is sometimes called
Tarski theorem and states that every monotonic function on a cpo has a least fixed

108 P. Hitzler

F10=0, Ft(a+1) = F(Fta) for any ordinal a, and F 13 = Uy<ﬁFT7
for any limit ordinal 3, and the least fixed point of F' is obtained as F' 1 « for
some ordinal a. The least fixed point of @p is called the Kripke-Kleene model
or Fitting model of P, determining the Fitting semantics of P.

Now, for I C BpU—Bp, let Up(I) be the greatest unfounded set (of P) with
respect to I, which always exists due to [6]. Finally, define

Wp(I) =Tp(I)U-Up(I)

for all I € BpU—-Bp. The operator Wp, which operates on the cpo BpU—-Bp, is
due to [6] and is monotonic, hence has a least fixed point by the Knaster-TarskiZ
fixed-point theorem, as above for @p. It turns out that Wp T« is in Ip for each
ordinal «, and so the least fixed point of Wp is also in Ip and is called the
well-founded model of P, giving the well-founded semantics of P.

In order to avoid confusion, we will use the following terminology: the no-
tion of interpretation, and Ip will be the set of all those, will by default denote
consistent subsets of Bp U —~Bp, i.e. interpretations in three-valued logic. We
will sometimes emphasize this point by using the notion partial interpretation.
By two-valued interpretations we mean subsets of Bp. Both interpretations and
two-valued interpretations are ordered by subset inclusion. Each two-valued in-
terpretation I can be identified with the partial interpretation I’ = TU—(Bp\I).
Note however, that in this case I’ is always a maximal element in the ordering
for partial interpretations, while I is in general not maximal as a two-valued
interpretationﬁ. Given a partial interpretation I, we set [T = I N Bp and
I-={AeBp|-AclI}.

Given a program P, we define the operator T} on subsets of Bp by T (I) =
Tp(IU—(Bp\I)). The pre-fixed points of T}, i.e. the two-valued interpretations
I C Bp with T;,r (I) C I, are exactly the models, in the sense of classical logic,
of P. Post-fixed points of T;,r, i.e. I C Bp with I C T;,r (I) are called supported
interpretations of P, and a supported model of P is a model P which is a
supported interpretation. The supported models of P thus coincide with the
fixed points of T;. It is well-known that for definite programs P the operator
TIJDr is monotonic on the set of all subsets of Bp, with respect to subset inclusion.
Indeed it is Scott-continuous [E20] and, via the Tarski-KantorovicH? fixed-point
theorem, achieves its least pre-fixed point M, which is also a fixed point, as
the supremum of the iterates T; tn forn € N. So M = Ifp (T;) = T; Tw is
the least two-valued model of P. Likewise, since the set of all subsets of Bp is

point, which can be obtained by transfinitely iterating the bottom element of the
cpo. The Tarski-Kantorovitch theorem is sometimes refered to as the Kleene theorem
or the Scott theorem (or even as “the” fixed-point theorem) and states that if the
function is additionally Scott (or order-) continuous, then the least fixed point can
be obtained by an iteration which is not transfinite, i.e. closes off at w, the least
infinite ordinal. In both cases, the least fixed point is also the least pre-fixed point
of the function.

3 These two orderings in fact correspond to the knowledge and truth orderings as
discussed in [19].

Towards a Systematic Account of Different Logic Programming Semantics 109

a complete lattice, and therefore has greatest element Bp, we can also define
T# 10 = Bp and inductively T3 | (o + 1) = TF(TH | «) for each ordinal «
and T; 6= ﬂv <3 T; 1~y for each limit ordinal 5. Again by the Knaster-Tarski
fixed-point theorem, applied to the superset inclusion ordering (i.e. reverse subset
inclusion) on subsets of Bp, it turns out that T; has a greatest fixed point,
gfp (7).

The stable model semantics due to [5] is intimately related to the well-
founded semantics. Let P be a normal program, and let M C Bp be a set of
atoms. Then we define P/M to be the (ground) program consisting of all clauses
A<« Ay,..., A, for which there is a clause A < Ay,...,A,,—B1,...,0B,, in
ground(P) with By,..., By, € M. Since P/M does no longer contain negation,
it has a least two-valued model T}f M T w. For any two-valued interpretation I

we can therefore define the operator GLp(I) = ;/I T w, and call M a stable
model of the normal program P if it is a fixed point of the operator GLp, i.e.
if M = GLp(M) = T;/M Tw. As it turns out, the operator GLp is in general
not monotonic for normal programs P. However it is antitonic, i.e. whenever
I C J C Bp then GLp(J) € GLp(I). As a consequence, the operator GL?%,
obtained by applying GLp twice, is monotonic, and hence has a least fixed point
Lp and a greatest fixed point Gp. In [I3] it was shown that GLp(Lp) = Gp,
Lp = GLp(Gp), and that Lp U =(Bp \ Gp) coincides with the well-founded
model of P. This is called the alternating fixed point characterization of the
well-founded semantics.

Some Results

The following is a straightforward result which has, to the best of our knowledge,
not been noted before. It follows the general approach put forward in [T1J2].

Theorem 1. Let P be a definite program. Then there is a unique two-valued
model M of P for which there exists a (total) level mapping | : Bp — « such
that for each atom A € M there exists a clause A < Aj,..., A, in ground(P)
with A; € M and I(A) > 1(A;) for alli =1,...,n. Furthermore, M is the least
two-valued model of P.

Proof. Let M be the least two-valued model T;,r Tw, choose @ = w, and define
I : Bp — a by setting [(A) = min{n | A € T8 T (n+ 1)}, if A € M, and by
setting 1(A) = 0, if A ¢ M. From the fact that 0 C Tp 11 C ... C Tg tn C
... C TIJ; tw=U,, T;,r 1m, for each n, we see that [is well-defined and that the
least model T; Tw for P has the desired properties.

Conversely, if M is a two-valued model for P which satisfies the given con-
dition for some mapping [: Bp — «, then it is easy to show, by induction on
I(A), that A € M implies A € T7 1(I(A) + 1). This yields that M C T# tw, and
hence that M = T; Tw by minimality of the model T;,r Tw.

The following result is due to [I5], and is striking in its similarity to Theo-
rem [I1

110 P. Hitzler

Theorem 2. Let P be normal. Then a two-valued model M C Bp of P is a
stable model of P if and only if there exists a (total) level mapping | : Bp —
«a such that for each A € M there exists A < Ay,...,Ap,—B1,...,2 By, in
ground(P) with A; € M, B; ¢ M, and [(A) > [(A;) for alli =1,...,n and
j=1...,m.

We next recall the following alternative characterization of the Fitting model,
due to [TJ2].

Definition 1. Let P be a normal logic program, I be a model of P, andl be an
I-partial level mapping for P. We say that P satisfies (F) with respect to I and
I, if each A € dom(l) satisfies one of the following conditions.

(Fi) A € I and there exists a clause A < L1,..., Ly in ground(P) such that
L; € I and I(A) > I(L;) for alli.

(Fii) —A € I and for each clause A < Lq,...,L, in ground(P) there exists i
with ~L; € I and [(A) > I(L;).

Theorem 3. Let P be a normal logic program with Fitting model M. Then M
1s the greatest model among all models I, for which there exists an I-partial level
mapping | for P such that P satisfies (F) with respect to I and 1.

Let us recall next the definition of a (locally) stratified program, due to
[BI9): A normal logic program is called locally stratified if there exists a (to-
tal) level mapping [: Bp — «, for some ordinal «, such that for each clause
A<+ Ai,...,A,,~By,...,—B,, in ground(P) we have that [(A) > [(A;) and
[(A) > (Bj) for alli=1,...,n and j = 1,...,m. The notion of (locally) strat-
ifed program was developed with the idea of preventing recursion through nega-
tion, while allowing recursion through positive dependencies. (Locally) stratified
programs have total well-founded models.

There exist locally stratified programs which do not have a total Fitting
semantics and vice versa — just consider the programs consisting of the single
clauses p < p, respectively, p < —p, ¢. In fact, condition (Fii) requires a strict
decrease of level between the head and a literal in the rule, independent of this
literal being positive or negative. But, on the other hand, condition (Fii) imposes
no further restrictions on the remaining body literals, while the notion of local
stratification does. These considerations motivate the substitution of condition
(Fii) by the condition (Cii), as done for the following definition.

Definition 2. Let P be a normal logic program, I be a model of P, and l be an
I-partial level mapping for P. We say that P satisfies (WF) with respect to I
and [, if each A € dom(l) satisfies (Fi) or the following condition.

(Cii) A € I and for each clause A < As,..., A, B1,...,~ By, contained
in ground(P) (at least) one of the following conditions holds:
(Ciia) There exists i € {1,...,n} with =A; € I and [(A) > I(4;).
(Ciib) There exists j € {1,...,m} with B; € I and [(A) > I(B;).

Towards a Systematic Account of Different Logic Programming Semantics 111

So, in the light of Theorem B] Definition[2 should provide a natural “stratified
version” of the Fitting semantics. And indeed it does, and furthermore, the
resulting semantics coincides with the well-founded semantics, which is a very
satisfactory result from [Il2].

Theorem 4. Let P be a normal logic program with well-founded model M. Then
M is the greatest model among all models I, for which there exists an I-partial
level mapping | for P such that P satisfies (WF) with respect to I and l.

For completeness, we remark that an alternative characterization of the
weakly perfect model semantics [21]] can also be found in [I]2].

The approach which led to the results just mentioned, originally put for-
ward in [12], provides a methodology for obtaining uniform characterizations of
different semantics for logic programs.

3 Maximally Circular Stable Semantics

We note that condition (Fi) has been reused in Definition 2l Thus, Definition [
has been “stratified” only with respect to condition (Fii), yielding (Cii), but not
with respect to (Fi). Indeed, also replacing (Fi) by a stratified version such as
the following seems not satisfactory at first sight.

(Ci) A € I and there exists a clause A <« A;,...,A,,~By,...,7 B, in
ground(P) such that A;,—B; € I, [(A) > I(A;), and I(A) > I(B,) for
all 7 and j.

If we replace condition (Fi) by condition (Ci) in Definition [, then it is not
guaranteed that for any given program there is a greatest model satisfying the
desired properties, as the following example from [I2] shows.

Ezxample 1. Consider the program consisting of the two clauses p < p and ¢q +
-p, and the two (total) models M; = {p,—~q} and My = {-p,q}, which are
incomparable, and the level mapping [with I(p) = 0 and I(q) = 1.

In order to arrive at an understanding of this asymmetry, we consider the
setting with conditions (Ci) and (Fii), which is somehow “dual” to the well-
founded semantics which is characterized by (Fi) and (Cii).

Definition 3. Let P be a normal logic program, I be a model of P, andl be an
I-partial level mapping for P. We say that P satisfies (CW) with respect to I
and I, if each A € dom(l) satisfies (Ci) or (Fii).

By virtue of Definition Bl we will be able to develop a theory which comple-
ments the restults from Section 21 We will first characterize the greatest model
of a definite program analogously to Theorem [I1

112 P. Hitzler

Theorem 5. Let P be a definite program. Then there is a unique two-valued
supported interpretation M of P for which there exists a (total) level mapping
l: Bp — « such that for each atom A & M and for all clauses A < Aq,..., A,
in ground(P) there is some A; ¢ M with [(A) > I(A;). Furthermore, M is the
greatest two-valued model of P.

Proof. Let M be the greatest two-valued model of P, and let a be the least
ordinal such that M = T} | . Define | : Bp — « by setting {(A) = min{y |
AgThL(y+ 1)} for A¢ M, and by setting [(A) = 0 if A € M. The mapping
I is well-defined because A ¢ M with A & T5 |y = g, Tf | 8 for some
limit ordinal v implies A & T} | 3 for some 3 < 7. So the least ordinal 3 with
Aé TIJ; J B is always a successor ordinal. Now assume that there is A ¢ M which
does not satisfy the stated condition. We can furthermore assume without loss
of generality that A is chosen with this property such that {(A) is minimal.
Let A < Ay,..., A, be a clause in ground(P). Since A ¢ T (T} LI(A)) we
obtain A; € T [1(A) 2 M for some i. But then [(A;) < [(A) which contradicts
minimality of [(A).

Conversely, let M be a two-valued model for P which satisfies the given
condition for some mapping [: Bp — «. We show by transfinite induction on
I(A) that A ¢ M implies A & T} | (I(A) + 1), which suffices because it implies
that for the greatest two-valued model T}f 1B of P we have that T4 | 3 C M,
and therefore T;; J 8 = M. For the inductive proof consider first the case where
I(A) = 0. Then there is no clause in ground(P) with head A and consequently
A ¢ T# |1 = T#(Bp). Now assume that the statement to be proven holds
for all B ¢ M with [(B) < «, where « is some ordinal, and let A ¢ M with
I(A) = «. Then each clause in ground(P) with head A contains an atom B
with [(B) = 8 < a and B ¢ M. Hence B ¢ T3 | (3+ 1) and consequently
AZTH(a+1).

The following definition and theorem are analogous to Theorem Pl

Definition 4. Let P be normal. Then M C Bp is called ¢ maximally circular
stable model (maxstable model) of P if it is a two-valued supported interpreta-
tion of P and there exists a (total) level mapping l : Bp — « such that for each
atom A & M and for all clauses A + Ay,..., Ap,—By,...,— By, in ground(P)
with By,..., By € M there is some A; & M with [(A) > I(A;).

Theorem 6. M C Bp is a maxstable model of P if and only if M =
gfp (T;/M> .

Proof. First note that every maxstable model is a a supported model. Indeed
supportedness follows immediately from the definition. Now assume that M
is maxstable but is not a model, i.e. there is A ¢ M but there is a clause
A+ Ay, ..., A, in ground(P) with A; € M for all i. But by the definition of
maxstable model we must have that there is A; € M, which contradicts 4; € M.

Towards a Systematic Account of Different Logic Programming Semantics 113

Now let M be a maxstable model of P. Let A ¢ M and let T}J;/M Ja=
gfp (T;/M). We show by transfinite induction on {(A4) that A & T;/Mi (I(A)+1)
and hence A ¢ T;/Mia. For I(A) = 0 there is no clause with head A in P/M,

so A¢g T;/Mil. Now let I(A) = § for some ordinal 3. By assumption we have
that for all clauses A < Ay,..., A, B1,...,7B,, with By,..., B, € M there
exists A; ¢ M with [(A) > [(A;), say [(A;) =y < . Hence A; ¢ T;,'/MJ,('y—F 1),

and consequently A ¢ T;/MJ,(B + 1), which shows that gfp (T;/M) CM.

So let again M be a maxstable model of P and let A & gfp (T;/M> = T;/M¢
a and [(A) = (. Then for each clause A < Ay,..., A, in P/M there is A; with

A & T;/Mia and [(A) > I(A;). Now assume A € M. Without loss of generality

we can furthermore assume that A is chosen such that I(A) = (is minimal.
Hence A; ¢ M, and we obtain that for each clause in P/M with head A one of
the corresponding body atoms is false in M. By supportedness of M this yields
A ¢ M, which contradicts our assumption. Hence A ¢ M as desired.

Conversely, let M = gfp (T ;,F/M). Then as an immediate consequence of
Theorem 5] we obtain that M is maxstable.

4 Maximally Circular Well-Founded Semantics

Maxstable models are formally analogous@ to stable models in that the former

are fixed points of the operator I — gfp (T;/I), while the latter are fixed points

of the operator I +— Ifp (T;/I). Further, in analogy to the alternating fixed

point characterization of the well-founded model, we can obtain a corresponding
variant of the well-founded semantics, which we will do next. Theorem [f] suggests
the defininition of the following operator.

Definition 5. Let P be a normal program and I be a two-valued interpretation.
Then define CGLp(I) = gfp (T;,r/]>.

Using the operator CGLp, we can define a “maximally circular” version of
the alternating fixed-point semantics.

Proposition 1. Let P be a normal program. Then the following hold.

(i) CGLp is antitonic and CGL% is monotonic.

(ii) CGLp (Ifp (CGL})) =gfp (CGL}) and CGLp (gfp (CGL})) =Ifp (CGL}).
Proof. (i) If I € J € Bp, then P/J C P/I and consequently CGLp(J) =
gfp (T;/J) Cgfp (T;/I> = CGLp(I). Monotonicity of CGL% then follows triv-
ially.

4 The term dual seems not to be entirely adequate in this situation, although it is
intuitionally appealing.

114 P. Hitzler

(ii) Let Lp = Ifp (CGL%;) and Gp = gfp (CGL?D). Then we can calculate
CGL%(CGLp(Lp)) = CGLp (CGL%(Lp)) = CGLp(Lp), so CGLp(Lp) is a
fixed point of CGL?D, and hence Lp C CGLp(Lp) C Gp. Similarly, Lp C
CGLp(Gp) € Gp. Since Lp C Gp we get from the antitonicity of CGLp that
LP Q CGLP(GP) g CGLP(LP) g GP. Similarly, since CGLP(LP) g Gp7 we
obtain CGLp(Gp) € CGLA(Lp) = Lp € CGLp(Gp), so CGLp(Gp) = Lp,
and also Gp = CGL%(Gp) = CGLp(Lp).

We will now define an operator for the maximally circular well-founded se-
mantics. Given a normal logic program P and some I € Ip, we say that S C Bp
is a self-founded set (of P) with respect to I if SU I € Ip and each atom A € S
satisfies the following condition: There exists a clause A < body in ground(P)
such that one of the following holds.

(Si) body is true in I.
(Sii) Some (non-negated) atoms in body occur in S and all other literals in
body are true in I.

Self-founded sets are analogousﬁ to unfounded sets, and the following propo-
sition holds.

Proposition 2. Let P be a normal program and let I € Ip. Then there exists
a greatest self-founded set of P with respect to I.

Proof. If (S;):ez is a family of sets each of which is a self-founded set of P with
respect to I, then it is easy to see that (J,.; S; is also a self-founded set of P
with respect to 1.

Given a normal program P and I € Ip, let Sp(I) be the greatest self-founded
set of P with respect to I, and define the operator CWp on Ip by

CWP(I) = SP(I) U —|FP(I).

Proposition 3. The operator CW p is well-defined and monotonic.

Proof. For well-definedness, we have to show that Sp(I) N Fp(I) = 0 for all
I € Ip. So assume there is A € Sp(I) N Fp(I). From A € Fp(I) we obtain that
for each clause with head A there is a corresponding body literal L which is false
in I. From A € Sp(I), more precisely from (Sii), we can furthermore conclude
that L is an atom and L € Sp(I). But then =L € I and L € Sp(I) which is
impossible by definition of self-founded set which requires that Sp(I)U I € Ip.
So Sp(I)N Fp(I) =0 and CWp is well-defined.

For monotonicity, let I C J € Ip and let L € CWp(I). f L = -Ais a
negated atom, then A € Fp(I) and all clauses with head A contain a body
literal which is false in I, hence in J, and we obtain A € Fp(J). If L = A is an
atom, then A € Sp(I) and there exists a clause A < body in ground(P) such

5 Again, it is not really a duality.

Towards a Systematic Account of Different Logic Programming Semantics 115

that (at least) one of (Si) or (Sii) holds. If (Si) holds, then body is true in I,
hence in J, and A € Sp(J). If (Sii) holds, then some non-negated atoms in body
occur in S and all other literals in body are true in I, hence in J, and we obtain

A€ Sp(J).

The following theorem relates our previous observations to Definition Bl in
perfect analogy to the correspondence between the stable model semantics, The-
orem [Il, Fages’s characterization from Theorem [J, the well-founded semantics,
and the alternating fixed point characterization.

Theorem 7. Let P be a normal program and Mp = Ifp(CWp). Then the fol-
lowing hold.

(i) Mp is the greatest model among all models I of P such that there is an
I-partial level mapping | for P such that P satisfies (CW) with respect to
I andl.

(ii) Mp = Ifp (CGL}:) U= (Bp \ gfp (CGLY)).

Proof. (i) Let Mp = Ifp(CWp) and define the Mp-partial level mapping Ip as
follows: Ip(A) = a, where « is the least ordinal such that A is not undefined in
CWp1t(a+1). The proof will be established by showing the following facts: (1)
P satisfies (CW) with respect to Mp and lp. (2) If I is a model of P and [is an
I-partial level mapping such that P satisfies (CW) with respect to I and [, then
IC Mp.

(1) Let A € dom(lp) and Ip(A) = a. We consider two cases.

(Case i) It A € Mp, then A € Sp(CWp 1), hence there exists a clause
A < body in ground(P) such that (Si) or (Sii) holds with respect to CWp 1 «.
If (Si) holds, then all literals in body are true in CW p 1, hence have level less
than Ip(A) and (Ci) is satisfied. If (Sii) holds, then some non-negated atoms
from body occur in Sp(CW p 1), hence have level less than or equal to Ip(A),
and all remaining literals in body are true in CW p 1 a, hence have level less than
Ip(A). Consequently, A satisfies (Ci) with respect to Mp and lp.

(Caseii) If A € Mp, then A € Fp(CWp*Ta), hence for all clauses A < body
in ground(P) there exists L € body with =L € CWp 1« and [p(L) < a, hence
—L € Mp. Consequently, A satisfies (Fii) with respect to Mp and lp, and we
have established that fact (1) holds.

(2) We show via transfinite induction on o = I(A), that whenever A € T
(respectively, =A € I), then A € CWp 1 (a + 1) (respectively, “A € CWp 1
(a+1)). For the base case, note that if [(A) = 0, then = A € I implies that there
is no clause with head A in ground(P), hence ~A € CWp 1 1. If A € I then
consider the set S of all atoms B with I[(B) = 0 and B € I. We show that S is
a self-founded set of P with respect to CWp 10 = (), and this suffices since it
implies A € CWp 11 by the fact that A € S. Solet C € S. Then C € I and C
satisfies condition (Ci) with respect to I and [, and since [(C') = 0, we have that
there is a definite clause with head C' whose body atoms (if it has any) are all
of level 0 and contained in I. Hence condition (Sii) (or (Si)) is satisfied for this
clause and S is a self-founded set of P with respect to I. So assume now that

116 P. Hitzler

the induction hypothesis holds for all B € Bp with [(B) < «, and let A be such
that [(A) = o. We consider two cases.

(Case i) If A € I, consider the set S of all atoms B with [(B) = a and B € I.
We show that S is a self-founded set of P with respect to CWp 1 «a, and this
suffices since it implies A € CWp T (a4 1) by the fact that A € S. First note
that S C I,s0 SUI € Ip. Now let C € S. Then C € I and C satisfies condition
(Ci) with respect to I and [, so there is a clause A < Ay,...,A,,~B1,...,7 B,
in ground(P) such that A;,—B; € I, [(A) > l(A;), and I(A) > [(B,) for all ¢ and
Jj. By induction hypothesis we obtain -B; € CWpta. If [(4;) < I(A) for some
A; then we have A; € CWpTa, also by induction hypothesis. If there is no A;
with I(4;) = I(A), then (Si) holds, while I(A4;) = I(A) implies A; € S, so (Sii)
holds.

(Caseii) If = A € I, then A satisfies (Fii) with respect to I and [. Hence for all
clauses A < body in ground(P) we have that there is L € body with =L € I and
I(L) < a. Hence for all these L we have =L € CW p T« by induction hypothesis,
and consequently for all clauses A + body in ground(P) we obtain that body is
false in CW p 1« which yields A € CWp 1 (a+ 1). This establishes fact (2) and
concludes the proof of (i).

(if) We first introduce some notation. Let

LO = 07 GO = BP7
Loy1 = CGLpR(G,), Gat1 = CGLp(Ly) for any ordinal «,

Lo = U Lg, Go = ﬂ Gg for limit ordinal a,
B<a B<a
Lp =1Ifp(CGL}:), Gp =gfp(CGLE).

By transfinite induction, it is easily checked that L, C Lg C G C G, whenever
a<f.SoLp=JL, and Gp = Gq.

Let M = Lp U—(Bp \ Gp). We intend to apply (i) and first define an M-
partial level mapping I. We will take as image set of [, pairs (a,~) of ordinals,
with the lexicographic ordering. This can be done without loss of generality
since any set of such pairs, under the lexicographic ordering, is well-ordered, and
therefore order-isomorphic to an ordinal. For A € Lp, let [(A) be the pair («, 0),
where « is the least ordinal such that A € L,41. For B & Gp, let I(B) be the
pair (8,7), where (3 is the least ordinal such that B & Gg41, and is least such
that B & Tp/, 7. It is easily shown that [is well-defined, and we show next
by transfinite induction that P satisfies (CW) with respect to M and [.

Let A € Ly = gfp (T;,F/BP). Since P/Bp contains exactly all clauses from

ground(P) which contain no negation, we have that A is contained in the greatest
two-valued model of a definite subprogram of P, namely P/Bp. So there must
be a definite clause in ground(P) with head A whose corresponding body atoms
are also true in L, which, by definition of [, must have the same level as A,
hence (Ci) is satisfied. Now let =B € =(Bp \ Gp) such that B € (Bp \ G1) =

Bp\gfp (T; /VJ)' Since P/{ contains all clauses from ground(P) with all negative

Towards a Systematic Account of Different Logic Programming Semantics 117

literals removed, we obtain that B is not contained in the greatest two-valued
model of the definite program P/{), and (Fii) is satisfied by Theorem [] using a
simple induction argument.

Assume now that, for some ordinal «, we have shown that A satisfies (CW)
with respect to M and [for all A € Bp with [(A) < («,0).

Let A € Los1\ Lo = gfp (T;,F/Ga) \ Lo. Then A € (T;/Ga m) \ Lq, for some

~; note that all (negative) literals which were removed by the Gelfond-Lifschitz
transformation from clauses with head A have level less than («,0). Then A
satisfies (Ci) with respect to M and [by definition of [.

Let A € (Bp\ Gat1) NG,. Then A ¢ gfp (T;/Lu) and we conclude again

from Theorem [using a simple induction argument, that A satisfies (CW) with
respect to M and I.

This finishes the proof that P satisfies (CW) with respect to M and [. It
remains to show that M is greatest with this property.

So assume that M; D M is the greatest model such that P satisfies (CW)
with respect to M; and some M;-partial level mapping l;. Assume L € My \ M
and, without loss of generality, let the literal L be chosen such that [;(L) is
minimal. We consider two cases.

(Casei) If L = —A € M7\ M is a negated atom, then by (Fii) for each clause
A<+ Ly,...,L, in ground(P) there exists ¢ with =L; € My and 11 (A) > I1(L;).
Hence, =L; € M and consequently for each clause A < body in P/Lp we
have that some atom in body is false in M = Lp U =(Bp \ Gp). But then
A ¢ CGLp(Lp) = Gp, hence =A € M, contradicting A € My \ M.

(Caseii) f L=A € My \ M is an atom, then A ¢ M = LpU—(Bp\Gp) and
in particular A € Lp = gfp (T;/GP). Hence A ¢ T;'/GP J v for some ~, which
can be chosen to be least with this property. We show by induction on v that
this leads to a contradiction, to finish the proof.

If v = 1, then there is no clause with head A in P/Gp, i.e. for all clauses
A < body in ground(P) we have that body is false in M, hence in M;, which
contradicts A € M.

Now assume that there is no B € M; \ M with B ¢ T;/GP 16 for
any 0 < 7, and let A € M; \ M with A ¢ T;/GP 1 7, which implies
that v is a successor ordinal. By A € M; and (Ci) there must be a clause
A+ Ay,...,A,-By,...,—B,, in ground(P) with A;,~B; € M; for all i and
j. However, since A ¢ T;/GP J 7 we obtain that for each A « Ay,..., A,
in P/Gp, hence for each A + Ay,...,A,,~Bi,...,7B,, in ground(P) with
|Bl,...,|Bm S _\(BP \ GP) C M C M, there is A; with A, ¢ T;'_/Gp 1
(y—1) € M, and by induction hypothesis we obtain A; & M;. So A; € M; and
A; &€ My, which is a contradiction and concludes the proof.

Definition 6. For a normal program P, we call lfp(CWp) the maximally cir-
cular well-founded model (maxwf model) of P.

118 P. Hitzler

5 Conclusions and Further Work

We have displayed a coherent picture of different semantics for normal logic
programs. We have added to well-known results new ones which complete the
formerly incomplete picture of relationships. The richness of theory and rela-
tionships turns out to be very appealing and satisfactory. From a mathematical
perspective one expects major notions in a field to be strongly and cleanly in-
terconnected, and it is fair to say that this is the case for declarative semantics
for normal logic programs.

The situation becomes much more difficult when discussing extensions of the
logic programming paradigm like disjunctive [22], quantitative [23], or dynamic
[24] logic programming. For many of these extensions it is as yet to be determined
what the best ways of providing declarative semantics for these frameworks are,
and the lack of interconnections between the different proposals in the literature
provides an argument for the case that no satisfactory answers have yet been
found.

We believe that successful proposals for extensions will have to exhibit similar
interrelationships as observed for normal programs. How, and if, this can be
achieved, however, is as yet rather uncertain. Formal studies like the one in this
paper may help in designing satisfactory semantics, but a discussion of this is
outside the scope of our exhibition, and will be pursued elsewhere.

References

1. Hitzler, P., Wendt, M.: The well-founded semantics is a stratified Fitting seman-
tics. In Jarke, M., Koehler, J., Lakemeyer, G., eds.: Proceedings of the 25th Annual
German Conference on Artificial Intelligence, KI2002, Aachen, Germany, Septem-
ber 2002. Volume 2479 of Lecture Notes in Artificial Intelligence., Springer, Berlin
(2002) 205221

2. Hitzler, P., Wendt, M.: A uniform approach to logic rogramming semantics. Tech-
nical Report WV-02-14, Knowledge Representation and Reasoning Group, Arti-
ficial Intelligence Institute, Department of Computer Science, Dresden University
of Technology, Dresden, Germany (2002) Submitted.

3. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13 (1980) 81-132

Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1988)

5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.
In Kowalski, R.A., Bowen, K.A., eds.: Logic Programming. Proceedings of the
5th International Conference and Symposium on Logic Programming, MIT Press
(1988) 1070-1080

6. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38 (1991) 620—650

7. Fitting, M.: A Kripke-Kleene-semantics for general logic programs. The Journal
of Logic Programming 2 (1985) 295-312

8. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge.
In Minker, J., ed.: Foundations of Deductive Databases and Logic Programming.
Morgan Kaufmann, Los Altos, CA (1988) 89-148

=~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Towards a Systematic Account of Different Logic Programming Semantics 119

Przymusinski, T.C.: On the declarative semantics of deductive databases and
logic programs. In Minker, J., ed.: Foundations of Deductive Databases and Logic
Programming. Morgan Kaufmann, Los Altos, CA (1988) 193-216

Fitting, M.: Fixpoint semantics for logic programming — A survey. Theoretical
Computer Science 278 (2002) 25-51

Denecker, M., Marek, V.W., Truszczynski, M.: Approximating operators, stable
operators, well-founded fixpoints and applications in non-monotonic reasoning. In
Minker, J., ed.: Logic-based Artificial Intelligence. Kluwer Academic Publishers,
Boston (2000) 127-144

Przymusinski, T.C.: Well-founded semantics coincides with three-valued stable
semantics. Fundamenta Informaticae 13 (1989) 445-464

van Gelder, A.: The alternating fixpoint of logic programs with negation. In: Pro-
ceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems, Philadelphia, Pennsylvania, ACM Press (1989) 1-10
Dung, P.M., Kanchanasut, K.: A fixpoint approach to declarative semantics of logic
programs. In Lusk, E.L., Overbeek, R.A., eds.: Logic Programming, Proceedings
of the North American Conference 1989, NACLP’89, Cleveland, Ohio, MIT Press
(1989) 604-625

Fages, F.: Consistency of Clark’s completion and existence of stable models. Jour-
nal of Methods of Logic in Computer Science 1 (1994) 51-60

Wendt, M.: Unfolding the well-founded semantics. Journal of Electrical Engineer-
ing, Slovak Academy of Sciences 53 (2002) 56-59 (Proceedings of the 4th Slovakian
Student Conference in Applied Mathematics, Bratislava, April 2002).

Hitzler, P.: Circular belief in logic programming semantics. Technical Report WV—
02-13, Knowledge Representation and Reasoning Group, Artificial Intelligence In-
stitute, Department of Computer Science, Dresden University of Technology, Dres-
den, Germany (2002)

Jachymski, J.: Order-theoretic aspects of metric fixed-point theory. In Kirk, W.A.,
Sims, B., eds.: Handbook of Metric Fixed Point Theory. Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands (2001) 613-641

Fitting, M.: Bilattices and the semantics of logic programming. The Journal of
Logic Programming 11 (1991) 91-116

Abramsky, S., Jung, A.: Domain theory. In Abramsky, S., Gabbay, D., Maibaum,
T.S., eds.: Handbook of Logic in Computer Science. Volume 3. Clarendon, Oxford
(1994)

Przymusinska, H., Przymusinski, T.C.: Weakly stratified logic programs. Funda-
menta Informaticae 13 (1990) 51-65

Wang, K.: A comparative study of well-founded semantics for disjunctive logic
programs. In Eiter, T., Faber, W., Truszczynski, M., eds.: Logic Programming and
Nonmonotonic Reasoning, 6th International Conference, LPNMR 2001, Vienna,
Austria, September 17-19, 2001, Proceedings. Volume 2173 of Lecture Notes in
Artificial Intelligence., Springer (2001) 133-146

Mateis, C.: Quantitative disjunctive logic programming: Semantics and computa-
tion. Al communications 13 (2000) 225-248

Leite, J.A.: Evolving Knowledge Bases. Volume 81 of Frontiers of Artificial Intel-
ligence and Applications. IOS Press (2003)

Eingereicht beim 19. Workshop on (Constraint) Logic Programming, Ulm, Februar 2005.

Level Mapping Characterizations of Selector
Generated Models for Logic Programs

Pascal Hitzler'* and Sibylle Schwarz?

! Fakultat fiir Informatik, Technische Universitiat Dresden
email: phitzler@inf.tu-dresden.de
2 Institut fiir Informatik, Martin-Luther-Universitit Halle-Wittenberg
email: schwarzs@informatik.uni-halle.de

Technical Report WV-04-04
Wissensverarbeitung, Fakultat fir Informatik, TU Dresden

Abstract. Assigning semantics to logic programs via selector generated
models (Schwarz 2002/2003) extends several semantics, like the stable,
the inflationary, and the stable generated semantics, to programs with
arbitrary formulae in rule heads and bodies. We study this approach by
means of a unifying framework for characterizing different logic program-
ming semantics using level mappings (Hitzler and Wendt 200x, Hitzler
2003), thereby supporting the claim that this framework is very flexible
and applicable to very diversely defined semantics.

1 Introduction

Hitzler and Wendt [8-10] have recently proposed a unifying framework for dif-
ferent logic programming semantics. This approach is very flexible and allows
to cast semantics of very different origin and style into uniform characteriza-
tions using level mappings, i.e. mappings from atoms to ordinals, in the spirit
of the definition of acceptable programs [2], the use of stratification [1,13] and
a characterization of stable models by Fages [3]. These characterizations display
syntactic and semantic dependencies between language elements by means of
the preorders on ground atoms induced by the level mappings, and thus allow
inspection of and comparison between different semantics, as exhibited in [8-10].

For the syntactically restricted class of normal logic programs, the most im-
portant semantics — and some others — have already been characterized and
compared, and this was spelled out in [8-10]. Due to the inherent flexibility of the
framework, it is clear that studies of extended syntax are also possible, but have
so far not been carried out. In this paper, we will present a non-trivial technical
result which provides a first step towards a comprehensive comparative study of
different semantics for logic programs under extended syntax.

* This author acknowledges the hospitality of the Graduiertenkolleg Wissensverar-
beitung at the University of Leipzig, Germany, for their hospitality while working on
a first draft of this paper.

phi
Eingereicht beim 19. Workshop on (Constraint) Logic Programming, Ulm, Februar 2005.

phi

Table 1. Notions of specific types of rules.

rule is called set condition

definite LP body(r) € Lg ({A,t}, A) and head(r) € A

normal NLP body(r) € Lg ({A, t},Lit (A)) and head(r) € A
head-atomic HALP body(r) € Lg (2 \ {f}, A) and head(r) € A

pos. head disj. DLPT body(r) € Lg ({A,t},Lit (4)) and head(r) € Lg ({V}, 4)
disjunctive DLP body(r) € Lg ({A,t},Lit(A)), head(r) € Lg ({V, £}, Lit (4))
head-disjunctive HDLP body(r) € Lg (2 \ {f}, A), head(r) € Lg ({V, £}, Lit (A))
generalized GLP no condition

More precisely, among the many proposals for semantics for logic programs
under extended syntax we will study a very general approach due to Schwarz
[14-16]. In this framework, arbitrary formulae are allowed in rule heads and
bodies, and it encompasses the inflationary semantics [11], the stable semantics
[5], the stable semantics for disjunctive programs [12], and the stable generated
semantics [7]. It can itself be understood as a unifying framework for different
semantics.

In this paper, we will provide a single theorem — and some corollaries thereof
— which gives a characterization of general selector generated models by means
of level mappings. It thus provides a link between these two frameworks, and
implicitly yields level mapping characterizations of the semantics encompassed
by the selector generated approach.

The plan of the paper is as follows. In Section 2 we will fix preliminaries and
notation. In Section 3 we will review selector generated models as introduced in
[14-16]. In Section 4, we will prove our main result, Theorem 4, which gives a
level-mapping characterization of general selector generated models in the style
of [8-10]. In Section 5 we study corollaries from Theorem 4 concerning specific
cases of interest encompassed by the result. We eventually conclude and discuss
further work in Section 6.

2 Preliminaries

Throughout the paper, we will consider a language L of propositional logic
over some set of propositional variables, or atoms, A, and connectives X =
{—,V, A, t,f}, as usual. A rule r is a pair of formulae from £ denoted by ¢ = 1.
¢ is called the body of the rule, denoted by body(r), and v is called the head of
the rule, denoted by head(r). A program is a set of rules. A literal is an atom
or a negated atom, and Lit (4) denotes the set of all literals in £. For a set of
connectives C' C X we denote by Lg (C, A) the set of all formulae over £ in
which only connectives from C' occur.

Further terminology is introduced in Table 1. The abbreviations in the second
column denote the sets of all rules with the corresponding property. A program
containing only definite (normal, etc.) rules is called definite (normal, etc.).

Programs not containing the negation symbol — are called positive. Facts are
rules r where body(r) = t, denoted by = head(r). Any set B of atoms defines
the set of facts fact(B) = {= a | a € B}.

The base Bp is the set of all atoms occurring in a program P. A two-valued
interpretation of a program P is represented by a subset of Bp, as usual. By Ip
we denote the set of all interpretations of P. It is a complete lattice with respect
to the subset ordering C. For an interpretation I € Ip, we define [I = {J €
Ip|ICJ}and | I={Je€lp|JCI}. [I,J]=T1InN]Jis called an interval
of interpretations.

The model relation M = ¢ for an interpretation M and a propositional
formula ¢ is defined as usual in propositional logic, and Mod(y) denotes the set
of all models of . Two formulae ¢ and v are logically equivalent, written ¢ =),
iff Mod(yp) = Mod(v).

A formula ¢ is satisfied by a set J C Ip of interpretations if each interpre-
tation J € J is a model of . For a program P, a set J C Ip of interpretations
determines the set of all rules which fire under J, formally fire(P,J) = {r € P |
VJ € J: J = body(r)}. An interpretation M is called a model of a rule r (or
satisfies r) if M is a model of the formula —body(r) V head(r). An interpretation
M is a model of a program P if it satisfies each rule in P.

For conjunctions or disjunctions ¢ of literals, ¢+ denotes the set of all atoms
occurring positively in ¢, and ¢~ contains all atoms that occur negated in . For
instance, for the formula ¢ = (a A =b A —a) we have ¢ = {a} and ¢~ = {a, b}.
In heads ¢ consisting only of disjunctions of literals, we always assume without
loss of generality that ot N~ = 0.

If ¢ is a conjunction of literals, we abbreviate M = A ,c + a (i.e. ¢ C M)
by M | ¢ and M |F A,c,- ~a (le. " N M = 0) by M | ¢~, abusing
notation. If ¢ is a disjunction of literals, we write M = ¢T for M E \/
(ie. MNp™ #£0) and M = ¢~ for M E V- —a (ie. ¢~ € M).

By iterative application of rules from a program P C GLP starting in the
least interpretation () € Ip, we can create monotonically increasing (transfinite)
sequences of interpretations of the program P, as follows.

acpt a

Definition 1. A (transfinite) sequence C of length « of interpretations of a
program P C GLP is called a P-chain iff

(CO) C’0 = @;

(CB) Csy1 € Min(TCs N Mod(head(Qg))) for some set of rules Qg C P and
for all B with B+ 1 < a, and

(CX) Cx=U{Cs | B < A} for all limit ordinals A < a.

Cp denotes the collection of all P-chains.

Note that all P-chains increase monotonically with respect to C.
In the proof of Theorem 4, we will make use of the following straightforward
lemma from [16].

Lemma 1. For any set of interpretations J C Ip and any interpretation K € Ip
we have Min(JN | K) =Min(J)N | K. O

3 Selector generated models

In [14-16], a framework for defining declarative semantics of generalized logic
programs was introduced, which encompasses several other semantics, as already
mentioned in the introduction. Parametrization within this framework is done
via so-called selector functions, defined as follows.

Definition 2. A selector is a function Sel : Cp x Ip — 27 satisfying () #
Sel(C, I) C [1,sup(C)] for all P-chains C and each interpretation I € | sup(C).

We use selectors Sel to define nondeterministic successor functions {2p on
Ip, as follows.

Definition 3. Given a selector Sel : Cp x Ip — 27 and a program P, the
function 2p is defined by

QPI(CPXIPAZIP)XCPXIPHQIP
N2p(Sel, C, I) = Min ([, sup (C)] N Mod (head (fire (P, Sel (C, I))))) .

Ezxample 1. In this paper, we will have a closer look at the following selectors.

lower bound selector Seli(C,I) ={I}

lower and upper bound selector Sely,(C, I) = {I,sup(C)}
interval selector Seli(C,I) = [I,sup(C)]
chain selector Sel.(C,I) = [I,sup(C)]nC

With the first two arguments (the selector Sel and the chain C') fixed, the
function 2p(Sel, C, I) can be understood as a nondeterministic consequence op-
erator. Iteration of the function £2p(Sel,C,-) from the least interpretation 0

creates monotonic sequences of interpretations. This leads to the following defi-
nition of (P, M, Sel)-chains.

Definition 4. A (P, M, Sel)-chain is a P-chain satisfying

(Csup) M =sup(C) and
(CBse1) Cpy1 € 2p(Sel,C,Cp) for all B, where B+1 < k and k is the length of
the transfinite sequence C.

Thus, (P, M, Sel)-chains are monotonic sequences C of interpretations, that
reproduce themselves by iterating 2p.

Definition 5. A model M of a program P C GLP is Sel-generated if and only
if there exists a (P, M, Sel)-chain C. The Sel-semantics of the program P is the
set Modse (P) of all Sel-generated models of P.

Example 2. Let P be the program consisting of the following rules.

=a (1)
a=b (2)
(aV=c)A(cV-a)=c (3)

Then {a,b,c} is the only Sel;-generated model for P, namely via the chain C; =
(0 (1),{3) {a,c} @ {a,b,¢})). {a,b} and {a,b,c} are Selj,-generated (and Selc-

generated) models, namlely via the chains Cy = (0 4 {a} @) {a,b}) and C4).
{a,b} is the only Seli-generated model of P, namely via Cs.

Some properties of semantics generated by the selectors in Example 1 were
studied in [14]. In Section 5, we will make use of the following results from [14].

Theorem 1. 1. For definite programs P C DLP, the unique element contained
in Mod,(P) = Mod,,(P) = Mod.(P) = Mod;(P) is the least model of P.

2. For normal programs P C NLP, the unique element of Mod,(P) is the infla-
tionary model of P (as introduced in [11]).

3. For normal programs P C NLP, the set Mod,,(P) = Mod.(P) = Mod;(P)
contains exactly all stable models of P (as defined in [5]).

4. For disjunctive programs P C DLP™, the minimal elements in Mod,,(P) =
Mod.(P) = Modi(P) are exactly all stable models of P (as defined in [12]),
but for generalized programs P C GLP, the sets Mod,,(P), Mod.(P), and
Mod;(P) may differ.

5. For generalized programs P C GLP, Mod;(P) is the set of stable generated
models of P (as defined in [7]). O

This shows that the framework of selector semantics covers some of the most
important declarative semantics for normal logic programs. Selector generated
models provide a natural extension of these semantics to generalized logic pro-
grams and allow systematic comparisons of many new and well-known semantics.

For all selectors Sel, it was shown in [14] that the Sel-semantics of programs
in GLP is invariant with respect to the following transformations. (—eq) The
replacement of the body and the head of a rule by logically equivalent formulas.
(—ns) The splitting of conjunctive heads, more precisely the replacement P U
{e =9V AY'} —hs PU{p = 19,0 = ¢'}. As every formula head(r) is logically
equivalent to a formula in conjunctive normal form, it suffices to study head
disjunctive programs.

4 Selector generated models via level mappings

In [8-10], a uniform approach to different semantics for logic programs was given,
using the notion of level mapping, as follows.

Definition 6. A level mapping for a logic program P C GLP is a function
l: Bp — «, where a is an ordinal.

In order to display the style of level-mapping characterizations for semantics,
we give two examples from [10] which we will further discuss later on.

Theorem 2. Every definite program P C LP has exactly one model M, such
that there exists a level mapping | : Bp — « satisfying

(Fd) for every atom a € M there exists a rule \ycgb = a € P such that
B C M and max {l(b) | b€ B} <l(a).

Furthermore, M coincides with the least model of P. O
The following is actually due to Fages [4].

Theorem 3. Let P be a normal program and M be an interpretation for P.
Then M is a stable model of P iff there exists a level mapping | : Bp — «
satisfying

(Fs) for each atoma € M there exists a rule r € P with head(r) = a, body(r)* C
M, body(r)” N M =0, and max {l(b) | b € body(r)"} < I(a). O
It is evident, that among the level mappings satisfying the respective condi-
tions in Theorems 2 and 3, there exist pointwise minimal ones.
We set out to prove a general theorem which characterizes selector generated
models by means of level mappings, in the style of the results displayed above.
The following notion will ease notation considerably.

Definition 7. For a level mapping | : Bp — « for a program P C GLP and an
interpretation M C Bp, the (transfinite) sequence C™ consisting of interpreta-
tions of P is defined by

CiM ={aeM|l(a)<py=Mn]I
v<B

for dll B < a.

Remark 1. Definition 7 implies the following properties of the (transfinite) se-
quence CvM . (1) CHM is monotonically increasing, (2) C;™ =0, and (3) M =
Us<a CgM = sup ChM.

The following is our main result.

Theorem 4. Let P C HDLP be a head disjunctive program and M € Ip. Then
M is a Sel-generated model of P iff there exists a level mapping | : Bp — «
satisfying the following properties.

(L1) M =sup (C"M) € Mod (P).
(L2) For all B with B+ 1 < o we have

CLM\ C5M e Min {J e1p

J | head (R (CgM, J))+ } , where

R (ch,J) = {7’ € fire (p, Sel (CLM’CgM)) C3M b= head (r) " and }

JUCGM £ head (r)”
(L3) For all limit ordinals A < o we have Cl/\’M =Us<n CZM.

Remark 2. As P is a head disjunctive program, we have C,lg’M b head (r) " iff
head (r)" N C;™ =0, and J U C3™ £ head () iff head (r)” € J U C", thus

R (CZM7 J) = {r € fire (P7 Sel (CZ,M7 CgM))

Also note that for every rule r € fire (P, Sel (Cl’M,CgM» \ R (CZM,J), we
have l(ch U J) C Mod (head (r)_) or 1C4M € Mod (head (r)+). Thus all

of these rules are satisfied in the interval [CZM, C,léM U J].

- LM
head (1) C JUCjy

head (r)" N CgM =(and }

Proof. (of Theorem 4)
(=) By Definition 5, an interpretation M is a Sel-generated model of P iff
there exists a (P, M, Sel)-chain. Let M be a model of P and M be Sel-generated
by the (P, M, Sel)-chain C' of length .

Define the level mapping [: Bp — a by l(a) = min{# | a € C3} — 1 for all
a € Bp. We show that this function [satisfies (L1),(L2) and (L3).

(1) We first show CY™ = C for the sequence C-™ determined by I and M
according to Definition 7. From Remark 1, we know Cé’M = () and sup (CZ’M) =
M. Moreover, for each 3 < «a, we have

M ={aeM|l(a) < B}
={ae M |min{y|aeC,} —1< 3} (by Definition 7)
={aeM|acCyy—1<p} (by definition of 1)
=Cjs.

Therefore, we have Cl/\’M = Uz CgM = Us<r Cp = Cy for all limit ordinals
A < a. This proves C' = CHM.

(2) C'is a (P, M, Sel)-chain, so it satisfies (L1) and (L3). It remains to show
that C satisfies (L2). For all 8 with 5+ 1 < a, we show

(a) Co41\ Cp |= head (R (Cp,Cps1 \ Cp)) " for

R(Cs,Cp41\ Cp)

B _ Cjs b~ head (r)* and
= {resemsa@.on| &5 By

- {r € fire (P, Sel (C, C)) | C Nhead (r)* = 0 and head ()~ C cﬁﬂ}

and

or all interpretations J C Cgyq where ea , , We have
b) for all i ions J C Cpy1 \ Cg where J = head (R (Cj,J))", we h

J =Cgy1\ Cp.

(a) C is a (P, M, Sel)-chain, hence we have

Cps1 € 2p (Sel, C, Cs) = Min ([C3, M] N Mod (head (fire (P, Sel (C, C5))))) .

and we obtain Cjgyq = head (fire (P, Sel (C, Cg))).
For each rule r € R(Cjs,Cp11 \ Ci), we know

R(Cp,Csq1\ Cp) C fire (P,Sel (C,Cp))

and hence Cgq1 = head (7) .

By the definition of this set and Remark 2, the set R (Cg,Cs41 \ Cp) does
not contain any rule r € fire (P, Sel (C, Cj3)), where Cg41 = head (r) is satisfied
by Csy1 = head (r)” or Cs |= head ()", ie. head ()" N Cy # 0. Hence all
rules r from R (Cg,Cgi1 \ Cg) C fire (P, Sel (C,Cy)) satisfy Cg |= head (r) by
Cpi1\ CgNhead (r)" #0, i.e. Cgy1\ Cp |=head (r)*. This shows (a).

(b) Assume J C Cgyq \ Cp and J = head (R (Cj,J))". We show JUCj D
Cp41 which implies J D Cgyq \ Cp.

First note that J U Cs C [Cg, M| N Mod (head (fire (P, Sel (C, Cg)))). Indeed
JUCjs € 1Cs is obvious and J U Cg € | M is implied by J C Cgy1 \ Cp, i.e.
JUCs C Cgt1, and Cgy1 € M by monotonicity of the chain C.

Now we show J U Cg |= head (fire (P, Sel (C, C3))). Note first that all rules r
in the set fire (P, Sel (C, C)) satisfy one of the following conditions.

1. C5 k= head ()" (i.e. CgNhead ()" #) and therefore JUCjy |= head (1) by
C/g cJu Cﬂ or

2. JUCj = head (r)” and therefore J U Cjs |= head (1) or

3. none of 1. or 2. Then we have r € R(Cs,J) and due to the assumption
J € Mod (head (R(Cg,J))Jr) we have J U Cjs = head ()" and therefore
J U Cs = head ().

We can now conclude J U Cg D C311 because C'z1 is a minimal element of
[Cs, M] N Mod (head (fire (P, Sel (C, Cj3)))), which proves (b).
Together, we have shown that Cjgtq \ Cj3 is a minimal element in

{J € Ip | J = head (R (Cj, J))*} :

which shows that the level mapping [satisfies (L.2). This finishes the first part
of the proof.
(«<=) For the converse, we show that for every level mapping [for a program P
and an interpretation M satisfying (L1),(L2) and (L3) the sequence CtM is a
(P, M, Sel)-chain.

Let [: Bp — « be a level mapping and M an interpretation for a program
P. According to Definition 4, we have to show the following properties of the
sequence ChM:

(Co) cg;M 0,

(€N M =U{CEM | B < A} for all limit ordinals A < a,
(

(

Csup) M =J CgM | B < ap =supC-M and
Cfsa) C5M € 2p (sel, cbM, ch) for all § with 8+ 1 < a.

By Remark 1 we know that C™ increases monotonically and Cf)’M = 0,

(C0), is satisfied. By condition (L1) we have M = sup (C"M) € Mod (P),
(Csup), and condition (L3) implies (C\).
For (Cpfsel) we have to show that for all § with 8+ 1 < « the equation

i.e.
i.e.

Ciih € 2p (Sel.CHM,CM)
= Min ([, M| 0 Mod (head (fire (P,sel (€4, C;M)))))
holds. For this, by Lemma 1, it suffices to show that

Ci2, € Min (15 N Mod (head (fire (P,Sel (€, C5™))))) n L.

Now by monotonicity of Cv™ we know Ciafl € | M. For
LM € Min (T 5™ M Mod (head (ﬁre (P, Sel (cl»M, ch)))))

we will proceed by proving the steps (a) and (b), as follows.

(a) CiYh € 15" N Mod (head (fire (P, Sel (€4, C5M)))).
(b) For all interpretations J € TCgMﬁMod (head (fire (P7 Sel (Cl,M7 CgM)>)>,

I,M _ cLM
where J C C,BJr17 we have J = CBH'

(a) By monotonicity of C"M it suffices to show that
Ci¥, € Mod (head (fire (P, Sel (1, ™)),

First note that for every rule r € fire (P, Sel (CZ’M, C2M)> one of the follow-
ing holds:
1. CgM = head (r)*, i.e. head (r)" N CgM #), and therefore Cg_]\fl = head (r)
by CféM - Cng or

+

2. Cgfl = head (r)” and therefore Cgﬁ = head (r) or

3. none of 1. or 2. Then r € R (CgM, Cgﬂ\fl \ CgM) and thus Cg’fl = head ()

by Clﬁfl \ CgM k= head ()" and condition (L2).

Hence for each rule r € fire (P7 Sel (CZVM, CgM)> we have C,lg’fl = head (r) and

thus Clﬂfl € TClB’M N Mod (head (fire (P, Sel (CZ’M, CZM)D), which shows (a).

(b) Let J € TCZM N Mod (head (fire (P, Sel (Cl’M, CZBM>))> for some J C

CZB_I:_/II Since J € TCgM we obtain J € Tcgﬁ by showing J\C,lg’M 2 Cg_ﬂfl \Cg’M.
1,M 1L,M +

Indeed J \ C5 € {K €1p | K | head (R (cﬁ’ K)) } and therefore J \

+
CgM = head (R (CZM, J\ CZM)) . Condition (L2), i.e. minimality of Cgyq \
Clﬁ’M in this set, implies J \ CgM 2 Clﬁ’ﬁ \ CgM as desired.

By J € Mod (head (fire (P, Sel (Cl’M,CgM)))) we have J |= head (r) for
all rules r € fire (P, Sel (CZ’M, C%’M)). For each of these rules r, J |= head (1) is
satisfied by J = head ()~ or by ClB’M = head (r)* and in both cases we have
ré R (CZB’M, J). For all remaining rules, we know that J |= head (r) is satisfied
by J\ Clﬁ’M Nhead (r)" # 0, ie. J\ Cf@’M = head (r)", and therefore we know

T\ CM {K €1p | K |= head (R (ch,K))+}.

By J\ ClB’M C Cféﬁ \ C/lg’M and minimality of Clﬁ’% \ Clﬁ’M in the set

{K €1p | K |= head (R (ch,K))+}

we have J \ Cg’M = Cgﬁ \ Cg’M and therefore J = Cgfl, which shows (b).

This proves the minimality of Cia% in the set
1,M : LM LM
[C5™, M] N Mod (head (fire (P, el (€, C5M)))).

1,M 1,M
Thus, C51 € 2p (Sel, chM, Cs >

Hence C"M is a (P, M, Sel)-chain. This proves M € Modse (P) and concludes
the proof. a

By the remarks made at the end of Section 3, we obtain the following imme-
diate corollary.

Corollary 1. Let P be a generalized program and M an interpretation of P.
Then M is a Sel-generated model of P iff for a head disjunctive program @ with

P =% s Q there exists a level mapping | : Bq — « satisfying (L1), (L2) and
(L3) of Theorem 4. O

5 Corollaries

We can now apply Theorem 4 in order to obtain level mapping characterizations
for every semantics generated by a selector, in particular for those semantics
generated by the selectors defined in Example 1 and listed in Theorem 1. For
syntactically restricted programs, we can furthermore simplify the properties
(L1),(L2) and (L3) in Theorem 4. Alternative level mapping characterizations
for some of these semantics were already obtained directly in [10].

Programs with positive disjunctions in all heads

For rules r € HDLP, where head(r) is a disjunction of atoms, we have head(r)~ =
(). Hence we have head(r)~™ C I, i.e. I |~ head(r)™, for all interpretations I € Ip.

Thus the set R <C2M, J) from (L2) in Theorem 4 can be specified by

R (ch, J) = {r € fire (P, Sel (clvM, ch)) | M e head(,.)+}.

We furthermore observe that the set R (CEM, J) does not depend on the inter-

pretation J, so we obtain
R (€M) = {r e fire (P.se1 (€™, 3™) | €5 1 head(r) " = 0}
and hence

Min {J elp

J e head (R (C5,7)) " = in (nod (neaa (7 (1))
Thus for programs containing only rules whose heads are disjunctions of
atoms we can rewrite condition (L2) in Theorem 4, as follows.
(L2d) For every 8 with 8+ 1 < a we have
chM\ chM e Min (Mod (head (R’ (cl»M)))) , where
R[j+(1ch§ = {r e fire (P,se1 (C', cg%)) [C5 Nhead(r)t =0}

Programs with atomic heads

Single atoms are a specific kind of disjunctions of atoms. Hence for programs
with atomic heads we can replace condition (L2) in Theorem 4 by (L2d), and
further simplify it as follows.

For rules with atomic heads we have head ({r € P | head(r) ¢ I}) = head(P)\
I and therefore

head (R’ (Cj™))

head ({r € fire (P, Se1 (C"¥, €3)) | head(r) N C5 = 0})
head ({7’ € fire (p, Sel (clvM, ch)) | head(r) ¢ ch})

— head ((fire (P Sel (€, €M))) \ ¢

Because all formulae in head(P) are atoms we obtain

Min (Mod (head (R (€5)))) = Min (1 (head (R (c5))))
= {head (R’ ("))}

and this allows us to simplify (L2) in Theorem 4 to the following.

(L2a) For each § with §+ 1 < o we have

LY\ C5M = head (fire (P, Sel (cl’M, ch))) \ C5M.

Inflationary models From Section 3 we know that for normal programs P
the selector Sel; generates exactly the inflationary model of P as defined in [11].
The generalizations of the definition of inflationary models and this result to
head atomic programs are immediate. From [16] we also know that every Sel;-
generated model is generated by a (P, M, Sel|)-chain of length w. Thus level
mappings | : Bp — w are sufficient to characterize inflationary models of head
atomic programs. In this case, condition (L3) applies only to the limit ordinal
0 < w. But by remark 1, all level mappings satisfy this property. Therefore we
do not need condition (L3) in the characterization of inflationary models.

Using Theorem 4 and the considerations above, we obtain the following char-
acterization of inflationary models.

Corollary 2. Let P C HDLP be a head atomic program and M an interpretation
for P. Then M is the inflationary model of P iff there ezists a level mapping
[: Bp — w with the following properties.

(L1) M =sup (C"M) € Mod(P).
(L2i)
CL N\ ChM = head (fire (P, CLM)) \ ChM
for alln < w. O

Normal programs

For normal programs, the heads of all rules are single atoms. Hence the simpli-
fication (L2a) of condition (L2) in Theorem 4 applies for all selector generated
semantics for normal programs.

The special structure of the bodies of all rules in normal programs allows an
alternative formulation of (L2a). In every normal rule, the body is a conjunc-
tion of literals. Thus for any set of interpretations J we have J = body(r) iff
body(r)* C J and body(r)~ NJ = 0 for all interpretations J € J.

Stable models We develop next a characterization for stable models of normal
programs, as introduced in [5]. The selector Sel), generates exactly all stable
models for normal programs. In [16], it was also shown that all Sel,,-generated
models M of a program P are generated by a (P, M, Sel)-chain of length < w. So
for the same reasons as discussed for inflationary models, level mappings with
range w are sufficient to characterize stable models and condition (L3) can be
neglected.

For a normal rule r and two interpretations I, M € Ip with I < M we
have {I, M} = body(r), i.e. I = body(r) and M [body(r), iff body(r)* C T
and body(r)” N M = (. Combining this with (L2a) we obtain the following
characterization of stable models for normal programs.

Corollary 3. Let P C NLP be a normal program and M an interpretation for
P. Then M is a stable model of P iff there exists a level mapping l : Bp — w
satisfying the following properties:

(L1) M =sup (C"M) € Mod(P).
(L2s)

it \ CLM = head ({r € P [body(r)* € C4™ body(r)~ N M = 0}) \ C;M
for all n < w. =

Comparing this with Theorem 3, we note that both theorems characterize
the same set of models. Thus for a model M of P there exists a level mapping
l:Bp — a satisfying (L1) and (L2s) iff there exists a level mapping [: Bp — w
satisfying (Fs). The condition imposed on the level mapping in Theorem 3,
however, is weaker than the condition in Corollary 3, because levelmappings
defined by (P, M, Sel)-chains are always pointwise minimal.

Definite programs

In order to characterize the least model of definite programs, we can further
simplify condition (L2) in Theorem 4. Definite programs are a particular kind
of head atomic programs. Thus we can replace condition (L2) in Theorem 4 by
(L2i). Since the body of every definite rule is a conjunction of atoms we obtain

fire(P,I) = {r € P | body(r)" C I}
for every interpretation I € Ip. Thus we get the following result.

Corollary 4. Let P C LP be a definite program and M an interpretation for
P. Then M is the least model of P iff there exists a level mapping | : Bp — w
satisfying the following conditions.

(L1) M = sup (C4*) € Mod(P).
(L21)
CA N\ CLM = head ({r € P | body(r)™ C CLM 1)\ ChM

for every n < w. ad

Comparing this to Theorem 2, we note that the relation between the condi-
tions (L21) and (Fd) are similar to those of the conditions (F's) und (L2s).

6 Conclusions and Further Work

Our main result, Theorem 4, provides a characterization of selector generated
models — in general form — by means of level mappings in accordance with the
uniform approach proposed in [8-10]. As corollaries from this theorem, we have

also achieved level mapping characterizations of several semantics encompassed
by the selector generated approach due to [14-16].

Our contribution is technical, and provides a first step towards a comprehen-
sive comparative study of different semantics of logic programs under extended
syntax by means of level mapping characterizations. Indeed, a very large num-
ber of syntactic extensions for logic programs are currently being investigated in
the community, and even for some of the less fancy proposals there is often no
agreement on the preferable way of assigning semantics to these constructs.

A particularly interesting case in point is provided by disjunctive and ex-
tended disjunctive programs, as studied in [6]. While there is more or less gen-
eral agreement on an appropriate notion of stable model, as given by the notion
of answer set in [6], there exist various different proposals for a corresponding
well-founded semantics, see e.g. [17]. We expect that recasting them by means
of level-mappings will provide a clearer picture on the specific ways of modelling
knowledge underlying these semantics.

Eventually, we expect that the study of level mapping characterizations of
different semantics will lead to methods for extracting other, e.g. procedural,
semantic properties from the characterizations, like complexity or decidability
results.

References

1. Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of
declarative knowledge. In Jack Minker, editor, Foundations of deductive databases
and logic programs. Morgan Kaufmann, Los Altos, US, 1988.

2. Krzysztof R. Apt and Dino Pedreschi. Reasoning about termination of pure Prolog
programs. Information and Computation, 106(1), September 1993.

3. Francois Fages. Consistency of Clark’s completion and existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51-60, 1994.

4. Frangois Fages. A new fixpoint semantics for general logic programs compared with
the well-founded and the stable model semantics. In Peter Szeredi and David H.D.
Warren, editors, Proceedings of the 7th International Conference on Logic Pro-
gramming (ICLP ’90), Jerusalem, June 1990. MIT Press.

5. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic pro-
gramming. In Robert A. Kowalski and Kenneth Bowen, editors, Proceedings of the
Fifth International Conference on Logic Programming, Cambridge, Massachusetts,
1988. The MIT Press.

6. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing, 9(3/4), 1991.

7. Heinrich Herre and Gerd Wagner. Stable models are generated by a stable chain.
Journal of Logic Programming, 30(2), February 1997.

8. Pascal Hitzler. Towards a systematic account of different logic programming se-
mantics. In Andreas Giinter, Rudolf Kruse, and Bernd Neumann, editors, K12003:
Advances in Artificial Intelligence. Proceedings of the 26th Annual German Con-
ference on Artificial Intelligence, KI2003, Hamburg, Germany, September 2003,
volume 2821 of Lecture Notes in Artificial Intelligence, pages 355-369. Springer,
Berlin, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

Pascal Hitzler and Matthias Wendt. The well-founded semantics is a stratified
Fitting semantics. In Matthias Jarke, Jana Koehler, and Gerhard Lakemeyer,
editors, Proceedings of the 25th Annual German Conference on Artificial Intelli-
gence, KI2002, Aachen, Germany, September 2002, volume 2479 of Lecture Notes
in Artificial Intelligence, pages 205-221. Springer, Berlin, 2002.

Pascal Hitzler and Matthias Wendt. A uniform approach to logic programming
semantics. Theory and Practice of Logic Programming, 200x. To appear.

Phokion G. Kolaitis and Christos H. Papadimitriou. Why not negation by fixpoint?
In PODS ’88. Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems: March 21-23, 1988, Austin, Texas, New
York, NY 10036, USA, 1988. ACM Press.

Teodor Przymusinski. Stable Semantics for Disjunctive Programs. New Generation
Computing Journal, 9, 1991.

Teodor C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In Jack Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 193-216. Morgan Kaufmann, Los Altos, CA, 1988.
Sibylle Schwarz. Answer sets generated by selector functions. In Proceedings of
the Workshop on Nonmonotonic Reasoning’2002, pages 247-253, Toulouse, 2002.
http://www.tcs.hut.fi/~ini/nmr2002/schwarz.ps.

Sibylle Schwarz. Answer sets generated by selector functions. In Bertram Fronhofer
and Steffen Hélldobler, editors, 17. WLP: Workshop Logische Programmierung, TU
Dresden, December 11-13, 2002, number TUD-FI03-03 in Technische Berichte der
Fakultdt Informatik, pages 5-13. TU Dresden, 01062 Dresden, April 2002.

Sibylle Schwarz. Selektor-erzeugte Modelle wverallgemeinerter logischer Pro-
gramme. PhD thesis, Universitdt Leipzig, 2004. http://www.informatik.uni-
leipzig.de/~schwarz/ps/thes.ps.gz.

Kewen Wang. A comparative study of well-founded semantics for disjunctive logic
programs. In Thomas Eiter, Wolfgang Faber, and Miroslaw Truszczynski, editors,
Logic Programming and Nonmonotonic Reasoning, 6th International Conference,
LPNMR 2001, Vienna, Austria, September 17-19, 2001, Proceedings, volume 2173
of Lecture Notes in Artificial Intelligence, pages 133-146. Springer, 2001.

Available online at www.sciencedirect.com

SCIENCE@DIRECT" JOURNAL OF
APPLIED LOGIC

B4

ELSEVIE Journal of Applied Logic 2 (2004) 245-272

www.elsevier.com/locate/jal

Logic programs and connectionist networks

Pascal Hitzlet, Steffen Holldoble?*, Anthony Karel Seda

@ Technische Universitét Dresden, Internationaln®s for Computational Logic, 01062 Dresden, Germany
b Department of Mathematics, University College Cork, Cork, Ireland

Available online 10 June 2004

Abstract

One facet of the question of integration of Logic and Connectionist Systems, and how these can
complement each other, concerns the points ofamintn terms of semantics, between neural net-
works and logic programs. In this paper, we shibnat certain semantic opgors for propositional
logic programs can be computed by feedforward connectionist networks, and that the same semantic
operators for first-order normal logic programs can be approximated by feedforward connectionist
networks. Turning the networks into recurrent ones allows one also to approximate the models asso-
ciated with the semantic operators. Our methods depend on a well-known theorem of Funahashi, and
necessitate the study of when Funahashi's theorem can be applied, and also the study of what means
of approximation are appropriate and significant.

0 2004 Elsevier B.V. All rights reserved.

Keywords:Logic programming; Metric spaces; Connectionist networks

1. Introduction

It is widely recognized that Logic and Neural Networks are two rather distinct yet ma-
jor areas within Corputing Science, and that each of them has proved to be especially
important in relation to Artificial Intelligence, both in the context of its implementation
and in the context of providing it with theoretical foundations. However, in many ways
Logic, manifested through Computational Logic or Logic Programming, and Neural Net-

Y This is a revised and extended treatment of resuh&h to date have appeared only in [Proc. ECAI94
Workshop on Combining Symbolic and Connectionist Processing, ECCAI, 1994, pp. 68—77] and [Proc. Fourth
Irish Workshop on Formal Methods, IWFM'00, Electronic Workshops in Computing (eWiC), British Computer
Society, 2000; Proc. 26th German Conference on Aidifilntelligence, KI2003, Lecture Notes in Artificial
Intelligence, vol. 2821, Springer, Berlin, 2003, pp. 105-119].

* Corresponding author.

E-mail addresssh@iccl.tu-dresden.de (S. Holldobler).

1570-8683/$ — see front mattét 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jal.2004.03.002

http://www.elsevier.com/locate/jal

246 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

works are quite complementary. For example, there is a widespread belief that the ability
to represent and reason about structured objects and structure-sensitive processes is crucial
for rational agents (see, for examp[20,42]), and Computational Logic is well-suited to

doing this. On the other handhtional agents should have dtilthal properties which are

not easily found in logic based systems suctH@sgxample, the abilityo learn, the ability

to adapt to new environments, and the abilitylegrade gracefully; these latter properties

are typically met by Connectionist Systems or Neural Networks.

For such reasons, there is considerable interest in integrating the Logic based and Neural
Network based approaches to Artificial Intelligence with a view to bringing together the
advantages to be gained from connectionism and from symbolic Al. However, in attempt-
ing to do this, there are considerable obstacles to be overcome. For example, from the
computational point of view, most connectionist systems developed so far are proposi-
tional in nature. John McCarthgalled this a propositional fixatiof39] in 1988, and not
much has changed since then. Although it is known that connectionist systems are Turing-
equivalent, we are unaware of any connectionist reasoning system which fully incorporates
the power of symbolic computation. Systems like SHR{#7] or the BUR-calculu$27]
allow n-place predicate symbols and a finité eéconstants and, thus, are propositional
in nature. Systems like CHC[28] allow a fixed number of first-order clauses, but can-
not copy clauses on demand and, thus, theilemeat relation is decidable. Connectionist
mechanisms for represimg terms like holographic reduced representati@i8j or re-
cursive auto-associative memoridgl] and variations thereof can handle some recursive
structures, but as soon as the depth of theesgnted terms increases, the performance
of these methods degrades quicfd®]. Furthermore, whilst logic programs have a rather
well-developed theory of their semantics, it is not so clear how Neural Networks can be
assigned any well-defined meaning which glaan important role comparable with that
played by the supported models, the stable model or the well-founded model typically
assigned to a logic program to capture its meaning.

It is an important fact that the models just mentioned are fixed points of various op-
erators determined by programs. In particular, the supported models, or Clark completion
semantic$9], of a normal logic progran® coincide with the fixed points of the immediate
consequence operatdp. Furthermore, the fixed points themselves are frequently found
by iterating the corresponding operators.

The previous observation establishes a clearas#ical connection between logic pro-
grams and neural networks which is the main focus of study in this paper, and it arises
because neural networks can be usedaimpute semantic operators suchas Specifi-
cally, in this paper we develop this link beden propositional (as well as first-order) logic
programs and recursive networks. Our first main observation is that for any given propo-
sitional logic programP, one can construct a feedforward connectionist network which
can compute the immediate consequence opefatodnfortunately, the methods used in
the propositional case do not extend immeeliato the first-order case, and our second
main observation is that approximation techniques can be used instead to approximate, ar-
bitrarily well, both the semantic operators themselves and also their fixed points, at least if
the feedforward networks are turned into recurrent ones. Our methods here are based on a
well-known theorem of Funahag}&i1] which shows that every continuous function on the
reals can be uniformly approximated by a §dafeedforward neural network. However,

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272 247

application of Funahashi’s theorem dependsTgnitself being continuous in a precise
sense to be defined later. This in turn leads us to study conditions under Whicleets
this criterion, and in doing this we find it convenient to work with quite general seman-
tic operators employing many valued logicsurthermore, it also raises rather technical
guestions concerning what are the appropriate approximations to use.

Thus, the overall structure of the paper is as followsSé&ttion 2 we collect together
the basic notions we need concerning logiograms, neural networks, and metric spaces.
In Section 3 we establish our claim above th&@p can be computed, for propositional
programsP, by feedforward connectionist networks. Section 4 we take up the issue
of extending the results dection 3to the first-order case by means of approximation.
This involves a fairly detailed study of the (topological) continuity of semantic operators,
extending results to be found [A9], before we can ultimately take up the question of
applying results such as Funahashi’s theorem and discussing measures of approximation
appropriate to the study of neural networks. FinallySection 5 we present our conclu-
sions and discuss future work. In essence, our techniques and thinking are somewhat in the
spirit of dynamical systems, and provide a link between the areas of logic programming,
topology and connectionist systems.

2. Basic notions

In this section, we collect together the lwasoncepts and notation we need from logic
programming, metric spaces and connectiométtvorks, as can be found, for example,
in [25,38,54] A reader familiar with these notions may skip this section.

2.1. Logic programs

A (normal) logic programis a finite set otlausesof the form

V(A< LiA---ALy),

wheren € N may differ for each claused is an atom in some first-order languagend
L1,..., L, are literals, that is, atoms or negated atomsinAs is customary in logic
programming, we will write such a clause in the form

A< LiAN---ANLy,

in which the universal quantifier is understood. Theiis called theheadof the clause,
eachL; is called abody literalof the clause and their conjunctidn A --- A L, is called
the bodyof the clause. We allow = 0, by an abuse of notation, which indicates that the
body is empty; in this case, the clause is calleshd clauseor afact We will occasionally
use the notatiom < body for clauses, so thdtody stands for the conjunction of the
body literals of the clause. If no negation symbol occurs in a logic program, the program
is called adefinitelogic program.

The Herbrand base underlying a given prograwill be denoted byBp, and the set of
all Herbrand interpretations bip, and we note that the latter can be identified simultane-
ously with the power set aBp and with the se2?” of all functions mappingsp into the

248 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

set2 consisting of two distinct elements. The 2as usually considered to be the $etf}
of truth values. Any interpretation can be extended to literals, clauses and programs in the
usual way. Amodelfor P is an interpretation which map to t. Theimmediate conse-
guence operatofor single-step operatQr7p, mapping interpretations to interpretations,
is defined as follows. Let be an interpretation and lgt be an atom. Theffp (1)(A) =t
if and only if there exists a ground instande< Li A --- A L, of a clause inP such
thatl/ (L1 A--- A L,) =t. By ground P), we will denote the set of all ground instances of
clauses inP.

The immediate consequence operator is a convenient tool for capturing the logical
meaning, or semantics, of logic programs: an interpretatie®a model for a program
P if and only if Tp(I) < I, that is, if and only ifl is a pre-fixed point offp, where258»
is endowed with the pointwise ordering induced by the unique partial order defin2d on
in whichf < t. Fixed points ofTp are calledsupported modelfr P. They coincide with
the models for the so-callg@lark completionof a progran{9] and are considered to be
particularly well-suited to capturing the intended meaning of logic programs.

2.2. Metric spaces and contraction mappings

Let X be a non-empty set. A functiah: X x X — R is called ametric(on X), and the
pair (X, d) is called ametric spaceif the following properties are satisfied.

1. Forallx,y € X, we haved(x, y) > 0andd(x,y) =0iff x =y.
2. Forallx,y e X, we haved (x, y) =d(y, x).
3. Forallx, y,z € X, we haved(x,z) <d(x,y) +d(y, 7).

Let d be a metric defined on a s&t Then a sequencg;,) in X is said toconverge to

x € X, andx is called thelimit of (x,,), if, for eache > 0, there is a natural numbegp

such that for alkh > ng we haved(x,, x) < ¢. Note that the limit of any sequence is unique

if it exists. Furthermore, a sequence,) is said to be a&auchy sequenci, for each

¢ > 0, there is a natural numbeg such that wheneven, n > ng we haved (x,,, x,) < ¢.

It is clear that any sequence which converges is a Cauchy sequence. On the other hand, a
metric spacé€X, d) is calledcompletef every Cauchy sequence i converges.

Let (X, d) be ametric space. Then afunctignX — X is called acontraction mapping
or simply acontractionif there exists a real numbere [0, 1) satisfyingd (f (x), f(y)) <
rd(x,y) for all x,y € X. Finally, an elementg (of a setX) is called afixed pointof a
function f: X — X if, as usual, we havg (xg) = xo.

One of the main results concerning cadtion mappings defined on complete metric
spaces is the following well-known theorem.

Theorem 2.1 (Banach Contraction Mapping Theorgb4]). Let f be a contraction map-
ping defined on a complete metric spde& d). Thenf has a unique fixed poini € X.
Furthermore, the sequenee f(x), f(f(x)), ... converges tag foranyx € X.

If a programP is such that there exists a metric which rendEssa contraction, then
Theorem 2.3shows thatP has a unique supported model. Semantic analysis of logic pro-

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272 249

grams along these general lines was initiatefiLB], and has subsequently been studied
and generalized by a number afthors. The recent publicatig84] contains both a state-
of-the-art treatment using this approachdam comprehensive list of references on this
topic.

The following definition will be very convenient for our purposes.

Definition 2.2. A normal logic programP is calledstrongly determinedf there exists a
complete metrie/ on Ip such thatTp is a contraction with respect th

It follows from Theorem 2.that every strongly determined program has a unique sup-
ported model, that is, isniquely determinedCertain well-known classes of programs turn
out to contain only strongly determined programs, amongst these are the classes of acyclic
and acceptable prograrf%5,8,18] which are fundamental in termination analysis under
Prolog. More generally, all programs callég,-accessible ifi34] are strongly determined.
Indeed, we will take the trouble to define acyclic programs next since we will need this
notion in subsequent discussions. To do this, we need first to recall the notion of level
mapping, familiar in the context of studies of termination, g}dor example.

A level mappindor a programp is a mappind : Bp — « for some ordinad. As usual,
we always assume thahas been extended to all literals by settiGgA) =1(A) for each
A € Bp. An w-level mappindor P is a level mapping: Bp — N.

Definition 2.3. A logic programP is calledacyclicif there exists amw-level mapping for
P such that for each clause<« L1 A --- A L, in ground P) we havel(A) > [(L;) for all
i=1...,n.

2.3. Connectionist networks

A connectionist networks a directed graph. Anit £ in this graph is characterized, at
timez, by itsinput vector(ix1(z), . . ., ixs, (t)), its potential px (r) € R, itsthresholdé; € R,
and itsvaluev (¢). Units are connected via a set ofelited and weighted connections. If
there is a connection from unjtto unitk, thenw,; € R denotes theveightassociated with
this connection, andk; (1) = wy;v;(¢) is theinput received byk from j at timer. Fig. 1
shows a typical unit. The units are updated synchronously. In each update, the potential
and value of a unit are computed with respect toaativation and anoutput function
respectively. All units considered in this paper compute their potential as the weighted sum
of their inputs minus their threshold:

ng
pr(t) = (Zwkjv,-a)) — k.
j=1

Having fixed the activation function, we consider three types of units mainly distin-
guished by their output function. A unit is said to bebnary threshold uniif its output
function is a threshold function:

1 if pe(t) 20,

vkt + Af) = { 0 otherwise.

250 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

ui(?) W1
’U)kj

v(t) ———— (1) vkt + At)
Wkn,,

Un,(t) o,

Fig. 1. Unitk in a connectionist network.

A unitis said to be dinear unitif its output function is the identity and its threshe@lds 0.
A unit is said to be aigmoidalor squashing uniif its output functiong is non-decreasing
and is such that lim, o (¢ (px (1)) = 1 and lim - _ (¢ (px (¢))) = 0. Such functions are
calledsquashing functions

In this paper, we will only consider connectionist networks where the units can be or-
ganized in layers. Aayer is a vector of units. Am-layer feedforward networlf consists
of theinputlayer,n — 2 hiddenlayers, and theutputlayer, where: > 2. Each unit occur-
ring in theith layer is connected to each unit occurring in the- 1)st layer, 1< i < n.
Let » ands be the number of units occurring in the input and output layers, respectively.
A connectionist networkF is called amultilayer feedforward networK it is an n-layer
feedforward network for some. A multilayer feedforward networl computes a func-
tion fr:R" — RS as follows. The input vector (the argument Hf) is presented to the
input layer at timeg and propagated through the hidden layers to the output layer. At each
time point, all units update their potential and value. At time- (n — 1) At, the output
vector (the image undefr of the input vector) is read off the output layer.

For a 3-layer network with linear units in the input layer, squashing units in the hidden
layer, and a single linear unit in the output layer, the input-output function of the network
as described above can thus be obtained as a mappiRg— R with

flxe, ..., x) ZZCj(b(ijixi —9j>7
I i

wherec; is the weight associated with the connection from ttieunit of the hidden layer
to the single unit in the output layep,is the squashing output function of the units in the
hidden layerw ;; is the weight associated with the connection fromitheunit of the input
layer to thejth unit of the hidden layer ang; is the threshold of thgth unit of the hidden
layer.

It is our aim to obtain results on the representation or approximation of consequence
operators by input-output functions of 3-layer feedforward networks. Some of our results
rest on the following theorem, which is due to Funahashi[2&k

Theorem 2.4. Suppose thap:R — R is a non-constant, bounded, monotone increasing
and continuous function. L& € R” be compact, lef : K — R be a continuous mapping
and lete > 0. Then there exists &layer feedforward network with squashing functipn

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272 251

AN s

output layer

hidden layer

input layer

oL - LU

Fig. 2. Sketch of a 3-layered recurrent network.

whose input-output mapping: K — R satisfiesnax.cx d(f(x), f(x)) < &, whered is a
metric which induces the natural topoldgyn R.

In other words, each continuous functign K — R can be uniformly approximated
by input-output functions of 3-layer networks. For our purposes, it will suffice to assume
thatK is a compact subset of the set of real numbers, saiteal in the statement of the
theorem.

An n-layer recurrent network\" consists of am-layer feedforward network such that
the number of units in the input and output layee identical. Furthermore, each unit in
thekth position of the output layer is connedtwith weight 1 to the unit in thith position
of the input layer, where ¥ k£ < N andN is the number of units in the output (or input)
layer. Fig. 2 shows a 3-layer recurrent network. The subnetwork consisting of the three
layers and the connections between the input and the hidden as well as between the hidden
and the output layer is a 3-layer feedforward network calleckénmaelof .

3. Propositional logic programs
In this section, we consider the propositional case follof2#j and show that for each
logic programP we can construct a 3-layer feedforward network of binary threshold
units computing’p. Turning such a network into a recurrent one allows one to compute

the unique fixed point ofp provided thatP is strongly determined.

The main question addressed in this section is: can we specify a connectionist network
of binary threshold units foa propositional logic progran® such that it compute%p

1 For exampled(x, y) =[x — y|.

252 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

and, if it exists, the least fixed point dfp? It is well-known that 3-layer feedforward
connectionist networks with sigmoidal hidden layer are universal approximatb35]
Hence, we expect that recurrent networks veitB-layer feedforward kernel will do, where
the kernel computeBp and, by the recurrent connectiofiy, is iterated.

The question addressed in the following subsection is whether or not even simpler net-
works, viz. recurrent networks with a 2-layfeedforward kernel of binary threshold units
will do. Such networks are callgaerceptrong46]. It is well-known that their computing
capabilities are limited to computing solutions for linearly separable prolkéhis

3.1. Hidden layers are needed

Usually, the need for a hidden layer is shown by demonstrating that the exclusive-or
cannot be modelled by a feedforward network without hidden layerg44éefor exam-
ple). A straightforward program to computhe exclusive-or of two propositional atoms
andB such as the program

Pi={C <« AA—-B, C«~—AAB}
is not definite and from this we can only conclude that 2-layer feedforward networks cannot
computeTpr for normal P. An even stronger result is the following.

Proposition 3.1. 2-layer connectionist networks of binary threshold units cannot compute
Tp for definiteP.
Proof. Consider the following program

Po={A< B, A<~ CAD, A< EAF).

Let F be the 2-layer feedforward network of binary threshold units showfign 3 and
assume that the weights jf are selected in such a way that it compufes Letw;; =0

A B C D E F
7 8 9 10 11 12

6; 105]05[0505]0.5

Fig. 3. A 2-layer feedforward netwk of binary threshold units foP>. The numbers occurring within the units
are thresholds. Connections which are not shown have weight 0.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272 253

ando; = 0.5if i € [8, 12], so that no unit encoding the atorBigo F in the output layer will

ever become active and this property is, moreover, independent of the activation pattern of
the input layer. Thus, as far as these units are concerned, the network behaves correctly as
no atomB to F is evaluated td by Tp,(7) for any interpretatior]. For unit 7 to behave
correctly, we have to find a threshald and weightswz;, 1 < j < 6, such that

Tp,(I)(A) =t iff
w71V1 + w72v2 + W73V3 + W74v4 + W75V5 + W7eve — 07 = 0, (1)

wherel = (v1, ..., vg) is the current interpretation, that is, the activation or output pattern
of the input layer. Obviously, the output of unit 1 should not influence the potential of unit
7 and hencev71 = 0. Thus,(1) reduces to

Tp,(I(A)=t iff w7202 + w73v3 + w74v4 + W7sV5 + W76VE — 7 > 0. (2)

As the conjunction in the conditions of clauses is commutafR);an be transformed to

Tp,()(A) =t iff w72v2 + w74v3 + w73vs + W7sV5 + W7EVE — O7 > 0

and

Tp,(I)(A) =t iff w7202 + w73v3 + W74v4 + W7evs + W75V6 — O7 2> 0.

Hence, withwy = 3 (w73 + w4) andwy = 3 (w7s + wre) Eq. (2)becomes

Tp,(I)(A) =t iff w72v2+ w1(v3+ va) + wa(vs + ve) — 7 > 0. (3

As the disjunction between clauses is commutative, using an argument similar to that used
before we findw = %(wn + w1 + wp) such tha(3) becomes

Tp,(I)(A) =t iff w(va+v3+va+vs+ve)—67=0. (4)

Thus, withx = 2522 v; we obtain the polynomiabx — 67. Now, for 7 to computeTp,
the following must hold.

wx —07<0 if x=0 (vp=---=v5=0).
wx—07>20 if x=1 (v2=1, v3=---=v=0).
wx —07<0 if x=2 (vu=va=v6=0, va=v5=1).

However, the first derivative of the polynomiak — 67 cannot change its sign and, conse-
guently, there cannot be weights and thresholds such that the 2-layer feedforward network
computes’p,. O

This result shows the need for hidden layers and it is easy to verify that the 3-layer
feedforward network of binary threshold units showrFig. 4 computesTs, for the pro-
gram Ps.

One should observe that each rilén P, is mapped from the input to the output layer
through exactly one unit in the hidden layer. The potential of this unit is greater than 0 at
to + At and, thus, the unit becomes active@t- Ar if and only if each unit in the input
layer representing a condition &fis active atyp, that is, if and only if each condition at

254 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

A B C D E F

05[05]105]05(05(05

A

05(05(05]0.5
A B C D E F

1

5

Fig. 4. A 3-layer feedforward network of binary threshold units compufipg Only connections with non-zero
weights are shown, and these corti@ts have weight 1. The numbers oaing within units denote thresholds.

is assigned. The potential of the output unit representings greater than 0 at + 2Az
and, thus, the unit becomes active@at 2At if and only if at least one hidden unit that is
connected tal is active atrg + At.

Consequently, the number of units in the hidden layer as well as the number of connec-
tions between the hidden and the output layer with non-zero weight is equal to the number
of clauses inP. Furthermore, the number of connections between the input and the hidden
layer with non-zero weight is equal to the number of literals occurring in the conditions
of program clauses, and the number of units in the input and output layers is equal to the
number of propositional variables occurringlie program. Hence, the size of the network
is bounded by the size of the program, and the opeftds computed in constant time,
viz. in 2 steps.

These construction principles are extended to normal programs in the following subsec-
tion.

3.2. Relating propositional programs to networks

Theorem 3.2. For each programP, there exists &-layer feedforward network computing
Tp.

Proof. Let m andn be the number of propositional variables and the number of clauses
occurring inP, respectively. Without loss of generality, we may assume that the variables
are ordered. The network associated withan now be constructed by the followitrgns-

lation algorithm

1. The input and output layer is a vector of binary threshold units of lemgtivhere
theith unit in the input and output layer represents ttievariable, 1< i < m. The
threshold of each unit occurring the input or output layer is set tof

2. Foreach clause of the form<« L1 A---A Ly, k > 0, occurring inP, do the following.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272 255

2.1. Add a binary threshold unitto the hidden layer.

2.2. Connect to the unit representing in the output layer with weight 1.

2.3. Foreach literal ;, 1 < j <k, connect the unit representidg in the input layer
to c and, if L; is an atom, then set the weight to 1; otherwise set the weight to
-1.

2.4. Set the thresholé. of ¢ to l — 0.5, wherel is the number of positive literals
occurringinLi A --- A L.

Each interpretatio for P can be represented by a binary vedtar, . .., v,). Such an
interpretation is given as input to the network by externally activating corresponding units
of the input layer at timep. It remains to show thafp(1)(A) =t if and only if the unit
representingi in the output layer becomes active at tirge- 2A«.

If Tp(I)(A) =t, then there is a clausé <— L1 A --- A L in P such that for all I<
Jj <k we havel(L;) =t. Letc be the unit in the hidden layer associated with this clause
according to item 2.1 of the construction. From 2.3 and 2.4 we conclude thedomes
active at timerg + Ar. Consequently, 2.2 and the fact that units occurring in the output
layer have a threshold of® (see item 1) ensure that the unit representirig the output
layer becomes active at timg+ 2Az.

Conversely, suppose that the unit representing the atamthe output layer becomes
active at timeg + 2Ar. From the construction of the network, we find a unih the hidden
layer which must have become active at tispe- A¢. This unit is associated with a clause
A< LiA---ALp. If k=0, thatis, if the body of the clause is empty, then, according to
item 2.4,c has a threshold of0.5. Furthermore, according to item 23does not receive
any input, that isp. = 0+ 0.5 and consequently will always be active. Otherwise, if
k > 1, thenc becomes active only if each unit in tiput layer representing a positive
literal and no unit representing a negative literal in the body of the clause is active at time
to (see items 2.3 and 2.4). Hence, we have found a clauselL A --- A L such that for
all 1< j < kwe havel (L) =t and consequentlyp(I)(A) =t. O

As an example, reconsider
Pi={C < AA—-B, C < —AA B}
and extend it to
P3={A, C <~ AA—B, C < —AAB}.

Their corresponding connectionist networks are showrign 5. One should observe that
P3 exemplifies the representation of unigses in 3-layer feedforward networks.

As already mentioned at the end $éction 3.1the number of units and the number
of connections in a networlE corresponding to a prograt are bounded by @z + n)
and Qm x n), respectively, whera is the number of clauses amd is the number of
propositional variables occurring iR. FurthermoreTp (1) is computed in 2 steps. As

2 We can save the unit in the hidden layer correspondirtheaunit clause, if we change the threshold of the
unit representingd in the output layer te-0.5.

256 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

A B C A B C
0510505 0510505
1 1 1 1/ 1
0505 —0.5[0.5 0.5
1 L
1//~1\ 1 1/41|/1
0505105 05105105
A B C A B (C

Fig. 5. Two 3-layer feedforward networks of binary threshold units compuftiigand 7p,, respectively. Only
connections with non-zero weight are shown. The benoccurring within units denote thresholds.

the sequential time to compuf® (7) is bounded by @ x m) (assuming that no literal
occurs more than once in the conditions of ausks), the parallel computational model is
optimal3

We can now apply the Banach contraction mapping theofém@orem 2.1to obtain the
following result.

Corollary 3.3. Let P be a strongly determinegbropositiona) program. Then there exists
a 3-layer recurrent network such that each computation starting with an arbitrary initial
input converges and yields the unique fixed poirfigtthat is, the unique supported model
for P.

Let us mention in passing that a kind of convers€ofollary 3.3also holds, as follows.
Let P be a (propositional) program such that the corresponding network has the property
that each computation startjrwith an arbitrary initial inpuiconverges, and in all cases
converges to the same state. Then this means that iteration Df thperator exhibits the
same behaviour, that is, for each initial interpretation it yields one and the same constant
value after a finite number of iterations. B§1, Theorem 2] this suffices to guarantee
the existence of a complete metric which rend&ssa contraction. A direct proof of this
observation is given if24].

Returning to the program®; and P3 again, we observe that both programs are strongly
determined. Hence Fig. 5 shows the kernels of corresponding recurrent networks which

3A parallel computatinal model requiringp(n) processors and(n) time to solve a problem of size is
optimal if p(n) x t(n) = O(T (n)), whereT (n) is the sequential time to solve this problem (see for example
[37]).

4 They are even acceptable, as can be seen by magptog?, andA as well asB to 1 and considering the
model/(A) = I1(C) =t and!(B) =f.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272 257

compute the least fixed point @, (the interpretation represented by the ve¢®0, 0))
and ofTp, (the interpretation represented by the vecio0, 1)).
The time needed by the network to settle down into the unique stable state is equal to
the time needed by a sequential machine to compute the least fixed pdjnirothe worst
case. As an example, consider the definite program

Py={A1}U{A;j ;1 < A; |1<i <n}.

The least fixed point of’p is the interpretation which evaluates eath 1< i <n, to

t. Using the technique described [ih0] and[48], it can be computed in @) steps
Obviously, the parallel computational model needs as many steps. More generatly, let
be a definite program containimgclauses. The time needed by the network to settle down
into the unique stable state i #1 the worst case and, thus, the time is linear with respect

to the number of clauses occurring in the program. This comes as no surprise as it follows
from [36] that satisfiability of propositional Horn formulae iBcomplete and, thus, is
unlikely to be in the clas$\C (see for examplg¢37]). On the other hand, consider the
program

Ps={A;|1<i<nandieveiU{A;11 < A; |1<i <nandi evern.

The least model mapping each atont te computed in five steps by the recurrent network
corresponding t@s.

3.3. Extensions

In this subsection, various extensions of the basic model developfekiton 3.2are
briefly discussed. In particular, we focos learning, rule extraction and propositional
modal logics.

Learning. The networks corresponding to logic programs and constructed by the trans-
lation algorithm presented in the proof ®heorem 3.2cannot be trained by the usual
learning methods applied to connectionist systems. It was obsery&8]i(see alsq12,

14)) that results similar td’heorem 3.2and Corollary 3.3can be achieved if the binary
threshold units occurring in the hidden &yof the feedforward kernels are replaced by
sigmoidal units. We omit the technical details here and refer to the abovementioned lit-
erature. Such a move renders the kernels sgibke to the backpropagation algorithm, a
standard technique for training feedforward netwgds.

Rule extraction. After training a feedforward network with sigmoidal units in the hidden
layer, the knowledge encoded in the netlwis mostly inaccessible to a human without
postprocessing. Numerous techniques have been proposed to extract rules from trained
feedforward networks (see for examgld and[11]). We can now envision a cycle in
which a given (preliminary) logic program tsanslated into a feedfward network, this

5 To be precise, the algorithm described18] needs @n) time, wheren denotes the total number of occur-
rences of propositional variables in the formula.

258 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

network is trained by examples using backpropagation, and a new (refined) logic program
is extracted from the network after training (§6&]). The referenc§l2] contains several
examples of such cyclic knowledge processing.

Propositional modal logics. The approach discussed so far has been extenddijod-
sitional) modal programswhere literals occurring in a clause may be prefixed by the
modalities and <, clauses are labelled by the world in which they hold, and a finite set
of relations between worlds is giv¢h3]. It was shown thaTheorem 3.Zan be extended

to such modal programs in that for each suchbgram there exists a 3-layer connectionist
network computing the modal fixed point operator of the given program. The main idea is
to construct for each world a 3-layer feedforward network using a variation of the transla-
tion algorithm specified in the proof dtheorem 3.2and then to connect the worlds with
respect to the given set of relations betweanlds and the usual Kripke semantics of the
modalities. It is an interesting open problem to show how to model the temporal aspects of
reasoning with respect to modal programs within a connectionist setting other than by just
copying the complete network from one point in time to the next one.

4. First-order logic programs

In this section, we extend the approach present&eution 3o the first-order case. In
particular, we consider conditions under which semantic operators for first-order logic
programs as well as their fixed points can be approximated by connectionist networks.

In the first-order case, (Herbrand) interpretations usually consist of countably many
ground atoms. Hence, the simple solutian the propositional case, where each ground
atom is represented by a binary threshold unit in the input and the output layer, is no longer
feasible. To extend the representational capability of the networks used, binary threshold
units are replaced by sigmoidal ones. Theueal generated by sigmoidal units are real
numbers, and we will use real numbers to represent interpretatiofig. |6 the recurrent
nets considered in this section are sketched. This section extends results publ[&6&d in
and therefore we review the previous work in the following subsection.

4.1. Previous work

The referenc§26] was concerned with the following problem. Suppose we are given a
first-order logic progranP together with a continuous consequence operggart? —
2Br whereBp is the Herbrand base d@f. We want to know whether or not there exists a
class of logic programs such that for eachgmam in this class we can find an invertible
mapping : 287 — R and a functionfp : R — R satisfying the following conditions:

1. Tp(I) = I’ implies fp (1)) = (I') and fp (r) = ' implies Tp (" 1(r)) = 1),
2. Tp is a contraction on?r iff fp is a contraction ofR, and
3. fp is continuous orR.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272 259

(

output layer/unit

hidden layer

input layer /unit

L

Fig. 6. Sketch of a recurrent network for a first-order logic program.

The first condition ensures th#p is a sound and complete encodindgl®f. The second
condition ensures that the contraction property, and thus fixed points, are preserved. The
third condition ensures that we can applyeorem 2.4vhich then yields a 3-layer feedfor-
ward network with sigmoidal units in the hidden layer approximatfipgarbitrarily well.
Moreover, the corresponding recurrent network approximates the least fixed pdint of
arbitrarily well also.

It was shown in[26] that this problem can be solved for the class of acyclic logic
programs with injective level mapping. In the following, we will lift some of these obser-
vations to a much more general level, $8@,33] In particular, we will show that acyclic
programs with injective level mappings represent only a small fraction of the programs for
which fp can be approximated satisfactorily. We will also abstract from the single-step
operator and generalize the approach toergeneral types of semantic operators.

Throughout the rest of the paper, we will make substantial use of elementary notions
and results from topology, and our standard background reference to this sulpfeht is
Indeed, the results presented subsequently are based on the observation that acyclicity with
respect to an injective level mapping is a sufficient, but not necessary, condition for conti-
nuity of the single-step operator with respect to a topology which is homeomorphic to the
Cantor topology on the real line, namely, tiigeryor atomic topologytudied in7,49]and
elsewhere in logic programming. We will therefore start by studying the basic topological
facts relevant to our task before turning to the applications we ultimately want to make of
these ideas and methods.

4.2. Continuity of semantic operators
From now on, we will impose the standing condition on the languat®t it contains

at least one constant symbol and at least one function symbol with arity greater than 0. If
this is not done, then groun#) may be a finite set of ground instances of clauses, and can

260 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

be treated essentially as a propositional program, for which appropriate methods were laid
out in Section 3

In logic programming semantics, it has turned out to be both useful and convenient
to use many-valued logics. Our investigations will therefore begin by studying suitable
topologies on spaces of many-uatl interpretations. We assume we have given a finite set
T ={11,...,1,} of truth values containing at least the two distinguished vatuesidz,,
which are interpreted as being the truth valiesfalse”, and “true”, respectively. We also
assume that we have truth tables for the usual connectiyes <, and—. Given a logic
programP, we denote the set of all (Herbraridjerpretationsor valuationsin this logic
by Ip ,; thuslp , is the setZ 7 of all functions! : Bp — 7. If n is clear from the context,
we will use the notatiorlp instead oflp , and we note that this usage is consistent with
the one given above for = 2. As usual, any interpretatiohcan be extended, using the
truth tables, to give a truth value if to any variable-free formula ig.

Definition 4.1. Given any logic progran®, the generalized atomic topolog® on Ip =
Ip , is defined to be the product topology @i¥* , whereT = {r1, ..., t,} is endowed with
the discrete topology.

We note that this topology can be defined analogously for the non-Herbrand case. For
n = 2, the generalized atomic topolo@y specializes to the query topology a1 (in the
Herbrand case) and to the atomic topolo@yof [49] (in the non-Herbrand case). The
following results follow immediately sinc€ is a product of the discrete topology on a
finite set, and hence is a topology of pointwise convergence.

Proposition 4.2. For A € Bp andy; a truth value, letG(A, ;) ={I € Ip, | I(A) =t1;}.
Then the following hold.

(a) Qisthe topology generated by the subbgse {G(A,f;) | A€ Bp, i €{1,...,n}}.

(b) Anet(Z,) in Ip convergesinQ to I in Ip if and only if for everyA € Bp there exists
someig such thatl (A) is constant and equal tb(A) for all A > Ag.

(c) Q is a second countable totally disconnected compact Hausdorff topology which is
dense in itself. Hencey is metrizable and homeomorphic to the Cantor topology on
the unit interval in the real line.

We note that theexcond countability of rests on the fact thap is countable, so that
this property does not in general carry over to the non-Herbrand case.

The study of topologies such & comes from our desire to be able to control the
iterative behaviour of semantic operators. Topologies which are closely related to order
structures, as common in denotational semafizgisare of limited applicability since non-
monotonic operators frequently arise naturatlyhe logic programming context. See also
[23] for a study of these issues.

We proceed next with studying a rather geal notion of semdit operator, akin to
Fitting’s approach irf19], which generalizes standard notions occurring in the literature.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272 261

Definition 4.3. An operator? on Ip is called aconsequence operatbéor P if for every
I € Ip the following condition holds: for every ground clauge< body in P, where
T(I)(A) =1, say, andl (body) =1¢;, say, we have that the truth table fipr< ¢; yields
the truth value,, that is, “true”.

It turns out that this notion of consequence operator relates nicely, tgelding the
following result which was reported ii23,32] If T is a consequence operator fBrand
if for any I € Ip we have that the sequence of iteraf&$(/) converges inQ to some
M € Ip, thenM is a model, in a natural sense, fBr Furthermore, continuity of yields
the desirable property thaf is a fixed point ofT".

Intuitively, consequence operators shouldgagate “truth” along the implication sym-
bols occurring in the program. From this point of view, we would like the outcome of the
truth value of such a propagation to be dependent only on the relevant clause bodies. The
next definition captures this intuition.

Definition 4.4. Let A € Bp and denote by3, the set of all body atoms of clauses with
headA that occur in groun@). A consequence operatdris called (P-)local if for every

A € Bp and any two interpretations K € Ip which agree on all atoms i84, we have
T((A)=T(K)(A).

It is our desire to study continuity i@ of local consequence operators. Sirgas a
product topology, it is reasonable to expect tiateness conditions will be involved, and
indeed conditions which ensure finiteness in the senBebhition 4.5below, due td49],
have made their appearance in this context.

Definition 4.5. Let C be a clause irP and letA € Bp be such that coincides with the
head ofC. The clauseC is said to be offinite type relative toA if C has only finitely
many different ground instances with headThe programP will be said to be offinite
type relative toA if each clause irP is of finite type relative to4, that is, if the set of all
clauses in ground) with headA is finite. Finally, P will be said to be ofinite typeif P
is of finite type relative toA for everyA € Bp.

A local variableis a variable which appears in a clause body but not in the correspond-
ing head. Local variables appe@aturally in practical logic programs, but their occurrence
is awkward from the point of view of denotational semantics, especially if they occur in
negated body literals since this leadstie so-called floundering problem, 488].

Itis easy to see that, in the context of Herbrand-interpretations, and if function symbols
are present, then the absence of local variables is equivalent to a program being of finite

type.

Proposition 4.6. Let P be a logic program of finite type and I&tbe a local consequence
operator for P. ThenT is continuous inQ.

Proof. Let ! € Ip be an interpretation and lét; = G(A, ;) be a subbasic neighbourhood
of T(1) in Q, and note tha, is the set of allk € Ip such thatK (A) =1;. We need to

262 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

find a neighbourhood;1 of I such thatT' (G1) C G». SinceP is of finite type, the set
By is finite. Hence, the sef; = ﬂBeBA G(B, I(B)) is a finite intersection of open sets
and is therefore open. Since eakhe G1 agrees with/ on 5,4, we obtain7T (K)(A) =
T(I)(A) =1 foreachK € G1 by locality of T. Hence,T (G1) C G2. O

Now, if P is not of finite type, but we can ensure by some other proper#y tifat the
possibly infinite intersectiomBeBA G(B, I(B)) is open, then the above proof will carry
over to programs which are not of finite type. Alternatively, we would like to be able to
disregard the infinite inteestion entirely under conditions which ensure that we have to
consider finite intersections only, as in the case of a program of finite type. The following
definition is, therefore, quite a natural one to make.

Definition 4.7. Let P be a logic program and Ief be a consequence operator Hn
We say thatT" is (P-)locally finite for A € Bp and I € Ip if there exists a finite subset
S=S(A,I) C B4 suchthat we hav& (J)(A) =T (I)(A) for all J € Ip which agree with
I onS. We say thaf is (P-)locally finiteif it is locally finite forall A € Bp and alll € Ip.

It is easy to see that a locally finite conseqce operator is local. Conversely, a local
consequence operator for a program of fitygge is locally finite. This follows from the
observation that, for a program of finite type, the d&ts for any A € Bp, are finite. But a
much stronger result holds.

Theorem 4.8. A local consequence operator is bily finite if and only if it is continuous
in Q.

Proof. Let 7 be a locally finite consequence operator, det Ip, let A € Bp, and let
G2=G(A, T(I)(A)) be a subbasic neighbourhood®fl) in Q. SinceT is locally finite,
there is a finite sef € B4 such thatT'(J)(A) =T (I)(A) forall J € (35 G(B, I(B)).
By finiteness ofS, the sef) ;.4 G(B, I(B)) is open, and this suffices for continuity bt

For the converse, assume tffais continuous i and letA € Bp and! € Ip be chosen
arbitrarily. ThenG2 = G(A, T (I)(A)) is a subbasic open set, so that, by continuity of
there exists a basic open €t = G(B1, I (B1)) N---NG(Bk, I (By)) with T(G1) € Ga.
In other words, we havé (J)(A) = T (1)(A) for eachJ € (z.s G(B, I (B)), whereS’ =
{B1, ..., Bt} is a finite set. Sincd’ is local, the value off (J)(A) depends only on the
valuesJ (A) of atomsA € B,. So, if we setS = S ' N By, thenT (J)(A) = T (I)(A) for all
J €\ pes (B, I(B)) which is to say thaf is locally finite for A and/. SinceA and!
were chosen arbitrarily, we obtain tHatis locally finite. O

The following corollary was communicated to us by Howard A. Blair in the two-valued
case.

Corollary 4.9. Let P be a program, lef” be a local consequence operator andiléie an
injectivew-level mapping forP with the following propertyfor eachA € Bp there exists
anny € Nsuchthat(B) <ny forall B e B4. ThenT is continuous inQ.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272 263

Proof. It follows easily from the given conditions th#ty is finite for all A € Bp, which
implies thatT is locally finite. O

We next take a short detour from our discussion of continuity to study the weaker notion
of measurability4] for consequence operators. For a collectldrof subsets of a seX,
we denote by (M) the smallest -algebra containing/, called theos -algebragenerated
by M. Recall that a functiorf : X — X is measurable with respectaq M) if and only if
f~Y(A) e o (M) for eachA € M. If B is the subbase of a topologyand s is countable,
theno (B) = o (7). It turns out that local consequence operators are always measurable
with respect to the -algebra generated by a generalized atomic topology.

Theorem 4.10. Local consequence operators are measurable with respeet(®) =
a(9Q).

Proof. Let T be alocal consequence operator. We need to show that, for each subbasic set
G(A,1;), we havel ~Y(G(A, 1)) € 6 (G).

Let A € Bp and lett € 7 both be chosen arbitrarily. Let be the set of all functions
from B4 to 7, and note thaf" is countable sincé, is countable and” is finite. Let F’
be the subset of' which contains all functiong with the following property: whenever
an interpretatiorr agrees withf on B4, thenT (I)(A) =1t. Then,ﬂBeBA G(B, f(B)) €
T-YG(A, 1)) foreachf e F'.

We obtain by locality ofT" that, whenever is an interpretation for whicff' (7)(A) =
t, there exists a functiorf; € F’ such thatf; and I agree onB,, and this yields
T-YG(A, 1) = Uf,eF’ ﬂBeBA G(B, I(B)). Since F/ and B4 are countable, the set on
the right hand side of this last equality is measurable, as required.

We turn now to the study of the continuity of a particular operator introduced by Fitting
[19] to logic programming semantics. To this end, we associate &*setith each logic
programP by the following construction. LeA € Bp. If A occurs as the head of some
unit clauseA <« in groundP), then replace it by the clausé < 1,, where by a slight
abuse of notation we interprgtto be an additional atom which we adjoin to the language
L and always evaluate tQ € 7, that is, it evaluates to “true”. IA does not occur in the
head of any clause in grou@®), then add the clausé < 7, wherer is interpreted as
an additional atom which again we adjoin foand always evaluate g € 7, that is, it
evaluates to “false”. The resulting (ground) program, which results from gc@yruy the
changes just given with respect to evetye Bp, will be denoted byP’. Now let P* be
the set of allpseudo clausedetermined byP’, that is, the set of all formulae of the form
A <« C1Vv CavVv---, where theC; are exactly the bodies of the clausesAhwith head
A. We call A theheadand By = C1 Vv C2 Vv --- the bodyof such a pseudo clause, and
we note that eacld € Bp occurs in the head of exactly one pseudo clausB*inBodies
of pseudo clauses are possibly infinite disjunctions, but this will not pose any particular
difficulty with respect to the logics which we are going to discuss. We note that a program
P is of finite type if and only if all bodies of all pseudo clausesih are finite.

264 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

Now, if we are given (suitable) truth tables for negation, conjunction and disjunction,
we are able to evaluate the truth values of bodies of pseudo clauses relative to given inter-
pretations.

Definition 4.11. Let P be a logic program. Define the mappifg : Ip , — Ip_, relative to
a given (suitable) logic with truth values byFp (1) = J, whereJ assigns to each € Bp
the truth valuel (B4).

We call operators which satisfefinition 4.11Fitting operators If we impose the mild
assumption that; < ¢; evaluates to “true” for every with respect to the underlying logic,
then we easily obtain that every Fitting operator is a local consequence operator. This will
always be the case in what follows in this paper.

The virtue ofDefinition 4.11 due to Fitting[19], lies in the fact that several operators
known from the theory of logic programming can be derived from it in a very concise
way, and we refer t¢16,19]for a discussion of these matters, see §B2). We will now
investigate some of these operators in the lighTloeéorem 4.8In the following, we will
denote the “true” truth value biyand the “false” truth value bf;.

If the chosen logic is classical two-valuemdjic, then the corresponding Fitting operator
is thesingle-stepor immediate consequence operaf@y (for a given progranP). Now,
if Tp(I)(A) =t, then there exists a clauge< body in ground P) such that’ (body) is
true, and we obtaiffp (J)(A) =t whenever/ (body) = t. The observation that bodies of
clauses are finite conjunctions leads us to conclude the following lemma.

Lemma 4.12. If Tp(I)(A) is true, thenTp is locally finite for A and . Furthermore,Tp
is continuous if and only if it is locally finite for alh and I with Tp (I)(A) =f.

A body \/ C; of a pseudo clause is false if and only if &l] are false. Sinc&p is a
Fitting operator, we obtaifip (1)(A) = f if and only if all C; are false. If we requir&@p to
be locally finite forA and 1, then there must be a finite s&iC B4 such that any/ € Ip
which agrees withl on S renders allC; false. These observations now easily yield the
following theorem fron49].

Theorem 4.13. Let P be a normal logic program. Thefip is continuous if and only if,
for eachl € Ip and for eachA € Bp with Tp(I)(A) =T, either there is no clause i®
with headA or there exists a finite set(1, A) = {A1, ..., Ax, B1, ..., By} C Ba with the
following properties

(i) A1,..., A aretrueinl andBzy,..., By are false inl.
(i) Given any claus& with headA, at least one—~A; or at least oneB; occurs in the
body ofC.

In the case of Kleene’s strong three-valued logic, with set of truth values{z, u, f}
and logical connectives asTable 1, the associated Fitting operator was introducegd ifj
and is denoted by p, for a given progran®. As in the case of classical two-valued logic,
we obtain the following lemma.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272 265

Table 1

Connectives for Kleene’s strong three-valued logic
14 q pPAg pVq N4
t t t t f
t u u t f
t ! ! t f
u t u t u
u u u u u
u f f u u
f t f t t
f u f u t
f f f f !

Lemma4.14.If @p(I)(A) =t, then®p is locally finite forA and 7. Furthermore ®p is
continuous if and only if it is locally finite for alk and 7 with @p (I)(A) € {u, f}.

Obtaining a theorem analogous Theorem 4.13s now straightforward, but tedious,
and we omit the details. Similar considerations apply to the opevaton Belnap’s four-
valued logic[19] and to the operators frof29].

We mention in passing the non-monotonic Gelfond—Lifschitz opefa&jrin classical
two-valued logic, whose fixed points yield the stable models of the program in question.
It turns out that this operator is not a consengeoperator in the sense discussed in this
paper, and attempts to characterize continuity of it will involve different methods (by means
of the results fronj53], for example).

4.3. Approximation by artificial neural networks

We have now finished our general preparasi and continue next with our main task,
namely, the study of the representability ofjic programs by means of connectionist net-
works. We recall that the Cantor s&ts a compact subset of the real line, and the topology
which C inherits as a subspace Bf coincides with the Cantor topology @h Also, the
Cantor spac€ is homeomorphic tdp_, when the latter is endowed with a generalized
atomic topologyQ. Hence, if a consequence operalbis continuous inQ, we can iden-
tify it with a mapping:(7) : x — «(T (:"1(x))) onC which is continuous in the subspace
topology ofC in R, as follows.

Theorem 4.15. Let P be a program, lef” be a consequence operator which is locally finite
and let: be a homeomorphism frotdp ,, Q) to C. ThenT (more precisely(T)) can be
uniformly approximated by input-output mappingsdayer feedforward networks.

Proof. Under the conditions stated in the theorem, the opefaisrcontinuous inQ. Us-
ing the homeomorphism the resulting function(7') is continuous on the Cantor s@f
which is a compact subset &. Applying Theorem 2.4.(T) can be uniformly approxi-
mated by input-output functions of 3-layer feedforward networks.

266 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

The restriction to programs with continuousnsequence operator is not entirely satis-
factory. There is another approximation theorem, dy8%d, which requires only measur-
ability of the functions in question.

Theorem 4.16. Suppose thap is a monotone increasing function frakhonto (0, 1). Let
f:R" — R be a Borel-measurable function and jetbe a probability Boremeasure on
R”. Then, given any > 0, there exists &-layer feedforward network with squashing
functiong whose input-output functiofi: R” — R satisfies

ou(f. Hy=inf{s > 0: pulx: [f(x) = f(0)] > 8} <6} <e.

In other words, the class of functions computed by 3-layer feedforward neural nets is
dense in the set of all Borel measurable functighR” — R relative to the metrie,,
defined inTheorem 4.16

By means ofTheorem 4.10we can now view a local consequence operdtaas a
measurable functionT) on C by identifying Ip , with C via a homeomorphism Since
C is measurable as a subset of the tiea, this operator can be extended a measurable
function onR and we obtain the following result.

Theorem 4.17. Given any programP with local consequence operat®r, the operatorT
(more precisely(7)) can be approximated in the mannerbfieoremd.16by input-output
mappings oB-layer feedforward networks.

This result is somewhat unsatisfactory since the approximation staidteiorem 4.16
is only almost everywherethat is, pointwise with the exception of a set of measure
zero. The Cantor set is, however, a set of measure zero. We can strengthen the result
a bit by giving an explicit construction for the two-valued case. We define a sequence
(T,,) of measurable functions oR as follows, wherd (x) = maxy € C: y < x} and
u(x) =min{y e C: y > x} for eachx € [0, 1]\ C:

«(Tp)(x) ifxeC,
«(Tp)(0) if x <O,
To(x) = (Tp)(0) _
W(Tp)(D) if x > 1,
0 otherwise
Ty = [(TP 00) + RSl if x € [37, 2371,
0 otherwise
L(Tp)(I(x))
u — . Q-2 ;
rao] RS -) e U Tk - 13
2k 3711,
0 otherwise
fori > 2.

6 For example, as a functiofi: R — R with T (x) = «(Tp (" 1(x))) if x € C andT (x) = 0 otherwise.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272 267

We define the functiof : R — R by 7'(x) = sup 7; (x) and obtair" (x) = «(Tp (x)) for
all x eCandT (1)) =u«(Tp()) forall I € Ip. Since all the functiong;, fori > 1, are
piecewise linear and therefore measurable, the fundtigsmalso measurable. Intuitively,
T is obtained by a kind of linear interpolation.

If i: Bp — N is a bijective mapping, then we can obtain a homeomorphigm — C
from i as follows: we identifyl € Ip with x € C wherex written in ternary form has 2
as itsi (A)th digit (after the decimal point) it € I, and O as it (A)th digitif A ¢ . If
I € Ip isfinite or cofinité, then the sequence of digits@f) in ternary form is eventually
constant O (iff finite) or eventually constant 2 (if cofinite). Thus, each such interpretation
is the endpoint of a linear piece of one of the functiGhsand therefore of .

Corollary 4.18. Given any normal logic progran®, its single-step operatofp (more
precisely:(Tp)) can be approximated by input-output mapping8aéyer feedforward
networks in the following sensir everys > 0 and for everyl € Ip which is either finite
or cofinite, there exist &-layer feedforward network with input-output functighand
x €[0, 1] with |x —¢(I)]| < e such thali«(Tp (1)) — f(x)| < e.

Proof. We use a homeomorphisnmwhich is obtained from a bijective mappingBp —
N as in the paragraph preceding the dlamy. We can assume that the measurérom
Theorem 4.16has the property that{[x, x + ¢]} < ¢ for eachx e R. Lete > 0 and/ €
Ip be finite or cofinite. Then by construction @f, there exists an intervd@d(7), (1) +
8] with § < 5 (or analogously«(7) — 8, ¢(1)]) such thatT is linear on[«(1), (1) +]
and|T («(1)) — T(x)| < 5 forall x € [¢(1), (1) + 8]. By Theorem 4.1@&nd the previous
paragraph, there exists a 3-layer feedforward network with input-output fung¢tguch
thato, (T, f) < é, thatis,u{x: |T(x) — f(x)| >} < 8. By our condition oru, there is
x € [e(D), e(1) + 8] with |T'(x) — f(x)| <8 < 5. We can conclude that

|(Tp(D) — fF@)| =T (D) — fFO)| < |T (D) = T@)| +|T(x) = f(x)| <e.
as required. O

It would be of interest to strengthen this approximation for sets other than the finite
and cofinite elements dfp, although it is interesting to note that the finite interpretations
correspond to compact elements in the sense of domain theofg]see

We want to return now to the case discussed earliéfhiaorem 4.15In Section 3
and also in[26], the following recurrent neural network architecture was considered: we
assume that the number of output and inputuis equal and that, after each propagation
through the network, the output values are fed back without changes into input values.
For the case which we consider, it will again be sufficient to suppose that the input layer
consists of one unit only, so that the architecture can be depicted-&p. B

We will show in the following that iterates of locally finite local consequence operators
can be approximated arbitrarily closely by iterates of suitably chosen networks. This is
in fact a consequence of the uniform approximation obtained ffbeorem 2.4and the
compactness of the unit interval.

7 I € Ipis cofinite if Bp \ I is finite.

268 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

Let P be a logic program, leT" be a locally finite local consequence operator for
and let.: Ip — C be a homeomorphism. Lét be a continuous extension gff’) onto the
unit interval [0, 1] in the reals, letd be the natural metric o, and lete > 0. By The-
orem 4.15there exists a 3-layer feedforward network with input-output mappirsgich
that maxcpo,17d(f (x), F(x)) < e. Let us further assume thét is Lipschitz-continuous,
that is, there exists > 0 such that for alk, y € [0, 1] we haved (F (x), F(y)) < Ad(x, y).
Forx, y € [0, 1] we therefore obtain

d(f(x), F(y)) <d(f(x), F(x)) +d(F(x), F(y)) <&+ Ad(x,y). (5)
Now letx € [0, 1] be arbitrarily chosen. Big. (5)we obtain
d(f2(x), F?(x)) < e+ 2d(f(x), F(x)) < &+ 2e. (6)

Inductively, we can prove that for alle N we have

1—An
1—x°

n—1
d(f”(x),F"(x))<e+ke+---+k”_leze<ZAi)=e (7
i=0
Thus, we obtain the following bound on the error produced by the recurrent network after
n iterations.

Theorem 4.19. With the notation and hypotheses above, for arylp and anyn € N we
have

7 0) — ()| < e

Proof. Note that«(7"(I)) = F"(«(I)), and the assertion follows frofg. (7)sinced is
the natural metric olR. O

We derive a few corollaries from this result.

Corollary 4.20. If F is a contraction or{0, 1], so thati < 1, then(F*(.(1))) converges
for everyI to the unique fixed point of F and there exists: € N such that for alln > m
we have

")) —x| < .
|7 (D) — x| <ex—
Proof. The convergence follows from the Banach contraction mapping theorem. The in-
equality follows immediately fronTheorem 4.1sing the well-known expression for
limits of geometric series. O

If F is a contraction o0, 1], thenT is a contraction on the complete subspéce
and also has a fixed poit with (M) = x. However, it seems difficult to guarantee the
hypothesis ofCorollary 4.20 although in[26] a similar result for acyclic programs with
injective level mappings in classical logic washieved. The following result may be more
promising.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272 269

Corollary 4.21. If, for somel € Ip, T"(I) converges inQ to a fixed pointM of T, and
(T) is Lipschitz-continuous, then, for every 0, there exists a network with input-output
function f and some:r € N such that /" (¢(1)) — «(M)| < 8.

Proof. The hypothesis implies that”(:(7)) converges ta(M) in the natural metric on

R. Givené > 0, there exista € N such tha F”"" (¢ (1)) — t«(M)| < % for all m > n. Since

F is fixed, we know the value of. Now, by the approximation results above, we choose a
network with input-output functiorf such thats% < % Then usingrheorem 4.1%nd

the triangle inequality we obtain

|/ (uD) =D | < | " (eD) = F"(«D) |+ | F* («(D) — e(M)]

<2-=<34. O

NI &

We close by describing a class of programs for which the additional hypothesis from
Corollary 4.21is satisfied. The result is well-known for the case of classical two-valued
logic and the immediate consequence operator. S@, le¢ acyclic with level mapping
and letT be alocal consequence operator faWe define a mapping: Ip x Ip — R by
d(I,J)=2"", wheren is least such that andJ differ on some atomd with [(A) =n. It
is easily verified that/ is a complete metric ofip, seg[18].

Proposition 4.22. With the stated hypothesés,is a contraction with respect t@.

Proof. Supposei(l,J) =27". ThenI andJ coincide on all atoms of level less than
n. Now let A € Bp with /[(A) = n. Then by acyclicity ofP we have that all atoms in
B4 are of level less than, and by locality ofT we have thatr' (I)(A) = T(J)(A). So
d(T(I), T(J) <27 0

We obtain finally the following theorem.

Theorem 4.23. Let P be an acyclic program and lef be a local consequence operator
for P. Then, for anyl € Ip, we have that” (1) converges irQ to the unique fixed point
M of T.

Proof. By Proposition 4.22and the fact that/ is a complete metric, we can apply the
Banach contraction mapping theorem to obtain the convergerit&@j in d to a unique
fixed pointM of T. By definition ofd, the convergence of the sequence of interpretations
T"(I) to M must be pointwise, hence is also convergenacg.in O

Theorem 4.23 remarkable since the existence of a fixed point of the semantic operator
can be guaranteed without any particular wiexlge about the underlying multi-valued
logic.

270 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

5. Conclusionsand further work

In considering the integration of Logic and Connectionist Systems, we have taken the
natural point of contact between them praidby the immediate consequence operator
Tp, associated with a normal logic progrdmand the issue of its computation by means of
neural networks. In so far as one may identify two logic programs with the same immediate
consequence operator (subsumption equinadg, this provides a sort of semantics for a
neural network which computéd%, namely, the supported model semanticgof

A number of questions arise out of these considerations, and we close by briefly men-
tioning a few of them, as follows. First, there is the question of giving explicit constructions
of networks for approximatin@p in case thafl'p is continuous, and this point is consid-
ered in[6]. A question which is also related to the results givef6inis that of providing
good bounds on Lipschitz constants ffyr, and this issue appears to be central to actually
giving constructions of approximating netwgrkAnother natural question concerns carry-
ing over the programme given here for the supported model semantics of a normal logic
program to the stable model seman{22] and the well-founded semantifs2], and one
possible means of doing this is provided by the resulf§8f. From the connectionist point
of view, the main open question is how to build a connectionist network given a first-order
logic program. Ideally, assuming that this is done, we would then like to apply known con-
nectionist learning techniques, in particuterckpropagation, to such networks and, after
training, extract a refined set of first-order clauses from the network. Finally, there is the
purely mathematical question of what mathematical notions of approximation are useful
and appropriate. Here we have discussed two well-known ones: uniform approximation
on compacta, and a notion of approximationsgly related to convergence in measure.
However, others may prove to be significant, and this is a problem still to be investigated.

Acknowledgements

The authors wish to thank two anonymous referees for comments which helped to im-
prove the presentation of this paper. The last named author wishes to thank the following
people and institutions for their support of Warelated to the results contained in this
paper: (i) the members of Professor Steffen Holldobler's Knowledge Representation and
Reasoning Group at TU Dresden, (ii) Deutscher Akademischer Austausch Dienst (DAAD),
and (iii) the Boole Centre for Research in Informatics at University College Cork.

References

[1] R. Andrews, J. Diederich, A.B. Tickle, A survey andtitjue of techniques for extracting rules from trained
artificial neural networks, Knowledge-Based Systems 8 (6) (1995) 373-389.

[2] S. Abramsky, A. Jung, Domain theory, in: S. Abraky, D. Gabbay, T.S.E. Maibaum (Eds.), Handbook of
Logic in Computer Science, vol. 3, Clarendon, Oxford, 1994.

[3] K.R. Apt, D. Pedreschi, Reasoning about termimatad pure Prolog programs, Inform. and Comput. 106
(1993) 109-157.

[4] R.G. Bartle, The Elements of Integration, Wiley, New York, 1966.

[5] M. Bezem, Characterizing termination of logic programs with level mappings, in: E.L. Lusk, R.A. Overbeek
(Eds.), Proceedings of the North American Conference on Logic Programming, MIT Press, Cambridge, MA,
1989, pp. 69-80.

P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272 271

[6] S. Bader, P. Hitzler, Logic programs, iterated funot&ystems, and recurrent radial basis function networks,
in this issue.

[7] A. Batarekh, V.S. Subrahmanian, Topological mioset deformations in logic programming, Fund. In-
form. 12 (1989) 357-400.

[8] L. Cavedon, Acyclic programs and the completeneSSLDNF-resolution, Theoret. Comput. Sci. 86 (1991)
81-92.

[9] K.L. Clark, Negation as failure, in: H. Gallaire, J. Minker (Eds.), Logic and Data Bases, Plenum Press, New
York, 1978, pp. 293-322.

[10] W.F. Dowling, J.H. Gallier, Linear-time algorithnfier testing the satisfiability of propositional Horn formu-
lae, J. Logic Programming 1 (3) (1984) 267-284.

[11] A.S. d’Avila Garcez, K. Broda, D.M. Gabbay, Symbolic knowledge extraction from trained neural networks:
A sound approach, Artificial Intelligence 125 (2001) 155-207.

[12] A.S. d’Avila Garcez, K.B. Broda, D.M. Gabbay, Neural-Symbolic Learning Systems—Foundations and
Applications, in: Perspectives in Neal Computing, Springer, Berlin, 2002.

[13] A.S. d’Avila Garcez, L.C. Lamb, D.M. Gabbay, A coexctionist inductive learning system for modal logic
programming, in: Proceedings of the IEEE International Conference on Neural Information Processing
ICONIP’02, Singapore, 2002.

[14] A.S. d’Avila Garcez, G. Zaverucha, The connectitrinductive learning and logic programming system,
Appl. Intelligence (Special Issue on Neural Wetks and Structured Knowledge) 11 (1) (1999) 59-77.

[15] A.S. d’Avila Garcez, G. Zaverucha, L.A.V. de Carval Logical inference and inductive learning in artificial
neural networks, in: C. Hermann, F. Reine, A. Stralien (Eds.), Knowledge Representation in Neural
Networks, Logos Verlag, Berlin, 1997, pp. 33-46.

[16] M. Denecker, V. Wiktor Marek, M. Truszczynski, Agptimating operators, stabbperators, well-founded
fixpoints and applications in nongnotonic reasoning, in: J. Minker (Ed.), Logic-based Atrtificial Intelli-
gence, Kluwer Academic, Boston, 2000, pp. 127-144.

[17] M. Fitting, A Kripke—Kleene semantics for genaé logic programs, J. Logic Programming 2 (1985) 295—
312.

[18] M. Fitting, Metric methods: Three examplestsatheorem, J. Logic Programming 21 (3) (1994) 113-127.

[19] M. Fitting, Fixpoint semantics for logic programing—A survey, Theoret. Comput. Sci. 278 (1-2) (2002)
25-51.

[20] J.A. Fodor, Z.W. Pylyshyn, Connectionism and cogeitarchitecture: A critical analysis, in: S. Pinker,

J. Mehler (Eds.), Connections and Syofs, MIT Press, Cambridge, MA, 1988, pp. 3-71.

[21] K.-I. Funahashi, On the approximate realizatidnrcontinuous mappings by neural networks, Neural Net-
works 2 (1989) 183-192.

[22] M. Gelfond, V. Lifschitz, The stable model sentias for logic programming, in: R.A. Kowalski, K.A.
Bowen (Eds.), Logic Programming. Proceedings of the 5th International Conference and Symposium on
Logic Programming, MIT Pr&s, Cambridge, MA, 1988, pp. 1070-1080.

[23] P. Hitzler, Generalized metscand topology in logic programmingmsantics, PhD Thesis, Department of
Mathematics, National University dfeland, University College Cork, 2001.

[24] S. Holldobler, Y. Kalinke, Towards a massivelyraeel computational modelof logic programming, in:
Proceedings ECAI94 Workshop on Combining Symbolic and Connectionist Processing, ECCAI, 1994,
pp. 68—77.

[25] J. Hertz, A. Krogh, R.G. Palmer, Introduction to theebiny of Neural Computation, Addison-Wesley, Read-
ing, MA, 1991.

[26] S. Holldobler, Y. Kalinke, H.-P. Storr, Approxirting the semantics of logic programs by recurrent neural
networks, Appl. Intelligence 11 (1999) 45-58.

[27] S. Holldobler, Y. Kalinke, J. Wunderlich, A recursiveural network for reflexive reasoning, in: S. Wermter,

R. Sun (Eds.), Hybrid Neural Symbolic Integmati in: Lecture Notes in Atrtificial Intelligence, vol. 1778,
Springer, Berlin, 2000, pp. 46—62.

[28] S. Holldobler, Automated infereing and connectionist models, Teical Report AIDA-93-06, Intellektik,
Informatik, TH Darmstadt1993 (Postdoctoral Thesis).

[29] P. Hitzler, A.K. Seda, Characteations of classes of programs Hy¢e-valued operators, in: M. Gelfond,

N. Leone, G. Pfeifer (Eds.), Logic Programmiagd Non-Monotonic Reasoning, Proceedings of the 5th

272 P. Hitzler et al. / Journal of Applied Logic 2 (2004) 245-272

International Conference on Logic Programmargl Non-Monotonic Reasoning, LPNMR’99, El Paso, TX,
in: Lecture Notes in Artificial Intelligence, vol. 1730, Springer, Berlin, 1999, pp. 357-371.

[30] P. Hitzler, A.K. Seda, A note oretationships between logic prograrand neural networks, in: P. Gibson,
D. Sinclair (Eds.), Proceedings of the Fourth IrMlorkshop on Formal Methods, IWFM’'00, Electronic
Workshops in Computing (eWiC), British Computer Society, 2000.

[31] P. Hitzler, A.K. Seda, A “converse” of the Banach contraction mapping theorem, J. Electrical En-
grg. 52 (10/s) (2001) 3—-6. Proceedings of the 3rd SlaralStudent Conference in Applied Mathematics,
SCAM2001, Bratislava, Slovak Academy of Sciences.

[32] P. Hitzler, A.K. Seda, Semantic operators and fixed-point theory in logic programming, in: Proceedings of
the Joint IIIS & IEEE Meeting of the 5th World Multiconfence on Systemics, Cybernetics and Informatics,
SCI2001 and the 7th International Conference onrimfation Systems Analysis and Synthesis, ISAS2001,
Orlando, FL, International Institute dfiformatics and Systemics: 1IIS, 2001.

[33] P. Hitzler, A.K. Seda, Continuity of semantic opena in logic programming and their approximation by
artificial neural networks, in: A. Gunter, R. Krause, B. Neumann (Eds.), Proceedings of the 26th Ger-
man Conference on Atrtificial Intelligence, KI2003; inecture Notes in Atrtificial Intelligence, vol. 2821,
Springer, Berlin, 2003, pp. 105-119.

[34] P. Hitzler, A.K. Seda, Generalized metrics andqueily determined logic programs, Theoret. Comput.
Sci. 305 (1-3) (2003) 187-219.

[35] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators,
Neural Networks 2 (1989) 359-366.

[36] N.D. Jones, W.T. Laaser, Complete problems faedainistic sequential time, Theoret. Comput. Sci. 3
(1977) 105-117.

[37] R.M. Karp, V. Ramachandran, Parallel algorithms for shared-memory machines, in: J. van Leeuwen (Ed.),
Handbook of Theoretical Computer ScienEésevier Science, New York, 1990, pp. 869-941.

[38] J.W. Lloyd, Foundations of LogicrBgramming, Springer, Berlin, 1988.

[39] J. McCarthy, Epistomological elfienges for connectionism, Behiaral and Brain Sciences 11 (1988) 44.
(Commentary o1f50]).

[40] Y. McIntyre, Modellgenerierung mit konnektionistisen Systemen, PhD Thesis, TU Dresden, Fakultat In-
formatik, 2000.

[41] M.L. Minsky, S. Papert, Percépns, MIT Press, Cambridge, MA, 1972.

[42] A. Newell, Physical symbol systems, Cognitive Sci. 4 (1980) 135-183.

[43] T.A. Plate, Holographic reduced representations Proceedings of the International Joint Conference on
Artificial Intelligence, 1991, pp. 30-35.

[44] J.B. Pollack, Recursive auto-associative memoryigieg compositional distributed representations, in:
Proceedings of the 10th Annual Conference of the Cognitive Science Society, 1988, pp. 33-39.

[45] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error propagation, in:
Parallel Distributed Processj, MIT Press, Cambridge, MA, 1986.

[46] F. Rosenblatt, Principles of Neurodynamics: Peteeys and the Theory of Brain Machines, Spartan Books,
Washington, 1962.

[47] L. Shastri, V. Ajjanagadde, From associations tetsgnatic reasoning: A connectionist representation of
rules, variables and dynamic bindings using tempssaichrony, Behavioral and Brain Sciences 16 (3)
(1993) 417-494.

[48] M.G. Scutella, A note on Dowling and Gallier’s tajwwn algorithm for propositional Horn satisfiability,

J. Logic Programming 8 (1990) 265-273.

[49] A.K. Seda, Topology and the semantics of logic programs, Fund. Inform. 24 (4) (1995) 359-386.

[50] P. Smolensky, On the proper treatment of cagtionism, Behavioral and Brain Sciences 11 (1988) 1-74.

[51] G.G. Towell, J.W. Shavlik, Knowledge-based acidi neural networks, Aificial Intelligence 70 (1-2)
(1994) 119-165.

[52] A. van Gelder, K.A. Ross, J.S. Schlipf, Theelvfounded semantics for general logic programs,
J. ACM 38 (3) (1991) 620-650.

[53] M. Wendt, Unfolding the well-founded semantick, Electrical Engineering, Slovak Academy of Sci-
ences 53 (12/s) (2002) 56-59, Proceedings of the 4th Swva&kudent Conference in Applied Mathematics,
Bratislava, April 2002.

[54] S. Willard, General Topology, Addison-Wesley, Reading, MA, 1970.

Available online at www.sciencedirect.com

SCIENCE@DIRECT" JOURNAL OF
APPLIED LOGIC

|

B4

e ¥
ELSEVIE Journal of Applied Logic 2 (2004) 273-300

www.elsevier.com/locate/jal

Logic programs, iterated function systems,
and recurrent radial basis function networks

Sebastian Bader, Pascal Hitzler

Artificial Intelligence Institute, Department of Computer Science, Dresden University of Technology, Germany
Available online 23 April 2004

Abstract

Graphs of the single-step operator for first-order logic programs—displayed in the real plane—
exhibit self-similar structures known from topological dynamics, i.e., they appearfradials, or
more precisely, attractors of iterated function systems. We show that this observation can be made
mathematically precise. In particular, we give conditions which ensure that those graphs coincide
with attractors of suitably chosen iterated function systems, and conditions which allow the approxi-
mation of such graphs by iterated function systems or by fractal interpolation. Since iterated function
systems can easily be encoded using recurrent radial basis function networks, we eventually obtain
connectionist systems which approximate logic programs in the presence of function symbols.
0 2004 Elsevier B.V. All rights reserved.

Keywords: Neural-symbolic integration; Logic prograntetated function system; Radial basis function
network; Recurrent neural network

1. Introduction

Intelligent systems based on logic programming on the one hand, and on artificial neural
networks (sometimes called connectionist systems) on the other, differ substantially. Logic
programs are highly recursive and well understood from the perspective of knowledge
representation: The underlying language is that of first-order logic, which is symbolic in
nature and makes it easy to encode problem specifications directly as programs. The suc-
cess of artificial neural networks lies in the fact that they can be trained using raw data,
and in some problem domains the generaimafrom the raw data made during the learn-

* Corresponding author.
E-mail addresses: s.bader@gmx.net (S. Bader), phitzler@inf.tu-dresden.de (P. Hitzler).
URLs: http://www.wv.inf.tu-dresden.de/~borsts. Bader) http://www.wv.inf.tu-dresden.de/~pascal
(P. Hitzler).

1570-8683/$ — see front mattét 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jal.2004.03.003

http://www.elsevier.com/locate/jal
http://www.wv.inf.tu-dresden.de/~borstel
http://www.wv.inf.tu-dresden.de/~pascal

274 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

ing process turns out to be highly adequate for the problem at hand, even if the training
data contains some noise. Successful architectures, however, often do not use recursive (or
recurrent) structures. Furthermore, the knowledge encoded by a trained neural network is
only very implicitly represented, and no sasisfory methods for exdcting this knowledge

in symbolic form are currently known.

It would be very desirable to combine the robust neural networking machinery with
symbolic knowledge representation and reasoning paradigms like logic programming in
such a way that the strengths of either paradigm will be retained. Current state-of-the-art
research, however, fails by far to achieve this ultimate goal. As one of the main obstacles to
be overcome we perceive the question how symbolic knowledge can be encoded by artifi-
cial neural networks: Satisfactory answers to this will naturally lead the way to knowledge
extraction algorithms and to hybrid neural-symbolic systems.

Earlier attempts to integrate logic and connectionist systems have mainly been restricted
to propositional logic, or to first-order logicithout function symbols. They go back to the
pioneering work by McCulloch and Pitf84], and have led to a number of systems devel-
oped in the 80s and 90s, including Towell and Shavlik's KBANM], Shastri's SHRUTI
[43], the work by Pinka$36], Holldobler[26], and d’Avila Garcez et a[12,14] to men-
tion a few, and we refer tfL0,13,17]for comprehensive literature overviews.

Without the restriction to the finite case ¢inding propositionaldgic and first-order
logic without function symbols), the task becomes much harder due to the fact that the
underlying language is infinite but shall be eded using networks with a finite number of
nodes. The sole approach known to us for overcoming this problem (apart from work on
recursive auto-associative memory, RAAM, initiated by PollfgK, which concerns the
learning of recursive terms over a first-order language) is based on a proposal by Hélldobler
et al.[29], spelled out first for the propositional case[#8], and reported also ifR0]. It
is based on the idea that logic programs can be represented—at least up to subsumption
equivalencg32]—by their associated single-step or immediate consequence operators.
Such an operator can then be mapped to a function on the real numbers, which can under
certain conditions in turn be encoded or approximated, e.g., by feedforward networks with
sigmoidal activation functions using an approximation theorem due to Fundhékhi

While contemplating this approach, we plotted graphs of resulting real-valued functions
and found that irall cases these plots showed self-similar structures as known from topo-
logical dynamics. To be more precise, they looked fileetalsin the sense of attractors of
iterated function systen}8], seeFigs. 1 and Tor examples. While the general observation
that logic programming is linked to topological dynamics and chaos theory is not new (see
the work by Blair et al[8,9]), the strikingly self-similar representation in the Euclidean
plane offers a setting for developing real-valued iterated function systems for representing
logic programs, with the concrete goal of in turn converting these into recurrent neural
networks, thus obtaining connectionist representations of logic programs.

In this paper we substantiate formally the fact that these plots can indeed be obtained
as attractors of iterated function systems, and give concrete representations of such sys-
tems. More generally, we give necessary and sufficient conditions under which graphs of
single-step operators in the Euclidean plane arise as attractors of certain iterated function
systems. We will give algorithms for constructing iterated function systems and fractal in-
terpolation systems for approximating graphs of single-step operators. We will finally use

S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300 275

n(0).
n(s(X)) - n(X).

Fig. 1. The graph of a real-uagd single-step operator.

our results for constructing recurrent radial basis function networks which approximate
graphs of single-step operators.

The paper is structured as follows. Section 2 we will introduce basic notions con-
cerning logic programs and iterated function systems which we will need throughout the
paper.

In Section 3we show that graphs of logic programs can be obtained as attractors of it-
erated function systems. In particular;iheorem 3.2ve will give necessary and sufficient
conditions under which this is possible. Building on this Tineorem 3.4ve will show
that these conditions are satisfied whenever the embedded single-step operator is Lipschitz
continuous with respect to the natural metric on the real numbers. The section closes with
a concrete construction of an iterated function system and two detailed examples.

In Section 4we shift our attention to the task of approximating logic programs—via
their single-step operators—by means @chal interpolation. More precisely, ifheo-
rem 4.6we show that programs with Lipschitz continuous single-step operator can be
approximated uniformly by this method.

In Section 5we will use our insights in order to show how logic programs can be repre-
sented or approximated by recurrent radial basis function networks.

The paper closes with a discussion of related and further work.

Most of the new results in this paper are discussed in more def&i.in

2. Preliminaries

We will now shortly review and introduce terminology and notation from logic pro-
gramming and iterated function systems, which we will use throughout. It will be helpful
if the reader is familiar with these areas, but we will make an attempt to keep the paper self-
contained in this respect, with terminology essentially follow[Bj] respectively{3]. In
some places we will have to assume basic kiealgk of set-theoretic topology, our general
reference bein§45]. For Section 5 some familiarity with radial basis function networks
(e.g.,[7, Chapter 5] will be helpful.

2.1. Logic programs

A (normal) logic programis a finite set of universally quantifietdiauses of the form

V(A< LiA---ALy),

276 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

P: Bp: |- :
n(0). n(0),n(s(0)), n(s(s(0))), . B
n(s(X) :- n(X). n(s(s(s(0)))), - .. n(s*(0)| ==z +1

Fig. 2. A logic program, the correspomdi Herbrand base, and a level mapping.

wheren € N may differ for each claused is an atom in a first-order languagk and
L1,..., L, are literals, that is, atoms or negated atoms{inAs is customary in logic
programming, we will write such a clause in the form

A< Lq,...,L,,

in which the universal quantifier is understood, or even as
A:—L1,...,L,

following Prolog notation. Thed is called thenead of the clause, each; is called abody

literal of the clause and their conjunctidn, ..., L, is called thebody of the clause. We
allow n = 0, by an abuse of notation, which indicates that the body is empty; in this case
the clause is called anit clause or afact. TheHerbrand base underlying a given program

‘P is defined as the set of all ground instances of atoms 6\&td will be denoted by p.

Fig. 2shows an example of a logic program and the corresponding Herbrand base. Subsets
of the Herbrand base are callédefbrand) interpretations of 7, and we can think of such

a set as containing those atoms which are “true” under the interpretation. The ceall
interpretations of a prograff can be identified with the power set 8f.

In this paper, we will not make use of any procedural aspects concerning logic programs.
Indeed, logic programs are being used for many different purposes in computer science,
e.g., as the language underlying Prol&d], as languages for non-monotonic reason-
ing [30,33], for machine learningB35], etc., and the respective computational mechanisms
differ substantially. Common to all these paradigms, however, is that logic programs are ac-
cepted as a convenient tool for knowledge representation in logical form. The knowledge
represented by a logic prograf can essentially be captured by thmemediate conse-
guence or single-step operator 7'p, which is defined as a mapping @ where for any
I € Ip we have that’p (/) is the set of alld € Bp for which there exists a ground instance
A<« A1,...,Ap,—B1,...,—B, of a clause inP such that for alk we haveA; € I and
for all j we haveB; ¢ I.

A level mapping for a prograniP is a mapping - |: Bp — N, and with a slight abuse
of notation we sef—A| = |A| for eachA € Bp. Fig. 2shows a simple logic program, the
corresponding Herbrand ba®g , and a possible level mapping. Level mappings can be
used for describing dependencies between atoms in a program, and they have been stud-
ied in logic programming for many different purposes, e.g., for termination analysis under
Prolog[1,6], or for giving uniform descriptions of different non-monotonic semarjti€s
24,25] For our investigations, we can restrict our attentionrijective level mappings,
which can simply be understood as enumerations of the Herbrand base. The latter perspec-
tive was employed, e.g., if8]. It makes no essential difference, and we choose to stick
with the more general notion of level mapping, and will explicitly require injectivity when
needed.

S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300 277

Fitting [15] has used level mappings in order to define metrics on spaces of interpreta-
tions, an approach which was further extendefd 8123] Recall that anetric over a setX
is a mapping: X x X — R satisfying (i)d(x,y) =0 iff x =y, (ii) d(x,y) =d(y, x),
and (iii) d(x,z) < d(x,y) +d(y,z) forall x,y,z € X. The pair(X, d) is then called
a metric space. A metric is called arultrametric if it satisfies the stronger requirement
(ii") d(x,z) <maxXd(x, y),d(y,z)} forall x, y, z € X. On the real numbers, the function
d(x,y)=|x — y| is ametric and is called thaatural metric onR. A sequencéx,),cy in
some metric spaceX, d) convergesto (or haslimit) x, written limx,, = x, if forall ¢ > 0
there is someg € N such that/(x,, x) < ¢ for all n > ng. A Cauchy sequence in a metric
space(X, d) is a sequencéx,) such that for each > 0 there existag € N such that for
all m,n > no we haved (x,,, x,,) < . Converging sequences are always Cauchy sequences.
A metric space in which every Cauchy sequence converges is caheaalete.

The following definition is a slight generalization of one giverjis].

Definition 2.1. Let P be a logic program, £ B € N, and let] - | be a level mapping faP.
For 1, J € Ip define

0 if I =1J,
dg(I,J)= 14 B~" if I andJ differ on some atomi with |A| = n,
but agree on all atoms with a level smaller than

Itis easily verified that/p, dp) is a complete metric spacedeed an ultrametric space.
If | -] is injective—or more generally, if for eache N the set of all atoms with level
is finite—then the metridp, for any B, induces a topology ofi» which is known as the
query [5] or atomic [40] topology Q. If furthermore the language underlyifigcontains
at least one function symbol of arity at least 1, thiép, Q) is homeomorphic, i.e., topo-
logically equivalent, to the Cantor space in the unit interval on the real4id which we
will discuss further irExample 2.5

A logic programP is acyclic [6,11] if there exists a level mapping | for P such that
for each ground instancé < L1, ..., L, of a clause irP we have thatA| > |L;| for all
i =1,...,n.In this case the operatdip is a contraction or{/p, dg) with contractivity
factorB—1, i.e., it satisfiesiz(Tp (1), Tp(J)) < B~Ydg(1, J) forall I, J € Ip [15,23]

2.2. Iterated function systems

Iterated function systems originate from the study of chaos theory and self-similar
structures and they have found applications, e.g., in image compression. An excellent in-
troduction to the field i§3], and we follow its notation, as already mentioned. We will later
make use of the fact that real-valued iterated function systems can easily be encoded using
recurrent neural networks, a point to which we will returiSiection 5

Recall that a functiorf : X — X on a metric spaceX, d) is continuousif for all ¢ > 0
there exist$ > 0 such that/(f (x), f(y)) < & wheneved (x, y) < §. A Lipschitz continu-
ous function is a mappingf : X — X for which there exists a real numbee= 0, called a
Lipschitz constant for f, such that/(f(x), f(y)) < Ad(x, y) forall x, y € X. Contraction
mappings are exactly those Lipschitz continuous functions which have a Lipschitz con-
stant (calledcontractivity factor) less than 1. Every contraction is Lipschitz continuous,

278 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

and every Lipschitz continuous function is continuous. The importance of contractions lies
in the fact that every contractiofi on a complete metric spac&, d) has a unique fixed
pointx, which can be obtained as lifff (y), for all y € X, wheref"(y) denotes thath it-
eration of the functiory on the pointy. This fact is well known as thBanach contraction
mapping theorem.

Definition 2.2. A (hyperbolic)iterated function system (IFS) ((X, d), £2) is a pair consist-
ing of a complete metric spade&, d) and a finite set? = {w1, ..., w,} of contraction
mappingsy; : X — X.

The idea behind iterated function systems is to lift theraéb be a contraction mapping
on a space of certain subsetsXf More precisely, we consideompact subsets ofX,
which can be characterized as follows:C X is compact if for every (possibly infinite)
collection of setsB;, (x;) = {y | d(x;, y) < &} with A C |, B, (x;) there exists a finite
selectionfi, ..., i,} €I with A € | J{_; B, (xi,).

Given(X, d), we defineH(X) to be the set of all non-empty compact subset’ pand
define theHausdorff distance on H(X) as follows.

Definition 2.3. Let (X, d) be a complete metric space,c X and A, B € H(X). Then
d(x, B) =min{d(x, y) | y € B} is called the distance between the poirend the seiB.
The distance fromd to B is then defined ag8(A, B) = maxXd(a, B) | a € A}. Finally, the
Hausdorff distance h; betweemd andB is defined a& (A, B) = maxd(A, B),d(B, A)}.

The resultingHausdorff space (H(X), hq) is a complete metric space. A continuous
mapping f : X — X can be extended to a function @#(X) in the usual way, i.e., by
setting f (A) = {f(a) | a € A} (recalling that any continuous image of a compact set is
compact). Given an IFS consisting of a metric spéked) and a set2 of contractions,
we identify £2 with a function on(X) defined bys2(A) = |J; wi (A). The functions2
thus defined is a contractive mapping &itX), and by the Banach contraction mapping
theorem we can conclude th&t has a unique fixed poim € H(X), which hence obeys
A = £2(A) and can be obtained from a/ € H(X) as A = lim,_. o, 2" (B), the limit
being taken with respect fg;. The fixed pointA € H(X) is called theattractor of the IFS
(X,d), 2).

Example 2.4. Fig. 3 depicts part of the iterative process leading to an attractor (starting
from a square), in this case the so-cal@drpinski triangle. It is produced by an IFS
consisting of the following three mappings on the spé&é d»), whered, denotes the

B b B B B B B

Fig. 3. The first iterations for the pduction of the Sierpinski triangle.

S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300 279

3 X
am b e -— k= - -
[

Fig. 5. Some attractors of iterated function systems.
Euclidean metric ofR? andw = {w1, w2, w3} with:
x\ (05 0 X " 0
“N\y)=\Lo o05)\y 0)
x)y (05 0 A 0.5
“2\y)=\Vo o5)\y o)
x\y (05 0 X " 0
“\y)=\Lo o05)\y 05)"
Example 2.5. As a second example we give repneisgions of Cantor space as compact

subsets of the real numbers. The underlying space thus consists of the real numbers with
the natural metric. As contractions, we choose

w1 R—->R:x— Ex,

1
w:R—R:ix— Ex—i—a,

whereB > 2 is a positive integer and is chosen such that the images of the unit interval
underw1 andwz do not have more than a single point in common, but are both contained
in the unit interval. The corresponding iterates of the unit interval are depicteidyird

for the valuesB = 3 anda = % The subsets of the unit interval which can occur as at-
tractors for different parameters are all homeomorphic, i.e., topologically equivalent, and
also homeomorphic to the Cantor space and/i®, Q), if the Herbrand bas@®p of the
programpP is countably infinite.

Some further examples of attractors of iterated function systems are depiétigd
defined on the real plane. The projections of the attractors to-ttwordinate are homeo-
morphic to the Cantor space.

280 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

3. Logic programsasiterated function systems

In this section we show how logic programs can be represented by iterated function
systems. We will review an embedding introduced by Holldobler et §9h which can be
used to embed the graph of the single-step operator into the real plane. Plots of these graphs
exhibit self-similar structures, i.e., they look like attractors of iterated function systems. We
will provide a way to transform logic programs into iterated function systems such that the
graph of the program coincides with the attractor of the IFS, or can at least be approximated
by it.

Definition 3.1. Let P be a logic program,- | : Bp — N be an injective level mapping and
let B € N, with B > 2. Then the mappin® assigns a unique real numbg¢/) to every
interpretation/ € Ip by

R:Ip—>R:l+ Y B~

Ael
The ranggR(I) | I € Bp} C R of the mappingR will be denoted bny and the maximal
value, which always exists, b§m = R(Bp) =1im,_.oc Y+ 1(B™)) = -1 Without loss

of generality we will treatR as a (bijective) function frondp to Ds.

The probably most obvious bage—= 2 does not create a valid embedding: Bt 2,
andP and]| - | be defined as |F|g 2 Letl = {n(O)} andJ Bp \ {n(0)}. It follows that
R(I)=B"t=3}andR(J) = Rm— B~ = 325 — B~ = }, so the resulting functio® is
not injective. This is due to the fact that the numbetslQ. .. and Q0111. .. coincide in
the number system with base 2. But for Bll> 2 the mappingr is injective, if the level
mapping is injective. Furthermore, it can be shown th& a homeomorphism (a bijective
mapping which preserves topological structure in both directions) {l@gmQ) to D and
that Dy is compact.

By means of the mapping we can now embed@p into R as shown irFig. 6, i.e., for
a given logic progran® the functionR(Tp) = fp is defined by

fp:Di— Di:r = R(Tp(R71(r)),
and its graphFp is

Fp={(R(),R(Tp(N)) |1 € Ip} ={(x, fp(x)) | x € Dt}.

Fig. 7shows some (embedded) graphs of logic programs. Note the similarity to the plots
shown inFig. 5. Indeed we have noticed that all plots of graphs obtained by the method
described above showed self-similar structures, thus appearing to be attractors of iterated
function systems on the real plane.

T
lelp B I'elp
RUtR™L RUtR™L
i € Ds ﬁ i’ € Ds

Fig. 6. The relation betweefip and fp.

S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300 281

L] -

(0) e(0). p(0).
n((}-())'— X) e(s(X)):-not e(X). p(s(X)) :-p(X).
= A 0(X) :-not e(X). p(X):-not p(X).

Fig. 7. Some graphs of logic programs.

3.1. Representation of logic programs by iterated function systems

We have just discussed that logic programs and iterated function systems create similar
graphs. In this section we will link both by giving necessary and sufficient conditions under
which the graph of a logic program is the attractor of a hyperbolic iterated function system.
Since the iterated function systems shall approximate grapRs$,ithey must be defined
on that space. Therefore, we will focus on the sp@? d>), whered, denotes the usual
2-dimensional Euclidean metric, i.edp((x1, y1), (x2, y2)) = \/le —x2/2 4 |y1 — y2l?,
which is complete. For any functiofionR? we denote its coordinate functions I and
1Y, i.e., we havef (a) = (f*(a), f¥(a)) for all a € R2. Furthermore, letr,(-) denote the
projection to ther-axis. The natural metric oR is denoted by/y, i.e.,d1(x, y) = |x — y|
forall x,y e R.

The following theorem gives necessary and sufficient conditions for exact representabil-
ity by an iterated function system.

Theorem 3.2 (First Representation Theorenbet 7 be a logic program, let fp be the
embedded T'p-operator with graph Fp, and let D; be the range of the mapping R, as
introduced earlier. Let ((R?, d), £2) be a (hyperbolic) iterated function system and let A
be its uniquely determined attractor. Then the graph Fp coincides with the attractor A,
i.e, Fp = A, if and only if 7,(A) = D and fp(wf(a)) = »!(a) hold for all a € Fp and
all w; € 2.

Proof. The proof is divided into two parts. First, we will show thdtp = A if
fp(@f(a)) = w] (a) andmy(A) = Dy, and then the converse.

(i) To show the equivalence dip and A, we need to show thdtp € A andA C Fp.

(i.a) From$2(A) = A andny(A) = nx(Fp) = Dy we know that for eaclr € Fp there
must be am’ € A and anw; € £2 such thatry(a) = wX(a’). Using fp(w)(a’)) = wiy(a’)
and the definition offp we know thatw?’(a’) = fp(nx(a)) = my(a). So we can conclude
that (x(a), my(a)) = (@} (a’), a)ly(a/)), i.e.,a=w;(a’). Sincea’ € A, hencew;(a") € A, it
follows thata € A and finally Fp C A.

282 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

(i.b) From fp (¥ (a)) =) (a) we can conclude that,)(a), o) (a)) € Fp, i.e.,w;i(a) €
Fp. Knowing that this equation holds for alle Fp and allw; € 2 we obtainw; (Fp) €
Fp and finally$2 (Fp) € Fp. HenceFp = A.

(i) Since Fp = A andn«(Fp) = Ds we immediately obtaim,(A) = Ds. Furthermore,
we know thatFp = 22(Fp) and hence tha® (a) C Fp holds for alla € Fp. So we can
conclude that for all: € Fp and allw; € 2 there is am’ € Fp such tha(w)(a), a){(a)) =
a’ holds. By the definition offp we know thata’ = (x’, fp(x')), hencewX(a) = x" and
) (@) = fp(x'). If follows that fp(0X(a)) = o) (a) holds for alla € Fp and allw; € £2 if
Fp=A. O

The proof ofTheorem 3.2loes not make use of the fact that the functfen(the graph
of which is represented by an IFS) comes from the single-step operator of a logic program.
Indeed it holds for all functions defined dx and is easily generalized to functions on
other compact subsets of the reals. In particular, we note that it does not restrict the class
of programs covered. We will useheorem 3.Zor establishing a stronger result for logic
programs whose embedded single-step opert®p) is Lipschitz continuous. Before we
do so, however, we need to have a closer look at thébseBo assume that a baseis
fixed, thus the mappin@® is determined and in turn alsb; as the range oR. It is our
desire to characterizBs as the attractor of an IFS. Now define

27 r—>1 +0 r—>1 +1
=X —X ;X —X —_— (.
1 B B ' B

For alln > 1 we define recursively
2f={fogl|fefandge 2y ,}

e Zowojwea Julie 2ow+ 202
=X B(,()X w n—1 X B(,()X B w n—11(-

Note that every mapping; € §2 is of the formw” = B—l,,x +dX, whered depends
on the application of either the first or second mapping f®@induring the construction,
i.e.,d’ can be written agleaj - B~/, wherea; € {0, 1}. In particular we have that for
eachd} there exists an interpretatidn with R(I;) = dX. More precisely,; consists of
all those atoms\ with |A| < P such that¥ =Y, ., B~'%/, and by injectivity of| - | the
interpretation/; is indeed uniquely determined by this equation.

The proof of the following lemma is straightforward.

Lemma 3.3. For any P > 1 we have that Dy isthe attractor of the IFS((R, d), £2}).

We are now ready to establish the promised second representation result. Even though
it does not define a convenient way to construct an IFS, it explains why the plotted graphs
of the programs are self-similar.

Theorem 3.4 (Second Representation Theorelret P be a logic program. Let fp bethe
embedded T'p-operator using base B > 2, and let Fp be its graph. Furthermore assume
that fp is Lipschitz continuous. Then there exists an IFSon (R?, d) with attractor Fp.

S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300 283

Proof. We prove this theorem by applyinbheorem 3.2i.e., we will show that under
the stated hypotheses there is a hyperbolic (%, d>), £2) such thatry(A) = D; and
fp(@f(a)) = w)(a) hold for alla € Fp and allw; € £2.

By Lemma 3.3wve know that for eactP > 1 there is a se®}, consisting of contractive
mappingsw’: R — R with contractivity factorBiP and such thaDy is the attractor of the
IFS (R, d1), £2}). For everyw! € £2% we now define a mapping! :R — R by ! (x) =
fp(@}(x)). It remains to show thal(R?, do), £2) with 22 = {(w) o 7y, @ o 7y) | W) € 2%}
is a hyperbolic IFS for some suitably chosgn> 1, and for this it suffices to show that
everyw; = (o}, ®}) € 2 is a contraction ofiR?, d).

Since fp is Lipschitz continuous, there is a constantwith di(fp(x), fp(y)) <
Ldi(x, y) for all x,y € Dy. Taking this and the contractivity @6 into account we ob-
tain for alla, b € R?

do(wi(a), w; (b))2 = d1 (0} (mx(@)), of (”X(b)))z + (] (2x(@) w’y(m(b)))z
< B2 |me(@) = m®)* + LB~ |me(a) — me(b)

L2+1

< g5 [x(@) = m®)

Sincery is continuous with Lipschitz constant 1 we obtain

L2+1
dofoor(@), 05 (1) < | = =daa b).

We see now that it is possible to chod3such thaty; is a contraction, an@iheorem 3.2
is applicable. O

Before we move on, let us dwell a bit on the implicationsTbeorem 3.4and also on
some questions it raises. We requfig to be Lipschitz continuous, which implies thab
is continuous on the Cantor set as a subspad® aihd hence thafp is continuous with
respect to the Cantor topolo@y on I'». The latter notion is well-understood (§2€,40)).

For example, it turns out that programs without local variables (calbedred programs
in [8]) have continuous single-step operators, where a local variable is a variable which
occurs in some body literal of a program clause but not in its corresponding head.

The exact relationships between covered programs, continuity of the single-step op-
erator in Q, Lipschitz continuity with respect to a metric generati@g and Lipschitz
continuity of the embedded single-step operator with respect to the natural mefkic on
remain to be studied, and these matters appear to be not straightforward. What we can say
at this stage is that if’p is continuous inQ then fp is continuous on the Cantor space
(because the latter is homeomorphia i@, Q)), and since the Cant@pace is compact,
we obtain thatfp must be uniformly continuous, which is stronger than continuity, but
strictly weaker than Lipschitz continuity. The interested reader will also be able to verify
that the single-step operator of the covered program

pP(X) - p(f(X X))

284 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

is not Lipschitz continuous with respect to any metric based on an injective level mapping
as inDefinition 2.1 We owe this example to Howard Blair.

Programs which are acyclic with respect to an injective level mapping also have con-
tinuous single-step operators, which is easily seen by observing that such programs cannot
contain any local variables—or by considering the remark made earlier that for such pro-
grams the single-step operator is a contraction with respect to a metric which gerrates
Furthermore, it was shown {29] that for baseB = 4 (and hence for all larger bases) for
the embedding, the resulting embedded functigi» = R(Tp) is a contraction on a sub-
set of R, hence is Lipschitz continuous. R is a program for which grour@®) is finite
(and henceBp is finite), thenDx is a finite subset oR, and hencefp is trivially Lipschitz
continuous as a function on a subseiRofWe can thus state the following corollary.

Corollary 3.5. For programs which are acyclic with respect to an injective level mapping,
and for programs for which groundP) isfinite, there exists an IFSin the formgiven in the
proof of Theorem 3.4 with attractor Fp.

Corollary 3.5gives a formal, albeit not satisfactory, explanation for the observation
which started our investigations: In order to obtain approximate plots of the graph of some
fp, we restricted ourselves to plotting the graph correspondindfitite, though large,
subprogram of groun@®).

As yet, we know of no general method for obtaining Lipschitz constanfsobr even
for showing whether it is Lipschitz continuous at all. In the lighfidieorem 3.4nd other
results which we will discuss in the sequel, and also by considering our remarks made
earlier on the unclear relations between different notions of continuity for single-step op-
erators, we feel that investigations into these matter will have to be made in order to obtain
satisfactory constructions of iterated function systems—or of connectionist systems—for
representing logic programs in our approach.

3.2. Worked examples

Although Theorem 3.4covers a wide range of programs, it is unsatisfactory since it
does not provide a convenient way of constructing the iterated function system. Indeed,
the IFS obtained in the proof of the theorem does involve the single-step operator for the
calculation of the functions) . In this section, we provide a simple but reasonable form of
iterated function system which avoids this drawback, and show in detail that it covers some
example programs. The same form of IFS o be used in later parts of the paper.

Definition 3.6. Let the natural numberB > 2 (hence also the mappirg) andP > 1 be
fixed, and letP be a program. Then we associate withthe IFS((R?, d2), £2), where the
w; € 2 are defined as; :R? — R2: (x, y) > () (x), 0} (y)) With ¥ ande! being

1
o' R>Rix Fx—i—df, and

f7>(0).

1
a)?’:R—ﬂR:yr—) ﬁy‘f‘fp(dzx)_ BP

S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300 285

Algorithm 3.7 (Construction of IFSI,P for a given program P). Let P be a logic program and
fp be its embeddedp -operator.

1. Choose a natural number (theriodicity) P > 0.
2. Compute}, as explained in Section 3.1.

3. Construct for each’ € 27 the corresponding)l).':y — B—lpy + fp(d) — 1%9.

4. Return the se@ = {w; = (¥, !)} as mappings for the Ili7§: {(R2, dy), £2}.

Fig. 8. Constructing linear iterated function systems.

The parametet, in this case, ranges from 1 td 2and thew) andd; € Ds are exactly as
in the IFS((R, d), £2}) from Lemma 3.3 For convenience, we call such a resulting IFS
linear and use the notation IP%;Swhen we are referring td. Note that wheneveB, P,

andP are fixed, then the corresponding QE& uniquely determined, so that our notation
is sound.

We consider the bask fixed in the sequel. The parameterwhich we callperiodicity,
will usually depend on the prograf. How to construct an IF§§ from a fixed B is also
depicted inFig. 8.

Before we explain the intuition behirefinition 3.6we need to introduce a new op-

erator denoted>, which takes as arguments an interpretation and a natural number, and
returns an interpretation. This operator defines a kind of shift operation on interpretations.

Definition 3.8. Let P be a logic program/ € Ip, P € N, and| - | be an injective level
mapping forP. Then define

I . .
3= {A |there existsA” € I with |A"| + P = |A]}.

We call > theright-shift operator.

Proposition 3.9. —i; = R—l(%) holdsfor all / € Ip andall P € N.

Proof. The equation follows immediately from the definition Bfsince
1 —1 —(JA|+P) L X B _1(RU)
7 (2 =\)= %)

We have already observed 8ection 3.1that for each?X occurring inDefinition 3.6
there exists som¢& < Ip with R(I;) = d. UsingProposition 3.9ve can therefore carry
over the function® to Ip, as follows:

o :R—>Rix %—}—df,

286 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

R YN =w':T Ipiles 5 UL
D) =w;Ip — Ip: I—>7)> Ul;.

For the mappings, the resulting function is a bit more involved, and can be represented
as
y fpO

y. .
wi.R—ﬂR.yr—)ﬁ— G

+ fp(d)),

I
RY)=wW:lp—Ip: Il <7,> \ 1;) urt,

wherel;” = R=1(fp(d) = Tp(I;) andl = R-1(22) = TPTf”Z .

Let us now explain the intuition behind the definitions of the mappm;gandwiy. The
choice of thew is obvious for the same reasons askrction 3.1and in the proof off he-
orem 3.4 It appears to be the most natural way to obtBiras projection of the resulting
attractor to thex-axis, as required bfheorem 3.2The corresponding mapping' un-
masks this as a right-shift with addition of a base pdjntA first approximate candidate

for wlY(I) would therefore be;; U Tp(I;)—note that/ in this case should be understood
as being some image undEp. The occurrence of.” is necessary as a correction in case
of an overlap (i.e., a non-empty intersection) betwéerand Tp(1;). This would not be

necessary, strictly speaking, fw)‘, where such an overlap would have no effect since it is
ignored by the set-union operation. When carried over to the reals, however, this correc-
tion becomes necessary in order to avoid the situation that the resulting number would not
correspond to an interpretation.

Linear iterated function systems are constructed suchdf{at) = Dy, which is one of
the conditions imposed bheorem 3.2The other conditionfp (w}(a)) = w?’(a) foralla,
will be shown on a case base in the following examples. Wesfix 4 for the examples,
in order to have a concrete setting. This choice was also mg@9jpand the reason for
this was to guarantee thgip is a contraction for acyclic programs with injective level
mappings, as already mentioned.

Consider first the program froifaig. 1 Fig. 9 shows an associated graph with corre-
sponding level mapping—we use the notatidri0) to denote the term(...(0)...) in
which the symbok occursx times. We now use Algorithm 3.7 for constructing an Z}J:S

graph Fp:
P: n(0). gmE.
n(s(X)) :- n(X).

o [) = e+ 1

Fig. 9. The natural numbers program and their embedgedperator.

S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300 287

-

Fig. 10. The first three iterations of the mappings.

Table 1
Tp(WX(1)) =w! (Tp (1)) holds for the natural numbers program
Wf()=%+0 oy =%+5
wi(h =1 Wi = (§ \ {n(sO)}) U (n(0))
Tpwi(1) =Tp(1) = (P51 \ (n(s(0)}) U n(0)) = wy (Tp(D)
w3 =%+ 3 00 =%+3
wy(D) =7 U{n(0) wy(l) =1 U{n(0)

TpWi (1) =Tp (% UinO)}) =TB2L U n(0)} = w)(Tp)

for the program. We choose periodici®y= 1 and obtain

=[50 (E)6 0]

The first three iterations of this II%;Sare depicted irfrig. 10

In order to show that the resulting attractor coincides wigh, we need to verify the
hypotheses oTheorem 3.2i.e., in particular, we need to show thfb (v} (a)) = a)}’(a)
for all « € Fp. By the discussion followindProposition 3.9t therefore suffices to show
thatTp (W (1)) = w?’(Tp(I)) holds for alll € I». The necessary calculations are shown in
Table 1 some details are straightforward and have been omitted.

As another example we discuss the program figimm 11 We work with periodicity
P =2 and obtain the following IF’7§ by Algorithm 3.7:

{8)06 2)C)(E)
(B 2)0)(&) G 2)0)(3)

The first few iterations of the resulting I%Sare depicted irFig. 12 Verification of
correctness is performed similarly as for tregural numbers program and details are given
in Table 2

H
Hlosl

,_\
Ry
aol

288 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

P: e(0). graph Fp:
e(s(X)) :- not e(X).
o(X) :- not e(X).

=2.-x+2

|-] le(s (0))|= rr+1
|o(s7(0))]

Fig. 11. The even and odd numbers program.

|
./—\ ../--\

Fig. 12. The first three iterations of the mappings.

Table 2
Tp (wf(l)) = wlY(Tp(I)) holds for the even and odd numbers program
UJ)](_(X)Zﬁ-FO wi(x):ﬁ-}-%
wi(l) =% Wi (1) =4 U{e(0),0(0)}
Tpwi(1) =Tp () = B2 Ule(0).0(0)) =w{ (Tp(1)
wE(X)Zi—)Cf;+l—]'f3 wé(x):i—%—i—%
wi(I) =% U{o(0)} wh(1) =5 Ute(0), 0(0))
TpW(1) =Tp(% Ufo©}) =121 Ule(0). 0(0)} = w)(Tp (1))
wé(x)=f—6+% wé(x):%—i—é—g
w4(1) =% U{e(0)} wh(D) = (% \ {e(s(0))) U {e(0))
TpW(1) =Tp (% Ule0)}) = (T2 \ {e(s(0))}) U {e(0)} = w(Tp (1))
w4(x):E+E wA(X)ZE—‘,-%%
wi(1) =% U{e(0),0(0)} wi(D) = (% \ {e(s(0)}) U {e(0)}

Tpwi (D) =Tp(% U{e(0).00)}) = ((BL \ {e(s(0))}) U {e(0)} = wW)(Tp (1))

4. Logic programshby fractal interpolation

In Section 3we have focused on the problem of exact representation of logic programs
by iterated function systems. In this section we will provide a result for approximating logic
programs by iterated function systems. Our approach is motivated by fractal interpolation

S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300 289

Algorithm 4.1 (Interpolation Data). This algorithm computes a set of interpolation data for a
given progranfP.

1. Choose a natural number (thecuracy) P > 0.

2. Compute the séb ={A | |[A| < P andA € Bp} and its powerseD = P(D).

3. For any seiX; € D computeY; = T'p (X;) with respect to the prograr.

4. Return the sequence of pai®(X;), R(Y;)), with R(X;) < R(X;) foralli < j.

Fig. 13. Construction of interpolation data.

as described ifi3, Chapter 6] but our setting differs in that we reuse the linear iterated
function systems introduced Definition 3.6

We will again assume the parameBer- 2 and some injective level mapping to be fixed.
The parameteP is going to be reinterpreted ascuracy. Given a logic progran®, for
which fp is Lipschitz continuous, and given some accur&e¢yve consider the associated
iterated function system as given Befinition 3.6 It will be shown that the attractor of
each of these systems is the graph of a continuous function definéd, @and that the
sequence of attractors associated with andasing sequence of accuracies converges to
the graph offp, with respect to the maximum metric on the space of continuous functions.

We begin by describing in detail the fractal interpolation systems which we will be
using. Given a prograrf? we need to extract a set of interpolation data which we can
use for the interpolation procesEhis procedure—for each accura®y—is described in
Fig. 13 Note that the data paifsR(X;), R(Y;)) obtained in this way coincide with the
values(d}, fp(d))) used inSection 3.1

Definition 4.2 (IIFSP). Let {(dX,d)) | 1 <i < 2"} be a sequence of interpolation data
constructed via Algorithm 4.1 from the prograusing accuracy’. Let fp be the em-
beddedTr-operator associated with the progréusing the mappin@® with baseB.
Then((R?, d2), £2) is called aninterpolating iterated function system (IIFSP), with £2 =

{w |1<i <2P} andw; 1 R? - R2: (x,y) > (0X(x), 0} (y)), wherew! andw] are de-
fined by

1
wr(x) = YT dX, and

1
o () = ZFy + fp(d) -

fr0)
BP -

Fig. 14shows a logic program and schematically two corresponding interpolating iter-
ated function systems fa = 4.

Each IIFSP constructed for the programand accuracyP corresponds to a linear
iterated function system constructed for the periodi¢itgs in Algorithm 3.7. Therefore
it is obvious that the resulting mappingsdeed constitute hyperbolic iterated function
systems which satisfig,(A) = Ds for their attractorsa.

For the remainder of this section we denote/Bythe set of all continuous functions
from Ds to R, and byd; the maximum metriek(f, g) = max.ep | f (x) — g(x)|} on this
set. ThugF, dr) is a complete metric space, and convergence with respect to it is uniform
convergence.

290 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

ITFSP for P =1 ITFSP for P =2
T
p(0).
p(s(X)) :- p(X). 8
p(X) :- not p(X).

B
p(s*(0))] == +1

Fig. 14. A logic program and two corresponding IIFSPs.

Lemma 4.3. The function Tp : F — F defined by Tp(f)(x) = wly ofo wl.xfl(x), where
i is chosen appropriately depending on x, is a contraction on (F, d) with contractivity
factor 3.

BP

Proof. The functionTp f can be characterized by cases depending on the inphoy
setting

X X Rm
Tpf(0)=Tpif(x) forxe|d.di+ 5| Dy

with eachTp ; f defined as

fr(0)
BP

- 1
(Tpi [)(x) = o} (f (f l(x))) =57 f(x—=d)-BY)+ fpd)) -

In the sequel we will simply writdlp f: Dy > R:x — wl.y(f(w;<_l(x))) sinceTpf is a
well-defined function fromDs to R.

To show thatl’» mapsF to itself, we need to show thdip f : Df — R is a continuous
function for all f € F. The continuity of eaclTp ; f is obvious, since it is a composition
of continuous functions. Sineg‘ + Rn — g%, for eachi < 27 this observation suffices.

i+1
Contractivity of Tp follows immediately from the definition since

di(Tp f, Tpg) = max{|Tp f (x) — Tpg(x)| | x € Dr}

1
:ﬁ-max{|f((x—dl?<)-BP)—g((x—dl?()-BP)| | x € D}

1
< F ~di(f, &),

and we can conclude th@p is a contraction with contractivity factog%. O

Lemma4.4. Let D = {(d?, dl.y)} be a sequence of interpolation data and ((R?, d»), £2) be
an interpolating iterated function systemwith attractor A, as constructed in Definition 4.2
from the program P using accuracy P. Let fp be the embedded 7'p-operator associated
with the program P using the mapping R. Then there is a unique continuous function

S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300 291

f:Df— Rwith Tp f = f. Furthermore, f interpolates the data and its graph coincides
with the attractor A.

Proof. The proofis divided in two steps. First, we will show that the functfois uniquely
determined and interpolates the data. Afterwards, we will show that the graph of this func-
tion coincides with the attractot.

(i) From Lemma 4.3wve know that the contractiofi mapsZF to itself. By the Banach
contraction mapping theorem we can conclude that there is exactly one furfctigim
Tp f = f. This function is continuous since it is an elementfafTo show thatf inter-
polates the data we need to show tifeX) = d} = fp(d)) for all (d*,d}) € D. Since we
know thatTp f = f we obtain

! 0
0 0
= pap+ L2 17D
As there is afX which is equal to 0 we get
AL fp(0)
fO = Z5 =0 -

which gives us the equality (0) = f»(0) and hencef (d)) = fp(d}) holds for alld).

(i) In order to show that the graph = {(x, f(x)) | x € D} of the functionf coincides
with the attractor, it suffices to show that= 2 (F)—since there is only one fixed point
of £2, it then follows thatF = A. So it suffices to show that (ii.a@} (F) € F and (ii.b) F C
£2(F). Inorder to prove (ii.a) we show thaj ((x, f(x))) € F forall (x, f(x)) € F and all
w; € 2,1.e., (0 (x), a)ly(f(x))) € F. This follows immediately fromf = Tp f = a)?' ofo
a)l.xfl, since this impliesf o »f = ! o f and hencéw}(x),) (f(x))) € F. Consequently,
(F) C F. Sincemy(A) = Dy it follows that for all x € Ds there is anx’ € Df and an
w; € §2 such thate = wX(x"). From(x’, f(x")) € F andf o) = w?’ o f we can conclude
that f (x) = o) (f (x")) and hencéx, f(x)) = (X(x"),) (f(x))). So (ii.b) holds which
completes the proof. O

We call the functionf from Lemma 4.4a fractal interpolation function for the pro-
gramP with respect to accurack: It is an interpolation function for a set of points which
belong to the graph of the embeddg&d-operatorfp. Both fp and the fractal interpo-
lation function coincide at least on the given data points, the number of which depends
on the chosen accurad. In the remainder of this section we will study the sequence of
fractal interpolation functionsbtained by increasing the accuracy. We show first that this
sequence is a Cauchy sequence, and then that its limit convergesoo programs with
Lipschitz continuousp.

We next need to obtain upper and lower bounds on the values of fractal interpolation
functions. Fixing an accurady, recall that the correspondingfttal interpolation function

f is the unique fixed point of the functiofip, i.e., f = Tp(f) =} o f o w* . Since

292 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

o) () = 25 + fpd) — L2 itis easily verified that a lower bound fgf is given by

o]

R Rm
fmir‘I:_Z(BP)i:_BP_l'
i=1

Analogously, an upper bounghax can be obtained as

fmax Rm + _ l .
Lemma 4.5. Let P be a programwith Lipschitz continuous fp. For each accuracy i let f;
be the corresponding fractal interpolation function. Then the sequence (f;);en isa Cauchy
sequencein (F, dy).

Proof. The proofis divided into two steps. We first compute the distance betyeamd
fi+1, and then use this to show that the sequence is Cauchy.
() Let i be fixed. We compute the distance between the two fractal interpolation func-
tions f; and f; 1. For convenience we usg for f; and f for f;, 1. For both functions
we know thatT f = f and7 f = f hold, whereT and7" denote the operators introduced
in Lemma 4.3 constructed for the accuraci®s=i and P =i + 1 respectively. We use
the notauordx for the interpolation values fof anddX for the interpolation values fof .

FromTf = f ande f we can conclude that

—d¥) - B
f(X):% f'P(dx)_ fP() for |:dx dx+B—:|ﬂDf
R £ —d% . Bitt) 0 R

Therefore, we get for the distandg f, f):

; f((x—d¥-B") 0
(. f)=mxax{ (’“B—J + oty — 22))

B <f<(x —dy - B - fp(0)>

Bitl +f7>(dk)—w

|

B- f((x—dy)-B)— f((x—dp)- BT
Bit+l

" —-B- 0) + 0
+|f7>(d§)—f7>(d;§)|+‘ Lo la }

B (Rm+ 325) +
Bit+l

< max{‘

X

gmax{ B'H S |d’< de+

X

(B _1)'Rm}

Bit+l

The last step uses the fact that is continuous ori Dy, d1) with some Lipschitz constart,
and the results concerning minima and maximg;of

S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300 293

Sinced; andd are chosen with respect to the sameve know that the distance be-
tweend’ anddy is bounded bykz. Hence

Rm
B-(Rm+ 3)+Bz+1 1., Rn (B—1):Rp

df(fa f) Bl+l ’ Bi Bi+1
B (Rm+ 32 + 85 +L-Rn+(B—1)- Rny
= Bi+1l
1 1
<R .B'(1+Bi—_1)+m_+L+(B_l)
S om Bi+1
Rnm Rm(4+L)

(ii) From part (i) we can conclude that fgr< k we have

k
di(fi, fi) < Z

i=j

So for fixed j the value ofdi(f;. fi) is bounded bydr(f;. fi) < £z . L and we
obtain that(f;);cn is @ Cauchy sequence, since for any 0 there is some such that for
all j, k > n we havedi(f;, fi) <e. O

B/ Bk

Rn(4+L) Ru@+L)(1 1
B B-1 <___>

Theorem 4.6 (Approximation Theorem)Let P be a program with Lipschitz continu-
ous fp. Then the sequence (f;);en Of fractal interpolation functions with accuracies i
converges uniformly to fp in the complete metric space (F, dx).

Proof. First note that for eaclk € Ds there is a sequence of interpolation data points
(d¥, d)) such that eackd?, d)) belongs to the interpolation data for accuracgachdX is
the offset of the appropriately chosen mappisfgor x, and lim_. o 4 = x.

From the continuity off; and the uniform convergence @f to somef by Lemma 4.5
we can conclude that the sequeng¢gd)));en converges tof (x). Knowing that thef; are
interpolation functions, hencg (d}) = fp(d}), we obtain that the sequencgp (d)));en
converges tof (x). But fp is continuous by assumption, so |irfip (d) = fp(lim; &) =
fr(x) and hencef (x) = fp(x) forallx e Ds. O

Theorem 4.&hows that we can approximate the graph of any logic program for which
fpr is Lipschitz continuous arbitrarily well. Uartunately, the necessary number of map-

pings grows exponentially with the accuracy. Frahif;. fi) < 2ot (L — L) it
follows thatds(f;, fp) < ’;";((étLl;, i.e., for any giverr > 0 we can construct an IIFSP, such

that the corresponding fractal interpolation functign lies within ane-neighbourhood

of fp. This IFS needs to be constructed using accurasyich thatgy.?g‘;ﬂli <e e,

Rm(4+L)

P >1n .
“WETS B 1)

294 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

5. Logic programsasrecurrent RBF-networks

We will now proceed to the task which motivated our investigations, namely the approx-
imation of logic programs by artificial neural networks. Such networks consist of a number
of simple computational units, which are connected in the sense that they can propagate
simple information—usually in the form of real numbers—along these connections. We
want to construct a network which computes an approximatiofpak) for a givenx. To
this end, we will employ the results of the previous sections. More precisely, we will show
how the fractal interpolation systems frdection 4can be encoded.

The basic idea underlying our encoding is to exploit the self-similarity of the fractal
interpolation functiong’, and the “recursive” nature of the corresponding iterated function
systems. In order to obtain the function valfiex) for some givenx € Dy, we first need to
find the correct mapping; = (o}, a)l.y), i.e., the one for which € »}(Dr), and compute
) (y) (where initially y = 0). Then we zoom in on the image &, x R undere; and
repeat the process.

For our implementation of this idea we use radial basis function networks (RBF-
networks). These consist of simple units which perform “radial basis functions” as input-
output-mappings. These are functiofigor which the valuesf (x) are distributed sym-
metrically around a center. Two examples and a very simple schematic RBF-network are
shown inFig. 15

RBF-networks are known to be universal approximators, i.e., with networks as shown
in Fig. 15it is possible to approximate any continuous function to any given accuracy,
provided sufficiently many units abeing used in the middle layer.

To simplify our exhibition and the construction of the network we introduce a new type
of unit, which we call an RBE; -unit. It computes two distinct output-valug§andy’.
Furthermore, it computes a parametrisedabbasis function, where an additional scal-
ing s is applied toy’. These units can be understood as abbreviations, since they can be
converted into a network consisting of simple units, i.e., although we are using;RBF
units it is possible to encode the entire resulting network using standard RBFRigits6
shows the dynamics and a schematic plot of an RBEnit. The static parameters of each
RBF; 7 -unit are the centep, the widtho and the height.

Using RBE Y -units we can construct the network as showrFig. 18 using the al-
gorithm shown inFig. 17. The example program for the construction is taken fi9ec-

Fig. 15. Two examples of radial basis functions and a simple RBF-network.

S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300 295

, (xr—p+o)-BY ifju—z|<o

0 otherwise (/\)
g

,)seh if|p—z|<o

0 otherwise

Fig. 16. Dynamics and scheme of an RBFunit.

Algorithm 5.1 (Construction of recurrent RBFNp). Let P be a logic program an@ the base
of the embeddingr.

1. Choose a periodicity > 1.

2. Create an empty 3-layered RBF-network. Add three input uits, (v) to the first layer and
three output unitss(, x’, y) to the third. The input units compute the identity function and
the output units return a weighted sum of their inputs.

3. The hidden layer consists of RBF; ' -units initialised as follows:

a) Compute the IF'S ((R2, dp), 2) for P using the periodicityP, with
2 = (@ o)) |1<i <2P), 0f(x) = 25 -x +d¥ ando) () = 55 -y +d} , as described
in Algorithm 3.7.

b) For alli the RBR Y, i-unit is initialised witho; = # pi = d* +o; andh; = d.

4. Connect the units as shown in Fig. 18, where all weights are set to 1, but the connection from
stos’ issettoB~F.

Fig. 17. Algorithm constructing RBF-network.

e(0).
e(s(X)) :- not e(X).
o(X) :- not e(X).

O =2 7 +1
lo(s*(0))| =2-z+2

o-{ (% D)+(3).
(b 96+ (b
(B D) (8):
5 96O-0)

Fig. 18. A logic program, level mapping, interpolating IFS fét = 2 and corresponding recurrent
RBF; i -network. The example program and its {5 re taken from the end &ection 3.2

296 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

tion 3.2 where the corresponding Il,gS/vas already computed. The three initial inputs
50, yo andxo need to be initialised withg = 1, yo = 0, andxg = x. The network computes
an approximation offp for a given inputx. Each iteration through the network performs
the following computations:

e The scaling factor is multiplied with Bi,,.

¢ Each RBF{ -unit computes the corresponding outptitandy’, where for exactly one
unitx’, y’ # 0. Sincexp was initialised withR (1), the output of the “active” RBF; -
units after the first iteration is' = (x —u+0) - B” , i.e., we have’ = (x —d¥)- BY =
R(R~(x)\ R=X(d))) - BP. This is the “zooming into the interpretation” mentioned
earlier, i.e.x’ is a left-shifted version of.

e The currenty’-output of the “active” urtiis added to the previous

The outputy of the network converges to the value of the fractal interpolation func-
tion f defined by the IFS, which was used to construct the network. More precisely, we
havedy(y, f(x)) = (B—lp)’, wherei denotes the number of iterations performed &nib

the accuracy used for the construction. Furthermore, we knowithatfp) < grgg‘;tﬁ;,

which yieldsds (v, fp(x)) < ?EE?_LI; + (Z)'. We conclude that we can approximate the
single-step operator of any logic program for which the embedding is Lipschitz continuous

up to any desired degree of accuracy.

6. Related work

One of the key ideas on which our work on neural-symbolic integration is based, is to
represent logic programs by representingrthssociated immediate consequence opera-
tors. This approach was put forward by Holldobler and Kalif&], and reported also
in [20], in order to encode propositional logic programs by feedforward neural networks
with threshold activation functions. They alsbserve that these networks can be cast into
a recurrent architecture in order to mimic the iterative behaviour of the operator.

Two major lines of investigation were spaed by this work. D’Avila Garcez, Broda,
Gabbay, and Zaveruclja2,14]extend the work by Hdélldobler and Kalinke to cover net-
works with sigmoidal activation functions, and study machine learning and knowledge
extraction aspects of the resulting frameworks.

The second line of investigation was intgd by Hoélldobler, Kalinke, and St6f29],
who study first-order logic programs and how to approximate their single-step operators
by feedforward neural networks. A general approximation theorem due to Fun@t@shi
is of central importance for their approach, which is restricted to the study of acyclic pro-
grams with injective level mappings. They show that these programs can be approximated
arbitrarily well by feedforvard networks, but do not specify any means for actually con-
structing them.

Generalizations of this approach to programs with continuous single-step operators, and
also to other semantic operators, are obtained by Hitzler and[$8@4.,22] reported also
in [20]. At this stage, topological and metric studies of declarative semantics, originally

S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300 297

developed for entirely different purposgs5,15,23,38,39,41,42Eome into play. From
this perspective, our work is in the spirit of the general programme of research laid out by
Blair et al.[9].

Work by Blair et al. on continualizations of discrete systdBjselates very closely to
the particular tool we have chosen for our approach, namely iterated function systems. In
their paper, Blair et al. study covered programs and show, amongst other things, that their
single-step operators can be obtained by means of attractors of affine hyperbolic finite
automata, which in turn can be understood as iterated function systems. Their work also
shows the intimate relationship between logic programming and dynamical systems related
to self-similarity and chaos theory, which we have been able to put to use in this paper.

7. Conclusionsand further work

We have presented results for exact and approximate representation of single-step op-
erators associated with logic programs by iterated function systems, fractal interpolation
systems, and recurrent radial basis function networks. Our results cover first-order logic
programs with function symbols under the provision that the embedded associated single-
step operator is Lipschitz continuous. We have given algorithms for constructing approx-
imating iterated function systems and recurrent radial basis function networks for given
logic programs.

As to the relation with the work by Blair et dB], we note that the exact relationship be-
tween the class of programs covered by their results, namely covered programs, and ours,
namely those whose embedded single-step operator is Lipschitz continuous, remains to be
determined and will require further researels already mentioned. While the general ob-
servation i8] that covered logic programs can be represented by iterated function systems
breaks the ground for deep investigations into these matters, our results provide explicit ap-
proximations in the Euclidean plane, which can be converted to a standard neural network
architecture in a straightforward way. The concrete results and constructions which we pro-
vide, however, come at the price of the stronger hypothesis of Lipschitz continuity required
for our results. We believe that this requiremhean be weakened, but different mathemat-
ical approaches than the one employed herg beaneeded in order to obtain satisfactory
results.

There is also one caveat: If one would like to construct an approximating system or net-
work which approximates a given logic program within some a priori given error bound,
then we can only guarantee this if a Lipschitz constardf the function fp—which is
the embedding of the single-step operdfr in the reals—is not only existent but also
known. This can be seen from the calculations of upper error bounds at the e8és-of
tions 4 and 5We do not know of any general method for obtaining Lipschitz constants,
and ways of doing this will be subject to further research. For certain well-behaved pro-
grams, Lipschitz constants are easily calculated. For acyclic programs with injective level
mappings as covered [29], for example, a Lipschitz constant'ﬁ—, whereB > 2 is
the base used for the embeddiRgIn these cases our results yield exact algorithms for
obtaining approximating networks given an a priori error bound.

298 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

Our results surpass those[@B] in at least two ways. Firstly, for the programs covered
in [29], namely acyclic ones with injective level mappings, we are now able to give an
algorithm for constructing approximating networks. Secondly, we show that a larger class
of programs than covered {29] can be approximated in principle, namely those with
Lipschitz continuous embedded single-step operator, and furthermore, we have shown that
for these we can provide explicit parameters for approximating recurrent neural networks,
provided a suitable Lipschitz constant can be determined. This latter point is related to
the results if20-22] where a larger class of programs—those with continuous single-
step operator—were treated, but without providing explicit constructions of approximating
networks. So our conclusions are stronger, but so are our assumptions.

Let us also note that we use a different network architecture thi@0#22,29] namely
recurrent RBF-networks instead of thregda feedforward networks with sigmoidal ac-
tivation functions. Indeed, we believe that RBF-networks constitute a much more natural
choice for representing logic programs at least under the general approach insp8H by
This is due to the intuition that points or interpretations which are “close” to each other
(topologically or metrically speaking) are supposed to represent similar meaning. The spe-
cific shape of the activation functions in RBF-networks thus can be understood in such a
way that a unit becomes active only for a cluster of values, i.e., interpretations, which have
similar meaning. The binary nature of sigidal activation functions seems to be much
more difficult to explain from an intuitive perspective. Certainly, our recurrent network can
be unfolded to a feedforward architecture with several layers if this is desired, and on the
mathematical level it should not make much of a difference which architecture is being
used. The question of how to obtain algorithms for constructing approximating networks
with sigmoidal activation functions, however, is probably rather hard, but may be solvable
by first understanding Lipschitz constants of embedded single-step operators.

Investigating Lipschitz constants as mentioned provides a natural next step in our inves-
tigations. It has to be said, however, that it is not yet clear how our results can be used for
designing useful hybrid systems. Nevertheless, certain questions are natural to be asked
at this stage. Can we use our approach for extracting symbolic knowledge from trained
neural networks? Can network learning then be understood from a symbolic perspective
by observing changes in the (extracted) symbolic knowledge during the learning process?
Even in the finite (propositional) case research has not yet led to satisfactory answers to
these questions, and the case of first-order logic which we address here is naturally much
more difficult to work with, but should be investigated. Entirely new methods may have to
be developed for this purpose, as argued by Holldobl§2 7ij

Acknowledgements

We benefited substantially from discussions with Steffen Holldobler and his support of
the project. The comments of three anonymous referees were highly appreciated and led
to improvements of the presentation of our results. We are very grateful that Howard Blair
spotted a mistake in an earlier version of this paper, which we were now able to remove.

S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300 299

References

[1] K.R. Apt, D. Pedreschi, Reasoning about terminatad pure Prolog programs, Inform. and Comput. 106
(1993) 109-157.

[2] S. Bader, From logic programs to iterated functiontegss, Master’s Thesis, Department of Computer Sci-
ence, Dresden University of Technology, 2003.

[3] M. Barnsley, Fractals Everywher Academic Press, San Diego, CA, 1993.

[4] A. Batarekh, V.S. Subrahmanian, The query taggl in logic programming, in: Proceedings of the 1989
Symposium on Theoretical Aspects of Computer 8o in: Lecture Notes in Computer Science, vol. 349,
Springer, Berlin, 1989, pp. 375-387.

[5] A. Batarekh, V.S. Subrahmanian, Topological mioglet deformations in logic programming, Fund. In-
form. 12 (1989) 357-400.

[6] M. Bezem, Characterizing termination of logic programs with level mappings, in: E.L. Lusk, R.A. Overbeek
(Eds.), Proceedings of the North American Conference on Logic Programming, MIT Press, Cambridge, MA,
1989, pp. 69-80.

[7] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.

[8] H.A. Blair, J. Chidella, F. Dushin, A. Ferry, P.utenn, A continuum of discrete systems, Ann. Math.
Artificial Intelligence 21 (2—4) (1997) 155-185.

[9] H.A. Blair, F. Dushin, D.W. Jakel, A.J. Rivera, Me&gin, Continuous models of computation for logic pro-
grams, in: K.R. Apt, V.W. Marek, M. Truszcagki, D.S. Warren (Eds.), Thedgic Programming Paradigm:

A 25-Year Perspective, Springer, Berlin, 1999, pp. 231-255.

[10] A. Browne, R. Sun, Connectionist inferee models, Neural Networks 14 (10) (2001) 1331-1355.

[11] L. Cavedon, Acyclic programs and the completenesSLDNF-resolution, Theoret. Comput. Sci. 86 (1991)
81-92.

[12] A.S. d’Avila Garcez, K. Broda, D.M. Gabbay, Symbolic knowledge extraction from trained neural networks:
A sound approach, Artificial Intelligence 125 (2001) 155-207.

[13] A.S. d'Avila Garcez, K.B. Broda, D.M. Gabbay, Neural-Symbolic Learning Systems—Foundations and
Applications, in: Perspectives in Nl Computing, Springer, Berlin, 2002.

[14] A.S. d’Avila Garcez, G. Zaverucha, The connectitrinductive learning and logic programming system,
Applied Intelligence (Special Issue on Neuradtiorks and Structured Knowledge) 11 (1) (1999) 59-77.

[15] M. Fitting, Metric methods: Three examplesdem theorem, J. Logic Programming 21 (3) (1994) 113-127.

[16] K.-I. Funahashi, On the approximate realizatidrcontinuous mappings by neural networks, Neural Net-
works 2 (1989) 183-192.

[17] H.W. Gusgen, S. Holldobler, Coeationist inference systems, in: Bronhofer, G. Wrightson (Eds.), Paral-
lelization in Inference Systems,:ihecture Notes in Artificial Intelligence, vol. 590, Springer, Berlin, 1992,
pp. 82-120.

[18] P. Hitzler, Generalized metscand topology in logic programmingmsantics, PhD Thesis, Department of
Mathematics, National University dfeland, University College Cork, 2001.

[19] P. Hitzler, Towards a systematic account of différegic programming semantics, in: A. Gunter, R. Kruse,

B. Neumann (Eds.), KI2003: Advances in Atrtificial Intelligence. Proceedings of the 26th Annual German
Conference on Atrtificial Intelligence, KI2003, HamyuiGermany, September 2003, in: Lecture Notes in
Artificial Intelligence, vol. 2821, Springer, Berlin, 2003, pp. 355-369.

[20] P. Hitzler, S. Holldobler, A.K. Seda, Logic pragns and connectionist networks, J. Appl. Logic (2004). In
this volume.

[21] P. Hitzler, A.K. Seda, A note orelationships between logic prograrand neural networks, in: P. Gibson,

D. Sinclair (Eds.), Proceedings of the Fourth IrMlorkshop on Formal Methods, IWFM’'00, Electronic
Workshops in Computing (eWiC), British Computer Society, 2000.

[22] P. Hitzler, A.K. Seda, Continuity of semantic opena in logic programming and their approximation by
artificial neural networks, in: A. Glnter, R. Kruse,Beumann (Eds.), KI2003: Advances in Artificial Intel-
ligence. Proceedings of the 26th Annual German €umfce on Atrtificial Intelligence, KI2003, Hamburg,
Germany, September 2003, in: Lecture Notes in Artificial Intelligence, vol. 2821, Springer, Berlin, 2003,
pp. 105-119.

[23] P. Hitzler, A.K. Seda, Generalized metrics andquely determined logic programs, Theoret. Comput.
Sci. 305 (1-3) (2003) 187-219.

300 S Bader, P. Hitder / Journal of Applied Logic 2 (2004) 273-300

[24] P. Hitzler, M. Wendt, The well-founded semantics isratified Fitting semantics, in: M. Jarke, J. Koehler, G.
Lakemeyer (Eds.), Proceedings of the 25th Annuair@an Conference on Atrtificial Intelligence, K12002,
Aachen, Germany, September 2002, in: Lecture Notéstificial Intelligence, vol. 2479, Springer, Berlin,
2002, pp. 205-221.

[25] P. Hitzler, M. Wendt, A uniform approach to logicgqgramming semantics, Theory and Practice of Logic
Programming, in press.

[26] S. Holldobler, Automated infencing and connectionist modgl$-akultét Informatik, Technische
Hochschule Darmstadt, Habilitationsschrift, 1993.

[27] S. Holldobler, Challenge problems for the integratiof logic and connectionist systems, in: F. Bry, U.
Geske, D. Seipel (Eds.), Proceedings 14. Workshop Logische Programmierung, in: GMD Report, vol. 90,
GMD, 2000, pp. 161-171.

[28] S. Holldobler, Y. Kalinke, Towards a massivelyrael computational modelof logic programming, in:
Proceedings ECAI94 Workshop on Combining Symbolic and Connectionist Processing, ECCAI, 1994,
pp. 68—77.

[29] S. Halldobler, Y. Kalinke, H.-P. Storr, Approxirting the semantics of logic programs by recurrent neural
networks, Appl. Intelligence 11 (1999) 45-58.

[30] V. Lifschitz, Answer set planning, in: D. De Sclyee(Ed.), Logic Programming. Proceedings of the 1999
International Conference on Logic Pragnming, MIT Press, Cambridge, MA, 1999, pp. 23-37.

[31] J.W. Lloyd, Foundations of LogicrBgramming, Springer, Berlin, 1988.

[32] M.J. Maher, Equivalences of logic programs, n Minker (Ed.), Foundations of Deductive Databases and
Logic Programming, Morgan Kaufmann, Los Altos, CA, 1988, pp. 627—658.

[33] V.W. Marek, M. Truszczfiski, Stable models and an alternatiwgit programming paradigm, in: K.R.
Apt, V.W. Marek, M. Truszczigiski, D.S. Warren (Eds.), The LagiProgramming Paradigm: A 25-Year
Perspective, Springer, Berlin, 1999, pp. 375-398.

[34] W.S. McCulloch, W. Pitts, A logical calculus of thdeas immanent in nervous activity, Bull. Math. Bio-
phys. 5 (1943) 115-133.

[35] S. Muggleton, L. de Raedt, Inductive logic pragiming: Theory and applications, J. Logic Program-
ming 19-20 (1994) 629-679.

[36] G. Pinkas, Propositional non-monotonic reasoning aednsistency in symmetric neural networks, in: J.
Mylopoulos, R. Reiter (Eds.), Proceedings of the 12ttednational Joint Conference on Artificial Intelli-
gence, Morgan Kaufmann, 1991, pp. 525-530.

[37] J.B. Pollack, Recursive distributed repeagations, Artificial Intelligence 46 (1) (1990) 77-105.

[38] S. Priel3-Crampe, P. Ribenboim, Logic programmang ultrametric spaces, Rendiconti di Mathematica VIl
(2000) 1-13.

[39] S. PrieR-Crampe, P. Ribenboim, Ultrametrjzases and logic programming, J. Logic Programming 42
(2000) 59-70.

[40] A.K. Seda, Topology and the semantics of logic programs, Fund. Inform. 24 (4) (1995) 359-386.

[41] A.K. Seda, R. Heinze, P. Hitzler, Convergendasses and spaces of partial functions, in: G.-Q. Zhang,
J. Lawson, Y.M. Liu, M.K. Luo (Eds.), Domain Theory, Logic and Computation, in: Semantic Structures in
Computation, vol. 3, Kluwer, 2003, pp. 75-115.

[42] A.K. Seda, M. Lane, On continuous models of congpioh: Towards computing the distance between (logic)
programs, in: Proceedings of the Sixth Interoaéil Workshop in Formal Methods (IWFM’'03), Dublin
City University, Dublin, Ireland, July 2003, Eleotnic Workshops in Computing (eWiC), British Computer
Science, 2003.

[43] L. Shastri, Advances in Shruti—A neurally motivated model of relational knowledge representation and
rapid inference using temporal synchrony, Appl. Intelligence 11 (1999) 78-108.

[44] G.G. Towell, J.W. Shavlik, Knowledge-based aciéi neural networks, Afficial Intelligence 70 (1-2)
(1994) 119-165.

[45] S. Willard, General Topology, Addison-Wesley, Reading, MA, 1970.

In: D. Seipel, M. Hanus, U. Geske, and O. Bartenstein, Proceedings of the 15th International Conference on
Applications of Declarative Programming and Knowledge Management and the 18th Workshop on Logic
Programming, Potsdam, Germany, March 4-6, 2004, 13-27. Technical Report 327, Bayerische
Julius-Maximilians-Universitat Wirzburg, Institut fiir Informatik, March 2004.

Corollaries on the fixpoint completion: studying
the stable semantics by means of the Clark
completion

Pascal Hitzler**

Department of Computer Science, Dresden University of Technology
www.wv.inf.tu-dresden.de/~pascal/
phitzler@inf.tu-dresden.de

Abstract. The fixpoint completion fix(P) of a normal logic program P
is a program transformation such that the stable models of P are ex-
actly the models of the Clark completion of fix(P). This is well-known
and was studied by Dung and Kanchanasut [15]. The correspondence,
however, goes much further: The Gelfond-Lifschitz operator of P coin-
cides with the immediate consequence operator of fix(P), as shown by
Wendt [51], and even carries over to standard operators used for char-
acterizing the well-founded and the Kripke-Kleene semantics. We will
apply this knowledge to the study of the stable semantics, and this will
allow us to almost effortlessly derive new results concerning fixed-point
and metric-based semantics, and neural-symbolic integration.

1 Introduction

The fixpoint completion of normal logic programs was introduced in [15], and
independently under the notion of residual program in [9]. In essence, the fixpoint
completion fix(P) of a given program P is obtained by performing a complete
unfolding through all positive body literals in the program, and by disregarding
all clauses with remaining positive body literals. Its importance lies in the fact
that the stable models [20] of P are exactly the supported models of fix(P), i.e.
the models of the Clark completion [11] of fix(P). Also, the well-founded model
[50] of P is exactly the Fitting or Kripke-Kleene model [16] of fix(P). These
correspondences are well-known and have been employed by many authors for
investigating the stable and the well-founded semantics, see e.g. [7].

The relation between a program and its fixpoint completion, however, is not
exhausted by the correspondences between the different semantics just men-
tioned: It also concerns the semantic operators underlying these semantics, as
shown in [51]. The virtue of this observation lies in the fact that it allows to carry
over operator-based results on the supported, respectively, Fitting semantics, to

** This work was supported by a fellowship within the Postdoc-Programme of the
German Academic Exchange Service (DAAD) and carried out while the author was
visiting the Department of Electrical Engineering and Computer Science at Case
Western Reserve University, Cleveland, Ohio.

phi
In: D. Seipel, M. Hanus, U. Geske, and O. Bartenstein, Proceedings of the 15th International Conference on Applications of Declarative Programming and Knowledge Management and the 18th Workshop on Logic Programming, Potsdam, Germany, March 4-6, 2004, 13-27. Technical Report 327, Bayerische Julius-Maximilians-Universität Würzburg, Institut für Informatik, March 2004.

the stable, respectively, well-founded semantics. To the best of our knowledge,
this has not been noted before.

In this paper, we display the strength of the operator-based correspondence
by drawing a number of corollaries on the stable semantics from it. While these
results are of interest in their own right, they do not constitute the main point
we want to make here. Some of them are not even new, although we give new
proofs. The goal of this paper is to provide a new technical tool for studying
the stable and the well-founded semantics, namely the correspondences via the
fixpoint completion between the semantic operators mentioned. To display this,
we draw several corollaries from results in the literature, which are all valid for
logic programs over a first-order language.

The structure of the paper is as follows. In Section 2 we recall the fixpoint
completion and the results due to [51] which provide the starting points for our
report. In Section 3 we study continuity of the Gelfond-Lifschitz operator in the
Cantor topology, thereby providing technical results which will be of use later.
In Section 4 we study methods for obtaining stable models by means of limits of
iterates of the Gelfond-Lifschitz operator, and in Section 5 we will discuss results
on the representation of logic programs by artificial neural networks. We briefly
conclude in Section 6.

Acknowledgement. Thanks go to Matthias Wendt for helpful discussions and
comments.

2 The Fixpoint Completion

A (normal) logic program is a finite set of universally quantified clauses of the
form

V(A Ly A---ALy),

where n € N may differ for each clause, A is an atom in a first order language £
and Lq,..., L, are literals, that is, atoms or negated atoms, in L. As is customary
in logic programming, we will write such a clause in the form

A<—L1,...,Ln,
in which the universal quantifier is understood, or even as
AZ—Ll,...,Ln

following Prolog notation. Then A is called the head of the clause, each L; is
called a body literal of the clause and their conjunction L4, ..., L, is called the
body of the clause. We allow n = 0, by an abuse of notation, which indicates
that the body is empty; in this case the clause is called a unit clause or a fact.
If no negation symbol occurs in a logic program, the program is called a definite
logic program. The Herbrand base underlying a given program P, i.e. the set of
all ground instances of atoms over £, will be denoted by Bp, and the set of all

Herbrand interpretations by Ip, and we note that the latter can be identified
simultaneously with the power set of Bp and with the set 257 of all functions
mapping Bp into the set 2 consisting of two distinct elements. Since the set Ip
is the power set of Bp, it carries set-inclusion as natural ordering, which makes
it a complete lattice. By ground(P) we denote the (possibly infinite) set of all
ground instances of clauses in P.

The single-step or immediate consequence operator [37] of P is defined as a
function Tp : Ip — Ip, where T;(I) is the set of all A € Bp for which there
exists a clause A «— Lq,...,L, with I = L; for all i = 1,...,n. A supported
model of P is a fixed point of Tp. Supported models correspond to models
of the Clark completion of P, as noted in [1]. The pre-fixed points of Tp, i.e.
interpretations I € Ip with I C Tp(I), are exactly the Herbrand models of P,
in the sense of first-order logic. If P is definite, then Tp is in fact a Scott- (or
order-) continuous operator on Ip [37], and its least fixed point fix(Tp) coincides
with the least Herbrand model of P. The least fixed point, in this case, can be
obtained as fix(Tp) = Tp Tw :=sup, (Tp 1n) = J,, Tp In, where Tp 70 = () and
recursively Tp T (n+ 1) = Tp(Tp Tn).

The Gelfond-Lifschitz transformation [20] of a program P with respect to
an interpretation I is denoted by P/I, and consists of exactly those clauses
A«— Aq,...,A,, where Aq,..., A, € Bp, for which there exists a clause A «—
Ay,...,An,0By,...,1By, in ground(P) with By,...,B,, € I. Thus P/I is a
definite program, and fix(Tp/r) is well-defined. The Gelfond-Lifschitz operator
[20] of P is now defined by GLp : Ip — Ip : I — fix(Tp;;). We call I € Ip a
stable model of P if it is a fixed point of GLp.

Definition 1. A quasi-interpretation’ is a set of clauses of the form A «—
=Bi,...,m By, where A and B; are ground atoms for alli=1,... ,m. Given a
normal logic program P and a quasi-interpretation Q, we define Tp(Q) to be the
quasi-interpretation consisting of the set of all clauses

A «—body,,...,body,,"B1,...,7 By,
for which there exists a clause
A — Al,...,An,_'Bh...,_'Bm

in ground(P) and clauses A; < body, in Q for alli =1,...,n. We explicitly
allow the cases n =0 or m = 0 in this definition.

Note that the set of all quasi-interpretations is a complete partial order (cpo)
with respect to set-inclusion. It was shown in [15], that for normal programs P,
the operator T} is Scott-continuous on the set of all quasi-interpretations. So
we can define the fizpoint completion fix(P) of P by fix(P) = Tp Tw, i.e. fix(P)
is the least fixed point of the operator Thp.

The following was reported in [51].

! This notion is due to [15]. We stick to the old terminology, although quasi-
interpretations should really be thought of as, and indeed are, programs with nega-
tive body literals only.

Theorem 1. For any normal program P and (two-valued) interpretation I, we
have

GLp(I) = Thxp)(1)-

Proof. We show first that for every A € GLp(I) there exists a clause in fix(P)
with head A whose body is true in I, which implies A € Ty(p)(1). We show this
by induction on the powers of Tp,; recall that GLp(I) = Tp/; Tw.

For the base case Tp,; 10 = () there is nothing to show.

So assume now that for all A € Tp/; In there exists a clause in fix(P) with
head A, whose body is true in I. For A € Tp/; T (n+1) there exists a clause A «—
Ay,...,Apin P/I such that Ay, ..., A, € Tp/; Tn, hence by construction of P/I
there is a clause A «+ Ay,..., A,,~B1,...,7B,, in ground(P) with By, ..., B,, &
I. By induction hypothesis we obain that for each i = 1,...,n there exists
a clause A; < body; in fix(P) with I |= body,, hence A; € Ty p)(I). So by
definition of T} the clause A < body,,...body,,, °Bi,..., By, is contained in
fix(P). From I |=body; and By, ..., B, € I we obtain A € Ty py(I) as desired.

This closes the induction argument and we obtain GLp(I) C Tsxp)(1).

Now conversly, assume that A € Ty py(/). We show that A € GLp(I) by
proving inductively on k that T/ (1) € GLp([) for all k£ € N.

For the base case, we have TTHO(I) = () so there is nothing to show.

So assume now that T (1) € GLp(I), and let A € Tryyq1) (1) \ Ty (1).
Then there exists a clause A «— bodyy,...,body,, " Bi,...," By in Tp T (k +
1) whose body is true in I. Thus By,...,By, ¢ I and for each i = 1,...,n
there exists a clause A; «— body, in Tp T k with body, true in I. So A; €
Tryw(I) € GLp(I). Furthermore, by definition of 7% there exists a clause A «
Ai,..., Ay, ~By,...,7B,, in ground(P), and since By,...,B,, € I we obtain
A«— Ay,... A, € P/I. Since we know that Ay,..., A4, € GLp(I) we obtain A €
GLp(I), and hence Tryyx41)(1) € GLp(I). This closes the induction argument
and we obtain Ty py(I) € GLp(I). O

The proof of Theorem 1 is taken directly from [52], which appeared in com-
pressed form as [51]. We have included it here for completeness of the exhibition
and because the result is central for the rest of this paper. This correspondence
can also be carried over to the Fitting/well-founded semantics. More precisely,
the following was shown in [51], from which Theorem 1 is an easy Corollary.

Theorem 2. For any normal program P and any three-valued interpretation
I we have Wp(I) = Pgypy(I), where ¥p is the operator due to [6] used for
characterizing three-valued stable models of P, and $spy is the operator from
[16] used for characterizing the Fitting or Kripke-Kleene semantics of fix(P).

We do not include details on this result here since we will need it only in
passing in the sequel. The interested reader should consult [51]. A corollary from
the result just mentioned is that the well-founded model of some given program
P coincides with the Fitting model of fix(P).

3 Continuity

Theorem 1 enables us to carry over results on the single-step operator, respec-
tively on the supported-model semantics, to the Gelfond-Lifschitz operator re-
spectively the stable-model semantics. The following observation is of technical
importance.

Proposition 1. Let P be a definite program, A € Bp, and n € N. Then A €
TpTn if and only if A — is a clause in Tp T n.

Proof. Let A € Tp T n for some n € N. We proceed by induction on n. If
n = 1, then there is nothing to show. So assume that n > 1. Then there is a
clause A < body in ground(P) such that all atoms B; in body are contained in
TpT(n—1), and by induction hypothesis there are claues B; «— in Tp T (n — 1).
Unfolding these clauses with A < body shows that A « is also contained in
Tp1Tn.

Conversely, assume there is a clause A « in Tp T n. We proceed again by
induction. If n = 1, there is nothing to show. So let n > 1. Then there exists
a clause A «— A;,..., Ay in ground(P) and clauses A; < in T T (n — 1). By
induction hypothesis, we obtain A; € Tp T (n—1) for all 4, and hence A € Tp [n.

O

Since the single-step operator is not monotonic in general, several authors
have made use of metric-based [17, 18,22, 25-27, 29, 46] or even topological [3, 4,
22,24, 43,45, 47] methods for obtaining fixed-points and hence supported models
of the programs in question. Central to these investigations is the Cantor topol-
ogy @ on Ip, which was studied as the query topology in [4] and in more general
terms as the atomic topology in [45]. It is the product topology on {t,f}B7,
where the set of truth values {t,f} is endowed with the discrete topology, and
we refer to [53] for basic notions of topology. A subbase of the Cantor topology
can be given as

{{Ie€lp|IEL}|Lisaground literal},

which was noted in [45]. We can now employ Theorem 1 to carry over some of
these results to the treatment of the Gelfond-Lifschitz operator and the stable
semantics.

Given a program P, we know by Theorem 1 that GLp is continuous at some
I € Ip in Q if and only if T, (p) is continuous at I. This gives rise to the following
theorem.

Theorem 3. Let P be a normal logic program and let I € Ip. Then GLp is
continuous at I in Q if and only if whenever GLp(I)(A) = £, then either there
is no clause with head A in ground(P) or there exists a finite set S(I,A) =
{A1,..., Ax} C Bp such that I(A;) =t for all i and for every clause A «— body
in ground(P) at least one = A; or some B with GLp(I)(B) = f occurs in body.

Proof. The proof is based on the characterization of continuity of the Tp-operator
given in [45], in the formulation which can be found in [29, Theorem 45], which
reads as follows.

The single-step operator Tp is continuous in @ if and only if, for
each I € Ip and for each A € Bp with A & Tp(I), either there
is no clause in P with head A or there is a finite set S(I,A) =
{A1,..., Ak, B1,..., By} of elements of Bp with the following prop-
erties:

(1) Ay,..., Ay €1 and By,...,By ¢I

(ii) Given any clause C with head A, at least one ~A; or at least one

Bj occurs in the body of C'.

Using this and Theorem 1, and by observing that there are no positive body
atoms occuring in fix(P), we obtain the following:

GLp is continuous at I if and only if whenever GLp(I)(A) = £, then
either there exists no clause with head A in fix(P) or there exists a
finite set S(I,A) = {A1,..., Ax} C Bp such that I(A;) =t for all i
and for every clause A « body in fix(P) at least one —A; occurs in
body.

So let P be such that GLp is continuous at I. If there is no clause with
head A in ground(P), then there is nothing to show. So assume that there is
a clause with head A in ground(P). We already know that then there exists
a finite set S(I,A) = {44,...,Ax} C Bp such that I(4;) = t for all i and
for every clause A «— body in fix(P) at least one —A; occurs in body. Now let
A« By,...,Bg,—C,...,~C,, be a clause in ground(P) and assume that no
—A; occurs in its body. We show that there is some B; with GLp(I)(B;) = f.
Assume the contrary, i.e. that GLp(I)(B;) = t for all 4. Then for each B; we
have B; € GLp(I) = Tp;; Tw. As in the proof of Proposition 1 we derive that
there is a clause A < =Dy, ..., =Dy, ~C4,...,=C,y, in fix(P) with D; & I for all
j=1,...,n. Since the clause A «— —=Dy,...,~D,,~Cy,...,~C,, is contained in
fix(P), we know that some atom from the set S(I, A) must occur in its body. It
cannot occur as any D; because I(D;) = f for all 4. It also cannot occur as any
C; by assumption. So we obtain a contradiction, which finishes the argument.

Conversely, let P be such that the condition on GLp in the statement of
the theorem holds. We will again make use of the observation made at the
beginning of this proof. So let A € Bp with GLp(I)(A) = f. If there is no
clause with head A in fix(P), then there is nothing to show. So assume there is
a clause with head A in fix(P). Then there is a clause with head A in P, and by
assumption we know that there exists a finite set S(I, A) = {A1,...,Ax} C Bp
such that I(A;) = t for all ¢ and for every clause A «— body in ground(P)
at least one —A; or some B with GLp(I)(B) = f occurs in body. Now let
A «— —By,...,mB, be a clause in fix(P) = Tp T w, i.e. there is k € N with
A — =By,...,B, contained in T} T k. Note that n = 0 is impossible since this
would imply GLp(I)(A) = t contradicting the assumption on A. We proceed by

induction on k. If ¥ = 1, then A «+ —By,...,—B, is contained in ground(P),
hence one of the B; is contained in S(I, A) which suffices. For k > 1, there is
a clause A «— Cy,...,Cyy,m D1, ..., 2Dy, in ground(P) and clauses C; < body,
in Tp 7 (k — 1) which unfold to A «— —By,...,B,. By assumption we either
have D; € S(I, A) for some j, in which case there remains nothing to show, or
we have that GLp(I)(C;) = f for some i. In the latter case we obtain that body;
is non-empty by an argument similar to that of the proof of Proposition 1, so
by assumption there is a (negated) atom in body,, and hence in {By,..., B,},
which is also in S(I, A), which finishes the proof. O

We can also observe the following special instance. A local variable is a vari-
able occuring in some clause body but not in the corresponding head.

Corollary 1. Let P be a normal program without local variables. Then GLp is
continuous in Q).

Proof. We employ Theorem 3. Let I € Ip and A € Bp with GLp(I)(A4) = f.
Since P has no local variables, it is of finite type. So the set B of all negated
body atoms in clauses with head A is finite. Let S(I,A) = {B € B | I(B) = f},
which is also finite. If each clause with head A contains some negated atom
from S(I, A), then there is nothing to show. So assume there is a clause A «—
Aq,..., Ay, B, ..., By, in ground(P) with B; ¢ S(I, A) for all j, i.e. I(B;) =
t for all j. But then A « A;,..., A, is a clause in P/I and A ¢ Tp/; Tw, which
implies that there is some ¢ with A; ¢ Tp,; Tw = GLp(I), which finishes the
argument by Theorem 3. a

Measurability is much simpler to deal with.

Theorem 4. Let P be a normal program. Then GLp is measurable with respect
to the o-algebra o(Q) generated by Q.

Proof. By [28, Theorem 2], which states that Tp is measurable with respect to
o(Q) for all P, we obtain that Ty p) is measurable with respect to o(Q), and
by Theorem 1 we know that T py = GLp. a

4 Obtaining models

As already mentioned above, topological methods in logic programming can
for example be used for obtaining models of programs iteratively, although the
underlying operator is not monotonic. The following variant of [29, Theorem 44|
can be proven directly.

Theorem 5. Let P be a normal program and let GLp be continuous and such
that the sequence of iterates GL'D (I) converges in Q to some M € Ip. Then M
s a stable model of P.

Proof. By continuity we obtain
M =1lim GLE(I) = GLp(lim GLB (1)) = GLp(M).
O

We can also employ knowledge about relationships between the single-step
operator and the Fitting operator [16]. The latter is defined on three-valued
interpretations, which consist of sets of ground literals (instead of ground atoms)
which do not contain complementary literals. As such, they carry set-inclusion
as an ordering, which renders the space Ip 3 of all three-valued interpretations a
complete partial order (cpo). It is in fact exactly the Plotkin domain T* due to
[41]. Alternatively, we can understand three-valued interpretations as mappings
from atoms to the set {f,u,t} of truth values, where u stands for undefined or
undetermined. The Fitting operator @p, for given program P, is now defined as
afunction @p : Ipg — Ipg : [— tp(I)U fp(I), where tp(I) contains all A € Bp
for which there exists a clause A < Lq,..., L, in ground(P) with Ly, ..., L, € I,
and fp(I) contains all A such that for all clauses A « Ly, ..., L, in ground(P)
there is at least one L; ¢ I. It was shown in [16] that @p is a monotonic operator
on Ip,g.

If I is a three-valued interpretation, then I denotes the two-valued inter-
pretation assigning truth value t to exactly those atoms which are true in I.

Proposition 2. Let P be a normal program and assume that the well-founded
model M of P is total (i.e. every atom is true or false in it). Then GL(0)
converges in Q to MT, and M+ is the unique stable model of P.

Proof. This follows immeditately from Theorem 1 and [24, Theorem 4.4], which
shows the following.

If M = & 1w is total, then TE(0) converges in Q to M™, and M+
is the unique supported model of R.
(]

Metric-based approaches also carry over. A level mapping is a mapping from
Bp to some ordinal a. A program P is locally stratified [44] if there exists a level
mapping [: Bp — «, where « is some ordinal, such that for each clause A «—
Ay, ..., Ay, By, ...,B, in ground(P) we have I(A) > I(4;) and I(A) > I(B,)
for all ¢ and j. It is called locally hierarchical [10], if additionally I[(A) > I(A4;) for
all i. Given a level mapping [: Bp — «, we denote by I} the set of all symbols
278 for B < a, ordered by 277 < 277 iff v < 3. I} can be understood as a
subset of the reals if a = w, i.e. if [maps into the natural numbers. For two
(two-valued) interpretations I and .J, we define d;(I,.J) = 277, where 3 is the
least ordinal such that there is an atom of level 3 on which I and J disagree. If
a = w, then d; is an ultrametric on Ip, and this construction was put to use e.g.
in [17]. In the general case, d; is a generalized ultrametric on Ip, as used in logic
programming e.g. in [25,29,43]. A mapping f is called strictly contracting with
respect to a generalized ultrametric d if d(f(z), f(y)) < d(z,y) for all z,y with

x # y. Strictly contracting mappings have unique fixed points if the underlying
generalized ultrametric space satisfies a completeness condition called spherical
completeness [43].

Theorem 6. Let P be locally stratified with corresponding level mapping l. Then
GLp is strictly contracting with respect to dy, which is spherically complete. If 1
maps to w, then GLp is a contraction with respect to d;. Furthermore, in both
cases, GLp has a unique fized point and P has a unique stable model.

Proof. If P is locally stratified with respect to I, then fix(P) is locally hierar-
chical with respect to [. It thus suffices to apply Theorem 1 in conjunction with
Theorem [47, Theorem 3.8], which shows the following,.

Let R be a normal logic program which is locally hierarchical with
respect to a level mappingl : B — . Then T}, is strictly contracting
with respect to the generalized ultrametric d; induced by l. Therefore,

Tr has a unique fixed point and hence R has a unique supported
model.
O

With the remarks already made on the fact that the well-founded model of
some given program P coincides with the Fitting model of fix(P), for any nor-
mal program P, we can also derive the following result. Dislocated generalized
ultrametric spaces are defined by relaxing one of the defining conditions on gen-
eralized ultrametrics, for details see [29]. Strictly contracting mappings can be
defined analogously, and have similar properties.

Theorem 7. Let P be a program with total well-founded model I U —(Bp \
I), with I C Bp. Then GLp is strictly contracting on the spherically com-
plete dislocated generalized ultrametric space (Ip,), where we have o(J, K) =
max{d;(J,I),d;(I,K)} for all J,K € Ip, andl is defined by I(A) to be the min-
imal a such that Py py T(a+1)(A) = I(A).

Proof. The program P has a total well-founded model, which implies that fix(P)
has a total Fitting model. So [as given by the statement is well-defined, and
fix(P) is @-accessible in the sense of [29]. Now apply [29, Proposition 41], which
shows that Tp is strictly contracting for every ®-accessible program. a

5 Neural-symbolic integration

Intelligent systems based on logic programming on the one hand, and on artificial
neural networks (sometimes called connectionist sytems) on the other, differ
substantially. Logic programs are highly recursive and well understood from the
perspective of knowledge representation: The underlying language is that of first-
order logic, which is symbolic in nature and makes it easy to encode problem
specifications directly as programs. The success of artificial neural networks lies
in the fact that they can be trained using raw data, and in some problem domains

the generalization from the raw data made during the learning process turns out
to be highly adequate for the problem at hand, even if the training data contains
some noise. Successful architectures, however, often do not use recursive (or
recurrent) structures. Furthermore, the knowledge encoded by a trained neural
network is only very implicitly represented, and no satisfactory methods for
extracting this knowledge in symbolic form are currently known.

It would be very desirable to combine the robust neural networking machin-
ery with symbolic knowledge representation and reasoning paradigms like logic
programming in such a way that the strenghts of either paradigm will be re-
tained. Current state-of-the-art research, however, fails by far to achieve this
ultimate goal. As one of the main obstacles to be overcome we perceive the
question how symbolic knowledge can be encoded by artificial neural networks:
Satisfactory answers to this will naturally lead the way to knowledge extraction
algorithms and to hybrid neural-symbolic systems.

Earlier attempts to integrate logic and connectionist systems have mainly
been restricted to propositional logic, or to first-order logic without function
symbols. They go back to the pioneering work by McCulloch and Pitts [39], and
have led to a number of systems developed in the 80s and 90s, including Towell
and Shavlik’'s KBANN [49], Shastri’s SHRUTT [48], the work by Pinkas [40],
Holldobler [30], and d’Avila Garcez et al. [12, 14], to mention a few, and we refer
to [8, 13, 21] for comprehensive literature overviews.

Without the restriction to the finite case (including propositional logic and
first-order logic without function symbols), the task becomes much harder due
to the fact that the underlying language is infinite but shall be encoded using
networks with a finite number of nodes. The sole approach known to us for
overcoming this problem (apart from work on recursive autoassociative memory,
RAAM, initiated by Pollack [42], which concerns the learning of recursive terms
over a first-order language) is based on a proposal by Hoélldobler et al. [32],
spelled out first for the propositional case in [31], and reported also in [23]. It
is based on the idea that logic programs can be represented — at least up to
subsumption equivalence [38] — by their associated single-step operators. Such
an operator can then be mapped to a function on the real numbers, which can
under certain conditions in turn be encoded or approximated e.g. by feedforward
networks with sigmoidal activation functions using an approximation theorem
due to Funahashi [19].

We will carry over this result to the Gelfond-Lifschitz operator and the stable
model semantics. Since the topology @ introduced earlier is homeomorphic to the
Cantor topology on the real line [45], there exists a homeomorphism ¢ : Ip — C,
where C is the Cantor set within the unit interval, endowed with the subspace
topology inherited from the reals. We can thus embed any function f: Ip — Ip
which is continuous in @ as a continuous function ¢(f) : C — C : «(f)(z) =
t(f(t71(x))). By well-known results, e.g. [19] as mentioned earlier, such functions
can be approximated uniformly by artificial neural networks in many different
network architectures.

Theorem 8. Let P be a normal logic program. Then GLp can be approximated
almost everywhere up to an arbitrarily chosen error bound by input-output func-
tions of three-layer feedforward neural networks with sigmoidal activation func-
tions. If GLp is furthermore continuous in Q, then uniform approximation is
possible on all of C.

Proof. We use Theorem 1. The first statement then follows from Theorem 4
together with a result from [33] saying that each measurable function can be
approximated almost everywhere by three-layer feedforward networks in the in-
dicated way — see also [28, Theorem 7]. The second statement follows from [19]
or from [28, Theorem 5. O

The references mentioned in the proof of Theorem 8 provide further results, in
particular on error bounds, and they can also be carried over straightforwardly.

Another improvement on the basic results by Holldobler et al [32] employed
an alternative network architecture. In [2], results were provided for encoding
and approximating ¢(Tp) by iterated function systems, which in turn could be
encoded using a recurrent neural networks structure. The advantage of this ap-
proach is that algorithms for constructing approximating networks can be given
explicitly, in contrast to the results in [23,28,32]. These results also hinge on
continuity or Lipschitz-continuity of ¢(Tp) with respect to the Cantor topology
only, and can be carried over to the Gelfond-Lifschitz operator in a straightfor-
ward way. The paper [5] provides related results using cellular automata, treating
logic programs without local variables — a property which also carries over to
the fixpoint completion. Hence these results carry over mutatis mutandis to the
Gelfond-Lifschitz operator.

6 Conclusions

We have displayed the usefulness of the results reported in [51] to the operator-
based analysis of knowledge representation under the stable semantics. We have
shown that many results from the study of the supported-model semantics by
means of the single-step operator can be carried over to the stable semantics
almost without effort.

Our results are of a theoretical nature, and we do not propose to study
them for implementation purposes. The idea to use the fixpoint completion for
obtaining stable models (or similar constructions for obtaining answer sets or
well-founded models etc.) of programs is already folklore knowledge in the com-
munity, and need not be further mentioned. The emphasis of our exhibition is on
the observation that not only models, but also corresponding semantic operators
are related by means of the fixpoint completion, and on the aspects which this
new insight allows to study.

Our observations are valid for first-order languages including function sym-
bols, a syntax whose study is often neglected in the non-monotonic reasoning
community. It is not at all surprising, that for finite languages alternative meth-
ods of program transformation can be found, which allow for efficient computa-
tion of stable models [34-36].

References

10.

11.

12.

13.

14.

15.

16.

17.

Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Towards a theory of
declarative knowledge. In Jack Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 89-148. Morgan Kaufmann, Los Altos, CA, 1988.

Sebastian Bader and Pascal Hitzler. Logic programs, iterated function systems,
and recurrent radial basis function networks. Journal of Applied Logic, 200x. To
appear.

Aida Batarekh and V.S. Subrahmanian. The query topology in logic programming.
In Proceedings of the 1989 Symposium on Theoretical Aspects of Computer Science,
volume 349 of Lecture Notes in Computer Science, pages 375-387. Springer, Berlin,
1989.

Aida Batarekh and V.S. Subrahmanian. Topological model set deformations in
logic programming. Fundamenta Informaticae, 12:357-400, 1989.

Howard A. Blair, Jagan Chidella, Fred Dushin, Audrey Ferry, and Polar Humenn.
A continuum of discrete systems. Annals of Mathematics and Artificial Intelligence,
pages 153-186, 1997.

Stefan Bonnier, Ulf Nilsson, and Torbjoérn Néslund. A simple fixed point charac-
terization of three-valued stable model semantics. Information Processing Letters,
40(2):73-78, 1991.

Stefan Brass, Jiirgen Dix, Burkhardt Freitag, and Ulrich Zukowski.
Transformation-based bottom-up computation of the well-founded model.
Theory and Practice of Logic Programming, 1(5):497-538, 2001.

. Anthony Browne and Ron Sun. Connectionist inference models. Neural Networks,

14(10):1331-1355, 2001.

Francois Bry. Negation in logic programming: A formalization in constructive logic.
In Dimitris Karagiannis, editor, Information Systems and Artificial Intelligence:
Integration Aspects, First Workshop, Ulm, FRG, March 19-21, 1990, Proceedings,
volume 474 of Lecture Notes in Computer Science, pages 30—46. Springer, 1991.
Lawrence Cavedon. Acyclic programs and the completeness of SLDNF-resolution.
Theoretical Computer Science, 86:81-92, 1991.

Keith L. Clark. Negation as failure. In Hervé Gallaire and Jack Minker, editors,
Logic and Data Bases, pages 293-322. Plenum Press, New York, 1978.

Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. Symbolic knowledge
extraction from trained neural networks: A sound approach. Artificial Intelligence,
125:155-207, 2001.

Artur S. d’Avila Garcez, Krysia B. Broda, and Dov M. Gabbay. Neural-Symbolic
Learning Systems — Foundations and Applications. Perspectives in Neural Com-
puting. Springer, Berlin, 2002.

Artur S. d’Avila Garcez and Gerson Zaverucha. The connectionist inductive lerarn-
ing and logic programming system. Applied Intelligence, Special Issue on Neural
networks and Structured Knowledge, 11(1):59-77, 1999.

Phan Minh Dung and Kanchana Kanchanasut. A fixpoint approach to declarative
semantics of logic programs. In Ewing L. Lusk and Ross A. Overbeek, editors, Logic
Programming, Proceedings of the North American Conference 1989, NACLP’89,
Cleveland, Ohio, pages 604—625. MIT Press, 1989.

Melvin Fitting. A Kripke-Kleene-semantics for general logic programs. The Journal
of Logic Programming, 2:295-312, 1985.

Melvin Fitting. Metric methods: Three examples and a theorem. The Journal of
Logic Programming, 21(3):113-127, 1994.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Melvin Fitting. Fixpoint semantics for logic programming — A survey. Theoretical
Computer Science, 278(1-2):25-51, 2002.

Ken-Ichi Funahashi. On the approximate realization of continuous mappings by
neural networks. Neural Networks, 2:183-192, 1989.

Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Robert A. Kowalski and Kenneth A. Bowen, editors, Logic Pro-
gramming. Proceedings of the 5th International Conference and Symposium on
Logic Programming, pages 1070-1080. MIT Press, 1988.

Hans W. Giisgen and Steffen Hoélldobler. Connectionist inference systems. In
Bertram Fronhofer and Graham Wrightson, editors, Parallelization in Inference
Systems, volume 590 of Lecture Notes in Artificial Intelligence, pages 82-120.
Springer, Berlin, 1992.

Pascal Hitzler. Generalized Metrics and Topology in Logic Programming Semantics.
PhD thesis, Department of Mathematics, National University of Ireland, University
College Cork, 2001.

Pascal Hitzler, Steffen Hoélldobler, and Anthony K. Seda. Logic programs and
connectionist networks. Journal of Applied Logic, 200x. To appear.

Pascal Hitzler and Anthony K. Seda. Acceptable programs revisited. In Proceedings
of the Workshop on Verification in Logic Programming, 16th Int. Conf. on Logic
Programming, ICLP’99, Las Cruces, New Mexico, volume 30 of Electronic Notes
in Theoretical Computer Science, pages 1-18. Elsevier, 1999.

Pascal Hitzler and Anthony K. Seda. The fixed-point theorems of Priess-Crampe
and Ribenboim in logic programming. In Valuation Theory and its Applications,
Proceedings of the 1999 Valuation Theory Conference, University of Saskatchewan
in Saskatoon, Canada, volume 32 of Fields Institute Communications Series, pages
219-235. American Mathematical Society, 1999.

Pascal Hitzler and Anthony K. Seda. Some issues concerning fixed points in com-
putational logic: Quasi-metrics, multivalued mappings and the Knaster-Tarski the-
orem. In Proceedings of the 14th Summer Conference on Topology and its Appli-
cations: Special Session on Topology in Computer Science, New York, volume 24
of Topology Proceedings, pages 223250, 1999.

Pascal Hitzler and Anthony K. Seda. A new fixed-point theorem for logic pro-
gramming semantics. In Proceedings of the joint I1IS & IEEE meeting of the 4th
World Multiconference on Systemics, Cybernetics and Informatics, SCI2000, and
the 6th International Conference on Information Systems Analysis and Synthesis,
ISAS2000, Orlando, Florida, USA, volume VII, Computer Science and Engineer-
ing Part 1, pages 418-423. International Institute of Informatics and Systemics:
IIIS, 2000.

Pascal Hitzler and Anthony K. Seda. Continuity of semantic operators in logic
programming and their approximation by artificial neural networks. In Andreas
Giinter, Rudolf Krause, and Bernd Neumann, editors, Proceedings of the 26th Ger-
man Conference on Artificial Intelligence, KI2003, volume 2821 of Lecture Notes
in Artificial Intelligence, pages 105—119. Springer, 2003.

Pascal Hitzler and Anthony K. Seda. Generalized metrics and uniquely determined
logic programs. Theoretical Computer Science, 305(1-3):187-219, 2003.

Steffen Holldobler. Automated Inferencing and Connectionist Models. Fakultét
Informatik, Technische Hochschule Darmstadt, 1993. Habilitationsschrift.

Steffen Holldobler and Yvonne Kalinke. Towards a massively parallel computa-
tional model for logic programming. In Proceedings ECAI194 Workshop on Com-
bining Symbolic and Connectionist Processing, pages 68-77. ECCAI, 1994.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Steffen Holldobler, Yvonne Kalinke, and Hans-Peter Storr. Approximating the
semantics of logic programs by recurrent neural networks. Applied Intelligence,
11:45-58, 1999.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2:359-366, 1989.
Joohyung Lee and Vladimir Lifschitz. Loop formulas for disjunctive logic pro-
grams. In Catuscia Palamidessi, editor, Logic Programming, 19th International
Conference, ICLP 2003, Mumbai, India, December 2003, Proceedings, volume 2916
of Lecture Notes in Computer Science, pages 451-465. Springer, 2003.

Fangzhen Lin and Jicheng Zhao. On tight logic programs and yet another transla-
tion from normal logic programs to propositional logic. In Georg Gottlob and Toby
Walsh, editors, Proceedings of the 18th International Joint Conference on Artificial
Intelligence, Acapulco, Mexico, August 2003, pages 853-858. Morgan Kaufmann
Publishers, 2003.

Fangzhen Lin and Yiting Zhao. ASSAT: Computing answer sets of a logic program
by SAT solvers. In Proceedings of the Fighteenth National Conference on Artificial
Intelligence and Fourteenth Conference on Innovative Applications of Artificial In-
telligence, July/August, 2002, Edmonton, Alberta, Canada, pages 112-118. AAAI
Press, 2002.

John W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 1988.
Michael J. Maher. Equivalences of logic programs. In Jack Minker, editor, Foun-
dations of Deductive Databases and Logic Programming, pages 627-658. Morgan
Kaufmann, Los Altos, CA, 1988.

Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.

Gadi Pinkas. Propositional non-monotonic reasoning and inconsistency in symmet-
ric neural networks. In John Mylopoulos and Raymond Reiter, editors, Proceedings
of the 12th International Joint Conference on Artificial Intelligence, pages 525-530.
Morgan Kaufmann, 1991.

Gordon Plotkin. T* as a universal domain. Journal of Computer and System
Sciences, 17:209-236, 1978.

Jordan B. Pollack. Recursive distributed representations. Artificial Intelligence,
46(1):77-105, 1990.

Sibylla Prie-Crampe and Paolo Ribenboim. Ultrametric spaces and logic pro-
gramming. The Journal of Logic Programming, 42:59-70, 2000.

Teodor C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In Jack Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 193-216. Morgan Kaufmann, Los Altos, CA, 1988.
Anthony K. Seda. Topology and the semantics of logic programs. Fundamenta
Informaticae, 24(4):359-386, 1995.

Anthony K. Seda. Quasi-metrics and the semantics of logic programs. Fundamenta
Informaticae, 29(1):97-117, 1997.

Anthony K. Seda and Pascal Hitzler. Topology and iterates in computational logic.
In Proceedings of the 12th Summer Conference on Topology and its Applications:
Special Session on Topology in Computer Science, Ontario, August 1997, volume 22
of Topology Proceedings, pages 427-469, 1997.

Lokenda Shastri. Advances in Shruti — A neurally motivated model of relational
knowledge representation and rapid inference using temporal synchrony. Applied
Intelligence, 11:78-108, 1999.

Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based artificial neural net-
works. Artificial Intelligence, 70(1-2):119-165, 1994.

50.

51.

52.

53.

Allen van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded seman-
tics for general logic programs. Journal of the ACM, 38(3):620-650, 1991.
Matthias Wendt. Unfolding the well-founded semantics. Journal of Electrical
Engineering, Slovak Academy of Sciences, 53(12/s):56-59, 2002. (Proceedings of
the 4th Slovakian Student Conference in Applied Mathematics, Bratislava, April
2002)2.

Matthias Wendt. Unfolding the well-founded semantics. Technical Report WV—
02-08, Knowledge Representation and Reasoning Group, Department of Com-
puter Science, Dresden University of Technology, 2002. http://www.wv.inf.tu-
dresden.de/Publications/2002/.

Stephen Willard. General Topology. Addison-Wesley, Reading, MA, 1970.

? Available online as [52].

In: L. Li and K.K. Yen, Proceedings of the Third International Conference on Information, Tokyo, Japan,
November/December 2004. ISBN 4-901329-02-2, International Information Institute, pp. 22-33.

The Integration of Connectionism and First-Order
Knowledge Representation and Reasoning as a
Challenge for Artificial Intelligence

Sebastian Bader!, Pascal Hitzler?, Steffen Hélldobler!

International Center for Computational Logic
Technische Universitat Dresden, Germany
2AIFB, Universitit Karlsruhe, Germany

Abstract

Intelligent systems based on first-order logic on the one hand, and
on artificial neural networks (also called connectionist systems) on the
other, differ substantially. It would be very desirable to combine the ro-
bust neural networking machinery with symbolic knowledge representa-
tion and reasoning paradigms like logic programming in such a way that
the strengths of either paradigm will be retained. Current state-of-the-art
research, however, fails by far to achieve this ultimate goal. As one of
the main obstacles to be overcome we perceive the question how symbolic
knowledge can be encoded by means of connectionist systems: Satisfac-
tory answers to this will naturally lead the way to knowledge extraction
algorithms and to integrated neural-symbolic systems.

1 Introduction

Artificial neural networks — also called connectionist systems — exhibit many
desirable properties of intelligent systems like, for example, being massively par-
allel, context-sensitive, adaptable and robust (see eg. [14]). It is strongly believed
that intelligent systems must also be able to represent and reason about struc-
tured objects and structure-sensitive processes (see eg. [16, 35]). Unfortunately,
we are unaware of any connectionist system which can handle structured ob-
jects and structure-sensitive processes in a satisfying way. Logic systems were
designed to cope with such objects and processes and, consequently, it is a long-
standing research goal to combine the advantages of connectionist and logic
systems in a single system.

Earlier attempts to integrate logic and connectionist systems have mainly
been restricted to propositional logic, or to first-order logic without function
symbols. They go back to the pioneering work by McCulloch and Pitts [34],
and have led to a number of systems developed in the 80s and 90s, including
Towell and Shavlik’s KBANN [45], Shastri and Ajjanagadde’s SHRUTI [43], Lange
and Dryer’s ROBIN [32] the work by Pinkas [37], Holldobler [22], and d’Avila
Garcez et al. [10, 13], to mention a few, and we refer to [9, 11] for comprehensive
literature overviews.

Without the restriction to the finite case (including propositional logic and
first-order logic without function symbols), the task becomes much harder due

phi
In: L. Li and K.K. Yen, Proceedings of the Third International Conference on Information, Tokyo, Japan, November/December 2004. ISBN 4-901329-02-2, International Information Institute, pp. 22-33.

to the fact that the underlying language is infinite but shall be encoded using
networks with a finite number of nodes. One of the few approaches for over-
coming this problem (apart from work on recursive autoassociative memory,
RAAM, initiated by Pollack [40], which concerns the learning of recursive terms
over a first-order language) is based on a proposal by Holldobler et al. [27], and
reported also in [18]. It is based on the idea that logic programs can be repre-
sented by their associated single-step or immediate consequence operators. Such
an operator can then be mapped to a function on the real numbers, which can
under certain conditions in turn be encoded or approximated e.g. by feedforward
networks with sigmoidal activation functions.

The purpose of this paper is twofold. First, we will give an overview of recent
progress made in the representation of first-order logic programs by connection-
ist systems (Section 2). We will then discuss in detail some questions which we
find of central importance in order to advance towards an integration of logic
and connectionism (Section 3). Our selections are certainly very subjective, so
we also provide ample references to related work and literature for further read-
ing. Our discussions will be in very general terms, and we will make most of our
general exhibition accessible to the general reader. Some familiarity with basic
notions from logic and artificial neural networks, and also from set-theoretic
topology and iterated function systems will however be helpful for understand-
ing some of the details. As general references we recommend [33, 7, 47, 4].

Acknowledgements. The first author is supported by the GK334 of the Ger-
man Research Foundation. The second author is supported by the German
Federal Ministry of Education and Research under the SmartWeb project and
the EU Network of Excellence KnowledgeWeb. The second and third author ac-
knowledge substantial support by the Boole Centre for Research in Informatics
at the National University of Ireland, Cork, for presenting this paper.

2 Recent Progress

Integrating first-order logical knowledge representation and connectionism ne-
cessitates to find a common framework in which both kinds of systems can be
expressed and somehow unified.

Logical knowledge representation is symbolic in nature, i.e. the data struc-
tures under consideration basically consist of words over some language or of
collections of finite trees, for example, depending on the perspective taken or
on the problem at hand. Logic programs, more specifically, consist of sets of
first-order formulae under a restricted syntax, more precisely, a logic program
is a set of (universally quantified) disjunctions, called clauses or rules, which in
turn consist of atoms and negated atoms only. Equivalently, one can say that
logic programs are basically formulae in conjunctive normal form — although
their meaning, i.e. the way they are evaluated, is not identical to their mean-
ing in first-order logic. Input (queries) and output (answers) of a logic program
essentially consist of certain logical formulae or of models of the program.

Successful connectionist architectures, however, can be understood as net-
works (essentially, directed graphs) of simple computational units, in which ac-
tivation is propagated and combined in certain ways adhering to connectionist
principles. In many cases like, for example, in multilayer perceptrons, the acti-
vation is encoded as a real number; input and output of such networks consist

of tuples (vectors) of real numbers. So, while logic is symbolic and thus discrete,
standard connectionist systems are continuous, i.e. they deal with real values in
Euclidean space.

In order to integrate logic and connectionism we thus need to bridge the gap
between the discrete, symbolic setting of logic, and the continuous, real-valued
setting of artificial neural networks. The method of our choice — motivated by
several reasons which will become clear below — is to employ Cantor space for
this purpose.

Cantor space C is — up to homeomorphism — a subset of the unit interval
of the real numbers endowed with the topological structure inherited from the
reals. The set is best described as the set of all real numbers in the unit interval
which can be expressed in the ternary number system using the digits 0 and 2
only. More precisely, C is the set of all real numbers of the form Y =, a;37¢,
where a; € {0,2} for all i. We remark that topologically, we obtain homeomor-
phic subsets of the reals by considering all real numbers of the form Y ;o a;B™,
where a; € {0,1} and B is fixed to some natural number greater than or equal
to 3. This lies in the fact that Cantor space can be uniquely described — up
to homeomorphism — as the topological space which is totally disconnected,
compact, Hausdorff, second countable, and dense in itself.

How do we relate Cantor space to first-order logic? The topological charac-
terization of C just given already shows that it can be described independently
of the real numbers. Now consider some first-order language L. Interpretations
(or valuations) over £ can be understood as mappings from the countable set of
ground atoms over £ — which we call the Herbrand base By over L — to the
set of truth values {t,f}. Identifying t with 2 (or 1) and f with 0, the set of all
interpretations over £ can be identified with the set of all mappings from B, to
{0,2}. Since B, is countable, we can also choose an enumeration of B, which is
essentially an identification of B,y with N, the set of natural numbers excluding
zero, or, in other words, a bijective mapping [: B, — N. We can thus identify
the set of all interpretations over £, which are of the form I : By — {t,f}, with
the set of all mappings f : N — {0, 2}.

Now, formally, let [: By — N be an (arbitrarily chosen) bijection and let I
be the set of all interpretations over L, i.e. the set of all mappings from B, to
{0,2}. We define a mapping ¢ from I to C by

(1) = 30107 ()37

It is easily verified that ¢ is a bijection.

The mapping ¢ allows to understand the set of interpretations as the Cantor
set in the real line. But does it also preserve meaningful structure, i.e. does it
relate meaningful structure for logic programs on the one side with meaningful
structure for connectionist sytems on the other side? We will see that it does,
and in order to proceed, we reproduce next a theorem due to Funahashi [17].

Theorem 1 Suppose that ¢ : R — R is non-constant, bounded, monotone in-
creasing and continuous. Let K C R™ be compact, let f : K — R be a contin-
uous mapping and let € > 0. Then there exists a 3-layer feedforward network
with squashing function ¢ whose input-output mapping f : K — R satisfies
max,cr d(f(2), f(x)) < €, where d is a metric which induces the natural topol-
ogy on R.

For the reader who is not familiar with the terminology of the theorem, we
state its intuitive meaning: Every continuous real-valued function defined on
a compact subset of the reals can be uniformly approximated by input-output
mappings of artificial neural networks of a certain architecture. The details of
this architecture will not concern us for our general discussion.

Funahashi’s theorem provides an existence result for approximating conti-
nous functions on the reals. So if we manage to interpret logic programs as such
functions in a meaningful way, then we know that approximation of logic pro-
grams by neural networks is possible in a reasonable way. We need two more
steps in order to realize this idea.

Firstly, we note that it is very common in logic programming to associate
operators to logic programs in such a way that the behaviour of the operator
reflects the meaning of the program. One of the most popular — and arguably
the most natural — operator is the so-called immediate consequence operator
Tp associated with a given program P. Details of the definition of Tp will be
of no concern for our general discussion, so we will not spell them out. For
the same reason, we also omit a formal definition of a logic program, and just
remark that logic programs are certain sets of first-order logical formulae, as
already mentioned. The operator Tp is an operator which acts on I, i.e. on the
space of all interpretations of the underlying first-order language. Since ¢ maps
I, bijectively onto C, we can carry over the operator Tp via ¢ to the reals, by
defining

UTp):C—C:axw o(Tp(t™ ().

Hence, ¢(Tp) is a mapping on Cantor set which carries the meaning of P.

Secondly, we need to ensure that the embedded mapping ¢(Tp) just defined
is continuous on Cantor space, such that Funahashi’s theorem can be applied.
This, for example, is the case if Tp is continuous with respect to the initial
topology induced by ¢ on Iz — let us denote this topology by @. Since ¢ is a
bijection, it follows that it is a homeomorphism from (I, @) to Cantor space C
— i.e. (I, Q) is Cantor space up to homeomorphism, and +(Tp) is continuous
as a function on C if and only if Tp is continuous as a function on (I, Q).
Together, we obtain the following result, which was reported in [18] in a more
general form.

Theorem 2 Let P be a logic program such that Tp is continuous in @), and
let ¢ be a homeomorphism from (Iz,Q) to C. Then (Tp) can be approximated
uniformly by input-output functions of artificial neural networks of the kind used
in Theorem 1.

The importance of Theorem 2 lies in the fact that the topology @ on I,
is well-known in logic programming. Indeed, it is the most important topol-
ogy for the study of fixed-point semantics for programs with negation. It dates
back to the work by Batarekh and Subrahmanian [5] where it was called the
query topology. Seda [42] studies a generalization of it under the name atomic
topology, and in the same paper it was also shown that continuity in @ can
naturally be characterized without making reference to topological notions. It is
also strongly related to the studies of fixed-point semantics of logic programs by
means of generalized metrics, as e.g. undertaken by Fitting [15], Priefi-Crampe
& Ribenboim [41] and Seda & Hitzler [20].

Due to its very general nature, Theorem 2 carries a lot of inherent flexibility.
The particular instance of ¢ given earlier is only one very specific example of a
homeomorphism which can be used. Indeed, the number of automorphisms of
Cantor space is uncountable. The specific representations of Cantor space as a
subspace of the reals given earlier are also just very particular examples of such
representations. Results analogous to that by Funahashi furthermore hold for
many popular neural network architectures, such that our investigations are not
a priori restricted to certain types of connectionist systems.

But the flexibility gained by the general nature of Theorem 2 does not come
for free. In particular, it provides no means of actually obtaining an approx-
imating network from a concretely given program. At best, we would like to
be able to read off parameters for an approximating network directly from a
given program. To date, it is an open problem how to do this along the lines of
Theorem 2.

A different approach towards obtaining concrete approximations was under-
taken by us in [2]. It was based on the observation that graphs of embedded
operators t(Tp), displayed in the Euclidean plane, exhibit self-similar structures
known from chaos theory. More precisely, the graphs appeared to be attractors
of iterated function systems as studied, for example, in the well-known book by
Barnsley [4]. This led to the following theorem, which is stated in slightly more
general form in [2].

Theorem 3 Let P be a logic program such that o(Tp) is Lipschitz-continuous.
Then there exists an iterated function system on the FEuclidean plane whose
attractor is the graph of «(Tp).

The importance of Theorem 3 lies in the fact that iterated function systems
can be encoded very easily as some standard type of recurrent neural networks,
and we have spelled this out in [2]. The very general Theorem 3 also leads to
concrete instances of iterated function systems — and thus of corresponding
networks — for approximating ¢((Tp): Given a program P and an arbitrarily
chosen accuracy of the approximation ¢ € N, we need only determine a finite
number of explicitly determined function values of ¢(Tp), in order to arrive at
an iterated function system S; whose attractor f; is the graph of a continuous
function — details of the construction can be found in [2]. Our result now reads
as follows.

Theorem 4 Let P be a program with Lipschitz-continuous ¢(Tp). Then the se-
quence (fi)ien of attractors, as mentioned above, converges uniformly to «(Tp).

A concrete open problem remaining with Theorem 4 is that the determina-
tion of a suitable iterated function system S; from a given program P hinges
on the explicit knowledge about an upper bound for the Lipschitz-constant for
(Tp) — if it exists at all.

We close our brief survey with a number of further remarks.

(1) The idea to represent a logic program via its semantic operator traces
back to Holldobler & Kalinke [23], surveyed in [18], where this idea was employed
for the propositional case. D’Avila Garcez et al. [10, 13] have molded this into
an integrated learning system which uses backpropagation.

(2) A very restricted version of Theorem 2 was shown in [27] using different
methods. There, and in [18], the network architecture was also extended in order

to mimic iterations of the immediate consequence operator, and corresponding
results on the convergence behaviour and speed of these iterations were provided.

(3) It was shown in [18] that many semantic operators in logic programming,
including the immediate consequence operator, are measurable. While there
exist approximation results relating measurability to artificial neural networks,
e.g. by Hornik et al. [29], it is an open issue whether this fact can be exploited
for neural-symbolic integration.

(4) A recent result by Wendt [46] relates semantic operators used in answer
set programming [44] to the immediate consequence operator, and thus allows
to use our results for studying non-monotonic reasoning with logic programs
in a connectionist setting. This remains to be spelled out. Some preliminary
investigations can be found in [19].

(5) We are recently investigating the use of weighted automata and fibring
neural networks for our purposes [3, 12].

After this survey on the current state of the art of relating logic programs
and connectionist networks we will identify a number of open research problems
in the following section.

3 Challenges

3.1 How can first-order terms be represented and manipulated
in a connectionist system?

This is the main question that needs to be answered, and our recent results
presented in the previous section are along this line. We consider this question
to be of central importance because the development of a satisfactory and us-
able representation of first-order formulae is the first necessary step towards
neural-symbolic integration. The proposals made so far do not give a satisfying
answer to this question: Structured connectionist networks as used e.g. in [21]
are completely local. The unification and matching operations can directly be
implemented in these networks. However, the number of units is quadratic and
the number of connections even cubic wrt the size of the terms. It is not obvious
at all how such networks can be learned.

Vectors of fixed length are used to represent terms in the recursive auto-
associative memory and its derivatives [39, 1]. Unfortunately, in extensive tests
none of these proposals has led to satisfying results: The systems could not
safely store and recall terms of depth larger than five [30].

In hybrid systems terms are represented and manipulated in a conventional
way. But this is not a kind of integration we are hoping for because in this case
results from connectionist systems cannot be applied to the conventional part.

The phase-coding mechanism suggested in SHRUTI [43] and used in the BUR
system [25] restricts the first-order language to contain only constants and multi-
place relation symbols.

We definitely need new ideas to solve this challenge problem! Connectionist
encodings for conventional data structures like counters and stacks [24, 31] have
been proposed and may be of use, and the study of relationships between logic
programs, neural networks, and other paradigms in computing and mathemat-
ics like cellular and weighted automata, dynamical systems, and the like, may
provide new ideas.

3.2 How can first-order rules be extracted from a connectionist
network?

To the best of our knowledge all rule extraction techniques for connectionist
networks are propositional in the sense that they only generate propositional
rules. For example, the propositional networks in [23] were slightly modified in
[13, 10] such that backpropagation could be applied and standard rule extraction
techniques could be used to extract new revised — but propositional — rules.
The results from [18] guarantee the existence of recurrent networks with
a feed forward kernel to approximate the meaning of a first-order program.
Backpropagation can again in principle be used to train these kernels. But it is
by no means obvious how the rule extraction techniques known so far can be
generalized such that first-order rules are extracted from these kernels.

3.3 How can distributed knowledge representation in connection-
ist networks be understood from a symbolic perspective?

Although this question is being subsumed by the previous two, we want to
emphasize the difficulties underlying distributed representations explicitly. The
representation of propositional logic in connectionist networks most often is very
local, while standard network training normally leads to distributed represen-
tation, which is very difficult to interpret in a symbolic manner.

The situation becomes worse for first-order logic, where due to the infinitary
nature of the underlying language there seems to be no way at all to avoid
distributed representation. We understand that this issue provides the main
obstacle in developing constructive methods for the representation of first-order
logic programs by means of Funahashi’s theorem, and we also expect this to be
a major issue in order to make advances in first-order rule extraction.

3.4 How can established learning algorithms like backpropaga-
tion be combined with symbolic knowledge representation?

For the propositional system developed by d’Avila Garcez et al. [10, 13], sym-
bolic knowledge is being represented by a network, which is then trained using
backpropagation. Afterwards, the learned knowledge may be extracted. A sim-
iliar approach underlies the KBANN system due to Towell and Shavlik [45].

While this is a good idea, we see the risk that the initial knowledge may be
lost in the course of the training process, although it should rather influence
it. We envision an integration via continuous interaction of standard learning
techniques with background and dynamically acquired knowledge. How this can
be achieved, however, is as yet entirely unclear.

Another problem is posed by the fact that the representation of first-order
knowledge easily leads to non-standard network architectures, like in the SHRUTI
system [43], which cannot be trained easily, or at least cannot be trained with
established methods without loosing the specific logically meaningful architec-
ture. The latter would be the case e.g. with the recurrent networks obtained
from iterated function systems as mentioned in Section 2. Modified learning
algorithms will have to be established and studied for these purposes.

3.5 How can multiple instances of first-order rules be represented
in a connectionist system?

One of the properties of first-order reasoning is that it cannot be determined
in advance how many copies of a rule are needed to answer a given query or,
equivalently, to prove a theorem. In local connectionist systems like CHCL [26]
this problem is defined away by simply assuming that each rule is used only
once. A similar assumption is made in SHRUTI, where each relation may be
instantiated only a fixed number of times in one reasoning episode. This is
not a general solution since even for datalogic programs — which do not need
function symbols in the underlying language — exponentially many copies may
be needed. The BUR system from [25] does not provide multiple copies, which
is the reason for the fact that the system may be unsound if multiplace relation
symbols are involved.

The results from [18] suggest that the problem of generating new instances
of a rule can be mapped on the problem of obtaining a better approximation
of the least model of a logic problem in the following sense: The level assigned
to ground atoms occurring in the n-th iteration of the meaning function for the
first time should be higher than the level assigned to ground atoms which occur
at earlier stages. If the accuracy of an approximation can then be correlated to
the available hardware resources as in [24], we might obtain a solution for this
challenge problem.

3.6 How can insights from neuroscience be used to design inte-
grated systems which are biologically feasible?

Artificial neural networks are very coarse abstractions of biological networks.
Connectionist networks used for the study of neural-symbolic integration, how-
ever, are often biologically much less feasible than standard architectures like
multilayer perceptrons. While it is important to study the formal relationships
between first-order logic and connectionist systems, we believe that it is also
important to study biological networks from the perspective of symbolic knowl-
edge processing. Can the accumulation of electric potential within a dendritic
tree be understood from a logial perspective? Can we develop methods to un-
derstand the temporal aspects of different transmission times between different
neurons? Can we assign logical meaning to firing patterns of collections of neu-
rons? Interdisciplinary efforts are required to answer these questions!

3.7 What is the exact relationship between neural-symbolic in-
tegration and chaos theory? Can this be exploited?

This question is prompted not only by our results reported in Section 2, but
also by work by Blair et al. on the relationship between cellular automata,
topological dynamics, logic programming, and other paradigms related to chaos
theory [8]. The structural coincidences are striking, but research in this direction
is difficult due to the fact that the related paradigms all turn out to be equally
hard to study, and advances will most likely necessitate entirely new ideas for
approaching these issues.

3.8 What does a theory for the integration of logic and connec-
tionist systems look like?

The results achieved so far on connectionist inference systems are more or less
unrelated to each other. Different logics are mapped onto different connectionist
systems and very often not much effort has been spent on (i) formally showing
properties of the system, (ii) formally relating the logic to the system and (iii)
formally relating the various systems to each other. There are some exceptions
though, eg. in [21] it was proven that the presented connectionist system really
solves the unification and matching problem or in [6] we have given a rigorous
logical reconstruction of the backward reasoning version of SHRUTI.

We would like to see a theory where in various layers of increased expres-
siveness logics, their corresponding connectionist models, their time and space
complexities, their properties concerning learning and rule extraction as well as
learning and rule extraction algorithms are specified. Such a theory could be
developed along the lines proposed in [23], the BUR system, [10, 13], and [2, 18]:
In each layer the logic would be defined by a certain class of logic programs and
the corresponding connectionist systems would be recurrent neural networks.

For example, if the logic programs are propositional, then interpretations
are represented locally. The units in the corresponding recurrent neural net-
work are logical threshold units. If learning shall be applied, then the threshold
units in the hidden layer must be replaced by sigmoidal ones. If the programs
are datalogic programs, then the corresponding recurrent neural network must
be able to bind variables to constants which can be done by using phase coding
as in SHRUTI and BUR. If the logic programs are full first order, then inter-
pretations shall be represented by vectors of real numbers and models are only
approximated, etc.

The logics in such a theory shall not only be the standard monotonic ones,
but we should also consider nonmonotonic ones. By the way, nonmonotonic
reasoning was originally proposed as a technique for “jumping to a conclusion”.
Nowadays conventional nonmonotonic reasoning systems have time and space
complexities which are not at all in accordance with the original goal. It may well
be that connectionist techniques may help to put the research in nonmonotonic
reasoning techniques back on track.

A general theory for the integration of logic and connectionist systems could
also be developed for symmetric networks [28]. Pinkas has shown that the prob-
lem of finding a model for a propositional logic formula is equivalent to finding a
global minimum in an energy function [38]. He has extended his results to some
nonmonotonic [37] and first-order logics [36]. Again, the picture is far from being
complete.

3.9 Can such a theory be applied in a real domain outperforming
conventional approaches?

All applications of connectionist inference systems that we have seen so far are
toy examples. We have to come up with applications in real domains which
outperform conventional approaches. This can only be done if we use hardware
which exploits the massive parallelism of connectionist networks. If we are rea-
soning in a logic whose entailment problem is in AN'C and an efficient or optimal
parallel algorithm for deciding this problem is known, then it does not suffice

to simulate this algorithm on a computer with just a few processors.

Because a general theory for integrating logic and connectionist systems may
be layered, applications we are looking for should have a similar structure. It
may be worth while to look for such an application in the area of integrating
the low-level control of a real robot with the high-level control developed in the
area of cognitive robotics. Such an application would also be a good showcase
for learning and rule extraction: Even if such a robot is initialized with some
knowledge, it must learn to behave in its environment, and this learning never
stops. Consequently, the knowledge is constantly updated.

4 Summary

In this paper we have given an overview on how first-order logic programs can
be represented in a connectionist setting and outlined various challenges for de-
veloping a truly connectionist system capable of representing structured objects
and performing structure-sensitive processes.

References

[1] M. J. Adamson and R. I. Damper. B-RAAM: A connectionist model which
develops holistic internal representations of symbolic structures. Connec-
tion Science, 11(1):41-71, 1999.

[2] S. Bader and P. Hitzler. Logic programs, iterated function systems, and re-
current radial basis function networks. Journal of Applied Logic, 2(3):273—
300, 2004.

[3] S. Bader, S. Holldobler, and A. Scalzitti. Semiring artificial neural networks
and weighted automata — and an application to digital image encoding —.
In Proceedings of the 27th German Conference on Artificial Intelligence,
Ulm, Germany, September 2004, LNAI Springer, 2004. To appear.

[4] M. Barnsley. Fractals Everywhere. Academic Press, San Diego, 1993.

[56] A. Batarekh and V. S. Subrahmanian. Topological model set deformations
in logic programming. Fundamenta Informaticae, 12:357-400, 1989.

[6] A. Beringer and S. Holldobler. On the adequateness of the connection
method. In Proceedings of the AAAI National Conference on Artificial
Intelligence, pages 9-14, 1993.

[7] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[8] H. A. Blair, F. Dushin, D. W. Jakel, A. J. Rivera, and M. Sezgin. Con-
tinuous models of computation for logic programs. In K. R. Apt, V. W.
Marek, M. Truszczyniski, and D. S. Warren, editors, The Logic Program-
ming Paradigm: A 25-Year Persepective, pages 231-255. Springer, 1999.

[9] A. Browne and R. Sun. Connectionist inference models. Neural Networks,
14(10):1331-1355, 2001.

[10] A. S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Symbolic knowledge
extraction from trained neural networks: A sound approach. Artificial In-
telligence, 125:155-207, 2001.

[11] A.S. d’Avila Garcez, K. Broda, and D. M. Gabbay. Neural-Symbolic Learn-
ing Systems — Foundations and Applications. Perspectives in Neural Com-
puting. Springer, 2002.

10

[12]

[13]

[17]
[18]

[19]

[23]

[24]

[26]

[27]

[28]

A. S. d’Avila Garcez and D. M. Gabbay. Fibring neural networks. In
Proceedings of the 19th National Conference on Artificial Intelligence. San
Jose, California, USA, July 2004, pages 342-347. AAAIT Press, 2004.

A. S. d’Avila Garcez and G. Zaverucha. The connectionist inductive ler-
arning and logic programming system. Applied Intelligence, Special Issue
on Neural networks and Structured Knowledge, 11(1):59-77, 1999.

J. A. Feldman and D. H. Ballard. Connectionist models and their proper-
ties. Cognitive Science, 6(3):205-254, 1982.

M. Fitting. Fixpoint semantics for logic programming — A survey. Theo-
retical Computer Science, 278(1-2):25-51, 2002.

J. A. Fodor and Z. W. Pylyshyn. Connectionism and cognitive architecture:
A critical analysis. In Pinker and Mehler, editors, Connections and Symbols,
pages 3—71. MIT Press, 1988.

K.-I. Funahashi. On the approximate realization of continuous mappings
by neural networks. Neural Networks, 2:183-192, 1989.

P. Hitzler, S. Holldobler, and A.K. Seda. Logic programs and connectionist
networks. Journal of Applied Logic, 2(3):245-272, 2004.

P. Hitzler. Corollaries on the fixpoint completion: studying the stable se-
mantics by means of the clark completion. In D. Seipel, M. Hanus, U. Geske,
and O. Bartenstein, editors, Proceedings of the INAP’04 and WLP’0/,
Potsdam, Germany, March 2004, volume 327 of Technichal Report, pages
13-27. Universitdt Wiirzburg, Institut fiir Informatik, 2004.

P. Hitzler and A. K. Seda. Generalized metrics and uniquely determined
logic programs. Theoretical Computer Science, 305(1-3):187-219, 2003.

S. Holldobler. A structured connectionist unification algorithm. In Pro-
ceedings of the AAAI National Conference on Artificial Intelligence, pages
587-593, 1990.

S. Holldobler. Automated inferencing and connectionist models. Technical
Report AIDA-93-06, Intellektik, Informatik, TH Darmstadt, 1993. (Post-
doctoral Thesis).

S. Holldobler and Y. Kalinke. Towards a massively parallel computational
model for logic programming. In Proc. of the ECAI94 Workshop on Com-
bining Symbolic and Connectionist Processing, pages 68-77. ECCAI, 1994.
S. Holldobler, Y. Kalinke, and H. Lehmann. Designing a counter: Another
case study of dynamics and activation landscapes in recurrent networks. In
Proceedings of the KI97: Advances in Artificial Intelligence, volume 1303
of LNAI pages 313-324. Springer, 1997.

S. Holldobler, Y. Kalinke, and J. Wunderlich. A recursive neural network
for reflexive reasoning. In S. Wermter and R. Sun, editors, Hybrid Neural
Symbolic Integration, number 1778 in LNAI, pages 46-62. Springer, 2000.

S. Holldobler and F. Kurfess. CHCL — A connectionist inference system. In
B. Fronhofer and G. Wrightson, editors, Parallelization in Inference Sys-
tems, pages 318 — 342. Springer, LNAI 590, 1992.

S. Holldobler, Y. Kalinke, and H.-P. Storr. Approximating the semantics of
logic programs by recurrent neural networks. Applied Intelligence, 11:45-58,
1999.

J. J. Hopfield. Neural networks and physical systems with emergent col-
lective computational abilities. In Proceedings of the National Academy of
Sciences USA, pages 2554 — 2558, 1982.

11

[29]

[30]

[31]

[44]
[45]
[46]

[47]

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2:359-366, 1989.

Y. Kalinke. Using connectionist term representation for first—order deduc-
tion — a critical view. In F. Maire, R. Hayward, and J. Diederich, editors,
Connectionist Systems for Knowledge Representation Deduction. Queens-
land University of Technology, 1997. Proc. CADE-14 Workshop.

Y. Kalinke and H. Lehmann. Computations in recurrent neural networks:
From counters to iterated function systems. In G. Antoniou and J. Slaney,
editors, Advanced Topics in Artificial Intelligence, volume 1502 of LNAI,
Springer, 1998. Proceedings of the 11th Australian Joint Conference on
Artificial Intelligence (AI’98).

T. E. Lange and M. G. Dyer. Frame selection in a connectionist model
of high-level inferencing. In Proceedings of the Annual Conference of the
Cognitive Science Society, pages 706-713, 1989.

J. W. Lloyd. Foundations of Logic Programming. Springer, 1988.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5:115-133, 1943.
A. Newell. Physical symbol systems. Cognitive Science, 4:135-183, 1980.
G. Pinkas. Expressing first-order logic in symmetric connectionist net-
works. In L. N. Kanal and C. B. Suttner, editors, Informal Proceedings of
the International Workshop on Parallel Processing for Al pages 155-160,
Sydney, Australia, August 1991.

G. Pinkas. Propositional non-monotonic reasoning and inconsistency in
symmetrical neural networks. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 525-530, 1991.

G. Pinkas. Symmetric neural networks and logic satisfiability. Neural Com-
putation, 3:282-291, 1991.

J. B. Pollack. Recursive auto-associative memory: Devising compositional
distributed representations. In Proceedings of the Annual Conference of the
Cognitive Science Society, pages 33-39, 1988.

J. B. Pollack. Recursive distributed representations. Artificial Intelligence,
46:77-105, 1990.

S. PrieB-Crampe and P. Ribenboim. Ultrametric spaces and logic program-
ming. The Journal of Logic Programming, 42:59-70, 2000.

A. K. Seda. Topology and the semantics of logic programs. Fundamenta
Informaticae, 24(4):359-386, 1995.

L. Shastri and V. Ajjanagadde. From associations to systematic reasoning;:
A connectionist representation of rules, variables and dynamic bindings
using temporal synchrony. Behavioural and Brain Sciences, 16(3):417-494,
1993.

P. Simons, I. Niemeld, and T. Soininen. Extending and implementing the
stable model semantics. Artificial Intelligence. To appear.

G. G. Towell and J. W. Shavlik. Knowledge-based artificial neural networks.
Artificial Intelligence, 70(1-2):119-165, 1994.

M. Wendt. Unfolding the well-founded semantics. Journal of Electrical
Engineering, Slovak Academy of Sciences, 53(12/s):56-59, 2002.

S. Willard. General Topology. Addison-Wesley, Reading, MA, 1970.

12

Eingereicht zur FLAIRS 2005, Clearwater Beach, Florida, Mai 2005,
Special Track on Integrated Intelligent Systems.

Computing First-Order Logic Programs
by Fibring Artificial Neural Networks

Sebastian Bader*
Department of Computer Science
Technische Universitét Dresden
Germany

Abstract

The integration of symbolic and neural-network-based
artificial intelligence paradigms constitutes a very chal-
lenging area of research. The overall aim is to merge
these two very different major approaches to intelli-
gent systems engineering while retaining their respec-
tive strengths. For symbolic paradigms that use the syn-
tax of some first-order language this appears to be par-
ticularly difficult. In this paper, we will extend on an
idea proposed by Garcez and Gabbay (2004) and show
how first-order logic programs can be represented by
fibred neural networks. The idea is to use a neural net-
work to iterate a global counter n. For each clause C;
in the logic program, this counter is combined (fibred)
with another neural network, which determines whether
C; outputs an atom of level n for a given interpretation
1. As aresult, the fibred network computes the single-
step operator T» of the logic program, thus capturing
the semantics of the program.

I ntroduction

Intelligent systems based on artificial neural networks dif-
fer substantially from those based on symbolic knowledge
processing like logic programming. Neural networks are
trainable from raw data and are robust, but practically im-
possible to read declaratively. Logic programs can be imple-
mented from problem specifications and can be highly recur-
sive, while lacking good training methods and robustness,
particularly when data are noisy (Thrun & others 1991). It
is obvious that an integration of both paradigms into single
systems would be very beneficiary if the respective strengths
could be retained.

There exists a notable body of work investigating the in-
tegration of neural networks with propositional — or simi-
larly finitistic — logic. We refer to (Browne & Sun 2001;
d’Avila Garcez, Broda, & Gabbay 2002) for overviews. For

*Sebastian Bader is supported by the GK334 of the German
Research Foundation.

T Artur Garcez is partly supported by The Nuffield Foundation.

tpascal Hitzler is supported by the German Federal Ministry
of Education and Research under the SmartWeb project and by the
European Union under the KnowledgeWeb Network of Excellence.
Copyright (© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Artur S. d’Avila Garcez'
Department of Computing
City University London

UK

Pascal Hitzler?
Institute AIFB
University of Karlsruhe
Germany

first-order logic, however, it is much less clear how a rea-
sonable integration can be achieved, and there are system-
atic difficulties which slow down recent research efforts, as
spelled out in (Bader, Hitzler, & Hélldobler 2004). Dif-
ferent techniques for overcoming these obstacles are cur-
rently under investigation, including the use of metric spaces
and topology, and of iterated function systems (Hitzler,
Holldobler, & Seda 2004; Bader & Hitzler 2004).

At the heart of these integration efforts is the question
of how first-order knowledge can be represented by neural
network architectures. In this paper, we present a novel
approach using fibring neural networks as proposed by
(d’Avila Garcez & Gabbay 2004). For each clause C; of
a logic program, a neural network that iterates a counter n
is combined (fibred) with another neural network, which de-
termines whether C; outputs an atom of level n for a given
interpretation 1. Fibring offers a modular way of perform-
ing complex functions by using relatively simple networks
(modules) in an ensemble.

The paper is organized as follows. In the next section we
briefly review fibring neural networks and logic programs.
We then present the fundamental ideas underlying our rep-
resentation results, before giving the details of our imple-
mentation and a worked example. We conclude with some
discussions.

Preliminaries
We introduce standard terminology for artificial neural net-
works, fibring neural networks, and logic programs. We re-
fer the reader to (Bishop 1995; d’Avila Garcez & Gabbay
2004; Lloyd 1988), respectively, for further background.

Artificial Neural Networks

Artificial neural networks consist of simple computational
units (neurons), which receive real numbers as inputs via
weighted connections and perform simple operations: the
weighted inputs are added and simple functions like thresh-
old, sigmoidal, identity or truncate are applied to the sum.
The neurons are usually organized in layers. Neurons
which do not receive input from other neurons are called
input neurons, and those without outgoing connections to
other neurons are output neurons. So a network computes
a function from R™ to R™, where n and m are the number
of input, respectively, output units. A key to the success of

phi
Eingereicht zur FLAIRS 2005, Clearwater Beach, Florida, Mai 2005, Special Track on Integrated Intelligent Systems.

phi

Figure 1: An artificial neuron (left) and a simple fibring net-
work (right)

neural network architectures rests on the fact that they can
be trained effectively using training samples in the form of
input-output pairs.

For convenience, we make the following assumptions for
the networks depicted in this paper: The layers are updated
sequentially from left to right and within a layer the neurons
are updated from top to bottom.

Recently, (d’Avila Garcez & Gabbay 2004) introduced a
new model of neural networks, namely fibring neural net-
works. Briefly, the activation of a certain unit may influence
the behaviour of other units by changing their weights. Our
particular architecture is a slight variant of the original pro-
posal, which appears to be more natural for our purposes.

Definition 1 A fibring function &, associated with neuron 4
maps some weights w of the network to new values, depend-
ing on w and the input x of neuron i.

Fibring functions can be understood as modeling presy-
naptic weights, which play an important role in biological
neural networks. Certainly, a necessary requirement for bi-
ological plausibility is that fibring functions compute either
simple functions or tasks which can in turn be performed by
neural networks. We will return to this point later.

Throughout this paper we will use dashed lines, as in Fig-
ure 1, to indicate the weights which may be changed by
some fibring function. As described above, we will use an
update dynamics from left to right, and top to bottom. And,
as soon as the activation of a fibring neuron is (re)calculated,
the corresponding fibring function is applied and the respec-
tive weights are modified.

Example 2 A simple fibring network for squaring numbers.
Each node computes the weighted sum of its inputs and per-
forms the operation identity on it. The fibring function takes
input ag and multiplies it by W. If W = 1, the output will be

D (w,z) —x

Example 3 A simple fibring network implementing a gate-
like behaviour. Nodes behave as in Example 2:

1 ifz>0
0 otherwise

o ®: (w,z) — {

The question of plausible types of fibring functions, as
well as the computational power of those networks, will be
studied separately and are touched here only slightly. We
will start with very general fibring functions, but later we
restrict ourselves to simple ones only, e.g. the fibred weight
is simply multiplied by the activation.

Sometimes we will use the output of a neuron instead of
the activation, or apply linear transformations to it, and it
is clear that such modifications could also be achieved by
adding another neuron to the network and use this for the
fibring. Therefore these modifications can be understood as
abbreviations to keep the networks simple.

Logic Programs

A logic program is a finite set of clauses H «— Iy A---A Ly,
where n € N may differ for each clause, H is an atom in a
first order language £ and I, ..., L, are literals, that is,
atoms or negated atoms, in £. The clauses of a program are
understood as being universally quantified. H is called the
head of the clause, each L; is called a body literal and their
conjunction Ly A --- A L, is called the body of the clause.
We allow n = 0, by an abuse of notation, which indicates
that the body is empty; in this case the clause is called a unit
clause or a fact.

An atom is said to be ground if it does not contain vari-
ables, and the Herbrand base underlying a given program P
is defined as the set of all ground instances of atoms, denoted
Bp. Example 4 shows a logic program and its correspond-
ing Herbrand base. Subsets of the Herbrand base are called
(Herbrand) interpretations of P, and we can think of such a
set as containing those atoms which are true under the inter-
pretation. The set I'» of all interpretations of a program P
can thus be identified with the power set of Bp.

Example 4 The natural numbers program P, the underly-
ing language £ and the corresponding Herbrand base Bp.
The intended meaning of s is the successor function:

P |nat(0).
nat(s(X)) < nat(X).
L: |constants: C = {0}
functions: F={s/1}
relations: R= {nat/1}

Bp : |nat(0),nat(s(0)), nat(s(s(0))),. ..

Logic programs are accepted as a convenient tool for
knowledge representation in logical form. Furthermore, the
knowledge represented by a logic program P can essen-
tially be captured by the immediate consequence or single-
step operator T’», which is defined as a mapping on
where for any I € Ip we have that T’»(I) is the set of
all H € Bp for which there exists a ground instance
H «— AiAN---NA, N-By A--- A=B,, of aclause in
P such that for all 7 we have A; € I and for all j we have
B; ¢ I. Fixed points of T» are called supported models

of P, which can be understood to represent the declarative
semantics of P.

In the sequel of this paper we will often need to enumerate
the Herbrand base, which is done via level mappings:

Definition 5 Given a logic program P, a level mapping is
a function | - | : Bp — N*, where N* denotes the set of
positive integers excluding zero.

Level mappings — in slightly more general form — are
commonly used for controlling recursive dependencies be-
tween atoms, and the most prominent notion is probably the
following.

Definition 6 Let P be a logic program and | - | be a level
mapping. If for all clauses A «— Ly ALs A ... AN L, €
ground(P)andall 1 <4 < n we have that | 4| > |L;|, then
P is called acyclic with respect to | - |. A program is called
acyclic, if there exists such a level mapping.

Acyclic programs are known to have unique supported
models (Cavedon 1991). The programs from Examples 4
and 7 below are acyclic.

Example 7 The “even and odd numbers” program and a
level mapping:

P |even(0).
even(s(X)) « —even(X).
odd(s(X)) « even(X).

NE _[2-n+1 if A= even(s™(0))
Al = {2 ‘n+2 if A= odd(s"(0))

Throughout this paper we will assume that level mappings
are bijective, i.e. for each n € N there is exactly one A €
Bp, such that | A| = n. Thus, for the purposes of our paper,
a level mapping is simply an enumeration of the Herbrand
base. Since level mappings induce an order on the atoms, we
can use them to define a prefix-function on interpretations,
returning only the first n atoms:

Definition 8 The prefix of length n of a given interpretation
I is defined as

pref : Ip x Nt — Ip
(I,n) — {AJA e I and |A| < n}.

We will write pref,, (I) for pref(I,n).
For acyclic programs, it follows that in order to decide

whether the atom with level n+1 must be included in T'» (1),
it is sufficient to consider pref, (I) only.

From Logic Programsto Fibring Networks

We will show how to represent acyclic logic programs by
means of fibring neural networks. We follow up on the basic
idea from (Holldobler & Kalinke 1994; Holldobler, Kalinke,
& Storr 1999), and further developed in (Hitzler, Hélldobler,
& Seda 2004; Bader & Hitzler 2004), to represent the single-
step operator T» by a network, instead of the program P
itself. This is a reasonable thing to do since the single-step
operator essentially captures the semantics of the program it
is associated with, as mentioned before.

In order to represent T» by the input-output mapping of a
network, we also need an encoding of I as a suitable subset
of the real numbers. We also use an idea from (Holldobler,
Kalinke, & Storr 1999) for this purpose. Let B > 2 be some
integer, and let | - | be a bijective level mapping. Define

R:Ip—R: Il—)ZB_lAl.
A€l

We exclude B = 2, because in this case R would not be
injective. It will be convenient to assume B = 3 throughout
the paper, but our results do not depend on this. We denote
the range of R by range(R).

There are systematic reasons why this way of embedding
Ip into the reals is reasonable, and they can be found in
(Hitzler, Holldobler, & Seda 2004; Bader & Hitzler 2004),
but will not concern us here. Using R, the prefix operation
can be expressed naturally on the reals.

Proposition 9 For I € Ip and = € range(R) we have

trunc(R(I) - B”)> and
Bn

Ripref(R~(z),n)) = truncé+3n).

For convenience, we overload pref and set pref(z,n) =
R(pref(R=1(x),n)) and pref,, (x) = pref(z, n).

We will now turn to the construction of fibring networks
which approximate given programs. We will first describe
our approach in general terms, and spell it out in a more
formal and detailed way later on. The goal is to con-
struct a neural network, which will compute R(Tp)(x) =
R(Tp(R~(x))) for a given = € range(R). The network
is designed in such a way that it successively approximates
R (Tp) (x) while running.

There will be a main loop iterating a global counter n.
This counter fibres the kernel, which will evaluate whether
the atom of level n is contained in T’»(I) or not, i.e. the
kernel will output B~ if the atom is contained, and 0 oth-
erwise. Furthermore, there will be an input subnetwork pro-
viding R(I) all the time, and the output subnetwork which
will accumulate the outputs of the kernel, and hence con-
verge to R(Tp(I)).

For each clause C; there is a subnetwork, which deter-
mines whether C; outputs the atom of level n for the given
interpretation I, or not. This is done by fibring the sub-
network such that it computes the corresponding ground in-

stance CZ.("), with head of level n, if existent. If there is no

pref(I,n) = R™* (

such ground instance, this subnetwork will output 0, other-
wise it will determine whether the body is true under the
interpretation 7. A detailed description of these clause net-
works will be given in the next section. Note that this con-
struction is only possible for programs which are covered.
This means that they do not have any local variables, i.e. ev-
ery variable occuring in some body also occurs in the corre-
sponding head. Obviously, programs which are acyclic with
respect to a bijective level mapping are always covered.

Clause1

Clause2

o
o

Clausex

Figure 2: General architecture

If P is acyclic we can compute the unique supported
model of the program directly, by connecting the output and
the input region of the network as shown in Figure 3. This is
simply due to the above mentioned fact: If we want to decide
whether the atom of level n should be included in T'» (1), it
is sufficient to look at the atoms A € I with level < n. We
also have the following result.

Proposition 10 Let P be a program which is acyclic with
respect to a bijective level mapping | - |, let A € Bp with
|A| = n. Then for each I € I'» we have that A € T3(1) iff
A is true with respect to the unique supported model of P.

Proof This is an immediate result from the application of
the Banach contraction mapping principle to the semantic
analysis of acyclic programs, see (Hitzler & Seda 2003). [

So, for acyclic programs, we can start with the empty (or
any other) interpretation and let the (recurrent) network run.

Implementing Clauses

In order to complete the construction from the previous sec-
tion, we give an implementation of the clauses. For a clause
C of the form H «— L; A Ly A ... A Ly, let C denote
the ground instance of C for which the head has level n, as-
suming it exists. The idea of the following construction is
to create a network which implements C, and will be fibred
by the counter n such that it implements C'(). In case that
there is no ground instance of C' with head of level n, the
network will output 0, otherwise it will output 1 if the body
is true with respect to the interpretation I, and 0 if it is not.

Clause1

Clause2

o
o

Clausex

Figure 3: Recurrent architecture for acyclic programs

o
Filter for Ly
o
o

o
Filter for Ly

Figure 4: Implementing clauses

The idea, as shown in Figure 4, is that each subnetwork
implementing a clause C : H <« L; A ... A Ly with k body
literals, consists of & + 1 parts — one gate and k filters.
The gate will output 1, if the clause C' has a ground instance
C(™) where the level of the head is n. Furthermore there
is a filter for each body literal I;, which outputs 1, if the
corresponding ground literal L; is true under I. If all condi-
tions are satisfied the final conjunction-neuron will become
active, i.e. the subnetwork outputs 1.

Note that this construction again is sufficient only for pro-
grams which are covered. If we allowed local variables, then
more than one (in fact infinitely many) ground instances of
C with a head of level n could exist.

Let us have a closer look at the type of fibring function
needed for our construction. For the gate, it implicitly per-
forms a very simple pattern matching operation, checking
whether the atom with level n unifies with the head of the
clause. For the filters, it checks whether corresponding in-
stances of body literals are true in the given interpretation,
i.e. it implicitly performs a variable binding and an elemen-
tary check of set-inclusion.

We argue that the operations performed by the fibring
function are indeed biologically feasible. The perspective
which we take in this paper is that they should be understood
as functions performed by a separate network, which we do
not give explicitly, although we will substantiate this point
to a certain extent in the next section. And pattern matching

is indeed a task that connectionist networks perform well.
The variable binding task will also be addressed in the next
section when we give examples for implementing the filters.

Neural Gates

As specified above, the gate foraclause C : H «— L A...A
L, fires if there is a ground instance C(") of C' with head is
of level n, as depicted in Figure 5. The decision based on

Qq, 1 if ground instance with

head of level n exists
0 otherwise

Figure 5: A neural gate

simple pattern matching is embedded into the fibring func-
tion. In what follows, we will discuss a number of different
cases of how to unfold this fibring function into a network,
in order to give plausible network topologies and yet simpler
fibring functions. Other implementations are possible, and
the cases presented here shall serve as examples only.

Ground-headed clauses. Let us first consider a clause for
which the head does not contain variables, i.e. a ground
clause, like for example the first clause given in Example
7 above. Since the level of the head in this case is fixed
to some value, say m, the corresponding gate subnetwork
should fire if and only if the general counter n is equal to m.
This can be done using the network shown in Figure 6 (left):
The neuron “1!” will always output 1 and the neuron “= 0”
will output 1 if and only if the weighted inputs sum up to 0.
This can easily be implemented using e.g. threshold units.

Figure 6: Simple gates for ground-headed clauses (left) and
remainder classes (right)

Remainder classes. If the levels [; of ground instantiated
heads for a certain clause can be expressed as multiples of a
certain fixed number m, i.e. [=i - m for all i (like clauses
number 2 and 3 of Example 7), we can construct a simple
subnetwork, as depicted in Figure 6 (right). The neurons
symbolize the equivalence classes for the remainders of the
devision by 3. The network will be initialized by activat-
ing “1”. Every time it is reevaluated the activation simply
proceeds to the next row.

Powers. If the level I; of ground instantiated heads for a
certain clause can be expressed as powers of a certain fixed

number m, i.e. I; = m’ for all ¢, we can construct a simple
subnetwork as shown in Figure 7.

Winit = —1

Figure 7: A simple gate for powers

Filtering Interpretations

For a network to implement the ground instance C'(")

H, — L(l") Ao A L,(C") of a clause C with head of level
n, we need to know the distance between the head and the
body literals — in terms of levels — as a function in n, i.e.
we need a set of functions {b; : N - N | =1,...k} —
one for each body literal — where b; computes the level of
the literal L;, taking as input the level of the head, as illus-
trated in Example 11.

Example 11 For the “even and odd numbers” program from
Example 7, we can use the following b;-functions:

even(0). {}
even(s(X)) « —even(X). {by:n+—n-—2}
odd(s(X)) « even(X). {by:n—n-—1}

For each body literal we will now construct a filter sub-
network, that fires if the corresponding ground body literal

LE”) of C™ is included in I. Given an interpretation I,
we need to decide whether a certain atom A is included or
not. The underlying idea is the following. In order to de-
cide whether the atom A of level n is included in the in-
terpretation I, we construct an interpretation J containing
all atoms of I with level smaller than n, and the atom A,
ie. J = pref,_,(I) U {A}, or, expressed on the reals,
R(J) = pref,,_,(R(I))+B~". Ifweevaluate R(I)—R(J)
the result will be non-negative if and only if A is included in
1. This can be done using the network shown in Figure 8.

Figure 8: Schematic plot and fibring function of a filter for
the atom of level n

It is clear that we can construct networks to filter an atom
of level b;(n), if the function b, can itself be implemented in
a neural network. Since fibring networks can implement any
polynomial function, as shown in (d’ Avila Garcez & Gabbay

2004) and indicated in Example 2, our approach is flexible
and very general.

A Worked Example

Let us now give a complete example by extending on the
logic program and the level mapping from Example 7 above.
For the first clause we need a ground-headed gate only. To
implement the second clause a remainder-class gate for the
devision by 2 is needed, which returns 1 for all odd numbers.
Furthermore, we need a filter which returns 1 if the atom of
level n — 2 is not included in I. For the last clause of the
example, we need a gate returning 1 for all even numbers
and a similar filter as for clause number 2. Combining all
three parts and taking into account that P is acyclic, we get
the network shown in Figure 9. If run on any initial value,

Figure 9: Neural implementation of the whole example

its outputs converge to the unique supported model of P,
i.e. the sequence of outputs of the right-most neuron is a
sequence of real numbers which converges to R(M), where
M is the unique supported model of P.

Conclusions

This paper contributes to advance the state of the art
on neural-symbolic integration by showing how first-order
logic programs can be implemented in fibring neural net-
works. Generic ways for representing the needed fibring
functions in a biologically plausible fashion remain to be
investigated in detail, as well as the task of extending our
proposal towards a fully functional neural-symbolic learn-
ing and reasoning system.

Fibring offers a modular way of performing complex
functions, such as logical reasoning, by combining relatively
simple modules (networks) in an ensemble. If each module
is kept simple enough, we should be able to apply standard
neural learning algorithms to them. Ultimately, this may

provide an integrated system with robust learning and ex-
pressive reasoning capability.

References

Bader, S., and Hitzler, P. 2004. Logic programs, iterated
function systems, and recurrent radial basis function net-
works. Journal of Applied Logic 2(3):273-300.

Bader, S.; Hitzler, P.; and Holldobler, S. 2004. The inte-
gration of connectionism and first-order knowledge repre-
sentation and reasoning as a challenge for artificial intelli-
gence. In Proceedings of the Third International Confer-
ence on Information, Tokyo, Japan. To appear.

Bishop, C. M. 1995. Neural Networks for Pattern Recog-
nition. Oxford University Press.

Browne, A., and Sun, R. 2001. Connectionist inference
models. Neural Networks 14(10):1331-1355.

Cavedon, L. 1991. Acyclic programs and the complete-
ness of SLDNF-resolution. Theoretical Computer Science
86:81-92.

d’Avila Garcez, A. S., and Gabbay, D. M. 2004. Fibring
neural networks. In McGuinness, D. L., and Ferguson, G.,
eds., Proceedings of the Nineteenth National Conference
on Artificial Intelligence, Sixteenth Conference on Inno-
vative Applications of Artificial Intelligence, July 25-29,
2004, San Jose, California, USA, 342-347. AAAI Press
/ The MIT Press.

d’Avila Garcez, A. S.; Broda, K. B.; and Gabbay, D. M.
2002. Neural-Symbolic Learning Systems — Founda-
tions and Applications. Perspectives in Neural Computing.
Springer, Berlin.

Hitzler, P., and Seda, A. K. 2003. Generalized metrics and
uniquely determined logic programs. Theoretical Com-
puter Science 305(1-3):187-219.

Hitzler, P.; Holldobler, S.; and Seda, A. K. 2004. Logic
programs and connectionist networks. Journal of Applied
Logic 2(3):245-272.

Holldobler, S., and Kalinke, Y. 1994. Towards a massively
parallel computational model for logic programming. In
Proceedings ECAI94 Workshop on Combining Symbolic
and Connectionist Processing, 68—77. ECCAI.
Holldobler, S.; Kalinke, Y.; and Storr, H.-P. 1999. Ap-
proximating the semantics of logic programs by recurrent
neural networks. Applied Intelligence 11:45-58.

Lloyd, J. W. 1988. Foundations of Logic Programming.
Springer, Berlin.

Thrun, S. B., et al. 1991. The MONK’s problems: A
performance comparison of different learning algorithms.
Technical Report CMU-CS-91-197, Carnegie Mellon Uni-
versity.

In: S. Biundo, T. Frihwirth, and G. Palm (eds.), Proceedings of the 27th German conference on Atrtificial
Intelligence, KI'2004, Ulm, Germany, September 2004, Lecture Notes in Atrtificial Intelligence 3238,
Springer, Berlin, 2004, pp. 351-365. (mit zusatzlichem Appendix)

Default reasoning over domains and concept
hierarchies

Pascal Hitzler

Department of Computer Science, Dresden University of Technology

Abstract. W.C. Rounds and G.-Q. Zhang have proposed to study a
form of disjunctive logic programming generalized to algebraic domains
[1]. This systemn allows reasoning with information which is hierarchically
structured and forms a (suitable) domain. We extend this framework to
include reasoning with default negation, giving rise to a new nonmono-
tonic reasoning framework on hierarchical knowledge which encompasses
answer set programming with extended disjunctive logic programs. We
also show that the hierarchically structured knowledge on which pro-
gramming in this paradigm can be done, arises very naturally from for-
mal concept analysis. Together, we obtain a default reasoning paradigm
for conceptual knowledge which is in accordance with mainstream devel-
opments in nonmonotonic reasoning.

1 Introduction

In [1], Rounds and Zhang propose to study a form of clausal logic generalized to
algebraic domains, in the sense of domain theory [2]. In essence, they propose
to interpret finite sets of compact elements as clauses, and develop a theory
which links corresponding logical notions to topological notions on the domain.
Amongst other things, they establish a sound and complete resolution rule and a
form of disjunctive logic programming over domains. A corresponding semantic
operator turns out to be Scott-continuous.

We will utilize this proposal as a link between the formerly unrelated areas
of formal concept analysis, on the one hand, and nonmonotonic reasoning, in the
form of answer set programming, on the other. The relationships thus worked
out serve a threefold purpose, namely (1) to obtain a sound domain-theoretic
perspective on answer set programming, (2) to provide a formal link between
domain logics and formal concept analysis for the purpose of cross-transfer of
methods and results, and (3) to devise a reasoning paradigm which encompasses
two formerly unrelated formalisms for commonsense reasoning, namely formal
concept analysis, and answer set programming.

So in this paper, we will extend the logic programming paradigm due to
Rounds and Zhang to include reasoning with default negation. We are motivated
by the gain in expressiveness through the use of negation in artificial intelligence
paradigms related to nonmonotonic reasoning. This approach, using ideas from
default logic [3], treats negation under the intuition that the negation of an item

phi
In: S. Biundo, T. Frühwirth, and G. Palm (eds.), Proceedings of the 27th German conference on Artificial Intelligence, KI'2004, Ulm, Germany, September 2004, Lecture Notes in Artificial Intelligence 3238, Springer, Berlin, 2004, pp. 351-365. (mit zusätzlichem Appendix)

2 Pascal Hitzler

shall be believed if there is no reason to believe the item itself. This perspective
on negation has recently led to the development of applications in the form of
nonmonotonic reasoning systems known as answer set programming, the two
most popular probably being dlv and smodels [4,5]. We will indeed see that
the extension of the approach by Rounds and Zhang by default negation is a
natural generalization of answer set programming with extended disjunctive logic
programs [6].

On the other hand, building on the work reported in [7], we establish a strong
connection between the clausal logic on algebraic domains mentioned above, and
fundamental notions from formal concept analysis [8]. More precisely, we will see
that in certain cases the formation of formal concepts from formal contexts can
be recast naturally via the notion of logical consequence in Rounds’ and Zhang’s
clausal logic. Our default reasoning paradigm on domains can therefore be rein-
terpreted as a reasoning paradigm over conceptual knowledge, with potential
applications to symbolic data analysis.

To the best of our knowledge, the results in this paper constitute the first
proposal for a default reasoning paradigm on conceptual knowledge which is
compatible with mainstream research developments in nonmonotonic reasoning.
We focus on laying foundations for this, but will not pursue questions of appli-
cability to data analysis at this stage. This will be done elsewhere.

The plan of the paper is as follows. In Section 2 we recall main notions and
results on the clausal logic of Rounds and Zhang, and its extension to a logic
programming paradigm. In Section 3 we will add a notion of default negation,
and in Section 4 we will see that it naturally extends answer set programming for
extended disjunctive programs. Section 5 is devoted to the study of conceptual
knowledge related to our paradigm. Related work is being discussed in Section 6,
while we will conclude and discuss further work in Section 7.

Proofs have been omitted for lack of space; they can be found on the author’s
webpage.

Acknowledgements. This work was supported by a fellowship within the Postdoc-
Programme of the German Academic Exchange Service (DAAD) and carried
out while the author was visiting the Department of Electrical Engineering and
Computer Science at Case Western Reserve University, Cleveland, Ohio. I am
grateful for inspiring discussions with Rainer Osswald, Matthias Wendt, and
Guo-Qiang Zhang, and for the feedback of some anonymous referees on an earlier
version of this paper.

2 Clausal Logic and Logic Programming in Algebraic
Domains

The study of domain theory from a logical perspective has a long tradition, and
originates from [9], where a logical characterization (more precisely, a categor-
ical equivalence) of bounded complete algebraic cpo’s (with Scott continuous
functions as morphisms) was given. Rounds and Zhang [1] have recently devised

Default reasoning over domains and concept hierarchies 3

a similar characterization of Smyth powerdomains. They use a clausal logic for
this purpose, and have also shown that it extends naturally to a disjunctive logic
programming paradigm. We recall necessary notation and terminology in order
to make this paper self-contained.

A partially ordered set is a pair (D,C), where D is a nonempty set and
C is a reflexive, antisymmetric, and transitive relation on D. A subset X of a
partially ordered set is directed if for all z,y € X there is z € X with z,y C 2.
Note that the empty set is directed. An ideal is a directed and downward closed
set. A complete partial order, cpo for short, is a partially ordered set (D,LC)
with a least element L, called the bottom element of (D, C), and such that every
directed set in D has a least upper bound, or supremum, | | D. An element ¢ € D
is said to be compact or finite if whenever ¢ C | | L with L directed, then there
exists € € L with ¢ C e. The set of all compact elements of a cpo D is written as
K(D). An algebraic cpo is a cpo such that every e € D is the directed supremum
of all compact elements below it. For a,b € D we write a ¥ b if a and b are
inconsistent, i.e. if there does not exist a common upper bound of a and b.

A set U C D is said to be Scott open, or just open, if it is upward closed and
for any directed L C D we have | |L € U if and only if U N L # §. The Scott
topology on D is the topology whose open sets are all Scott open sets. An open
set is compact open if it is compact in the Scott topology. A coherent algebraic
cpo is an algebraic cpo such that the intersection of any two compact open sets
is compact open. We will not make use of many topological notions in the sequel.
So let us just note that coherency of an algebraic cpo implies that the set of all
minimal upper bounds of a finite number of compact elements is finite, i.e. if
1, ..., ¢y are compact elements, then the set mub{cy,...,c,} of minimal upper
bounds of these elements is finite. As usual, we set mub® = {_L}, where L is the
least element of D.

In the following, (D,C) will always be assumed to be a coherent algebraic
cpo. We will also call these spaces domains. All of the above notions are standard
and can be found e.g. in [2].

The following notions are taken from [1].

Definition 1. Let D be a coherent algebraic cpo with set K(D) of compact el-
ements. A clause is a finite subset of K(D). We denote the set of all clauses
over D by C(D). If X is a clause and w € D, we write w |= X if there exists
x € X with x C w, i.e. X contains an element below w. A theory is a set of
clauses, which may be empty. An element w € D is a model of a theory T,
written w ET, if w E X for all X € T or, equivalently, if every clause X € T
contains an element below w. A clause X is called a logical consequence of a
theory T, written T E X, if w = T implies w = X. If T = {E}, then we write
E E X for {E} &= X. Note that this holds if and only if for every w € E there
is x € X with ¢ T w. For two theories T and S, we say that T =S if T E X
for all X € §. In order to avoid confusion, we will throughout denote the empty
clause by {}, and the empty theory by 0. A theory T is closed if T = X implies
X € T for all clauses X. It is called consistent of T = {} or, equivalently, if
there is w with w = T.

4 Pascal Hitzler

The clausal logic introduced in Definition 1 will henceforth be called the logic
RZ for convenience.

A main technical result from [1], where the notions from Definition 1 were
introduced, shows that the set of all consistent closed theories over D, ordered
by inclusion, is isomorphic to the collection of all non-empty Scott-compact sat-
urated subsets of D, ordered by reverse inclusion — and the latter is isomorphic
to the Smyth powerdomain of D. This result rests on the Hofmann-Mislove the-
orem [10]. It is also shown that a theory is logically closed if and only if it is an
ideal,! and also that a clause is a logical consequence of a theory T if and only
if it is a logical consequence of a finite subset of T'. The latter is a compactness
theorem for clausal logic in algebraic domains.

Ezxample 1. In [1], the following running example was given. Consider a count-
ably infinite set of propositional variables, and the set T = {f,u,t} of truth
values ordered by u < f and u < t. This induces a pointwise ordering on the
space TV of all interpretations (or partial truth assignments). The partially or-
dered set TY is a coherent algebraic cpo? and has been studied e.g. in [11] in a
domain-theoretic context, and in [12] in a logic programming context. Compact
elements in TY are those interpretations which map all but a finite number of
propositional variables to u. We denote compact elements by strings such as pqT,
which indicates that p and ¢ are mapped to t and r is mapped to f. Clauses in
TY can be identified with formulae in disjunctive normal form, e.g. {pq7,Bgq, 7}
translates to (p AgA—T)V (=pAg) Vr.

In [1], it was shown that the logic RZ is compact. A proof theory for it was
also given. An alternative version was reported in [13, 14].

The logic RZ provides a framework for reasoning with disjunctive informa-
tion on a lattice which encodes background knowledge. Indeed it was shown [7]
that it relates closely to formal concept analysis, which in turn has been applied
successfully in data mining, and we will expand on this point later on in Sec-
tion 5. Moreover, the system can be extended naturally to a disjunctive logic
programming paradigm, as presented next, following [1].

Definition 2. A (disjunctive logic) program over a domain D is a set P of
rules of the form Y «— X, where X,Y are clauses over D. An element e € D is
said to be a model of P if for every ruleY «— X in P, ifel =X, thene Y. A
clause Y is a logical consequence of P if every model of P satisfies Y. We write
cons(P) for the set of all clauses which are logical consequences of P. If T is a
theory, we write cons(T') for the set of all clauses which are logical consequences
of T, i.e. cons(T) is the logical closure of T.

Note that the notions of logical consequence differ for theories and programs.
However, given a theory T, we have cons(T) = cons{(Pr), where Pr = {X «
{L}| X eT}.

! An ideal with respect to the Smyth preorder CF, where X C! YV if and only if for
every y € Y there exists some x € X with x C y.
2 In fact it is also bounded complete.

Default reasoning over domains and concept hierarchies 5

The (clause) propagation® rule

X1 ... Xp, a€X; (alli); Y—ZeP; mublay,...,an} EZ
YUUL (Xi\{ai}) ’

denoted by CP(P), for given program P, was studied in [1]. Applying this rule, we
say that YUUJ;_, (X;\{a;}) is a CP(P)-consequence of a theory T'if X1,..., X, €
T. The following operator is based on the notion of CP(P)-consequence and acts
on logically closed theories. Let T be a logically closed theory over D and let P
be a program and define

Tp(T) = cons ({Y | Y is a CP(P)-consequence of T'}).

In [1], it was shown that Tp is a Scott-continuous function on the space of
all logically closed theories under set-inclusion, hence has a least fixed point
fix(7p) = | |{7p T n}, where Tp 10 = cons({{ L }}) and recursively Tp 1 (n+1) =
Tp (Tp Tn). It was also shown that fix(7p) = cons(P).

3 Default Negation

We intend to add a notion of default negation to the logic programming frame-
work presented above. The extension is close in spirit to mainstream develop-
ments concerning knowledge representation and reasoning with nonmonotonic
logics.

Definition 3. Let D be a coherent algebraic domain. An extended clause is a
pair (C,N) of clauses over D, which we also write as “C,~N7”. An extended
clause (C, N) is called trivially extended if N = {}, and we may omit N in this
case. A (trivially) extended rule is of the form Y — X, where Y is a clause and
X is a (trivially) extended clause. An (extended disjunctive) program consists
of a set of extended rules. If Y «— C,~N is an extended rule, then we call (C, N)
the body of the rule and Y the head of the rule.

Informally, we read an extended rule Y — C,~N as follows: If C' holds, and
N does not, then Y shall hold. This intuition gives rise to the following notions,
akin to the answer set semantics [6], a point which we will discuss further in
Section 4.

Definition 4. Let D be a coherent algebraic domain, let P be an extended dis-
Junctive program, and let w € D. We define P/w to be the (non-extended) pro-
gram obtained by applying the following two transformations: (1) Replace each
body (C,N) of a rule by C if w = N. (2) Delete all rules with a body (C, N)
for which w = N. An element w € D is an answer model of P if it satisfies
w = fix (Tp/w). An element w € D is a min-answer model of P if it is minimal
among all v satisfying v = fix (Tp/w).

® This rule was called the hyperresolution rule determined by P in [1].

6 Pascal Hitzler

Note that every min-answer model is an answer model. Recall also from [1]
that the set of all models of a theory is compact saturated, hence is the upper
closure of its minimal elements.

Ezxample 2. Consider the (finite) domain D depicted in Figure 1. This example
is taken from [7] and encodes restaurant menues via formal concept analysis, a
point which will be discussed in more detail later on in Section 5. We can now
encode the wishes of a customer by programs, e.g. as follows.

{d} — {1}
{2,3,4} «— {L}
{rw} — {1}, ~{ww}

Informally, the first rule states that the customer definitely wants a dessert. The
second rule states that the customer wants one of the set meals 2, 3 or 4. The
third rule states that the customer will choose red wine in all cases in which he
does not have a good reason to choose white wine.

The element 4 € D is a min-answer model for P, since P/4 counsists of the
clauses {d} — {1}, {2,3,4} — {1}, and {rw} «— {L}, and 4 is a minimal
model of {{d},{2,3,4}, {rw}}. Likewise, 3 € D is a min-answer model since P/3
consists of the first two clauses from above and 3 is a minimal model of these.
7 € D is an answer model of P, but not a min-answer model.

Fig. 1. Figure for Example 2. Abbreviations are: sd salad, st starter, f fish, m meat,
rw red wine, ww white wine, w water, d dessert, ¢ coffee, e expensive. Numbers 1 to 9
stand for set meals.

3

Default reasoning over domains and concept hierarchies 7
4 Answer Set Programming

Answer sel programming is an artificial intelligent reasoning paradigm which
was devised in order to capture some aspects of commonsense reasoning. More
precisely, it is based on the observation that humans constantly tend to jump to
conlusions in real-life situations, and on the idea that this imprecise reasoning
mechanism (amongst other things) allows us to deal with the world effectively.
Formally, jumping to conclusions can be studied by investigating supraclassi-
cal logics, see [15], where supraclassicality means, roughly speaking, that under
such a logic more conclusions can be drawn from a set of axioms (or knowledge
base) than could be drawn using classical (e.g. propositional or first-order) logic.
Answer set programming, as well as the related default logic [3], is also non-
monotonic, in the sense that a larger knowledge base does not necessarily yield
a larger set of conclusions.

We next describe the notion of answer set for extended disjunctive logic pro-
grams, as proposed in [6]. It forms the heart of answer set programming systems
like dlv [4], which have become a standard paradigm in artificial intelligence.

Let V denote a countably infinite set of propositional variables. A rule is an
expression of the form

Lla"-aLn<_Ln+l7"'7Lm7NL’m+la"'aNLk7

where each of the L, is a literal, i.e. either a propositional variable or of the
form —p for some p € V. Given such a rule r, we set Head(r) = {L1,..., Ly},
Pos(r) ={L,+1,..., L}, and Neg(r) = {Lt1,..., L1}

In order to describe the answer set semantics, or stable model semantics, for
extended disjunctive programs, we first consider programs without ~. Thus, let
P denote an extended disunctive logic program in which Neg(r) is empty for
each rule r € P. A subset X of V* = VU =V is said to be closed by rules in P
if, for every r € P such that Pos(r) C X, we have that Head(r) N X # (. The
set X € 2V is called an answer set for P if it is a minimal subset of V* such
that the following two conditions are satisfied.

1. If X contains complementary literals, then X = V*.
2. X is closed by rules in P.

We denote the set of answer sets of P by «(P). Now suppose that P is an

extended disjunctive logic program that may contain ~. For a set X €& QVi,
consider the program P/X defined as follows.

1. If r € P is such that Neg(r)NX is not empty, then we remove r i.e. r ¢ P/X.
2. If r € P is such that Neg(r) N X is empty, then the rule ' belongs to P/ X,
where r’ is defined by Head(r’) = Head(r), Pos(r’) = Pos(r) and Neg(r') = 0.

The program transformation (P, X) — P/X is called the Gelfond-Lifschitz
transformation of P with respect to X.

8 Pascal Hitzler

It is clear that the program P/X does not contain ~ and therefore a (P/X)
is defined. We say that X is an answer set or stable model of P if X € o (P/X).
So, answer sets of P are fixed points of the operator GLp introduced by Gelfond
and Lifschitz in [6], where GLp(X) = o (P/X). We note that the operator GLp
is in general not monotonic, and call it the Gelfond-Lifschitz operator of P.

Now consider the coherent algebraic cpo TV from Example 1, and call an
extended program over TV a propositional program if for each rule Y «— (C, N)
in P we have that Y, C' and N contain only atoms in TV or L, i.e. propositional
variables or their negations (with respect to =) or L, ¥ does not contain 1, and
C is a singleton clause.

Now if P is a propositional program, then let P’ be the extended disjunctive
logic program obtained from P by transforming each rule

{pla"'apn}’ — {(h ~-qm},N{T1,m,7‘k}

from P into the rule

Pis-sPn =415 -5 Gm,s ™~T15 - - o, T,

in P’, where p;, g;,7; are atoms in TV, i.e. literals over V. If ¢1 ... ¢, = L, then
it is omitted. If r; = L for some 4, then the rule will never play a role, so we can
assume without loss of generality that this does not occur. This transformation
can obviously be reversed. We say that P and P’ are associated with each other.

Theorem 1. Let P be a propositional program and P’ be its associated extended
disjunctive logic program. Then w € TV is a min-answer model of P if and only
ifw = {peV*|wlk {p}}, i.e the set of all atoms for which w is a model, is
an answer set for P'. Conversely, if X C VE is an answer set for P’ which does
not contain complementary literals, then x = | | X € TV ewists and is a min-
answer model of P. If VF is an answer set for P’ (and hence the only answer
set of P'), then P does not have any min-answer models.

Theorem 1 shows that reasoning {or programming) with min-answer models
encompasses answer set programming with extended disjunctive logic programs.
More precisely, we obtain the classical answer set programming paradigm by
restricting our attention to the domain TY. What do we gain through this more
general framework? One the one hand, we improve in conceptual clarity: Our re-
sults open up the possibility of a domain-theoretical {(and domain-logical) treat-
ment of answer set programming in the basic paradigm, and possibly also for
some extensions recently being studied. On the other hand, we gain flexibility
due to the possible choice of underlying domain, which we like to think of as
background knowledge on which we program or which we query. The choice of
TV corresponds to the language of propositional logic, and all order structures
satisfving the requirements of being coherent algebraic cpos are suitable. These
requirements are rather weak from a computational perspective, because among
the computationally relevant order structures studied in domain theory, coher-
ent algebraic cpos form a rather general class. In particular, they encompass all
finite partial orders, and all complete algebraic lattices.

Default reasoning over domains and concept hierarchies 9

In Section 5 we will actually propose a very general way — using formal
concept analysis — of obtaining suitable order structures.
The following theorem is an immediate corollary from Theorem 1.

Theorem 2. Let P be a propositional program not containing ~ and P’ be its
associated extended disjunctive program. If w € TY is a minimal model of P
then w' = {p € V¥ | w = {p}} is minimally closed by rules in P'. Conversely, if
X C V* is minimally closed by rules in P’ and does not contain complementary
literals, then « = | |X € TV ewists and is a minimal model of P. If V= is
minimally closed by rules in P’ (and thus is the only answer set of P’), then P
does not have any models.

In particular, Theorem 1 shows that the minimal model semantics for definite
logic programs [16] can be recovered using the original approach from [1] without
default negation. Likewise, the same holds for the stable model semantics for
normal logic programs [17], which are non-disjunctive ones without negation —.

5 Formal Concept Analysis

Formal concept analysis is a powerful lattice-based approach to symbolic data
analysis. It was devised in the 1980s [18] and was originally inspired by ideas
from philosophy, more precisely by Port Royal Logic, which describes a con-
cept as consisting of a set of objects (the extent of the concept) and a set of
attributes (the intent of the concept) such that these objects share exactly all
these attributes and vice-versa. In the meantime, an active community is driving
the field, covering mathematical foundations, logical aspects, and applications
in data mining, ontology engineering, artificial intelligence, and elsewhere.

The formation of concepts can be viewed as logical closure in the sense that
a set of attributes B implies an attribute m (which may or may not be contained
in B), if all objects which fall under all attributes in B also share the attribute
m. This will be made more precise below. We thus obtain a notion of logical
consequence on attribute sets, respectively a natural implicative theory, which
corresponds to so-called association rules in data mining. This implicative theory
is intimately related to the logic RZ, a point which we mentioned earlier and
will study formally in the following. The strong correspondence between the
logic RZ and the formation of formal concepts from formal contexts has already
been reported in [7] for the case of finite contexts. We will now supplement these
results by a theorem which treats the case of infinite contexts.

We first introduce the notions of formal context and concept as used in formal
concept analysis. We follow the standard reference [3].

A (formal) context is a triple (G, M, I) cousisting of two sets G and M and
a relation I C G x M. Without loss of generality, we assume that G N M = (.
The elements of G are called the objects and the elements of M are called the
attributes of the context. For ¢ € G and m € M we write gI'm for (g,m) € I,
and say that g has the attribute m.

10 Pascal Hitzler

For aset A C G of objects weset A’ = {m € M | gIm for all g € A}, and for
aset B C M of attributes we set B’ = {g € G | gIm for all m € B}. A (formal)
concept of (G, M, I) is a pair (4, B) with A C G and B C M, such that A’ =B
and B’ = A. We call A the extent and B the intent of the concept (A, B). For
singleton sets, e.g. B = {b}, we simplify notation by writing &’ instead of {b}'.

The set B(G, M, I) of all concepts of a given context (G, M, I) is a complete
lattice with respect to the order defined by (A, B1) < (A2, By) if and only if
A1 C Ao, which is equivalent to the condition Be C By. B(G, M, I) is called the
concept lattice of the context (G, M,T).

Remark 1. For every set B € M of attributes we have that B’ = B"”, so that
(B’, B") is a concept. Hence, the concept lattice of a context (G, M,I) can be
identified with the set {B” | B C M}, ordered by reverse subset inclusion.

Furthermore, if m € M is an attribute, then we call (m/,m"”) = ({m}’,{m}")
an attribute concept. Dually, if ¢ € G is an object, then we call (¢”,¢") =
({g}",{g}) an object concept. The subposet L of B(G, M, I) consisting of all
attribute and object concepts is called the Galois subhierarchy or AOC associ-
ated with (G, M, I). By abuse of notation, we denote members of L by elements
from GU M. This is justified by the obvious possibility to identify the set L with
(GUM)/., where ~ is the equivalence relation identifying each two elements in
G U M whose associated concepts coincide. We denote the induced order on L
by <.

Theorem 3. Let (G, M,I) be a formal context, B(G, M, I) be the corresponding
formal concept lattice, and (L, <) be the Galois subhierarchy associated with
(G,M,I). Let (D,C) be a coherent algebraic cpo and ¢ : L — D be an order-
reversing injective function which covers all of K(D), i.e. for each ¢ € K(D)

there exists some a € L with t(a) = c. Furthermore, let A= {mq,...,m,} C M
such that ((m;) € K(D) for all i. Then

A" =A{m | {{m1)},..., {e(mn)}} E {e(m)}}.

We remark that Theorem 3 applies to all finite contexts since the Galois
subhierarchy of a finite context is always (and trivially) a coherent algebraic
cpo where all elements are compact; a bottom element may have to be added,
though. This finite case is also a corollary from [7, Theorem 3], taking Example
1 and Proposition 1 from [7] into account.

The following example is taken from [7]; it complements Example 2.

Example 8. Consider the formal context given in Table 1. It shall represent, in
simplified form, a selection of set dinners from a restaurant menu. The Galois
subhierarchy of its formal concept lattice is depicted in Figure 1. Concepts in
this setting correspond to types of dinners, e.g. one may want to identify the
concept with extent {4,6,7} and intent {st,m, ¢}, using the abbreviations from
Figure 1, to be the heavy meals, while the expensive ones are represented by
the attribute concept of e, and turn out to always include coffee. Using the logic

Default reasoning over domains and concept hierarchies 11

Table 1. Formal context for Example 3.

salad|starter|fish|meat|red wine|white wine|water|dessert|coflfee|expensive
1 X X X
2 X X X
3| x X X X X X
4 X X X X X X
5 x X X X
6 x X X X X
71 x X X X X X X X
8 X X X
9] x X X

RZ, we can for example conclude that a customer who wants salad and fish will
choose one of the meals 3 or 5, since these elements of the poset are exactly
those which are both objects and models of the theory {{sd},{f}}. Also, he
will always get a starter or a dessert, formally {{sd},{f}} & {st,d}. To give
a slightly more sophisticated example, suppose that a customer wants salad or
a starter, additionally fish or a dessert, and drinks water. From this we can
conclude that in any case he will get both a salad and a starter. Formally, we
obtain {{sd, st},{f,d}, {w}} E {sd} and {{sd, st},{f,d},{w}} | {st}. A little
bit of reflection on the context makes it clear that these inferences are indeed
natural oncs.

Let us stop for a moment and dwell on the significance of Theorem 3. We note
first of all that the hypothesis is not very strong from a domain-theoretic per-
spective: we encompass all concept lattices for which some corresponding Galois
subhierarchy forms at least an abstract basis for a coherent algebraic cpo. One
could argue that such or similar conditions have to be satisfied in any case if one
intends to perform computation on an infinite order structure. The conclusion
of the theorem then says that concept closure (or in other words, the under-
lying implicative theory) basically coincides with consequence in RZ, restricted
to finite sets of singleton clauses, which can be interpreted as conjunctions of
elements or items from G UM. The logic RZ then lifts concept closure to become
part of disjunctive reasoning, in a natural and intuitively appealing way. From
this perspective we can say that the logic RZ is the implicative theory obtained
from concept closure, naturally extended with a notion of disjunction.

What we gain from this perspective is not only a tight relationship between
formal concept analysis and domain theory, but also a non-monotonic reason-
ing paradigm on conceptual knowledge, by utilizing our results in Section 4.
Formal contexts can now be interpreted as providing background knowledge in
elementary form, which can be queried, or programmed on, by using disjunctive
logic programs with default negation, as described in Section 4. From this, we
obtain a clear distinction between the (monotonic!) background knowledge or
underlying database, and the program written on top of it, allowing for a clear

12 Pascal Hitzler

separation of the nonmonotonic aspects which are diffcult to deal with efficiently
and effectively.

6 Related Work

Logical aspects of formal concept analysis have certainly received ample atten-
tion in the literature, see e.g. [19, 20]. In particular, the conteztual attribute logic
due to Ganter and Wille [19] is closely related to our results in Section 5, and
for the finite case this was spelled out in [7].

The study of relationships between formal concept analysis and domain the-
ory has only recently received attention. Zhang and Shen [21,22] approach the
issue from the perspective of Chu spaces and Scott information systems. A
category-theoretical setting was developed from these investigations in [23]. The
work just mentioned has a different focus than our result in Section 5 and [7], but
develops along similar basic intuitions and is mainly compatible with ours. Its
flavour is more category-theoretical and targets categorial constructions which
may be used for ontology engineering.

Osswald and Petersen [24, 25] study an approach to encoding knowledge in
order structures which is inspired from linguistics. They obtain a framework
which is more flexible than formal concept analysis, and appears to be compatible
with our results in Section 5 and [7]. They also propose a default reasoning
paradigm, but it remains to be worked out how it relates to ours.

Relationships between domain theory and nonmonotonic reasoning have hardly
been studied in the literature, except from series of papers by Rounds and Zhang,
e.g. [1,26,27], and Hitzler and Seda, e.g. [28-30]. This is remarkable since do-
main theory has become a respected paradigm in the theory of computing with
widespread applications. We believe that this relationship deserves much more
attention in order to understand the theoretical underpinnings of nonmonotonic
reasoning and other artificial intelligence paradigms.

Default reasoning on concept hierarchies has also been studied before, for
example in the form of default reasoning in semantic networks, e.g. [31], and as
nonmonotonic reasoning with ontologies, e.g. [32, 33]. Since ontology creation is a
currently evolving area of application for formal concept analysis, we expect that
our paradigm will also be useful for similar purposes. Another related paradigm
is logic programming with inheritance [34], where the underlying order structures
are is-a hierarchies, which do not have a similarly rich logical structure as the
logic RZ or Galois subhierarchies of formal concept lattices.

7 Conclusions and Further Work

The work presented in this paper touches domain theory, nonmonotonic reason-
ing, and symbolic data analysis. The contribution should mainly be considered
as an inspiration for further investigations which grow naturally out of our ob-
servations. There are several starting points for such work, and some of them
bear potential for full research projects which are interesting in their own right.

Default reasoning over domains and concept hierarchies 13

Concerning the relations worked out between the logic RZ and nonmonotonic
reasoning, we have described a general reasoning framework which encompasses
answer set programming with extended disjunctive programs as a special case,
namely with the domain restricted to TY. This opens up new ways for domain-
theoretic analysis for nonmonotonic reasoning in this paradigm, with the hope
that e.g. decidability aspects could be tackled — an issue which has so far re-
ceived only little attention in the nonmonotonic reasoning community. On the
other hand, by substituting TY by other domains, it should be possible to lift
answer set programiming out of the restricted syntax provided by the fragment
of first-order logic usually considered.

Concerning the relations between the logic RZ and formal concept analysis
displayed in Section 5, we can understand the logic RZ as a means of reasoning
with conceptual knowledge, related to the approach presented in [19], as already
mentioned in [7]. Indeed, the choice of TV as underlying domain relates to answer
set programming, while the choice of other domains can be motivated by formal
concept analysis. Of particular interest are also the infinitary aspects of this, and
the potential of the domain-theoretic approach to deal with questions of com-
putability and query-answering even on infinite contexts. From this perspective,
it should be investigated under which conditions a context satisfies the hypothe-
ses of Theorem 3. It would also be important to relate this result to those of [21],
where domain theory and formal concept analysis are being related by means of
Chu space theory, and [24, 25|, where a general approach encompassing formal
concept analysis is described for obtaining order structures carrying hierarchical
knowledge.

Finally, we would like to emphasize that the results presented here lead to
a nonmonotonic reasoning paradigm on conceptual knowledge. More precisely,
starting from a given (and possibly infinite) context, we have provided means
for doing nonmonotonic reasoning on the Galois subhierarchy of the context.
Since the logic RZ captures the notion of concept closure, we obtain a reasoning
paradigm dealing with conceptual knowledge in a way very natural to formal
concept analysis. On the other hand, the nonmonotonic reasoning paradigm
thus put in place is very close in spirit to mainstream developments in answer
set programming, and can thus benefit from the experience gained within this
field of research.

We believe that the resulting nonmonotonic reasoning paradigm with concep-
tual knowledge bears potential for applications. One could envisage background
knowledge in the form of formal contexts, and sophisticated queries or planning
tasks expressed by programs. We are not aware of any other work which pro-
poses a default reasoning paradigm on conceptual knowledge compatible with
mainstream research developments in nonmonotonic reasoning.

References

1. Rounds, W.C., Zhang, G.Q.: Clausal logic and logic programming in algebraic
domains. Information and Computation 171 (2001) 156-182

14

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

Pascal Hitzler

Abramsky, S., Jung, A.: Domain theory. In Abramsky, S., Gabbay, D., Maibaum,
T.S., eds.: Handbook of Logic in Computer Science. Volume 3. Clarendon, Oxford
(1994)

Reiter, R.: A logic for default reasoning. Artificial Intelligence 13 (1980) 81-132
Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for
nonmonotonic reasoning. In Dix, J., Furbach, U., Nerode, A., eds.: Proceedings
of the 4th International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR'97. Volume 1265 of Lecture Notes in Artificial Intelligence.,
Springer, Berlin (1997)

Simons, P., Niemeld, I., Soininen, T.: Extending and implementing the stable
model semantics. Artificial Intelligence (200x) To appear.

Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9 (1991) 365-385

Hitzler, P., Wendt, M.: Formal concept analysis and resolution in algebraic do-
mains. In de Moor, A., Ganter, B., eds.: Using Conceptual Structures — Contri-
butions to ICCS 2003, Shaker Verlag, Aachen (2003) 157-170

Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foundations.
Springer, Berlin (1999)

Scott, D.S.: Domains for denotational semantics. In Nielsen, M., Schmidt,
E.M., eds.: Automata, Languages and Programming, 9th Colloquium, July 1982,
Aarhus, Denmark, Proceedings. Volume 140 of Lecture Notes in Computer Sci-
ence., Springer, Berlin (1982) 577613

Hofmann, K.H., Mislove, M.W.: Local compactness and continuous lattices. In
Banaschewski, B., Hofmann, R., eds.: Continuous Lattices, Proceedings. Volume
871 of Lecture Notes in Mathematics., Springer-Verlag (1981) 209-248

Plotkin, G.: T* as a universal domain. Journal of Computer and System Sciences
17 (1978) 209-236

Fitting, M.: A Kripke-Kleene-semantics for general logic programs. The Journal
of Logic Programming 2 (1985) 295-312

Hitzler, P.: A resolution theorem for algebraic domains. In Gottlob, G., Walsh,
T., eds.: Proceedings of the 18th International Joint Conference on Artificial In-
telligence, Acapulco, Mexico, August 2003, Morgan Kaufmann Publishers (2003)
1339-1340

Hitzler, P.: A generalized resolution theorem. Journal of Electrial Engineering,
Slovak Academy of Sciences 55 (2003) 25-30

Makinson, D.: Bridges between classical and nonmonotonic logic. Logic Journal
of the IGPL 11 (2003) 69-96

Lloyd, J.W.: Foundations of Logic Programming. Springer, Berlin (1988)
Gelfond, M., Lifschitz, V.. The stable model semantics for logic programming.
In Kowalski, R.A., Bowen, K.A., eds.: Logic Programming. Proceedings of the
5th International Conference and Symposium on Logic Programming, MIT Press
(1988) 1070-1080

Wille, R.: Restructuring lattice theory: An approach based on hierarchies of con-
cepts. In Rival, 1., ed.: Ordered Sets. Reidel, Dordrecht-Boston (1982) 445-470
Ganter, B., Wille, R.: Contextual attribute logic. In Tepfenhart, W.M., Cyre, W.R.,
eds.: Conceptual Structures: Standards and Practices. Proceedings of the 7th Inter-
national Conference on Conceptual Structures, ICCS 99, July 1999, Blacksburgh,
Virginia, USA. Volume 1640 of Lecture Notes in Artificial Intelligence., Springer,
Berlin (1999) 377-388

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Default reasoning over domains and concept hierarchies 15

Wille, R.: Boolean judgement logic. In Delugach, H., Stumme, G., eds.: Conceptual
Structures: Broadening the Base, Proceedings of the 9th International Conference
on Conceptual Structures, ICCS 2001, July 2001, Stanford, LA, USA. Volume 2120
of Lecture Notes in Artificial Intelligence., Springer, Berlin (2001) 115-128
Zhang, G.Q.: Chu spaces, concept lattices, and domains. In: Proceedings of the
Nineteenth Conference on the Mathematical Foundations of Programming Seman-
tics, March 2003, Montreal, Canada. Volume 83 of Electronic Notes in Theoretical
Cowmputer Science. (2003)

Zhang, G.Q., Shen, G.: Approximable concepts, Chu spaces, and information
systems. Theory and Applications of Categories (200x) To appear.

Hitzler, P., Zhang, G.Q.: A cartesian closed category of approximable concept
structures. In Pfeiffer, H., Wolff, K., eds.: Proceedings of the International Con-
ference On Conceptual Structures, Huntsville, Alabama, USA. Lecture Notes in
Cowmputer Science, Springer (2004) To appear.

Osswald, R.: Assertions, conditionals, and defaults. In: Proceedings of the 1st
Workshop on Conditionals, Information, and Inference. Lecture Notes in Artificial
Intelligence (200x) To appear.

Osswald, R., Petersen, W.: A logical approach to data driven classification. In
Giinter, A., Kruse, R., Neumann, B., eds.: KI-2003: Advances in Artificial Intel-
ligence. Volume 2821 of Lecture Notes in Artificial Intelligence., Springer (2003)
267281

Zhang, G.Q., Rounds, W.C.: Reasoning with power defaults (preliminary report).
In Dix, J., Furbach, U., Nerode, A., eds.: Proceedings of the Fourth International
Conference on Logic Programming and Non-Monotonic Reasoning, LPNMR’97,
Dagstuhl, Germany. Volume 1265 of Lecture Notes in Computer Science., Springer
(1997) 152-169

Zhang, G.Q., Rounds, W.C.: Semantics of logic programs and representation of
Smyth powerdomains. In Keimel, K., et al., eds.: Domains and Processes. Kluwer
(2001) 151-179

Hitzler, P., Seda, A.K.: Some issues concerning fixed points in computational logic:
Quasi-metrics, multivalued mappings and the Knaster-Tarski theorem. In: Pro-
ceedings of the 14th Summer Conference on Topology and its Applications: Special
Session on Topology in Computer Science, New York. Volume 24 of Topology Pro-
ceedings. (1999) 223-250

Hitzler, P., Seda, A.K.: Generalized metrics and uniquely determined logic pro-
grams. Theoretical Computer Science 305 (2003) 187-219

Seda, A K., Hitzler, P.: Topology and iterates in computational logic. In: Proceed-
ings of the 12th Summer Conference on Topology and its Applications: Special
Session on Topology in Computer Science, Ontario, August 1997. Volume 22 of
Topology Proceedings. (1997) 427-469

Shastri, L.: Default reasoning in semantic networks: A formalization of recognition
and inheritance. Artificial Intelligence 39 (1989) 283-355

Baader, F., Hollunder, B.: Embedding defaults into terminological representation
systems. J. Automated Reasoning 14 (1995) 149-180

Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and
negation as failure. ACM Trans. Comput. Logic 3 (2002) 177-225

Buccafurri, F., Leone, N.: Disjunctive logic programs with inheritance. Theory
and Practice of Logic Programming 2 (2002) 293-321

16 Pascal Hitzler

Appendix: Proofs

Theorem 1 Let P be a propositional program and P’ be its associated extended
disjunctive logic program. Then w € TY is a min-answer model of P if and only
if w = {p € V* |w = {p}},ie. the set of all atoms for which w is a model, is an
answer set for P’. Conversely, if X C V¥ is an answer set for P’ which does not
contain complementary literals, then x = | | X € T exists and is a min-answer
model of P. If V¥ is an answer set for P’ (and hence the only answer set of P’),
then P does not have any min-answer models.

Proof. Note that (P/w)" = (P’/w'), so we first restrict our attention to programs
without ~. Let @, Q' be such programs associated with each other. We show first
that for every min-answer model v for () we have that

V={peV*|vE {p}}

is closed by rules in Q’. Then we show that for every answer set X of Q' we
have that x = | | X is an answer model of). Then we proceed with showing
that v is an answer set if v is a min-answer model, and finally that z = | | X is
a min-answer model for) whenever X is an answer set for Q.

So let v € TY be a min-answer model for Q. Then v is minimal among all z
with z [= fix (7Tg,,) = fix(Tg) = cons(Q), i.e. v is a minimal model of Q. Note
that v = | |v' = | [{p € VT | v = {p}}, so v/ cannot contain complementary
literals, since two complementary literals do not have a common upper bound in
TV. We show next that v/ is closed by rules in @’. So let p1,...,Pn < G1y-+) G
be arule in Q' such that g1,...,¢, € v". Butthenv = | {g1,-- -, @t =aq1-- - @m
and {p1,...,pn} < {q1...qn} is a clause in Q. Since v is a model of Q) we obtain
vE{p1,...,pn} and hence v |= {p;} for some ¢, which implies p; € v" as desired.

Now let X C VE be an answer set for Q' which does not contain comple-
mentary literals. Then z = | | X exists, and we show that it is an answer model
of Q. Solet {p1,...,pn} «— {q1...qm} be a clause in Q with = = {g1-..¢m}-
Then {q1,...,¢n} C X, hence p; € X for some 4, and consequently z |= {p;} as
desired.

For a min-answer model v for Q we know already that v’ does not contain
complementary literals and is closed by rules in Q’. Now let Y C v/ be an answer
set for Q. Then | |Y exists and | |[Y C | |v' = v, hence | |Y = v by minimality
of v, and consequently Y = v/, so v/ is an answer set for Q.

For an answer set X for Q' we know already that x = | | X is an answer
model of Q. Now let y C z be a min-answer model for Q. Then ¢ = {p € V* |
y = {p}} C X is an answer set for @), hence 3y’ = X by minimality of X, and
consequently y = x, so z is a min-answer model for Q.

This closes the proof for programs without ~. Now let P be a propositional
program including ~.

Let w be a min-answer model for P, hence w is minimal among all v with
v = fix (Tp/y), and in particular w is a min-answer model for P/w. So w' =
{p e V* | w k= {p}} is an answer set for (P/w)’ = P'/w’ as desired.

Default reasoning over domains and concept hierarchies 17

Let X be an answer set for P’ which does not contain complementary literals.
Then X in particular is an answer set for P//X = (P/| | X)', hence x = | X is
a min-answer model for P/z, and consequently also a min-answer set model P
as desired.

If X is an answer set for P’ containing complementary literals then X = V*,
and X is the only answer set for P’. Now if P had a min-answer model w, then
w' = {p € V*|wk {p}} C X were an answer set for P. But then w’ = X which
is impossible since this implies w = | | X, but the supremum does not exist.

Theorem 3 Let (G, M, I) be a formal context, B(G, M, I) be the corresponding
formal concept lattice, and (L, <) be the Galois subhierarchy associated with
(G,M,I). Let (D,C) be a coherent algebraic cpo and ¢ : L — D be an order-
reversing injective function which covers all of K(D), i.e. for each ¢ € K(D) there

exists some a € L with ¢(a) = c. Furthermore, let A = {m,...,m,} C M such
that «(m;) € K(D) for all 4. Then

A" =A{m | {{e(m))},. . {s(ma)}} E {um)}}

Proof. Let m be such that {{¢(m1)},...,{t(ms)}} E {t(m)}. We have to show
that m € A”. Solet g € G be such that gI'm; for all ¢, which implies g < m; for all
i. So ¢(g) 3 ¢(my) for all 4, Le. t(g) = {{e(m1)}, ..., {e(my)}}, and consequently
g) E {t(m)}. Tt follows that «(g) 3 «(m) which implies ¢ < m, hence gIm.
Since g was chosen arbitrarily, we conclude m € A”.

Conversely, let m € A” and let w be chosen arbitrarily with w € mub¢(A).
Then it remains to show that ¢«(m) C w since this implies ¢(m) C z for all 2 with
z = {{dm)}, ..., {t(m,)}} by arbitrary choice of w, and hence

{elm)}s - {d(man) b} b= {dm)}

as desired.

In order to show ¢«(m) C w first note that w € K(D) by coherency and our
assumption on A. We consider the two cases (i) ¢} (w) € G and (ii) ¢ 7 (w) € M.

(i) If ™Y (w) = g € G, then g < m; for all i, hence glm; for all i and
consequently gI'm. We obtain g < m, hence w = +(g) 3 1(m) as desired.

(ii) If : = (w) = a € M, then a < m; for all i, hence a’ C m/ for all 4. So for
all g with gla we have gI'm; for all 4, and by m € A” we obtain gI'm. We have
just shown that g € o’ implies g € m/, so o’ C m/, which is equivalent to a < m.
Hence w = ¢(a) J t(m) as desired.

Eingereicht bei Theoretical Computer Science

A Categorical View on Algebraic Lattices in
Formal Concept Analysis

Pascal Hitzler!
Markus Krotzsch?
Guo-Qiang Zhang?®

! Institut AIFB, Universitit Karlsruhe, Germany.
2 Fakultit fiir Informatik, Technische Universitit Dresden, Germany.
3 Department of Electrical Engineering and Computer Science, Case Western
Reserve University, Cleveland, Ohio, U.S.A.

Abstract

Formal concept analysis has grown from a new branch of the mathemat-
ical field of lattice theory to a widely recognized tool in Computer Science
and elsewhere. In order to fully benefit from this theory, we believe that it
can be enriched with notions such as approximation by computation or rep-
resentability. The latter are commonly studied in denotational semantics and
domain theory and captured most prominently by the notion of algebraicity,
e.g. of lattices. In this paper, we explore the notion of algebraicity in for-
mal concept analysis from a category-theoretical perspective. To this end,
we build on the the notion of approximable concept with a suitable category
and show that the latter is equivalent to the category of algebraic lattices. At
the same time, the paper provides a relatively comprehensive account of the
representation theory of algebraic lattices in the framework of Stone dual-
ity, relating well-known structures such as Scott information systems with
further formalisms from logic, topology, domains and lattice theory.

1 Introduction

Algebraic lattices conveniently represent computationally relevant properties. As
partial orders they allow for the expression of amounts of information con-
tent. Distinguished elements — called compact or finite — stand for compu-
tationally representable information. Every element or information item not di-
rectly representable can be approximated by representable, i.e. compact, items.

phi
Eingereicht bei Theoretical Computer Science

So algebraic lattices can be identified as computationally relevant structures,
and as such have found applications in Computer Science, most prominently in
the theory of denotational semantics, domain theory (see, e.g. [AJ94]), but re-
cently also in aspects regarding knowledge representation and reasoning (see e.g.
[RZ01, ZR04, Hit04]).

As can be expected from rich mathematical structures such as algebraic lat-
tices, a multitude of possible characterizations have been established, ranging
from the classical correspondence between algebraic lattices and their semilat-
tices of compacts [GHK*03], over logical characterizations such as Scott infor-
mation systems [Sco82a], to topological investigations via the Scott topology
[Joh82, Abr91]. Following Abramsky’s programme of domain theory in logical
form, each of these representations is associated with either the spacial or the lo-
calic side of Stone duality: the former includes syntactical, logical, and axiomatic
formalisms, while the latter typically incorporates semantical, observational, and
denotational aspects. The equivalence of both worlds leads to rather pleasant re-
sults of soundness and completeness of corresponding proof systems and model
theories.

We add to this collection by a representation of algebraic lattices based on
the framework of formal concept analysis (FCA, [GW99]). Originally, FCA was
conceived as an alternative formulation of the theory of complete lattices, moti-
vated by philosophical considerations [Wil82]. In the meantime, FCA has grown
from a new branch of lattice theory to a widely recognized tool in Computer Sci-
ence (see, e.g., [Stu02]). Prominent applications concern areas such as Data- and
Textmining, Knowledge Representation and Reasoning, Semantic Web, Compu-
tational Linguistics. FCA starts from formal contexts, syntactical descriptions of
object-attribute relations, and lifts them to closure operators and complete lat-
tices. While this suggests a logical viewpoint based on the given (deductive) clo-
sure, the derived logical entailment lacks the important property of compactness:
some conclusions can only be drawn from infinite sets of premises [ZhaO3a]. This
motivates a deviation from the classical definition of closures in FCA to ensure
Scott continuity of the derived closure operators (the so called algebraic ones),
thus recovering compactness and switching to complete lattices that are algebraic.
We achieve this by introducing the (complete algebraic) lattice of approximable
concepts [ZS0x], obtained from given object-attribute relations analogous to the
classical construction used in FCA, but at the same time conforming to the insights
concerning computationally relevant structures as studied in domain theory.

The strong interest in algebraic lattices indeed stems only in part from the
appealing way in which these structures capture the possibility of approximating
infinite computation by finite elements. The full strength of the theory only be-
comes apparent when Scott continuous functions are employed as morphisms of
a category Alg of algebraic lattices. The interplay between the lattices and these

2

morphisms is highly satisfactory: the set of all Scott continuous functions between
two algebraic lattices can again be viewed as an algebraic lattice, and Alg is in fact
cartesian closed. Consequently, we augment the above characterizations of alge-
braic lattices by suitable notions of morphisms, inducing in each case a category
that is equivalent to Alg. We thus obtain a cartesian closed category of formal
contexts corresponding to the new notion of approximable concepts.

At the same time, this article gives a relatively comprehensive account of the
numerous representations of algebraic lattices by offering a fresh, unified, and
largely self-contained treatment of the theory. The new approach via FCA pro-
vides additional insights into the nature of the well-known formalisms. In par-
ticular, we give a direct proof of the cartesian closedness of the new category
of formal contexts, hence obtaining novel categorical product and function space
constructions based on formal contexts. Particularly, the formulation of function
spaceenhances our understanding of approximable mappings, the class of mor-
phisms Scott conceived for his information systems [Sco82a]. Indeed, these re-
lations turn out to be immediate descriptions of sets of step functions, sufficient
to capture all Scott continuous functions between the corresponding algebraic lat-
tices.

Our discussion will also expose the connections between algebraic lattices
and the conjunctive fragment of propositional logic — an approach that appears
to be rather intuitive from the viewpoint of Computer Science and also brings
to bear on the results from [HWO03, Hit04]. As encompassed in [Abr91], this is
achieved through the Lindenbaum algebras of these logics. Our profit, besides
finding a simple access to Scott information systems, is an alternative view on
approximable mappings as multilingual sequent calculi, as considered in [JKM99]
for more expressive logics.

The structure of this paper is as follows. In the next Section 2 the most funda-
mental definitions from order theory, topology, and category theory are recalled.
Section 3 starts the discussion of algebraic lattices from a domain theoretic per-
spective, with special emphasis on the role of the semilattice of compact elements.
Thereafter, Section 4 introduces appropriate notions of morphisms for such semi-
lattices, which are shown to be equivalent to Scott continuous functions between
the corresponding algebraic lattices. Section 5 then introduces a category of for-
mal contexts equivalent to the algebraic lattices and Scott continuous functions,
and gives an explicit proof of the cartesian closure of this new category. Building
on the prototypical categorical equivalences established earlier, Section 6 intro-
duces further representation theorems from logic and topology, which are then
connected using Stone duality. Finally, Section 7 gives pointers to further litera-
ture and hints at possible extensions of given results.

A very preliminary report on some of the results in this paper has appeared as
[HZ04]. The notion of approximable concept has first been proposed in [ZS0x],

but without exploring its category-theoretical content.

Acknowledgements. The first author acknowledges support by the German
Ministry of Education and Research under the SmartWeb project, and by the Eu-
ropean Union under the KnowledgeWeb network of excellence. The second au-
thor gratefully acknowledges support by Case Western Reserve University, Cleve-
land/Ohio, where most of his work was carried out, and sponsorship by the Ger-
man Academic Exchange Service (DAAD) and by the Gesellschaft von Freunden
und Forderern der TU Dresden e.V.

2 Preliminaries and Notation

We first give some basic definitions of order theory at least fo fix notations. Our
main reference will be [GHK*03]. A more gentle first introduction is given in
[DPO2].

A partially ordered set (poset) is a set P with a reflexive, symmetric, transitive
relation < C P x P. If (P, <) is a poset, then its dual is the poset (P, >). We denote
posets by their carrier set as long as the partial order is clear from the context.

Definition 2.1 Consider a poset L. A non-empty subset D C L is directed if, for
any x, y € D, there is some element z € D such that x < z and y < z. If every
directed subset D C L has a least upper bound (supremum, join) \/ D in L, then L
is a directed complete partial order (dcpo).

L is a complete lattice if every subset S C L has a least upper bound \/ S and
a greatest lower bound (infimum, meet) A S. For a set X, 2¥ denotes the powerset
lattice, i.e. the complete lattice of all subsets of X under inclusion.

We recall that a poset that has all infima also has all suprema, and vice versa,
so that one of these conditions is in fact sufficient. Furthermore we fix some basic
terminologies about lattices.

Definition 2.2 A poset L is a lattice if every two elements of L have a supremum
and an infimum. These meets and joins of binary sets will be written in infix:
V{x,y} = xVyand A{x,y} = x Ay. Lis distributive if, for all x, y, z € L, one finds
XAV =xxVy AxV2).

An element x € L is called

e meet-irreducible if y A z = x implies y = x or z = x,
o meet-prime if y A 7 < ximplies y < xor z < x.

Join-irreducible and join-prime elements are defined dually.

In a distributive lattice, the meet-irreducibles are exactly the meet-primes, and
this will be the only case considered in this paper. Furthermore we want to talk
about functions between partially ordered sets.

Definition 2.3 Consider posets P and Q, and a function f : P — Q. Then f
is monotone if it preserves the order of P, i.e. x < y in P implies f(x) < f(y)
in Q. Moreover, f preserves (directed) suprema if, for any (directed) S € P
such that \/ § exists, one finds that \/ f(S) = V{f(s) | s € S} exists and that
f(\V/S) =V f(S). Preservation of infima is defined dually. A function that pre-
serves directed suprema is also called Scott continuous. An order-isomorphism 1s
a bijective monotone function that has a monotone inverse.

Note that preservation of directed suprema (infima) always entails monotonic-
ity, since every pair of elements x < y induces a directed set {x,y} for which
preservation of suprema (infima) implies f(x) < f(y) as required.

We also need a little general topology. Our view on topology largely agrees

with [Smy92].

Definition 2.4 Let X be a set and let 7 C 2% be a system of subsets of X. (X, 7)is a
topological space if T contains X and the empty set, and is closed under arbitrary
unions and finite intersections. The members of such a system 7 are called open
sets and the complete lattice (7, ©) is called the open set lattice. The complements
of open sets are the closed sets. If confusion is unlikely, we will denote topological
spaces by their sets of points. For a topological space X, we also use Q(X) to
denote its open set lattice.

A subset B of 7 is a base of 7 if every open set is equal to the union of all
members of B it contains.

The appropriate mappings between topological spaces are continuous func-
tions.

Definition 2.5 Consider topological spaces X and Y, and a function f : X — Y.
Then f is continuous if its inverse image preserves open sets, i.e. for every open
set O C Y, the set f71(0) = {x € X | f(x) € O} is open in X. If f is bijective
and both f and f~! are continuous then f is a homeomorphism. The topological
spaces X and Y are said to be homeomorphic if a homeomorphism between them
exists.

Finally, a minimum amount of category theory is utilized in this paper, in
order to present relationships of the different concepts to their full extent. Our
terminology follows [Bor94]. Other good references include [Mac71], and the
more easy-paced introductions [LRO3] and [McL92]. A category C consists of

(i) aclass |C| of objects of the category,
(i1) forall A, B € |C|, a set C(A, B) of morphisms from A to B,

(iii) for all A, B, C € |C|, a composition operation
0:C(B,C)xC(A,B) — C(A,),

(iv) for all A € |C|, an identity morphism id4, € C(A, A),

such that for all f € C(A,B), g € C(B,C), h € C(C, D), the associativity axiom
ho(go f)=(hog)o f, and the identity axioms idgzof = f and g o idg = g are
satisfied. As usual, we write f : A — B for morphisms f € C(A, B). The opposite
C°P of a category C is defined by setting |C°?| = |C| and C°P(A, B) = C(B,A).
A morphism f : A — A’ is an isomorphism, if it has an inverse, i.e. if there is a
(necessarily unique) morphism g : A” — A with go f =id4 and f o g = id,..

A functor F from a category A to a category B consists of

(i) a mapping |A| — |B| of objects, where the image of an object A € |A] is
denoted by FA,

(i1) for all A,A” € |A|, a mapping A(A,A”) — B(FA, FA’), where the image of a
morphism f € A(A, A’) is denoted by F £,

such that for all A,B,C € |A| and all f € A(A,B) and g € A(B,C) we have
F(f o g) = Ff @) Fg and FldA = idFA.

The third basic ingredient of category theory are natural transformations.
Given two functors F,G : A — B, a family of morphisms n = (74 : FA —
GA) e 1s a natural transformation from F to G, if, for all morphisms f: A — A’
of A, one has that 74- o Ff = Gf o n4. This situation is denoted by n: A = B. A
natural transformation (174)aeja| 1S @ natural isomorphism if all of its members are
isomorphisms.

More specific notions will be introduced as they are needed.

3 Algebraic lattices

In this section we introduce algebraic lattices and review their most well-known
characterizations in terms of the sub-poset of compact elements and closure
systems of Scott continuous closure operators. The material basically follows
[GHK*03], to which we refer for the details of the proofs which we omit to avoid
replication. We start with a basic definition.

Definition 3.1 Consider a dcpo P. An element ¢ € P is compact if, for every
directed set D € P we have that ¢ < \/ D implies ¢ < d for some d € D. The set
of all compact elements of P is denoted by K(P). We usually consider K(P) to be
a sub-poset of P.

We note the following

Proposition 3.2 Let L be a complete lattice with compact elements a,b € K(L)
and least element L. Then a V b and L are compact.

Proposition 3.2 contains important information about the structure of the sub-
poset of compact elements of a complete lattice. The following definition makes
the properties of K(L) precise.

Definition 3.3 A poset S is a join-semilattice, if any two elements a, b in S have
a least upper bound a Vv b. Dually, in a meet-semilattice any two elements have a
greatest lower bound.

We conclude that the poset K(L) of compact elements of a complete lattice
is a join-semilattice with least element under the order of L. However, for a full
characterization we shall also be interested in the opposite direction, i.e. given
a join-semilattice, we would like to construct a complete lattice. The right tool
for this endeavor is that of ideal completion, introduced next. Given a set X we
define |X = {y | thereisx € X suchthaty < x} and 1X = {y | thereis x €
X such that x < y}; a set is called an upper (respectively, lower) set if X = TX
(respectively, X = | X). Upper and lower sets of singleton sets {x} are denoted by
Tx and |x, respectively.

Definition 3.4 Consider a partially ordered set P. A subset I C P is an ideal if it
is a directed lower set. The ideal completion IdI(P) is the collection of all ideals of
P partially ordered via subset inclusion.

Note that lower sets |x are always ideals — the principle ideals generated by
the element x. On the other hand, the empty set is not an ideal, since directed
sets need to be non-empty. We see below that the ideal completion of any join-
semilattice with least element is a complete lattice. However, not all complete
lattices arise in this way. The next definition provides the appropriate characteri-
zation.

Definition 3.5 A complete lattice L is an algebraic lattice, if for every element
x € L, we have x = \/ ({x N K(L)).

One can easily see from Proposition 3.2 that any set of the form |x N K(L) is
necessarily directed. Now we are ready to state the important

7

Theorem 3.6 ((GHK™*03] Proposition I-4.10) Let L be an algebraic lattice and
let S be a join-semilattice with least element.

(i) K(L) is a join-semilattice with least element, where the order is induced by
that given on L.

(i1) 1dI(S) is a an algebraic lattice, where join is given by set-intersection.

(ii1) § is order-isomorphic to K(ldI(S)) via the isomorphism f : S — K(IdI(S)) :
am— la.

(iv) L is order-isomorphic to IdI(K(L)) via the isomorphism g : L — IdI(K(L)) :
x> xNKW).

This result demonstrates that we can represent any algebraic lattice — up to
isomorphism — by an appropriate semilattice and vice versa. We subsequently ob-
tain a number of alternative characterizations from this statement and its proof. A
first observation is that Theorem 3.6 assures that every algebraic lattice is isomor-
phic to a lattice of sets. More precisely, for an algebraic lattice L, we established
an isomorphism to a subset of the powerset of its compact elements 2K, Now
one may ask how to characterize those substructures of powersets which yield
algebraic lattices. The tool for this purpose are closure operators.

Definition 3.7 Consider a poset P and a function ¢ : P — P. Then c is a closure
operator if the following hold for all elements x,y € P

(1) c(x) = c(c(x)) (c is idempotent)
(i1) x < c(x) (c is inflationary)
(i11) x <y implies c¢(x) < c¢(y) (c is monotone)

An important result about this kind of operators is that they can be charac-
terized completely by their images, the closure systems. Explicitly, we have the
following.

Proposition 3.8 ((GHK*03] Proposition O-3.13) Let L be a complete lattice
and let ¢ be a closure operator on L. Then ¢ preserves arbitrary infima. Especially,
its image c(L) = {c(x) | x € L} is closed under arbitrary infima in L. Conversely,
any subset C of L that is closed under arbitrary infima in L induces a unique clo-
sure operator ¢ with image C, givenbyc: L —-> L:x— A{ye C|x <y}

In Theorem 3.6(i1) it was shown that the set of ideals is closed under arbitrary
intersections. By the above proposition this assures that IdI(S) is a closure system
on 2%, which can be uniquely characterized by a closure operator. However, not

8

every closure system is algebraic, such that a further restriction on the class of
closure operators is required. It turns out that Scott continuity (see Definition 2.3)
is what is needed to further extend the representation of algebraic lattices.

Theorem 3.9 ((GHK"03] Corollary I-4.14) Any algebraic lattice L is isomor-
phic to the image of a Scott continuous closure operator on the powerset 2%
The operator is given by assigning to any set of compacts the least ideal which
contains this set. Conversely, the image of any such closure is an algebraic lattice,
where the compacts are exactly the images of finite sets of compacts.

This gives us a third characterization of algebraic lattices. One is tempted to
develop a similar statement for join-semilattices with least element. Indeed, any
closure operator on the semilattice of finite elements of a powerset can uniquely
be extended to a Scott continuous closure on the powerset. However, it is not
true that all join-semilattices are images of closure operators on the semilattice of
finite subsets of some set. This is easy to see by noting that any collection of finite
sets can only have finite descending chains, i.e. it satisfies the descending chain
condition (see [DP02]). Yet there are join-semilattices with least element that do
not have this property, like for example the non-negative rational numbers in their
natural order. What we can say is the following.

Corollary 3.10 For any join-semilattice S with least element, there is a closure
operator ¢ : 25 — 25, such that S is isomorphic to the image of the finite ele-
ments of 25 under c. Conversely, the finite-set image of any closure operator on a
powerset is a join-semilattice with least element.

Proof. Note that any closure operator ¢ on a powerset induces a unique Scott
continuous closure ¢’ by setting ¢’(X) = [J{c(A) | A € X, A finite}, where ¢’
agrees with ¢ on all finite sets. Then combine Theorems 3.6 and 3.9, especially
the characterization of compact closed subsets. O

The significance of this statement will become apparent in Section 5.

4 Approximable mappings

So far we have only provided object-level correspondences between algebraic lat-
tices and join-semilattices. We supplement this with suitable morphisms which
turn these relations into an equivalence of the respective categories. On the side
of algebraic lattices, one typically employs Scott continuous functions to form
a category Alg. This definition leads to a rather advantageous property, namely
cartesian closedness, which will be discussed in the next section. The aim of this

section is to identify a notion of morphism for join-semilattices that produces a
category which is equivalent to Alg.

Definition 4.1 Consider categories A and B. An equivalence of categories A and
B is constituted by a pair of functors F : A — B and G : B — A, together with a
pair of natural isomorphisms 7 : GF = id, and € : FG = idg, where id, and idg
denote the identity functors on the respective categories.

It is well-known that a functor F : A — B that is part of an equivalence
of categories must be full and faithful, i.e. there must be a bijection between the
hom-sets A(A, A”) (the set of all morphisms from A to A”) and B(FA, FA’). Thus
our next goal is to define a set of morphisms between each pair of join-semilattices
which corresponds bijectively to the set of Scott continuous mappings between
the associated algebraic lattices. It is easy to see that we cannot expect to use
functions for this purpose for mere cardinality reasons: the set of compacts can
be significantly smaller than its algebraic lattice. This problem was already solved
by Scott in the closely related case of his information systems [Sco82a], which we
shall also encounter later on. The idea is to shift to a special set of relations, called
approximable mappings. To our knowledge, the notion of approximable mappings
has not yet been introduced to the study of join-semilattices, so we spell out the
details.

Definition 4.2 Consider join-semilattices S and 7 with least elements Lg and L7,
respectively. A relation ~» C § X T is an approximable mapping if the following
hold:

(aml) a ~ L7 (non-emptiness)
(am2) a ~» b and a ~ b" implies a ~ b V b’ (directedness)

(am3) a < a’,a ~ b,and b' < b imply @’ ~ b’ (monotonicity and downward
closure)

for all elements a,a’ € S and b,b’ € T. This situation is denoted by writing
S~T.

The labels for the above properties already indicate their purpose: for every
element a € S the set {b € T | a ~ b} is an ideal of T and the resulting assign-
ment § — |dI(T) is monotone. It is now rather obvious how this encodes Scott
continuous functions: The image of a compact element is given explicitly via the
ideal of compacts which approximates it. The image of a non-compact element is
obtained by representing it as directed supremum of compacts and applying Scott
continuity.

10

Some easy checks show that join-semilattices with least element together with
approximable mappings indeed constitute a category Sem,, where composition
of morphisms is defined as the usual composition of relations. Thus for two ap-
proximable mappings S ~»; R and R ~», T, one defines

~»5 0~>1 = {(s,1) | there is r € R such that (s,r) € ~ and (7, f) € ~»,}.

Clearly, ~», o ~»| satisfies (am1) since a ~»; Lg and Lg ~», L7. Likewise, under
the assumptions of (am2), one finds intermediate values r, 7" € R with a ~»>; r ~>;
band a ~; ' ~, b'. By (am2) a ~ r V r’, and by (am3) r V ' ~», b and
rvr ~» b'.Hence a ~» rVr ~» bV D by another application of (am2).
Finally, suppose the assumptions for (am3) hold for ~», o ~»;. Then there is r € R
such that @ ~»; r ~», b and hence a’ ~»; r ~», b’ as required. The identity
morphism on a semilattice S € |Sem,| is just its greater-or-equal relation >g.
The fact that this yields an identity under relational composition is just statement
(am3). Associativity is inherited from relational composition.

Lemma 4.3 The object mappings ldl and K from Section 3 can be extended to
morphisms as follows. For any approximable mapping ~» C § X T, define ldI(~) :
IdI(S) — 1dI(T) as IdI(~)(I) = {b | thereisa € I witha ~» b}. For any Scott
continuous mapping f : L — M, define Kf € KL X KM by setting Kf' = {(a, D) |
b < f(a)}. These definitions produce functors Idl : Sem, — Alg and K : Alg —
Sem,,.

Proof. To see that Idl is indeed well-defined, observe that for any a € S,
ldi(~)(la) = {b | a ~ b}, by (am3). This set has already be recognized as an
ideal, and hence Idl(~) is well-defined for the compact elements of |dI(S). By al-
gebraicity, any ideal [/ is equal to the directed union | ,; la, and hence, observing
that Idl(~») preserves all unions, Idl(~)(I) = |J, ldI(~)(la). This observation
shows that, as a directed union of ideals, IdI(~»)(]) is an ideal, and that Idl(~») is
Scott continuous.

It is immediate that Idl(~) maps the identity approximable mapping > to the
identity function. To see that it also preserves composition, note that Scott conti-
nuity allows us to restrict to the case of principal ideals. Thus consider two approx-
imable mappings S ~»; R and R ~», T and some principal ideal |a, a € S. We
compute (Idl(~»)oldl(~))(la) = ldi(~){r | a ~; r} = {b | there is r with a ~»
rand r ~», b} = {b | a(~>, o ~)b} = ldI(~;, 0 ~)(la).

Now clearly K f has properties (am1) to (am3). For functoriality consider Scott
continuous functions f; : L — M and f, : M — N. It is easy to see that for
a € KL and ¢ € KN, whenever there is b € KM with b < fi(a) and ¢ < f(b),
one has ¢ < f5(fi(a)). Since the converse also holds, we find that K(f, o f|) =
{(a,c) | ¢ £ fr(fi(a)} = {(a,c) | thereis b € KM with b < fi(a) and ¢ < f,(b)} =

11

Kf> o Kf;. Finally, applying K to the identity function clearly yields the identity
approximable mapping. O

We finish this section by showing the expected categorical equivalence:

Theorem 4.4 The functors ldl and K of Section 3 yield an equivalence of the
categories Alg and Sem, .

Proof. For an algebraic lattice L let 5, : L — IdI(K(L)) : x — |x N K(L) be the
isomorphism as established in Theorem 3.6. Now consider an algebraic lattice M
and a Scott continuous function f : L — M. For any element x € L, IdI(K(f)) maps
the ideal 7, (x) to the ideal {b | there is a € K(L) witha < xand b < f(a)}. Since
Scott continuity guarantees that the supremum of all f(a) is f(x), this is just the set
nu(f(x)) of all compacts below f(x). Consequently, IAI(K(f))(n.(x)) = nu(f(x)),
i.e. i is natural.

For a join-semilattice S with least element, we define e C S X K(IdI(S)) by
setting €5 = {(a,l) | I € la}. From Theorem 3.6 we derive that every compact
ideal [is of the form |b, hence €5 = {(a, |b) | b < a}. It should now be obvious
that €5 is an isomorphism whose inverse is given by {([b, a) | a < b}. For naturality
of €, consider some approximable mapping S ~ 7. We compute K(Idl(~))o &5 =
{(a,lb) | thereisa’ € S witha’ < aand (ld’, [b) € K(ldI(~))}. Expanding the
condition (l&’, [b) € K(ldl(~)), we find it equivalent to |b C Idl(~)(la’), which
in turn is true iff [b C {t | a’ ~> t}, exploiting the fact that |a’ is compact. Finally,
by (am3) this is equivalent to a’ ~» b, and we obtain K(Idl(~))ces = {(a, [b) | a ~
b}, again by (am3). On the other hand, €7 o~ = {(a, |b) | there is b’ € T with a ~»
b’ and b < b'}. Using (am3) once more, this evaluates to {(a, |b) | a ~> b}, which
finishes the proof of naturality of e. O

S5 A cartesian closed category of formal contexts

Formal concept analysis (FCA, [GW99]) is a powerful lattice-based tool for sym-
bolic data analysis. In essence, it is based on the extraction of a lattice — called
formal concept lattice — from a binary relation called formal context consisting
of a set of objects, a set of attributes, and an incidence relation. The transformation
from a two-dimensional incidence table to a lattice structure is a crucial paradigm
shift from which FCA derives much of its power and versatility as a modeling
tool. The concept lattices obtained this way turn out to be exactly the complete
lattices, and the particular way in which they structure and represent knowledge
is very appealing and natural from the perspective of many scientific disciplines.

12

The successful applications of FCA, however, are mainly restricted to finite
contexts and finite concept lattices, since infinite complete lattices generally do not
lend themselves for practical implementations. Yet, infinite structures are highly
relevant for numerous concrete tasks in knowledge representation and reasoning:
model theories of logic programs, computation domains in functional program-
ming, and class hierarchies in ontology research are some typical examples. In
order to make methods from FCA available in these application areas, we sug-
gest an interpretation of formal contexts based solely on finitely representable
knowledge, thereby obtaining a canonical and computationally feasible represen-
tation of infinite data-structures. In effect, we establish a systematic connection
between formal concept analysis and algebraic lattices, and thus with domain the-
ory [AJ94], as a categorical equivalence, enriching the link between the two areas
as outlined in [Zha03a]. This leads to a category of formal contexts that we now
show directly to be cartesian closed.

Definition 5.1 A formal context is a structure P = (O, A,), where O and A are
sets, and = C O X A is a binary relation. In this case the members of O are called
objects, the members of A are called attributes, and = is viewed as an incidence
relation between these two. Accordingly, one says that an object o has property a
whenever o | a, i.e. (0,a) € E.

Functions ap : 2 — 24 and wp : 24 — 29 are defined by setting a=(X) = {a €
Alokaforallo € X} and wp(Y) ={o € O | 0 |z aforall a € Y}.! If the context
is clear, we omit the subscript from these maps. We also abbreviate @ o w by aw
etc. as is customary in category theory.

Intuitively, a yields all attributes common to a set of objects. Conversely, w
maps a set of attributes to all objects that fall under all of these attributes. It is
straightforward to show that @ and w form an antitone Galois connection between
the powerset lattices. This is usually exploited for constructing closure operators
aow:2% - 2% and wo « : 29 — 29, It turns out that the closure systems for
both of these are dually isomorphic, the isomorphisms being given by @ and w.

For studying these closure systems, we can therefore focus our attention on the
map a o w. Sets of attributes that are closed with respect to this operator are called
(attribute) concepts in the literature. FCA builds on the fact that the collection of
all concepts of any given formal context is a complete lattice, and that all complete
lattices can be obtained this way. This relationship is mediated by the closure
system on 24 induced by the mapping aw. We take a slightly different approach
and focus our attention on the operation of aw on K(2%), the join-semilattice with
least element given by the finite subsets of A. It turns out that this way we obtain

'In FCA, ap(X) is usually written as X’, and wp(Y) is similarly written as ¥’. We feel that for
our treatment a more explicit notation is more convenient.

13

all complete algebraic lattices instead of all complete ones. Now Corollary 3.10
suggests the following.

Corollary 5.2 For every formal context P = (0,A,F), the set Sem(P) =
aw(K(2%)) is a join-semilattice with least element. Conversely, every such semi-
lattice can (up to isomorphism) be represented in this way.

Proof. In spite of our earlier considerations, we give the easy direct proof. For two
finite sets X and Y, aw(X U Y) is the least closed set that contains X and Y, and
thus also aw(X) and aw(Y). Hence aw(X) V aw(Y) = aw(X U Y). The first part of
the proof is finished by noting that aw(0) is the least closed set.

Conversely, for a join-semilattice with least element S, consider the context
(S,S,>). Then for any finite X C §, aw(X) is the set of all lower bounds of all
upper bounds of X. But this is easily recognized as | \/ X. Note that the least
upper bound of the empty set is just the least element. The obvious isomorphism
between S and the semilattice ({|s | s € S}, ©) suffices to complete the proof. O

By Theorem 3.6 the above shows that every algebraic lattice can be repre-
sented by some formal context and vice versa. To make this explicit, we can ex-
tend the closure operator of Corollary 5.2 to a Scott continuous closure operator
on 24, as done before in the proof of Corollary 3.10. In this way we can recover
the following result from [ZS0x].

Corollary 5.3 Consider a formal context P = (O, A,) and the mapping c : 24 —
24 x > Ufaw(X) | X C x, X finite}. Then Alg(P) = ¢(2%) is an algebraic lattice
and every algebraic lattice is of this form (up to isomorphism).

Proof. Clearly, c is just the unique Scott continuous closure operator induced by
a o w as in Corollary 3.10. By Theorem 3.9 its closure system is indeed an al-
gebraic lattice. For the other direction combine Theorem 3.9 and Theorem 3.6 to
see that ¢(2%) is isomorphic to the ideal completion of Sem(P). Since every alge-
braic lattice is of this form for some join-semilattice with least element, the claim
follows from Corollary 5.2. O

Closed sets with respect to the operator ¢ from the above proposition have been
termed approximable concepts in [ZS0x]. Naturally, it is also possible to extend
this result to a categorical equivalence. For this purpose we define a category Cxt
of formal contexts. The morphisms between two contexts P and Q are defined by
setting Cxt(P, Q) = Sem, (Sem(P), Sem(Q)).? The following is readily seen.

%In [HZ04] a slightly different definition of morphisms is given. In the formulation given there,
the corresponding approximable mapping is not defined on the closed sets Sem(P) but on all finite
attribute sets. We get a context morphism in this sense by extending our approximable mappings,
relating two finite sets iff their closures are related.

14

Figure 1: The product construction in Cxt.

Theorem 5.4 The categories Sem, and Cxt are equivalent.

The functors needed for this result are obvious: on the object level, we obtain
suitable mapping from Corollary 5.2, and the situation for morphisms is trivial.
The construction of the natural isomorphisms is similar to the one of € in Theorem
4.4, where the identity approximable mapping was modified using the given order-
isomorphism of the semilattices.

In the remainder of this section we investigate the categorical constructions
that are possible within the categories Alg, Sem,, and Cxt, where the latter will
be the explicit object of study. Because Cxt is equivalent to Alg, we know that it
is cartesian closed. We make the required constructions explicit in the sequel, and
thus give a mostly self-contained proof of cartesian closedness of Cxt.

Definition 5.5 A category C is cartesian closed if it has all finite products, and
there is a functor C°®° x C — C : (A, B) — B and a natural bijection between the
hom-sets C(A x B, C) and C(A, C?).

Exact requirements for showing each of these properties will be given in the
respective proofs and statements. We first consider the empty product, i.e. the
terminal object, which turns out to be given by the formal context 1 = (0,0, 0).
Indeed, for every formal context P = (O, A,) there is a unique approximable
mapping P ~» 1 that relates every finite subset of A to the empty set. The situation
for binary products is not much more difficult.

Proposition 5.6 Consider two formal contexts P = (Op,Ap,FEFp) and Q =
(0g,Ap, Eop), and define a formal context P X Q = (Op W Op,Ap W Ap, (Fo) W
(Fp) W (Op x Ap) W (Op X Ap)), where ¥ denotes disjoint union.

Then P X Q is the categorical product of P and Q, i.e. there are approximable
mappings 7p : PX Q — Pand 7y : P X Q — Q such that, given approximable
mappings ~>p and ~>¢ as in Figure 1, there is a unique approximable mapping
(~>p,~) that makes this diagram commute.

15

Proof. Since context morphisms were defined with reference to the induced semi-
lattices, we first look at Sem(P x Q). It is easy to see that concept closure in P x Q
is computed by taking disjoint unions of closures in P and Q, i.e. for sets X C Ap
and Y C Ap, one finds that cw(X W Y) = aw(X) W aw(Y). Hence every element
of Sem(P x Q) corresponds to a unique disjoint union of elements of Sem(P) and
Sem(Q).

We can now define the projections by setting (X W Y, X") € np iff X’ € X and
XWwYY)emiff Y/ C Y, forall X, X’ € Sem(P) and Y, Y’ € Sem(Q). It is
readily seen that these morphisms satisfy the properties of Definition 4.2.

Now consider ~»p and ~>(as in Figure 1. We define the relation (~p,~> o)
by setting (Z, X W Y) € (~p,~>¢) iff Z~>p X and Z ~», Y, for all concepts X, Y,
Z from the corresponding semilattices. Again it is easy to check the conditions of
Definition 4.2, since they follow immediately from the corresponding properties
of ~»p and ~». Furthermore, if there is X W ¥ € Sem(P x Q) with (Z, X wY) €
(~>p,~p) and (X W Y, X") € nrp then Z ~»p X’ by the definition of 7p and (am3).
Conversely, if Z ~»p X’ then one finds that X’ ¥ aw(0) € Sem(P x Q) yields
the required intermediate element to show that (Z, X") € mp o (~>p,~>(). Since a
similar reasoning applies to ~>(, Figure 1 commutes as required.

Finally, for uniqueness of (~»p,~») consider R ~ P X Q with 7p 0 ~> = ~5p
andrpo~> =~ . If Z~ X WY, then (Z,X) € mp o~ and hence Z ~»p X and,
by a similar reasoning, Z ~», Y. Conversely, if Z ~»p X then there must be some
X" and Y’ such that X € X’ and Z ~ X’ W Y’. By (am3) this implies Z ~ X W Y".
The same argument can be applied to ~> . Thus whenever Z ~>p X and Z ~ Y,
there are X" and Y’ with Z ~ X WY’ and Z ~ X’ W Y. Invoking properties (am2)
and (am3) for ~», this shows that Z ~» X & Y. We have just shown that Z ~» X WY
iff Z~>p X and Z ~(Y, and hence that ~ = (~p,~>) as required. O

The above product construction is also known in formal concept analysis as
the direct sum of two contexts [GW99]. However, it is not the only possible spec-
ification of the products in Alg. For each formal context P = (Op, Ap, Ep), We
define a context P* = (O}, A}, Ep+), where Op = Op U {g} and A}, = Ap U {m},
with g and m being fresh elements: g ¢ Op and m ¢ Ap. For defining the incidence
relation, we set o |p+ a whenever o |=p a (requiring that a € Ap and 0 € Op) or
o = gora = m. Thus P* emerges from P by “adding a full row and a full column.”

Now let P = (Op,Ap,[=p) and Q = (Op, Ag, =) be formal contexts. Define
a new formal context P ® Q = (O} X OE,A}Z X AE, Epxp) of P and Q by setting
(01,02) Epxp (a1,a2) iff 01 Ep+ a; and 0, o+ a,. This turns out to be an alterna-
tive description of the products in Cxt.

Proposition 5.7 Given arbitrary formal contexts P = (Op,Ap,FFp) and Q =
(09,Ap, Ep), the contexts P X Q and P ® Q are isomorphic in Cxt. Equivalently,

16

P ® Q is the object part of the categorical product of P and Q in Cxt.

Proof. The required isomorphism corresponds to an iso approximable mapping
between the semilattices Sem(Px Q) and Sem(P® Q). The elements of the former
were already recognized as disjoint unions of concepts from P and Q. In the latter
case, concepts are easily recognized as products of concepts from P* and Q™.
Adding the additional elements m and g guarantees that neither of these extended
formal contexts allows for the empty set as a concept, so that each element of
Sem(P ® Q) is indeed of the form X X Y for two uniquely determined concepts
X = aw(X) € Sem(P*) and Y = aw(Y) € Sem(Q™).

We define a relation ~»* C Sem(P X Q) X Sem(P ® Q) by setting X ~»* Y
whenever p;(Y) N Ap € X and p,(Y) N Ay C X, where p; denotes the projection
to the ith components in a set of pairs. Conversely, a relation ~~ C Sem(P ®
Q) x Sem(P x Q) is specified by setting ¥ ~>~ X whenever X N Ap C p;(Y) and
XNAgC pa(Y).

We claim that ~»* and ~»~ are mutually inverse approximable mappings be-
tween Sem(P x Q) and Sem(P ® Q). The properties of Definition 4.2 follow
immediately from our use of set-theoretic operations in the definitions. Further-
more it is easy to see that X(~~ o ~™)X" implies X’ € X for any two ele-
ments X, X’ € Sem(P x Q). The converse implication also holds, which can be
concluded from the obvious relationships X ~»* aw(X N Ap) X aw(X N Ap),
aw(X’ N Ap) X aw(X’ N Apg) ~~ X', and aw(X' N Ap) X aw(X’ N Ay) C
aw(X NAp) X aw(X NAp). Hence ~»~ o ~»™ is indeed the identity approximable
mapping. A similar reasoning shows that the same is true for ~* o ~»~, thus fin-
ishing the proof.

Finally, the assertion that this makes ® an alternative product construction
is a basic fact from category theory. The required projections are obtained by
composing ~»~ with the projections from the proof of Proposition 5.6. O

The construction of exponentials in Cxt turns out to be slightly more intricate.
To fully understand the following definition, it is helpful to look at the function
spaces in Alg. These are just the sets of all Scott continuous maps between two
algebraic lattices under the pointwise order of functions. The standard technique
for describing the compact elements of this lattice are so-called step functions.
Given two algebraic lattices L and M and two compacts a € K(L) and b € K(M),
one defines a function |a = b| : L — M, that maps an element x to b whenever
a < x, and to L, otherwise. It is well-known that any such step function is Scott
continuous and compact in the function space of L and M (see [GHK*03]). How-
ever, not all compacts are of this form, since finite joins of step functions are also
compact maps that can usually take more than two different values.

Our goal is to construct a formal context that represents the join-semilattice of
all compact Scott continuous functions in the sense of Corollary 5.2. Intuitively,

17

the collection of all step functions suggests itself as the set of attributes. Finitely
generated concepts should represent finite joins of step functions, which in turn
correspond bijectively to lower sets with respect to the pointwise order of step
functions. In order to obtain a formal context that yields this lower closure, one is
tempted to take some subset of Scott continuous functions for objects, and to em-
ploy the inverted pointwise order as an entailment relation. This is indeed feasible,
but our supply of step functions unfortunately is insufficient to serve as object set
in this case. We end up with the following definition:

Definition 5.8 Consider two formal contexts P and Q, and the sets A = Sem(P) X
Sem(Q) and O = Fin(A). A formal context [P ~ Q] = (0, A, E) is defined by
setting {(a;, b;)} E (a,b) iff b € \/{b; | a; C a}, where \/ is the join operation from
the semilattice Sem(Q).

This definition derives from the above discussion by representing step func-
tions |[a = b| via pairs (a, b).> Hence, the approximable concepts of [P ~» Q] as
obtained in Corollary 5.3 are sets of such pairs, i.e. relations between Sem(P) and
Sem(Q). The reader’s suspicion about the true nature of these relations shall be
confirmed:

Lemma 5.9 Given contexts P and Q, the algebraic lattice L = Alg[P ~ Q] of
approximable concepts of [P ~» Q] coincides with the lattice of all approximable
mappings from P to Q, ordered by subset inclusion.

Proof. Consider any approximable concept x € L. Definition 5.8 implies that
the pairs of arbitrary elements a € Sem(P) and the least element of Sem(Q)
are modelled by any object of [P ~» Q], i.e. (aml) of Definition 4.2 holds for
x. For (am2), assume (a,b;) € x and (a, b,) € x. Following the construction in
Corollary 5.3, one finds that aw({(a, by), (a,by)}) € x. However, for any object
oof [P~ Q] o E (a,by) and 0 E (a,b,) clearly implies o | (a,b; V b,),
by expanding the definition of |, and thus (a,b; V b;) € x. Finally, for (am3)
consider some (a,b) € x, a’ 2 a, and b’ C b. Clearly, we have aw({(a, b)}) C x.
The definition of | shows immediately that every object that models (a, b) must
also model (a’, b"), and thus (a’, b’) € aw({(a, b)}) as required.

For the converse consider any approximable mapping P ~» Q. We show that
~» € L. Given any finite subset X = {(a;,b;)} C ~», one finds that X & (a,,b,)
for all (a,,b,) € X. Thus X € w(X) and, whenever (a,b) € aw(X), one also has
X F (a,b),i.e. b € \/{b; | a; C a}. Defining J = {j | a; C a}, one finds that for
everyn € J,a, C \/{a; | j € J} and hence \/{a; | j € J} ~ b, by (am3). Since J is
finite, one can employ an easy induction to show that \/{a; | j € J} ~ \/{b; | j €

3This correspondence is not injective. In fact, the context [P ~» Q] in general contains both
duplicate rows and duplicate columns.

18

J}, where the case J = (@ follows from (am1) and the induction step uses (am2).
Obviously \/{a; | j€ J} Caand b C \/{b; | j € J}, and hence a ~> b by (am3).
This shows that ~» is an approximable concept. O

The above considerations shed additional light on approximable mappings in
general: they can in fact be viewed as lower sets of step functions, the joins of
which uniquely determine an arbitrary Scott continuous map between the induced
algebraic lattices. We remark that this also hints at an alternative formulation of
the constructions in Lemma 4.3.

It remains to show that the above construction does indeed yield a function
space in the sense of category theory:

Proposition 5.10 The construction [— ~» —] yields the categorical function space
of the two contexts, i.e. for all contexts P, Q, and R, there is a bijection between
the sets Cxt(P x Q,R) and Cxt(P,[Q ~» R]), and this bijection is natural in all
arguments.

Proof. Our earlier results can be employed to simplify this proof. The algebraic
lattices associated with the above contexts is denoted by L = Alg(P), M = Alg(Q),
and N = AIg(R), and we write [M — N] for the lattice of all Scott continuous
functions from M to N, ordered pointwise. The categorical equivalences between
Cxt, Sem,, and Alg (Theorem 4.4 and Theorem 5.4) and the categorical role of the
product construction Q X R (Proposition 5.6) establish natural bijections between
the sets Cxt(P x Q,R) and Alg(L X M, N), where L X N is the standard product
order. Likewise, using the same equivalences and the bijection of function spaces
from Lemma 5.9, one finds another natural bijection between Cxt(P, [Q ~» R])
and Alg(L, [N — M]).

The proof is completed by providing the well-known natural bijection of the
sets Alg(Lx M, N) and Alg(L, [N — M]). This standard proof can for example be
found in [GHK™*03]. O

Summing up these results, we obtain:

Theorem 5.11 The categories Alg, Sem,, and Cxt are cartesian closed.

Proof. Cxt was shown cartesian closed in Proposition 5.6 and Proposition 5.10.
Closure of the other categories follows by their categorical equivalence (Theorem
4.4 and Theorem 5.4). O

The cartesian closed category Cxt which we propose here is tailored to the
needs of Computer Science. It differs from the categories normally considered in
formal concept analysis by emphasizing algebraicity, whereas morphisms listed
e.g. in [GW99] are suitable for complete, but not necessarily algebraic, lattices.

19

We also stress the fact that our novel interpretation of formal contexts perfectly
agrees with the classical one, as long as finite contexts or lattices are considered,
which covers most of the current FCA applications in Computer Science. On the
other hand, the different treatment of infinite data structures displays a deviation
from the classical philosophically motivated viewpoint towards one that respects
the practical constraints of finiteness and computability.

6 Further representations

So far, we encountered three equivalent representations for algebraic lattices.
Clearly, the hard part was to establish the equivalence of the rather diverse cat-
egories Alg and Sem,. Many other equivalent categories can now be recognized
by relating them to one of these two — an objective that will in general be accom-
plished rather easily. A typical example for this has already been given in form of
the category Cxt, that was easily seen to be equivalent to Sem, .

The representations given below are grouped according to these observations:
we start with “logical” descriptions that have their closest relationships to the
categories Cxt and Sem,,, and then proceed to formulations that can be connected
to Alg in a more natural way. Classifying representations in this way is by no
means arbitrary: as we will see the end of this section, our arrangement reflects
the “localic” respectively “spacial” side of a very specific case of Stone duality.

6.1 Logic and information systems

The representation of join-semilattices via formal contexts did already incorporate
some logical flavor: approximable concepts can be viewed as sets closed under
a certain entailment relation. Scott continuity of this closure is reminiscent of
the compactness property of a logic. However, we will see that a much closer
connection to some very well-known logics can be made. The reader is referred
to [DHO1] for related considerations.

Definition 6.1 Given a set A of propositions, the set of well-formed conjunctive
propositional formulae .7 (A) over A is given by the following expression:

F(A) == T |aeA | (LA ALA)

A relation + C .Y (A) X L (A) is a consequence relation of conjunctive proposi-
tional logic (CCP logic) if it is closed under application of the following rules:

FvrG,G+H
FrT (1) FrF (R) T (Cut)

20

F+r(GANH) W1) F+r(GAH) (W2) FvG, F+ H (And)
FrG F+H F+r(GAH)

In this case (-(A),+) is called a deductive system (of CCP logic). For any two
formulae F,G € .¥(A), the situation where F' + G and G + F is denoted F ~ G.

Hence deductive systems are logical systems of the conjunctive fragment of
propositional logic, together with a (not necessarily minimal) consequence rela-
tion. The following properties are easily verified.

Lemma 6.2 Consider a deductive system (.#(A),+). The following hold for all
formulae F, G, and H € .¥(A):

e (FAG)AH)~(FA(G A H))
e« (FAG)~(GAF)

e« F~(FAF)

o« F~(FAT)

Hence we see that the rules (W1), (W2), and (And) imply associativity,
commutativity, and idempotency of A. Furthermore, occurrences of T can be
eliminated. Consequently, we henceforth write formulae of CCP in the form
aihNa; N...Na, (a; € A), knowing that this determines a set of “real” formulae up
to proof-theoretic equivalence. Additionally, for the case n = 0 the above expres-
sion is interpreted as the singleton set {T}. Any statement about formulae in this
notation represents the corresponding set of statements about the original formu-
lae. We can now consider the algebraic semantics (see [DHO1]) of these logics.
This is based largely on the following notion:

Definition 6.3 Consider a deductive system (.#(A), +). The Lindenbaum algebra
of (#(A), +) is the poset obtained from the preorder (.*’(A),) through factoriza-
tion by the equivalence relation =, i.e. [F]. < [G]. iff F + G. The Lindenbaum
algebra is denoted by LA(.7(A),).

Hence the Lindenbaum algebra is a partially ordered set of ~-equivalence
classes of formulae, ordered by syntactic entailment. Since it can cause hardly
any confusion, we take the freedom to denote equivalence classes by one of their
representatives or even by the simplified notation introduced above. Of course,
this creates possible ambiguity between the conjunction symbol and the meet op-
eration within the Lindenbaum algebra. The following lemma shows that this is
not a problem.

Lemma 6.4 Consider a deductive system (.#'(A), +) and formulae F,G € .7 (A).
Then [F]. A [G]x = [F A G].

21

Proof. We have to show that F A G + F, F A G + G, and that for any formula H
such that H + F and H + G, we find H + F A G. These assertions are obvious
consequences of the proof rules of CCP. O

Since the meet operation yields a unique result, this shows that ' ~ F’ and
G ~ G'imply F A G = F’ A G’, which is just the Replacement Theorem [DHO1]
for CCP logics. We state the now obvious representation theorem:

Theorem 6.5 For any deductive system (.#(A),+), the Lindenbaum algebra
LA(.(A),+) is a meet-semilattice with greatest element. Conversely, every such
semilattice is isomorphic to the Lindenbaum algebra of some deductive system.

Proof. Lemma 6.4 already showed the existence of binary meets. We conclude the
first part of the proof by noting that [T]. is the required greatest element.

For the converse let S be a meet-semilattice with greatest element. We define
a consequence relation + on .(S) by setting, for all a1, as, ...,a,,by,bs, ..., b, €
S,aiAarA...Na, v by AbyA...ANb,, whenever aj Aa; A...Aa, < byAbyA.. . AD,,.
One can easily check that this definition satisfies all of the required rules. Note that
(T) follows by our convention to represent T by the empty conjunction. To reduce
confusion, we denote meets in S by /\ and meets in LA(Z(S),+) by A<.

We claim that S is isomorphic to LA(.(S), +). Indeed, one can define map-
pings f: S — LA(A(S),+) and g : LA(Z(S),+) — S by setting f(a) = [a]~ and,
for propositions a;, 1 <i < n, g[A~ail~ = A a;. To see that g is well-defined, note
that for any two formulae A, a;, A.b; € .7(S) we have that A.a; =~ A\.b; (in
< (8)) implies A a; = A b; (in §) by the definition of .

Finally, we show that g and f are inverse to each other. By what was said
above, g(f(a)) = a is immediate. On the other hand, any formula A . a; is syntac-
tically equivalent to /\ a; by the definition of +. This shows bijectivity of f and g.
Monotonicity of both functions is obvious from their definition. |

This relationship closes the gap to our prior category Sem,, since the above
meet-semilattices are just the order duals of the objects within this category. By an
approximable mapping between two meet-semilattices with least element or two
deductive systems of CCP logic, we mean an approximable mapping between the
induced join-semilattices. The following is immediate.

Theorem 6.6 Consider the categories Sem, and CCP of meet-semilattices with
greatest element and deductive systems of CCP logic, respectively, together with
approximable mappings as morphisms. Then Sem,, Sem,, and CCP are equiva-
lent.

The insights just obtained allow to relate our study with results obtained in
[HWO03, Hit04], where the conjunctive fragment of the logic RZ (introduced in

22

[RZO01]), was found to be closely related to concept closure in FCA. We derive a
very similar result, but some preparations are needed first.

An algebraic cpo D is a dcpo with least element L such that every e € D is the
directed supremum of all compact elements below it. A coherent algebraic cpo
is an algebraic cpo such that, with respect to the Scott topology (see Definition
6.10), the intersection of any two compact open sets is compact open.

These notions can be found in [RZ01], along with a characterization of the
Smyth Powerdomain of any given coherent algebraic cpo D by means of a logic
defined on D, which we call the logic RZ. We will only be concerned with the
conjunctive fragment of RZ, which can be given as follows. For compact ele-
ments ¢, ...,Cp d1,...,d, Wewrite c; A ... Ac, Fdy A...Ad, iff any minimal
upper bound of {cy, ..., c,} is above all d;. This way, we obtain a deductive system
(K(D),), and the following result, which is related to those in [HWO03, Hit04],
and such considerations were put to use in [Hit04] for developing a generic non-
monotonic rule-based reasoning paradigm over hierarchical knowledge.

Theorem 6.7 Let P = (O, A,) be any formal context. Then there is a coherent
algebraic cpo D and a mapping ¢t : A — D such that for every finite set X =
{ai,...,a,} €A wehave aw(X) ={a|tla)A...Aua,) F (a)}.

Proof. Define D = Alg(P) and set «(a) = aw({a}) for a € A. Since D is a complete
algebraic lattice, it is a coherent algebraic cpo.

Now consider the finite set X as above. Using the completeness of the lattice,
we obtain that ¢«(X) has aw(X) as supremum, which suffices. O

The difference between Theorem 6.7 and the results in [HWO03, Hit04] lies in
the fact that the latter were proven by taking D to be a sublattice of the (classical)
formal concept lattice, instead of Alg(P), which facilitates reasoning with formal
contexts in a natural way.

Finally, we come to another popular description of algebraic lattices, that fits
well into the above discussion, and will also shed additional light on morphisms
of CCP.

Definition 6.8 Consider a structure (A, IF), where A is a set, and I+ C Fin(A) X A
is a relation between finite subsets of A and elements of A. Then (A, I+) is a Scott
information system (with trivial consistency predicate) if the following hold:

(ISi) a € X implies X I a,
(ISi1) if X +yforallye Yand Y + a, then X I a.

Scott information systems were introduced in [Sco82a] as a logical charac-
terization of order structures arising in denotational semantics. The connection to
CCP logic is as follows.

23

Proposition 6.9 There is a bijective relationship between Scott information sys-
tems and deductive systems of CCP logic.

Proof. Consider a Scott information system (A, IF). Using the set A as proposi-
tions, we obtain the set of CCP formulae .’(A). A consequence relation + for
/(A) is defined by setting a; Aa, A ... Aa, v by A by A ... A b, whenever
{ai,ay,...,a,} F b; foralli = 1,...m. We have to verify that is closed under the
rules given in Definition 6.1. For the case m = 0 the condition is obviously true so
that we obtain axiom (T). Likewise, the conditions for axiom (R) are satisfied due
to condition (ISi) in Definition 6.8. Similarly, the (Cut) rule follows immediately
from (ISii). For the rules (W1), (W2), and (And), we simply notice that these are
direct consequences from our definition of .

Now for the opposite direction, consider a deductive system (.#(A),). Using
the set of propositions of .7(A) as attributes, we construct a Scott information
system (A, I), where we define {a,,a,, ..., a,} F b whenevera; Aa, A...Aa, + b.
Again it is straightforward to check that this is indeed an information system. (ISi)
can be deduced from the rules (R) and iterated applications of (W1) and (W2).
Under the assumption of (ISii), we see that the (And) rule allows us to construct
a conjunction that corresponds to the premise Y of the second rule. By (Cut) this
yields the required entailment.

To complete the proof, we note that these two constructions are in fact inverse
to each other. The identity on Scott information systems is trivial. For CCP logics,
we note that any sequent a; Aa, A...Aa, F by AbyA...Ab,, induces via (W1)/(W2)

the existence of sequents a; Aa, A ... Aa, F b;, foralli =1,...,m. The original
sequent can then be reconstructed from the entailment of the Scott information
system induced from these relations. O

Note that this proposition yields a bijective correspondence, not just a rela-
tionship up to isomorphism. Indeed Scott information systems are essentially an
efficient formulation of conjunctive propositional logic, where the properties of A
are obtained implicitly by using sets in the first place. The category of Scott infor-
mation systems and approximable mappings between the induced semilattices is
denoted SIS*. From 6.9 one easily concludes that SIS is isomorphic to CCP, and
hence also equivalent to all categories mentioned earlier.

Furthermore, approximable mappings between CCP logics need not be ex-
pressed on the level of their Lindenbaum algebras, but could be formulated di-
rectly on formulae. From this viewpoint, approximable mappings appear as con-
sequence relations between different logical languages. Indeed, all the require-
ments of Definition 4.2 do still have a very intuitive reading under this interpreta-

“Historically, this is indeed the first context for which approximable mappings were defined
[Sco82a].

24

tion: (am1) and (am2) correspond to (T) and (And) of Definition 6.1, respectively,
while (am3) can be viewed as a modified (Cut) rule, that also subsumes (W1) and
(W2). Hence we recognize approximable mappings as a simple form of multilin-
gual sequent calculi as introduced in [JKM99] for the more complicated case of
positive logic (i.e., logics including conjunction and disjunction). Further details
and motivation can be found therein.

We remark that one could as well have connected CCP logic or information
systems directly to algebraic lattices, instead of presenting the ideal completion
for semilattices of compacts. In the case of logics, algebraic lattices are obtained
directly as sets of models of a deductive system, where models are considered
as deductively closed sets of (true) formulae. These turn out to be exactly the
filters® within the corresponding Lindenbaum algebras, and the duality to ideal
completion is immediate. The reader may care to consult [DHO1] for a general
treatment of such matters. For Scott information systems, algebraic lattices are
constructed similarly as sets of elements. As defined in [Sco82a], an element of
an information system (A, I) is a subset x C A such that a € x whenever there is
some finite set X C x with X I a.

Our logical considerations can also be put to practical use by noting that every
definite logic program (see, e.g., [L1087]) can be expressed by a deductive system
in the above sense. This has also been mentioned in [Zha03b]. Considering the
fact that the theory of definite logic programs is quite well-developed, these in-
sights are merely providing some further explanation for the situation in this field.
In the light of the connections to Stone duality outlined below and the immedi-
ate connection to algebraic semantics of logical systems, one could also further
analyze the situation for more expressive logical languages from this perspective.

Note that only a small portion of Scott information systems and algebraic lat-
tices can be obtained from definite logic programs. The reason is that there are
only countably many different programs, but uncountably many Scott informa-
tion systems (even for countable sets of generators). We also remark that, while
algebraicity always makes fixed point computation possible in theory, the specific
structure of the information systems of logic programs is employed to ensure that
the semantic operator suitable for logic programs is indeed effectively computable.

We do not bother to give a category of logic programs, although this could be
done by adjusting the formalism of approximable mappings. However, it is not
clear at the moment how the subcategory of algebraic lattices that arises in this
way can be characterized.

SA filter F is the dual of an ideal: an upper set F = TF such that a, b € F implies the existence
of some ¢ € F such thatc < aand ¢ < b.

25

6.2 The Scott topology

Next we want to study the spacial side of Stone duality. It is here where we find
the models and their semantic entailment, while the localic side is inhabited by
syntactic representations and their proof theory. We already mentioned that mod-
els in our case take the specific form of algebraic lattices, and thus it is natural
to ask which subsets of models correspond to a logical theory. The appropriate
collection of sets turns out to be the following well-known topology:

Definition 6.10 Consider a dcpo P. A subset O C P is Scott open if the following
hold:

(1) x€ Oand x < yimply y € O (O is an upper set),

(ii) for any directed set D € P, \/ D € O implies D N O # 0 (O is inaccessible
by directed suprema).

The Scott topology on P is the collection of Scott open sets. We use o-(P) to denote
this collection and Z(P) = (P, o(P)) for the resulting topological space.

But one can also reverse the process to obtain orders from topologies:

Definition 6.11 Consider a topological space (X, 7). Then 7 defines a specializa-
tion (pre-)order < on X by setting x < y whenever x € O implies y € O for

any O € 7. A topology on a partially ordered set is called order consistent if its
specialization order coincides with the order of the poset.

For an algebraic lattice, the Scott topology has some more specific properties.
Recall that an open set is compact if it is a compact element of the open set lattice,
and that a topology is coherent if the intersection of any two compact open sets
is compact. Proof for the following statements can be found in [AJ94, GHK*03,
Joh82].

Proposition 6.12 Consider an algebraic lattice L. We have the following:
(1) X(L) is order consistent.
(i1)) The set B = {Tc | ¢ € K(L)} is a base for o-(L).
(iii)) The compact opens of X(L) are exactly the finite unions of members of B.
(iv) o(L) is coherent.

(v) o(L) is sober.®

®We did not define sobriety in this document. Readers who are not familiar with this concept
may safely ignore this statement.

26

Order consistency insures that algebraic lattices and their Scott topologies
uniquely characterize each other. A category Xzj, of Scott topologies on algebraic
lattices is readily obtained by employing continuous maps between topologies as
morphisms.

Theorem 6.13 The categories Alg and X, are isomorphic, hence equivalent.

Proof. The required functors are defined on objects by taking the Scott topology
and the specialization order of the arguments, respectively. By order consistency
of the topologies, this yields a bijection between the classes of objects. Since the
carrier sets of lattices and topologies remain unchanged, one can consider every
function between algebraic lattices directly as a function between spaces and vice
versa. To finish the proof, one needs to show that a function between algebraic
lattices is Scott continuous iff it is continuous with respect to the Scott topologies.
This standard result can for example be found in [AJ94]. m|

In the next section, we see that the topological spaces of X4, are indeed very
specific.

6.3 Stone duality

Since the very beginning of the theory, Stone duality has been recognized as a
tool for relating proof theory, algebraic semantics, and model theory of logical
systems (see [Sto37]). One direction of this investigation has already been men-
tioned in Section 6.1: Lindenbaum algebras can be represented by corresponding
model theories, where models are characterized as subsets (filters) of formulae.
Dually, one could also have presented every formula by the set of its models. The
conceptual step from such systems of specific subsets to topological spaces was
the key to the strength and utility of Stone’s original representation theorems.

However, it still took decades to recognize that it would be even more advan-
tageous to undo this step to the spacial side of Stone duality and to return to the
more abstract world of partially ordered sets. It became apparent that topologies
could not only serve as a representation for specific ordered structures, but that
conversely orders could serve as a general substitute for topological spaces. In-
deed, the leap to the spacial side is usually not an easy one — in many cases it
cannot be made within classical Zermelo-Fraenkel set theory (ZF). The localic
side on the other hand can mimic most of the features of the original topological
setting, while being freed from the weight of points which often prevent purely
constructive reasoning.

In what follows we embed our specific scenery into the setting of Stone du-
ality. However, it turns out that the special case we consider does not justify to
present the theory in its common generality. Hence we give explicit proofs for

27

the object level relationships in our specialized setting and hint at the connections
to more abstract versions of Stone duality where appropriate. Other than provid-
ing the merit of a more self-contained presentation, this also enables us to work
exclusively in ZF, with no additional choice principles whatsoever. As a general
reference on Stone duality, we recommend [Joh82].

The passage from spaces to orders is a particularly simple one: the open set
lattice of a topology is already a poset. The class of posets arising in this way are
the spacial locales.

Definition 6.14 A complete lattice L is a locale if the following infinite distribu-
tive law holds for all S € L and x € L:

x/\\/S:\/{x/\slseS}.

A point of a locale is a principal prime ideal of L, i.e. a subset p C L such that
p=L0Apand forany x Ay € p, x € pory € p. The set of all points of L is
denoted by pt(L).

A locale is spacial if, for any two elements x,y € L with x £ y, there is a point
p € Lsuchthat x € pandy ¢ p. Lis spectral if L is algebraic, its greatest element
is compact, and the meet of any two compact elements of L is compact.

We remark that locales are also called frames, and that structures of this kind
are equivalently characterized as complete Heyting algebras.”

It is now easy to see that any open set lattice yields a locale, where distribu-
tivity follows from the corresponding distributivity of finite intersections over in-
finite unions. Furthermore, Proposition 6.12 (ii), (iii), and (iv) show that, for an
algebraic lattice L, (o(L),C) is even a spectral locale. We shall find that these
locales are even more specific than this.

Our starting point for investigating topologies were algebraic lattices, which
we have earlier recognized as the model theories of deductive systems of CCP
logics. The abstraction to (certain) spectral locales brings us back to proof theory.
We now characterize the above locales by relating them to Lindenbaum algebras
of CCP logic, and reobtain topological spaces from this data.

We consider arbitrary meet-semilattices with greatest element, knowing that
they are up to isomorphism just the Lindenbaum algebras of CCP (Theorem 6.5).
Furthermore, we already mentioned that the collections of all filters (the order-
dual concepts of the ideals) of such semilattices are just the algebraic lattices,
which follows immediately from Theorem 3.6. We can now give a characterization
for the locale of Scott open sets of algebraic lattices:

"The interested reader will find definitions and treatment in [Joh82, GHK*03].

28

Theorem 6.15 Consider a meet-semilattice S with greatest element and the cor-
responding algebraic lattice (FIt(S), C) of filters of S. The collection of lower sets
of §, ordered by subset inclusion, is isomorphic to o(FIt(S)). Every Scott open set
lattice of an algebraic lattice is of this form.

Proof. Theorem 3.6 shows the bijective correspondence between the elements of
S and the compacts of FIt(S), since S is dually order-isomorphic to K(FIt(S)).
Proposition 6.12 demonstrated that every Scott open set is characterized by the
compact elements it contains. Now it is obvious that such sets of compacts corre-
spond to upper sets in the join-semilattice of compacts, and thus to lower sets in its
dual meet-semilattice. The other direction is also immediate from the according
part of Theorem 3.6. O

Hence the spectral locales of the form o(L) for some algebraic lattice L are
more precisely characterized as the lower set topologies of meet-semilattices with
greatest element, i.e. as the Alexandrov topologies of join-semilattices with least
element. Note also that meets and joins within these locales are really given by
the corresponding set operations. By o, we denote the category of all locales
isomorphic to the collection of lower sets on some meet-semilattice with greatest
element together with functions that preserve finite meets and arbitrary joins.®

Next we want to connect up with the common constructions of Stone duality.

Lemma 6.16 Consider a meet-semilattice with greatest element S and its locale
of lower sets 0. Then the meet-prime elements of o are exactly the complements
of the filters of S.

Proof. Let F C S be a filter and set A = S\F € o. Now assume there are lower
sets By, B, € o such that B; N B, = A. For a contradiction, assume that there are
elements b; € BiNF and b, € B,NF.Then byAb, € Fand bjAb, € BjNBy, = A —
a contradiction. Hence, one of B;, B, contains just the elements of A as required.
Conversely, let A € o be meet-prime and consider the upper set ' = S\A.
For any two elements a, b € F it is easy to see that la N |b = |(a A b). Hence, if
aANb e Athen laUAand |b U A are elements of o with intersection A, which
cannot be. Hence a A b € F as required. O

This gives us all necessary information about the points of these locales (see
Definition 6.14), since these were defined to be just the principal ideals generated
by meet-prime elements. We can thus identify the set of points pt(c-) with the set

8This is of course rather a category of frames and frame homomorphisms than a category of
locales (which would be described by its dual). We have chosen to trade some terminological
precision for conciseness of the presentation.

29

of all meet-prime elements of o.° Our insights allow us to give a direct description
of the topological spaces associated with semilattices:

Corollary 6.17 Let S be a meet-semilattice with greatest element, let L be an
algebraic lattice, and let o be a spectral locale, such that

e S is isomorphic to K(L) and
e (o is isomorphic to o(L).
Then the following are homeomorphic:
(i) (L,o (L)), the Scott topology on L;

(ii) the topology on Fli(S) generated from the basic open sets

O,={F€FIt(S) |a e F} forallae S;

(iii) the topology on pt(c-) given by the open sets

Py, ={peptoc)|A¢p) forall A € 0.

Proof. Most of the above should be obvious at this stage, so we spare out some
details. Suitable bijections between L, FIt(S), and pt(c-) have been obtained in 3.6
and 6.16. First we show the homeomorphism between (i) and (ii) (which induces
also that (O,) is indeed a base). For this we only have to note that O, = {F €
FIt(S) | Ta € F}. Using the bijection between (principal) filters and (compact)
elements from Theorem 3.6, one sees that O, corresponds to an open set Tc, ¢ €
K(L), of (i). The fact that these subsets are open and form the basis for the Scott
topology has been shown in Proposition 6.12.

For the homeomorphism between (ii) and (iii), we consider the locale of lower
sets of §, which is isomorphic to o by Theorem 6.15. Clearly this affects the
topology of (iii) only up to homeomorphism. Now in the locale of lower sets, a
point (principal prime ideal) p = |B is in P, iff the corresponding meet-prime
B does not contain A. But this is the case iff the complement of B intersects A.
Hence, by Lemma 6.16, P, corresponds exactly to the collection of those filters
of § that contain some element of A, i.e. to the set | J{O, | a € A}. But these are
precisely the open sets of the topology of (ii). O

9Furthermore, we remark that this guarantees a sufficient supply of prime elements without
invoking any additional choice principles, i.e. we are dealing with a class of locales that is spacial
in Zermelo-Fraenkel set theory. This contrasts with the class of all spectral locales, which is only
spacial when the existence of prime ideals is explicitly postulated, i.e. when the Boolean prime
ideal theorem [DP02] is assumed to hold.

30

With respect to the given preconditions on the relationship between S, L, and
o, note that the various transformations between semilattices, algebraic lattices,
and locales established earlier yield a variety of equivalent ways to state that the
three given objects describe “the same thing”.

To complete the targeted categorical equivalence between the dual category
of oalg and Xy (Alg, Sem,, ...), one still needs to prove a suitable bijection
of hom-sets. This correspondence between inverse frame homomorphisms and
continuous functions is a basic result of Stone duality which we will not repeat
here. See [Joh82] for details.

7 Summary and further results

We provided characterizations of the category of algebraic lattices by means of
structures from logic, topology, domain theory, and formal concept analysis. More
precisely, we characterized algebraic lattices by certain semilattices, formal con-
texts, and deductive systems of the conjunctive fragment of propositional logic.
The novel category Cxt of formal contexts and approximable mappings was used
to establish the cartesian closure of these categories, and the categorical construc-
tions needed for this were explicitly given. Other representations referred to spe-
cial classes of closure systems, Scott topologies, locales, and definite logic pro-
grams. An overview of the major equivalences given herein is displayed in Figure
2.

Although this treatment is quite comprehensive, one could still add some more
equivalent formalisms. Especially, we left out the coverage technique of [Joh82]
(see also [Sim04]), which represents locales in a syntactical way that relates
closely to Scott information systems. Furthermore, we deliberately ignored Scott’s
earlier approach to presenting domains via neighborhood systems [Sco82b], since
these structures are not much more than a mixture of the later (token-set based) in-
formation systems and continuous closure operators. Finally, one could also iden-
tify the classes of distributive lattices that arise as the compact elements of the
spectral locales we considered as the free distributive lattices over the underlying
semilattice.

In this article we have also presented a unified treatment of the basic tech-
niques and mechanisms that are applied to join domain theory, algebra, logic, and
topology. Algebraic lattices turn out to be the simplest case where such a discus-
sion is feasible. Part of the given results have been generalized in various ways,
some of which are subject to current research. A common way to generalize the
above results is to extend the logic under consideration. A technique for includ-
ing “negation-like” constraints without need for an internal negation operation
has been employed by Scott in his original formulation of information systems

31

Q
O Alg (6.17) = 2Alg

Down g z
(6.12)
(6.16)

Prm s
o, Alg
(6.15) 3.6)° /lg Idl

(5.3)
/ (3.6)

CCP <69— SIS Cxt
5.2)
(6.5)

/ 4 Sem\ K
Sem, Sem,

.op .op

Figure 2: Summary of all established equivalences with reference to the corre-
sponding (object-level) statements. Labels at the arrow tips specify the name of
the functor that was used in a construction, where Down denotes the construction
of the lower set topology from a meet-semilattice, Prm yields the set of principal
prime ideals of a locale, ordered by subset inclusion, and < denotes the construc-
tion of the specialization order from a topological space.

[Sco82a]. There he introduced a collection of finite subsets of propositions that
are consistent, assuming that no inconsistent sets can be mapped to true by any
model. This procedure can be viewed as an extension of the deductive system that
allows statements of the form “X I, interpreted as A X I L, where L is the con-
stant false — a construction well-known under the notion of integrity constraint
in database theory. Clearly, L will then represent the least element in the result-
ing Lindenbaum algebras. However, as important as introducing the constant L
into the logical language is a change of the model theory: models now have to
be proper filters, i.e. the case that all (including L) formulae evaluate to true is
excluded. The posets of models for such logics turn out to be exactly the Scott
domains (the bounded complete algebraic cpos).

As another step, one can include disjunction into the formalism. This already
leads to a substantial complication of the theory: choice principles are now needed
to obtain models. Since logical conjunction and disjunction are classically as-
sumed to distribute over each other, one obtains all (bounded) distributive lattices
as Lindenbaum algebras. In place of algebraic lattices one finds a curious class

32

of dcpos that have been termed information domains in [DG90]. Later the di-
rect construction of distributive lattices and locales from such deductive systems
was studied in [CCO0] and [CZO00], and in [RZ0O1] Smyth powerdomains were
characterized by similar means using a clausal logic which was also extended to
non-monotonic reasoning paradigms on hierarchical knowledge [RZ01, Hit04].
Other than this, one can apply all the representation machinery that has been set
up for distributive lattices, including both Stone’s and Priestley’s representation
theorems for these structures ([Joh82]).

Further strengthening of the logic is possible by including some internal nega-
tion operation. Intuitionistic negation yields Heyting algebras as Lindenbaum al-
gebras. The resulting topologies are already studied in [Sto37], though the signif-
icance of specialization orders and domain theoretic concepts were not yet recog-
nized at this time. If classical negation is preferred instead, thus yielding classical
propositional logic, the class of Boolean algebras provides the well-known alge-
braic semantics. While topological representation via Stone’s theorem is rather
pleasant in this case, the domain theoretic aspects are quite disappointing: the
specialization order of models is discrete. Related approaches nevertheless have
been taken for the context of negation in logic programming [Sed95, Hit04], but
the domain-theoretic content of these investigations remains to be determined.

For reasons as those just described, internal negation is usually not considered
in domain-theoretical studies. However both inconsistency of finite subsets and
finite disjunctions can be employed with various restrictions to obtain classes of
domains that are more general than the Scott domains. A slight constraint on ei-
ther the logical ([DG90]) or the localic level ([Abr91]) restricts the obtained class
of dcpos (of models) to the coherent algebraic dcpos. However, while this is a
well-known concept in domain theory, it results in rather unusual restrictions on
the logics (Lindenbaum algebras, locales). Further conditions will lead to SFP-
domains [Abr91, Zha91]. On the other hand, conditions that characterize a class
of deductive systems that produces exactly the L-domains have been studied in
[Zha92].

References

[Abr91] S. Abramsky. Domain theory in logical form. Annals of Pure and
Applied Logic, 51:1-77, 1991.

[AJ94] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Com-
puter Science, volume III. Oxford University Press, 1994.

33

[Bor94]

[CCO0]

[CZ00]

[DGI0]

[DHO1]

[DP02]

[GHK*03]

[GW99]

[Hit04]

[HWO03]

F. Borceux. Handbook of Categorical Algebra 1: Basic Category The-
ory, volume 53 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 1994.

J. Cederquist and T. Coquand. Entailment relations and distributive
lattices. In S. Buss, P. Hijek, and P. Pudlék, editors, Proceedings of the
Annual European Summer Meeting of the Association for Symbolic
Logic, Prague, Czech Republic, 1998, volume 13 of Lecture Notes in
Logic. Association for Symbolic Logic, 2000.

T. Coquand and G.-Q. Zhang. Sequents, frames and completeness. In
P. Clote and H. Schwichtenberg, editors, Proceedings of the Annual
Conference of the European Association for Computer Science Logic
(CLS2000), Fischbachau/Munich, Germany, volume 1862 of Lecture
Notes in Computer Science. Springer, 2000.

M. Droste and R. Gobel. Non-deterministic information systems and
their domains. Theoretical Computer Science, 75:289-309, 1990.

J. M. Dunn and G. M. Hardegree. Algebraic methods in philosophical
logic. Clarendon Press, 2001.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, second edition, 2002.

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and
D. S. Scott. Continuous Lattices and Domains, volume 93 of Ency-

clopedia of Mathematics and its Applications. Cambridge University
Press, 2003.

B. Ganter and R. Wille. Formal Concept Analysis — Mathematical
Foundations. Springer, 1999.

P. Hitzler. Default reasoning over domains and concept hierarchies.
In S. Biundo, T. Frithwirth, and G. Palm, editors, Proceedings of
the 27th German conference on Artificial Intelligence, KI’2004, Ulm,
Germany, September 2004, volume 3238 of Lecture Notes in Artificial
Intelligence, pages 351-365. Springer, Berlin, 2004.

P. Hitzler and M. Wendt. Formal concept analysis and resolution in
algebraic domains. In A. de Moor and B. Ganter, editors, Using Con-
ceptual Structures — Contributions to ICCS 2003, pages 157-170.
Shaker Verlag, Aachen, 2003.

34

[HZ04]

[JKM99]

[Joh82]

[L1087]

[LRO3]

[Mac71]

[McL92]

[RZO01]

[Sco82a]

[Sco82b]

[Sed95]

[Sim04]

P. Hitzler and G.-Q. Zhang. A cartesian closed category of approx-
imable concept structures. In K.-E. Wolff, H. D. Pfeiffer, and H. S.
Delugach, editors, Proceedings of the International Conference On
Conceptual Structures, Huntsville, Alabama, USA, Lecture Notes in
Computer Science, pages 170—185. Springer, July 2004.

A. Jung, M. Kegelmann, and M. A. Moshier. Multi lingual sequent
calculus and coherent spaces. Fundamenta Informaticae, XX:1-42,
1999.

P. T. Johnstone. Stone spaces. Cambridge University Press, 1982.

J. W. Lloyd. Foundations of Logic Programming. Springer Verlag,
2nd extended edition, 1987.

F. W. Lawvere and R. Rosebrugh. Sets for mathematics. Cambridge
University Press, 2003.

S. Mac Lane. Categories for the Working Mathematician. Springer,
1971.

C. McLarty. Elementary categories, elementary toposes. Clarendon
Press, 1992.

W. C. Rounds and G.-Q. Zhang. Clausal logic and logic programming
in algebraic domains. Information and Computation, 171(2):156—-182,
2001.

D. S. Scott. Domains for denotational semantics. In M. Nielsen and
E. M. Schmidt, editors, Proceedings of the 9th Colloquium on Au-
tomata, Languages and Programming, Aarhus, Denmark (ICALP’82),
volume 140 of Lecture Notes in Computer Science. Springer, 1982.

D. S. Scott. Lectures on a mathematical theory of computation. In
M. Broy and G. Schmidt, editors, Theoretical Foundations of Pro-
gramming Methodology, pages 145-292. Carnegie-Mellon Univer-
sity, Department of Computer Science, Pittsburgh, D. Reidel Publish-
ing Company, 1982.

A. K. Seda. Topology and the semantics of logic programs. Funda-
menta Informaticae, 24(4):359-386, 1995.

H. Simmons. The coverage technique for enriched posets. Available
from the author’s homepage www . cs.man.ac .uk/~hsimmons, 2004.

35

[Smy92]

[Sto37]

[Stu02]

[Wil82]

[Zha91]

[Zha92]

[Zha03a]

[ZhaO3b]

[ZR04]

[ZS0x]

M. B. Smyth. Topology. In S. Abramsky, D. M. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 1.
Oxford University Press, 1992.

H. M. Stone. Topological representations of distributive lattices and
Brouwerian logics. Casopis pro Péstovini Matematiky a Fysiky,
67:1-25, 1937.

G. Stumme. Formal concept analysis on its way from mathematics to
computer science. In U. Priss, D. Corbett, and G. Angelova, editors,
Conceptual Structures: Integration and Interfaces, Proc. ICCS 2002,
LNALI, pages 2—-19. Springer, 2002.

R. Wille. Restructuring lattice theory: An approach based on hierar-
chies of concepts. In I. Rival, editor, Ordered Sets, pages 445-470.
Reidel, Dordrecht-Boston, 1982.

G.-Q. Zhang. Logic of Domains. Birkhauser, Boston, 1991.

G.-Q. Zhang. Disjunctive systems and L-domains. In W. Kuich, ed-
itor, Proceedings of the 19th International Colloquium on Automata,
Languages, and Programming (ICALP’92), Vienna, Austria, volume
623 of Lecture Notes in Computer Science. Springer, 1992.

G.-Q. Zhang. Chu spaces, concepts lattices, and domains. In Pro-
ceedings of the 19th Conference of the Mathematical Foundations
of Programming Semantics, Montreal, Canada, 2003, volume 83 of
Electronic Notes in Theoretical Computer Science, 2003.

G.-Q. Zhang. Topology, lattices, and logic programming. Presentation
at the DIMACS Lattice Workshop, Juli 8-10, 2003.

G.-Q. Zhang and W. Rounds. Reasoning with power defaults. Theo-
retical Computer Science, 323(1-3):321-350, 2004.

G.-Q. Zhang and G. Shen. Approximable concepts, Chu spaces, and
information systems. Theory and Applications of Categories, 200x.
To appear.

36

Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 1-2, 2004, 25-30

A GENERALIZED RESOLUTION THEOREM

Pascal Hitzler

W.C. Rounds and G.-Q. Zhang have recently proposed to study a form of resolution on algebraic domains [2]. This
framework allows reasoning with knowledge which is hierarchically structured and forms a (suitable) domain, more precisely,
a coherent algebraic cpo as studied in domain theory. In this paper, we give conditions under which a resolution theorem —
in a form underlying resolution-based logic programming systems — can be obtained. The investigations bear potential for
engineering new knowledge representation and reasoning systems on a firm domain-theoretic background.

Keywords: domain theory; automated theorem proving; domain logics; resolution

1 INTRODUCTION

Domain Theory [2] is an abstract mathematical the-
ory for programming semantics and has grown into a re-
spected field on the borderline between mathematics and
computer science. Relationships between domain theory
and logic were noted early on by Scott [3], and subse-
quently developed by many authors, including Smyth [4],
Abramsky [5], and Zhang [6]. There has been much work
on the use of domain logics as logics of types and of pro-
gram correctness, with a focus on functional and imper-
ative languages. However, there has been only little work
relating domain theory to logic programming or other
AT paradigms, two exceptions being the application of
methods from quantitative domain theory to the seman-
tic analysis of logic programming paradigms studied by
Hitzler and Seda [7, 8], and the work of Rounds and Zhang
on the use of domain logics for disjunctive logic program-
ming and default reasoning [19].

The latter authors, in [1], introduced a form of clausal
logic generalized to coherent algebraic domains, moti-
vated by theoretical investigations into the logical nature
of ordered spaces occuring in domain theory. In essence,
they propose to interpret finite sets of compact elements
as abstract formal clauses, yielding a theory which links
standard domain-theoretic notions to corresponding logi-
cal notions. Amongst other things, they establish a sound
and complete proof theory based on a generalized reso-
lution rule, and a form of disjunctive logic programming
in domains. A corresponding semantic operator turns out
to be Scott-continuous.

In this paper, we study this clausal logic, henceforth
called logic RZ for convenience. The occurrence of a
proof theory based on a generalized resolution rule poses
the question whether results underlying resolution-based
logic programming systems can be carried over to the
logic RZ. One of the most fundamental results underly-
ing these systems is the resolution theorem which states
that a clause X is a logical consequence of a theory T if
and only if it is possible to derive a contradiction, iethe
empty clause, via resolution from the theory T'U {—X}
[10, 11].

What we just called resolution theorem is certainly
an immediate consequence of the fact that resolution is
sound and complete for classical logic. However, it is not
obvious how it can be transfered to the logic RZ, mainly
because it necessitates negating a clause, and negation
is not available in the logic RZ in explicit form. This
observation will lead our thoughts, and in the end we
will develop conditions on the underlying domain which
ensure that a negation is present which allows to prove
an analogon of the theorem.

The paper is structured as follows. In Section 2 we
review the most fundamental definitions from the logic
RZ, as laid out in [1]. In Section 2.2 we recall the corre-
sponding proof theory, based on a form of resolution for
this framework. In Section 3 we will simplify the proof
theory and provide a rule system which is simpler and
easier to work with. The remainder of the paper is de-
voted to determining conditions under which a resolution
theorem, in the form mentioned above, can be proven for
the logic RZ. These conditions will involve atomicity of
the underlying domain, studied in Section 4, and a form
of negation for these spaces, studied in Section 5. We will
conclude in Section 6.

An extended abstract of this paper appeared in [12].

2 PRELIMINARIES

2.1 The Logic RZ

A partially ordered set is a pair (D,C), where D is
a nonempty set and C is a relexive, antisymmetric, and
transitive relation on D. A subset X of a partially or-
dered set is directed if for all x,y € X thereis z € X
with z,y C z. An ideal is a directed and downward closed
set. A complete partial order, cpo for short, is a partially
ordered set (D, C) with a least element L, called the bot-
tom element of (D,C), and such that every directed set
in D has a least upper bound, or supremum, | |D. An
element ¢ € D is said to be compact or finite if whenever
¢ C | JL with L directed, then there exists e € L with
c C e. The set of all compact elements of a cpo D is de-
noted by K(D). An algebraic cpo is a cpo such that every
e € D is the directed supremum of all compact elements
below it.

* Artificial Intelligence Institute, Department of Computer Science, Dresden University of Technology, Germany,

E-mail: phitzler@t-online.de

ISSN 1335-3632 (© 2004 FEI STU

26

A set U C D is said to be Scott open, or just open, if
it is upward closed and for any directed L C D we have
L|L € U if and only if U N L # 0. The Scott topology
on D is the topology whose open sets are all Scott open
sets. An open set is compact open if it is compact in the
Scott topology. A coherent algebraic cpo is an algebraic
cpo such that the intersection of any two compact open
sets is compact open. This coincides with the coherency
notion defined in [2], which may be consulted as basic
reference for domain theory. We will not make use of
many topological notions in the sequel. So let us note
that coherency of an algebraic cpo implies that the set of
all minimal upper bounds of a finite number of compact
elements is finite, ¢eif c¢i,...,c, are compact elements,
then the set mub{cy,...,¢,} of minimal upper bounds of
these elements is finite. Note that mub® = {1}, where
L is the least element of D.

In the following, (D, C) will always be assumed to be
a coherent algebraic cpo. We will also call these spaces
domains. Two elements ¢,d € D are called inconsistent,
symbolically ¢ ¥ d, if ¢ and d have no common upper
bound.

Following [13], an element a € D is called an atom, or
an atomic element, if whenever z C a we have x = a or

x = L. The set of all atoms of a domain is denoted by
A(D).

DEFINITION 2.1. Let D be a coherent algebraic cpo with
set K(D) of compact elements. A clause is a finite subset
of K(D). We denote the set of all clauses over D by C(D).
If X is a clause and w € D, we write w = X if there
exists * € X with x C w, ie X contains an element
below w.

A theory is a set of clauses, which may be empty. An
element w € D is a model of a theory T', written w = T,
if wE X for all X € T or, equivalently, if every clause
X €T contains an element below w.

A clause X is called a logical consequence of a theory
T, written T | X, if w T implies w E X. If T =
{E}, then we write E = X for {E} E X . Note that this
holds if and only if for every w € E there is z € X with
rCw.

For two theories T and S, we say that T |= S if
T E X forall X € S. Wesay that T and S are (logically)
equivalent, written T'~ S, if T =S and S |=T'. In order
to avoid confusion, we will throughout denote the empty
clause by {}, and the empty theory by . A theory T is
(logically) closed if T = X implies X € T for all clauses
X . It is called consistent if T |~ {} or, equivalently, if
there is w with w =T

Rounds and Zhang originally set out to characterize
logically the notion of Smyth powerdomain of coherent al-
gebraic cpos. It naturally lead to the clausal logic RZ from
Definition 2.1. Indeed, as was shown in [1], the Smyth
powerdomain of any coherent algebraic domain is isomor-
phic to the set of all consistent closed theories over the
domain, ordered by set-inclusion. A corollary from the
proof is that a clause is a logical consequence of a theory

P. Hitzler: A GENERALIZED RESOLUTION THEOREM

if and only if it is a logical consequence of a finite sub-
set of the theory, which is a compactness theorem for the
logic RZ.

ExAMPLE 2.2. In [1], the domain T¢ from [14], here
denoted TV, was given as a running example. Consider
some three-valued logic in the propositional case, with
the usual (knowledge)-ordering on the set T = {f,u,t}
of truth values given by u < f and u < t. This induces a
pointwise ordering on the space TY of all interpretations
(or partial truth assignments), where V is the (count-
ably infinite) set of all propositional variables in the lan-
guage under consideration. The partially ordered set TV
is a coherent algebraic cpo. Compact elements in TY are
those interpretations which map all but a finite number
of propositional variables to u. We denote compact ele-
ments by strings such as pgr, which indicates that p and
q are mapped to t and r is mapped to f.

We note that {e | e = ¢} is upward-closed for any
logical formula ¢ if considering eg Kleene’s strong three-
valued logic, which has been recognized as being impor-
tant in a logic programming context [15]. A clause in TV
is a formula in disjunctive normal form, eg {pqT,pg,r}
translates to (p AgA—r)V (=pAq)Vr.

We also note that every compact element in TY can be
uniquely expressed as the supremum of a finite number
of atomic elements, and the set of all atomic elements is
A(TY) = VU {7 | v € V}. Furthermore, there exists a
bijective function ~ : A (TV) — A (TV) : p — P which
extends naturally to a Scott-continuous involution on all
of TV via p1.-pn = D1--..Pn- In the following, a clause
over a domain D will be called an atomic clause if it is a
finite subset of A(D). Atomic clauses on TY correspond
to propositional clauses in the classical sense. Note that
p YD for peA (’IFV) and in general for all ¢ € K (']I‘V)
we have ¢ J¢.

The following example shows how knowledge can be
represented in algebraic domains. For convenience, exam-
ples will be presented as subsets of TV, in the notation
from Example 2.2.

ExAMPLE 2.3. Consider the subspace of TV constituted
by the elements L, b (is a bird), f (flies), f (does not
fly), a (lives in australia), s (lives near south pole),
bfs (is a penguin), and bfa (is an ostrich). Then eg

{{b}a {7}} ': {a, 5}-

As to the knowledge representation capabilities of the
logic RZ, we remark that some first investigations have
exhibited a strong link to formal concept analysis [16, 17].

2.2 Resolution in the logic RZ

In [1], a sound and complete proof theory, using clausal
hyperresolution, was given as follows, where {X1,..., X, }
is a clause set and Y a clause.

Xi; a;€X; (1<n); mub{a;|i<n}EY
Y UU<n (Xi\{a:i})

(hr)

Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 1-2, 2004

This rule is sound in the following sense: Whenever
w | X; for all 4, then for any admissible choice of
the a; and Y in the antecedent, we have w E Y U
Uimi (Xi\ {a:}).

For completeness, it is necessary to adjoin to the above
clausal hyperresolution rule a special rule which allows
the inference of any clause from the empty clause. We
indicate this rule as follows.

{y YecD)

Y

(spec)

With this addition, given a theory T and a clause X with
T E X, we have that T +* X | where F* stands for a fi-
nite number of applications of the clausal hyperresolution
rule together with the special rule.

Furthermore, [1, Remark 4.6] shows that binary hy-
perresolution, together with (spec), is already complete,
ie the system consisting of the binary clausal hyperreso-
lution rule

X1 X9 a; € X;; mub{aj,ax} EY

YU (X1 \{a1}) U (X2 \ {az})

(bhr)

together with the special rule is sound and complete.

If the set {a1,as} is inconsistent, then mub{ay,as} =
{}. Since {} = {}, clausal hyperresolution generalizes the
usual notion of resolution, given by the following rule.

X1 Xy a; € X5 ay ¥ az "

(X1 \{a1}) U (X2)\ {az})

EXAMPLE 2.4. Returning to Example 2.3, note that

eg {{b}, {f}} F {bfs,bfa} using (bhr).

3 SIMPLIFYING THE RESOLUTION SYSTEM

Note that two special instances of the clausal hyper-
resolution rule are as follows, which we call the reduction
rule and the extension rule.

X; {a,y} CX; yCa
X\ {a] (red),
X; ye€ K(D) (ext)

{ypux

Indeed, the first rule follows from (hr) since a € X and
{a} E {y}, while the latter rule follows since {a} E
{a,y} for all y € K(D). The special rule (spec) can be
understood as an instance of (ext). Note also that reso-
lution (r) together with (ext) and (red) is not complete.
In order to see this, we refer again to Example 2.2. Let
T = {{p},{q}} and X = {pq}. Then T = X but there
is no way to produce X from T using (r), (ext) and (red)
alone. Indeed, it is easy to show by induction that any X
which can be derived from T by using only (r), (ext) and
(red), contains either p or ¢, which suffices.

It is our desire to provide a sound and complete sys-
tem whose rules are as simple as possible. Consider the

27

following rule, which we call simplified hyperresolution.
It is easy to see that it is an instance of (hr) and more
general than (r).

X1 X9y a;€X;
mub{ay,az} U (X7 \ {a1}) U (X2 \ {az2})

(shr)

THEOREM 3.1. The system consisting of (shr), (ext) and
(red) is complete.

Proof. In order to show completeness, we derive
(bhr) from (shr), (ext) and (red). Let X7, X, be given
with a1 € X7 and as € X5 with a1 T ag. Furthermore, let
Y be a clause with mub{a;,as} EY . Let mub{ay,as} =
{b1,...,b,}. Then for every b; there exists y; € Y with
y; C b;. Using (shr), from X; and X5 we can derive
X5 = mub{a, a2} U (X1 \ {a1}) U (X2 \ {az2}), and with
repeated application of (ext) and (red) we obtain from this
Xo=Ay1, .-,y V(X1 \{a1})U(X2\{az}) . Finally, using
(ext) repeatedly, we can add to X, all remaining elements
from Y. The argumentation for a; ¥ as is similar. This
completes the proof.

We note that a rule with weaker preconditions than
(red) suffices, which we call the weakening rule:

X; a € X;
{y}u (X \{a}

yLa
) (w)

Indeed, (red) can be derived from (w) as follows. Let
{a,y} € X with y C a. Then in particular a € X,
ieusing (w) we can derive {y} U (X \ {a}) which is equal
to X \ {a} since y is already contained in X. On the
other hand, (w) can be derived from (red) and (ext) as
follows. Let @ € X and y C a. If a = y then there is
nothing to show, so assume a # y. Then X F X U{y} by
the extension rule, so the reduction rule can be applied,
yielding (X U{y}) \ {a} as required.
The following technical result is inspired by
[18, Theorem 7].

PRrROPOSITION 3.2. For clauses X1, ..
{X1,...,Xn} E X if and only if {{a1},...
for all (ai,...,a,) € X1 x ... x X,.

., X, we have

Hantt X

Proof . Assume {Xi,...,X,} E X and let q; € X;
be arbitrarily chosen for ¢ = 1,...,n. Then {a;} X; for
all i =1,...n by (ext) and therefore {{a1},...,{an}} E
{X1,...,. Xu} EX.

Conversely, assume that {{ai},...,{an}} E X for

all (a1,...,an) € X1 x ... x X, and let w € D with
wE{X1,...,Xn},tew E X; forall i =1,...,n. Then
for all i = 1,...,n there is a; € X; with a; C w. So
for all ¢ = 1,...,n choose a; with a; C w. Then w &

{{a1},...

We call the system consisting of the rules (red), (ext)
and (shr) the RAD system, from Resolution in Algebraic
Domains. For two theories T and S, we write T F* S

,{an}} and by assumption we obtain w | X.

28

if T H* A for each A € S, and for clauses X and Y
we write X F* Y, respectively X H* T, for {X} F* Y,
respectively {X} F* T'. The symbol - denotes derivation
by a single application of one of the rules in RAD. With
slight abuse of notation, for two theories 7' and S we
allow to write T F S if T F X for some clause X and
SCTU{X}.

We interpret the RAD rules in the setting of Example
2.2. We already know that clauses correspond to formulas
in disjunctive normal form (DNF), and theories to sets of
DNF formulas. The weakening rule acts on single clauses
and replaces a conjunction contained in a DNF formula by
a conjunction which contains a subset of the propositional
variables contained in the original conjunction, eg (pAq)V
r becomes pVr. The extension rule disjunctively extends
a DNF formula by a further conjunction of propositional
variables, eg(p A ¢) V r becomes (p Aq) V1V (sAq).
The simplified hyperresolution rule finally takes two DNF
formulas, deletes one conjunction from each of them, and
forms a disjunction from the resulting formulas together
with the conjunction of the deleted items, eg(p A q) V r
and —pV(sAr) can be resolved to (pAq)V (rA—p)V(sAr).

A more abstract interpretation of the RAD system
comes from a standard intuition underlying domain the-
ory. Elements of the domain D are interpreted as pieces
of information, and if x C y, this represents that y con-
tains more information than x. Compact elements are
understood as items which are computationally accessi-
ble. From this point of view, RAD gives a calculus for
reasoning about disjunctive information in computation,
taking a clause, iea finite set of computationally acces-
sible information items as disjunctive knowledge about
these items. The rules from RAD yield a system for de-
riving further knowledge from the given disjunctive in-
formation. The weakening rule states that we can replace
an item by another one which contains less information.
The extension rule states that we can always extend our
knowledge disjunctively with further bits of information.
Both rules decrease our knowledge. The simplified hy-
perresolution rule states that we can disjunctively merge
two collections of disjunctive information, while strength-
ening our knowledge by replacing two of the items from
the collections by an item which contains both pieces of
information, and deleting the original items.

EXAMPLE 3.3. For Example 2.3, note that {{b}, {f}}F

{bfs,bfa} using (shr), {bfs,bfa}t {s,bfa} using (w),
and finally {s,bfa} F {s,a} using (w) again.

4 ATOMIC DOMAINS

We simplify proof search via resolution by requiring
stronger conditions on the domain.

DEFINITION 4.1. An atomic domain is a coherent alge-
braic cpo D with the following property: For all ¢ €
K(D), the set A(c) = {p € A(D) | p C ¢} is finite and
c=]A(c).

P. Hitzler: A GENERALIZED RESOLUTION THEOREM

The domain TV from Example 2.2 is an example of an
atomic domain. In the remainder of this section, D will
always be an atomic domain.

We seek to represent a clause X by a finite set A(X) of
atomic clauses which is logically equivalent to X . Given
X ={a1,...,a,}, we define A(X) as follows.

AX)={{b1,...,bn} | b; € A(a;) for all i =1,...,n}

Then the following theorem holds.
THEOREM 4.2. For any clause X we have A(X) ~ {X}.

Proof . For a clause X = {a1,...,a,} set X/a; =
{{b,a2,...,an} | b € A(a1)}. Then X/a; | X . Indeed,
since | |A(a1) = a1 we obtain mubA(a;) = {a1}, and
therefore X/a; H* X from (hr).

Now let X = {a1,...,a,} andlet Y = {by,...,b,} €
A(X) with b; € A(a;) for all 4. Then b; C a; for all ¢ and
hence X F*Y by repeated application of the weakening
rule. Conversely, define for any compact element a and
any set T of clauses: T/a ={Z € T |a & Z} U{{b} U
(Z\{a}) | b € Ala),a € Z € T}. So for any clause Z
and a € Z we have {Z}/a = Z/a and we obtain that
T/a =T for all sets of clauses T and a € K(D). Now let
X ={a1,...,an}. Then (... (X/a1)/az...)/an = A(X)
and consequently A(X) = X, which completes the proof.

In view of Theorem 4.2, it suffices to study T F* X for
theories T and atomic clauses X . We can actually obtain
a stronger result, as follows, which provides some kind

of normal forms of derivations. For a theory T, define
AT ={AX)| X eT}.

THEOREM 4.3. Let D be an atomic domain, T be a
theory, X be a clause and

THFLF---FTNEX
be a derivation in RAD. Then there exists a derivation
AT AT F* - A(TN) F A(X)
using only the atomic extension rule

X; yeAD)

wox @Y

and the multiple atomic shift rule (mas), as follows.

a; € X;; mub{a; |i<n}={z;|j<m}

{01, bm} U U<, (Xi \ {ai})

Furthermore, all clauses occuring in the derivation are
atomic.

Proof. Let Xi,X5,X be clauses. We distinguish
three cases, from which the assertion follows easily by
induction on V.

Journal of ELECTRICAL ENGINEERING, VOL. 55, NO. 1-2, 2004

1. X; F X using the reduction rule. First note that
the following atomic shift rule (ash) is a special instance
of the multiple atomic shift rule.

a1 € X1 az € Xo; a € A(x) for all z € mub{ay,as}

{a} U(Xi\{a}) U (X2 \ {az})

Indeed, (ash) follows from (mas) with n = 2 and
a =b = ... = by. Now let a,y € X; with y C
a and X = X7\ {a} = {y,z1,...,2,}. Let A €
A(X), say A = {y,z4,...,2,} with ¢y € A(y) and
x, € A(z;) for all i. Without loss of generality we
can assume that A(y) C A(a), so there is {a'} U
A € A(X;p) for some o' € A(a) \ A(y). So we now
have o',y C a and ¢y C vy, ie{y’,d,a),...,2l} €
A(Xy) and {¢,v,2},...,z,} = A € A(X1). So d €
{/,d',24,....2.}, v € {¢,y,2},...,2,} and since
y C z for all z € mub{y’,a’} we can derive {y'} U
({52 @D U (g2 o2l ') =
{y/,2),...,2),} = A using the atomic shift rule.

2. X1 F X using the extension rule, ie X = X; U {y}
for some y. Let A € A(X). Then A = {y'}UY for some
y' € A(y) and Y € A(X1). Using the atomic extension
rule we can derive Y F A and therefore A(X;) F A using
the atomic extension rule only, which suffices.

3. {X1, X2} F X using the simplified hyperresolution
rule. Let a1 € X7, as € X5 and X = mub{ay,as}U(X7\
{a1})U(X2\{az}). Furthermore, let M = mub{a1,as2} =
{mq,...,my} and let A e A(X), ieA={m},...,m}} U
B1 @] B27 where m; € A(ml) for all i, Bl S A(Xl \ {al})
and B € A(X32 \ {az}). Note that for all af € A(ay) we
have that By U{a}} € A(X7) and for all a}, € A(az) we
have that By U {a5} € A(X2). Let A(ay) = {a3,...,a}, }
and A(az) = {aj, 41,50}, 4p, t- For i = 1,... ki let
Y, = By U{a}} € A(X;) and for i = ky,..., k1 + ko let
Y; = BoU{a}} € A(X2). Since a1 = | JA(a1) and ay =
| |A(az) we have mub (A(a1) UA(az)) = mub{ay,as} =
{ma,...,mi} = M. From the multiple atomic shift rule
we obtain (with ¢ < ky 4+ ko and j < k)

a; €Y; mub{dl,...,a} .} =M, m;eA(my)
{mi, .. omi b U U cp, o, (Vi \ {ai})

Since Y;\{a}} C By fori=1,...,k and Y;\{ab} C By
for i =k1,..., k1 + ko, we obtain {mf,...,m.}UUJ(Y; \
{a;}) € A which suffices by the atomic extension rule.

Note that the atomic extension rule is a special case of
the extension rule, and that the multiple atomic shift rule
can be obtained as a subsequent application of first the
hyperresolution rule (with ¥ = mub{ay,...,a,}) and
then multiple instances of the reduction rule, hence both
rules are sound.

Remark 4.4. We note that Theorem 4.3 does not
hold if (mas) is replaced by its binary version (bas), as
follows.

a1 € Xq,a9 € Xg;mub{al,ag} = {.’bl | 1 < k},bl € A(LEl)

{1, bk} U (X1 \ {ar}) U (X2 \ {az})

29

In order to see this, consider three atomic elements
ai,as,az which are mutually consistent with supre-
mum sup{a;,a;} = a;;, but do not have a common
upper bound. Then {{a1},{az},{as}} & {}, but the
empty clause {} cannot be derived from the theory
T = {{a1},{az2},{as}} using (axt) and (bas) alone. In-
deed it is easy to show by induction that every clause
which is derived from T using applications of (axt) and
(bas) always contains one of the elements aj, az or as.

5 DOMAINS WITH NEGATION

We introduce and investigate a notion of negation on
domains, motivated by classical negation as in Exam-
ple 2.2.

DEFINITION 5.1. An atomic domain is called an atomic
domain with negation if there exists an involutive and
Scott-continuous negation function ~ : D — D with the
following properties:
(i) ~ maps A(D) onto A(D).
(ii) For all p,q € A(D) we have p ¥ ¢ if and only if
q=D.
(iii) For every finite subset A C A(D) such that p 1 ¢
for all p,q € A, the supremum | | A exists.

TV from Example 2.2 is an example of an atomic
domain with negation.

PROPOSITION 5.2. Let D be an atomic domain with
negation. Then for all ¢ € K(D) we have

=@l acAl)}.

Proof. Let ¢ € K(D). Then ¢ =| |A(c), hence A(c)
is consistent. By (ii) of Definition 5.1, we obtain that
every pair of elements from {a@ | a € A(c)} is consistent,
and by (iii) the supremum d = | [{G | a € A(c)} exists.
From monotonicity of ~, we obtain first d C ¢, and then
d C ¢ = c¢. But, again by monotonicity of ~, we know
that d is an upper bound of A(c), hence ¢ C d, and
consequently ¢ = d and ¢ = d = | [{a | a € A(c)} as
required.

The following result, an analogon to the resolution the-
orem mentioned in the introduction, allows one to replace
the search for derivations by search for contradiction.

THEOREM 5.3. Let D be an atomic domain with nega-
tion. Let T be a theory and X be an atomic clause. Then
TEX ifand only if TU{{a}|ae€ X} F*{}.

Proof. Assume T E X.
Then T F* X and {X} U {{a}|a € X} F* {} follows
easily by repeated application of the resolution rule (r).

Conversely, assume T U {{a} |a € X} F* {}, ie
TU{{a} |lae X} ={} UTE{} then TH* {} F* X.So
assume that T = {}, iethere exists w € D with w =T
We have to show that w | X for every such w. Since
wlET but wETU{{a}|ae X}, we have that there
is a € X with @ ¥ w. Hence there exists x € A(w) with

30

x ¥ a@. From the hypothesis we obtain * = a. Hence
a C w and therefore, by the weakening rule, w F* X, ie
wkEX.

On atomic domains with negation, we can therefore
establish the following sound and complete proof princi-
ple.

THEOREM 5.4. Let T be a theory and X a clause. Con-
sider T' = A(T). For every atomic clause A € A(X)
attempt to show T U {{a} | a € A} F* {} using (axt)
and (mas). If this succeeds, then T = X . Conversely, if
T |= X then there exists a derivation

T'U{{a} | a€ A} -* {} for each A € A(X) using only
the above mentioned rules.

Proof. If T"U{{a} | a € A} F* {}, then by Theo-
rem 4.3 the derivation can be carried out using only the
mentioned rules and we obtain 77U {{a} | a € A} = {}.
By Theorem 5.3 we obtain 77 = A, so T = A for all
A € A(X). By Theorem 4.2 this yields 7" = X and fi-
nally we obtain 7' = X by application of Theorem 4.2,
noting that 7" =A(T) ~ T.

Conversely, if T = X then we have T' = A for all
A € A(X), again by Theorems 4.2. Theorem 5.3 then
yields 77U {{a} | a € A} F* {} for all A € A(X), and
finally from Theorem 4.3 we obtain that this derivation
can be done using only the designated rules.

EXAMPLE 5.5. We give an abstract example, again using
notation from Example 2.2, which shows that reasoningin
atomic domains with negation does not lead directly back
to resoning in TY . Consider the subcpo constituted by the
elements {L,p,q,7,D,q,T,pgr, pqr, pq, pT, qp, 4T, 7D, q} ,
which is an atomic domain with negation. Then eg

{{r},{¢}} = {r}. Indeed, {{p},{q},{T}} - {} by (mas)
because mub{p, ¢,7} = {}.

6 CONCLUSIONS

We have shown that for certain domains logical con-
sequence in the logic RZ can be reduced to search for
contradiction, a result which yields a proof mechanism
similar to that underlying the resolution principle used
in resolution-based logic programming systems. The re-
sult should be understood as foundational for establish-
ing logic programming systems on hierarchical knowledge
— like egin formal concept analysis — built on a firm
domain-theoretic background. Further research is being
undertaken to substantiate this.

REFERENCES

[1] ROUNDS, W. C.—ZHANG, G.-Q.: Clausal Logic and Logic
Programming in Algebraic Ddomains, Information and Compu-
tation 171 No. 2 (2001), 156-182.

ABRAMSKY, S—JUNG, A.: Domain theory, Handbook of
Logic in Computer Science, volume 3 (Samson Abramsky, Dov
Gabbay, and Thomas S.E. Maibaum, eds.), Clarendon, Oxford,
1994.

SCOTT, DANA S.: Domains for Denotational Ssemantics, Pro-
ceedings of Automata, Languages and Programming, 9th Collo-
quium, July 1982, Aarhus, Denmark, Lecture Notes in Computer

2

(3

P. Hitzler: A GENERALIZED RESOLUTION THEOREM

Science (Magens Nielsen and Erik M. Schmidt, eds.), vol. 140,
Springer, Berlin, 1982, pp. 577-613.

SMYTH, M. B.: Powerdomains and Predicate Transformers:
A Topological View, Proceedings of Automata, Languages and
Programming, 10th Colloquium, July 1989, Barcelona, Spain,
Lecture Notes in Computer Science (Josep Diaz, ed.), vol. 298,
Springer, Berlin,, 1989, pp. 662—675.

ABRAMSKY, S.: Domain Theory in Logical Form, Annals of
Pure and Applied Logic 51 (1991), 1-77.

ZHANG, G.-Q.: Logic of Domains, Birkh&user, Boston, 1991.
[7] HITZLER, P.: Generalized Metrics and Topology in Logic Pro-
gramming Semantics, PhD Thesis, Department of Mathematics,
National University of Ireland, University College Cork, 2001.
HITZLER, P.—SEDA, A.-K.: Generalized Metrics and Unique-
ly Determined Logic Programs, Theoretical Computer Science
305 No. 1-3 (2003), 187-219.

ZHANG, G.-Q.—ROUNDS, W. C.: Semantics of Logic Pro-
grams and Representation of Smyth Powerdomains., Domains
and Processes (Klaus Keimel et al, eds.), Kluwer, 2001,

pp. 151-179.

ROBINSON, J. A.: A Machine-Oriented Logic Based on the
Resolution Principle, Journal of the ACM 12 No. 1 (1965),
23-41.

LLOYD, J. W.: Foundations of Logic Programming, Springer,
Berlin, 1988.

HITZLER, P.: A Resolution Theorem for Algebraic Domains,
Proceedings of the 18th International Joint Conference on Arti-
ficial Intelligence, Acapulco, Mexico, August 2003 (Georg Gott-
lob and Toby Walsh, eds.), Morgan Kaufmann Publishers, 2003,
pp. 1339-1340.

JOHNSTONE, P. T.: Stone Spaces, Number 3 in Cambridge
Studies in Advanced Mathematics, Cambridge University Press,
1982.

PLOTKIN, G.: T as a Universal Domain, Journal of Com-
puter and System Sciences 17 (1978), 209-236.

FITTING, M.: A Kripke-Kleene-Semantics for General Logic
Programs, The Journal of Logic Programming 2 (1985), 295-312.
HITZLER, P—WENDT, M.: Formal Concept Analysis and
Resolution in Algebraic Domains, Using Conceptual Structures
— Contributions to ICCS 2003 (Aldo de Moor and Bernhard
Ganter, eds.), Shaker Verlag, Aachen, 2003, pp. 157-170.
ZHANG, G.-Q.: Chu Spaces, Concept Lattices, and Domains,
Proceedings of the Nineteenth Conference on the Mathematical
Foundations of Programming Semantics, March 2003, Montreal,
Canada, volume 83 of Electronic Notes in Theoretical Computer
Science, 2003.

COQUAND, T—ZHANG, G.-Q.: Sequents, Frames, and Com-
pleteness, 14th International Workshop on Computer Science
Logic, Fischbachau, Germany, August 2000, Lecture Notes in
Computer Science, vol. 1862, Springer, 2000, pp. 277-291.

(4]

(11]

[12

(17]

(18]

Received 6 October 2003

Pascal Hitzler (PhD, Dipl-Math), born 1971 in Germany,
studied Mathematics and Computer Science at the University
of Tiibingen, completed with distinction in 1998. He then was
a PhD student of Dr. Anthony K. Seda at the National Uni-
versity of Ireland, University College Cork, where he finished
his dissertation in Mathematics in 2001. Since then, he is a
research assistant of Prof. Dr. Steffen Holldobler at the Ar-
tificial Intelligence Institute at the Department of Computer
Science of Dresden University. His published papers eg in pure
mathematics (topology and fixed-point theory), foundations of
artificial intelligence (domain-theoretic aspects of knowledge
representation and reasoning; logic and connectionism) and
in programming language semantics (in particular logic pro-
gramming). He is also actively involved in running enhance-
ment programmes for skilled high-school students. Homepage:
www.wv.inf.tu-dresden.de/ ~ pascal/

In: Aldo de Moor and Bernhard Ganter (Eds.): Using Conceptual Structures - Contributions to ICCS 2003.
Shaker Verlag, Aachen, ISBN 3-8322-1705-3, pp. 157-170.

Formal Concept Analysis and Resolution in
Algebraic Domains

Pascal Hitzler and Matthias Wendt

Artificial Intelligence Institute, Department of Computer Science
Dresden University of Technology, Dresden, Germany
{phitzler,mwl77754}@inf.tu-dresden.de

Abstract. We relate two formerly independent areas: Formal concept
analysis and logic of domains. We will establish a correspondene between
contextual attribute logic on formal contexts resp. concept lattices and
a clausal logic on coherent algebraic cpos. We show how to identify the
notion of formal concept in the domain theoretic setting. In particular,
we show that a special instance of the resolution rule from the domain
logic coincides with the concept closure operator from formal concept
analysis. The results shed light on the use of contexts and domains for
knowledge representation and reasoning purposes.

1 Introduction

Domain theory was introduced in the 1970s by Scott as a foundation for pro-
gramming semantics. It provides an abstract model of computation using order
structures and topology, and has grown into a respected field on the borderline
between Mathematics and Computer Science [1]. Relationships between domain
theory and logic were noted early on by Scott [2], and subsequently developed
by many authors, including Smyth [3], Abramsky [4], and Zhang [5]. There has
been much work on the use of domain logics as logics of types and of program
correctness, with a focus on functional and imperative languages.

However, there has been only little work relating domain theory to logical
aspects of knowledge representation and reasoning in artificial intelligence. Two
exceptions were the application of methods from quantitative domain theory to
the semantic analysis of logic programming paradigms studied by Hitzler and
Seda [6-8], and the work of Rounds and Zhang on the use of domain logics for
disjunctive logic programming and default reasoning [9-11]. The latter authors
developed a notion of clausal logic in coherent algebraic domains, for convenience
henceforth called logic RZ, based on considerations concerning the Smyth pow-
erdomain, and extended it to a disjunctive logic programming paradigm [11].
A notion of default negation, in the spirit of answer set programming [12] and
Reiter’s default logic [13], was also added [14].

The notion of formal concept evolved out of the philosophical theory of con-
cepts. Wille [15] proposed the main ideas which lead to the development of formal
concept analysis as a mathematical field [16]. The underlying philosophical ra-
tionale is that a concept is determined by its extent, i.e. the collection of objects

phi
In: Aldo de Moor and Bernhard Ganter (Eds.): Using Conceptual Structures - Contributions to ICCS 2003. Shaker Verlag, Aachen, ISBN 3-8322-1705-3, pp. 157-170.

2 P. Hitzler and M. Wendt

which fall under this concept, and its intent, i.e. the collection of properties or
attributes covered by this concept. Thus, a formal concept is usually distilled out
of an incidence relation, called a formal context, between a set of objects and a
set of attributes via some concept closure operator, see Section 2 for details. The
set of all concepts is then a complete lattice under some natural order, called a
concept lattice.

The concept closure operator can naturally be represented by an implica-
tional theory of attributes, e.g. the attribute “is a dog” would imply the at-
tribute “is a mammal”, to give a simple example. Thus, contexts and concepts
determine logical structures, which are investigated e.g. in [17-19]. In this pa-
per, we establish a close relationship between the logical consequence relation in
the logic RZ and the construction of concepts from contexts via the mentioned
concept closure operator. We will show that finite contexts can be mapped nat-
urally to certain partial orders such that the concept closure operator coincides
with a special instance of a resolution rule in the logic RZ, and that the concept
lattice of the given context arises as a certain set of logically closed theories.
Conversely, we will see how the logic RZ on finite pointed posets finds a natural
representation as a context. Finally, we will also see how the contextual attribute
logic due to Ganter and Wille [17] reappears in our setting.

Due to the natural capabilities of contexts and concepts for knowledge repre-
sentation, and the studies by Rounds and Zhang on the relevance of the logic RZ
for reasoning mentioned above, the result shows the potential of using domain
logics for knowledge representation and reasoning. As such, the paper is part of
our investigations concerning the use of domain theory in artificial intelligence,
where domains shall be used for knowledge representation, and domain logic for
reasoning. The contribution of this paper is on the knowledge representation
aspect, more precisely on using domains for representing knowledge which is
implicit in formal contexts. Aspects of reasoning, building on the clausal logic
of Rounds and Zhang and its extensions, as mentioned above, are being pursued
and will be presented elsewhere, and some general considerations can be found
in the conclusions. We also note that our results may make way for the use of
formal concept analysis for domain-theoretic program analysis, and this issue is
also to be taken up elsewhere.

The plan of the paper is as follows. In Section 2 we provide preliminaries and
notation from lattice theory, formal concept analysis, and domain theory, which
will be needed throughout the paper. In Section 3, we will identify certain logi-
cally closed theories from the logic RZ, called singleton-generated theories, and
show that the set of all these coincides with the Dedekind-MacNeille completion
of the underlying finite poset. This sets the stage for the central Section 4 where
we will present the main results on the correspondence between concept closure
and logical consequence in the logic RZ, as mentioned above. In Section 5 we
shortly exhibit how the contextual attribute logic relates to our setting. Finally,
in Section 6, we conclude with a general discussion on knowledge representa-
tion and reasoning perspectives of our work, and display some of the difficulties
involved in carrying over the results to the infinite case.

Formal Concept Analysis and Resolution in Algebraic Domains 3

Acknowledgements. We thank Sergej Kuznetsov and Guo-Qiang Zhang for in-
spiring discussions, and Pawel Waszkiewicz for valuable feedback on an earlier
version of this paper. We are very grateful for detailed discussions with Bern-
hard Ganter about our work and for the comments of three anonymous referees,
which helped to improve our presentation substantially.

2 Preliminaries and Notation

Our general reference for lattice theory is [20], assuming basic knowledge about
partially ordered sets (posets) and (complete) lattices. For a poset P, 1 X =
{y | # < y for some x € X} denotes the upper closure of X, X! = {y | # <
y for all x € X} denotes the (set of) upper bounds of X. The set of minimal
upper bounds of a set X is denoted by mub X. The notions of lower closure and
lower bounds are obtained dually.

We furthermore assume basic terminology from formal concept analysis, such
as formal context, the derivation operators, and concept lattices, the standard
reference being [16]. For reference, we recall a part of the basic theorem of concept
lattices [16, Theorem 3], which we will use in the sequel.

Theorem 1. Given a formal context (G, M,I), a complete lattice L is isomor-
phic to the concept lattice B(G, M, I} if and only if there are mappings¥ : G — L
and @ : M — L such that 5(G) is join-dense and (M) is meet-dense in L and
gIm is equivalent to ¥(g) < T(m).

Given a poset P, the smallest complete lattice into which P can be embedded
is called the Dedekind-MacNeille completion of P, which can in turn be identified
with the concept lattice of the formal context (P, P, <).

We will now recall in more detail some basic notions from domain theory and
the ideas underlying domain logics, good references being [1, 4, 5].

We call a subset X C P of a poset P directed if for all x,y € X there exists
z€ X witha < zand y < 2. A poset P is called pointed if it has a least element
1, and is called a cpo (complete partial order) if it is pointed and limits of all
directed subsets exist. An element ¢ € P is called compact (or finite) if for all
directed D C P with ¢ < \/ D, there exists z € D with ¢ < x. The set of all
compact elements of P is denoted by K(P). A cpo is called algebraic if every
element is the directed join of the compact elements below it. A subset U C P
of a cpo is called Scott open if 1U = U and for any directed D C P we have
\/ D € U if and only if UN D #). These sets form the so-called Scott topology. A
cpo is called coherent if the intersection of any two compact open sets is compact
open. A set U C D is called saturated if it is the intersection of all Scott opens
containing it. In the following, we will call coherent algebraic cpos domains.

In [11], Rounds and Zhang developed a clausal logic on domains, in the
following called logic RZ, which bears potential for establishing a disjunctive
logic programming paradigm with a clear domain-theoretic semantics. The next
definition shortly recaptures their work. Our discussion, however, will mostly be
restricted to the finite case of finite pointed posets. A short discussion of this is
deferred to Section 6.

4 P. Hitzler and M. Wendt

Definition 1. Let (P, <) be a domain. A clause over P is a finite subset of
K(P). A theory over P is a set of clauses over P. For a clause X and m € P,
we say that m is a model of X, written m |= X, if there exists some x € X with
x < m. For a thecory T and m € P,weset mET ifmpE X foral X € T,
i which case we call m a model of T. For a theory T and a clause X we say
that X is a logical consequence of T, written T = X, if for all m € P we have
that m = T implies m = X. A theory T is said to be logically closed if T = X
implies X € T for all clauses X. Given a theory S, we say that T is the logical
closure of S if T' is the smallest logically closed theory containing S. A theory is
called consistent if it does not have the empty clause as a logical consequence.

For a theory T, we will denote the set of models of T by Mod(T'). Similarly,
given a set M C P of models, we define the corresponding theory Th(M) to
be the set of all clauses which have all elements of M as model. Note that for
every M C P the corresponding theory Th(M) contains the clause {1}, hence
is non-empty. The original rationale for studying the logic RZ was to obtain a
characterization of the Smyth powerdomain of coherent algebraic cpos by means
of a domain logic. The Smyth powerdomain is used in denotational semantics for
modelling nondeterminism, and it can be characterized as the set of all nonemtpy
compact saturated subsets of P, ordered by reverse subset inclusion. For details
we refer to [1]. The mentioned characterization from [11] now is that the Smyth
powerdomain of P is isomorphic to the set of all consistent and logically closed
theories over P, under subset inclusion.

3 Singleton-Generated Theories and Poset Completion

In this section, we will show a strong relationship between the logic RZ and poset
completion. In particular we show that a set of certain theories is isomorphic to
the Dedekind-MacNeille completion of the given poset. Due to the strong link
between concept lattices and the Dedekind-MacNeille completion exhibited by
Theorem 1, this will provide the necessary tool for our main results, presented
in Section 4.

First of all, we describe the domain-theoretic Smyth powerdomain construc-
tion by means of formal concept analysis. Note however, that although the Smyth
powerdomain of a coherent algebraic cpo is always a lattice (just missing a top
element), it is in general not a complete lattice. Thus the assumption of P being
a finite pointed poset is crucial to our formal concept analysis reformulation of
this powerdomain construction. Now in the finite case, we can provide two rep-
resentations of the Smyth powerdomain of a pointed poset P: The first one uses
the definition of the Smyth powerdomain as the set of all compact saturated
subsets of P ordered by reverse inclusion. In the finite case, a set is compact
saturated if and only if it is upward closed. This yields that the Smyth power-
domain of a finite pointed poset is isomorphic to B(P, P,), having as intents
the order filters, ordered by reverse inclusion. The second representation uses
the logical characterization from [11] mentioned above, according to which the

Formal Concept Analysis and Resolution in Algebraic Domains 5

Smyth powerdomain of a given domain P is isomorphic to the set of all logi-
cally closed consistent theories over P, under subset inclusion. Since clauses in
the finite case are just subsets of P, the Smyth powerdomain is isomorphic to
B(P(P), P,=|}, where P(P) denotes the powerset of P. Corresponding concepts
are of the form (A, B), where A is a logically closed theory and B is its set of
models, i.e., A =Th(B) and B = Mod(A).

We will now investigate conjunctive assertions in the logic RZ. According to
the intuition that theories are conjunctions of their clauses, we have to consider
theories which contain only singleton clauses. Theories which are the closure of a
set containing only singleton clauses will be called singleton-generated theories,
and a set G C P will be called a generator of the theory Th({{d} | d € G}).
These definitions formalize the idea of considering only inferences of the form
{{di},...,{dn}} = {d}, which was also done in [21].

These singleton-generated theories can be obtained by restricting the objects
of the Smyth powerdomain context (B(P), P, =) to singleton clauses. Thus, the
singleton-generated theories are obtained as the extents of the formal context
(P, P,=|). Noting that for a singleton clause {d} and a model m we have {d} 5 m
if and only if d < m, the context for the singleton-generated theories can be
written as (P, P, <). We have just shown the following.

Theorem 2. Given a finite pointed poset P, the set of all singleton-generated
theories over P, ordered by subset inclusion, is isomorphic to the Dedekind-

MacNeille completion N(P) = B(P, P,<) of P.

Before we make use of Theorem 2 in the next section, let us briefly reflect
on what we have achieved so far. Identifying singleton-generated theories with
elements of the Dedekind-MacNeille completion yields the possibility of repre-
senting finite lattices — which are always complete — by means of finite pointed
posets. From an order-theoretic point of view this idea appears to be rather
straightforward. Relating this setting to a logic of domains, however, provides a
novel aspect. On the one hand, we now have the possibility to use a restricted
form of resolution on ordered sets — as will be explained in Section 4 — in order
to represent elements of the corresponding Dedekind-MacNeille completion. On
the other hand, we obtain a new perspective on the logic RZ, namely that under-
lying posets can be interpreted from a knowledge representation point of view.
More precisely, in the next section we will show how Theorem 2 can be employed
for relating the logic RZ to formal concept analysis. The following corollary to
Theorem 2 will also be helpful as it provides a logical representation of finite
lattices by theories on finite pointed posets.

Corollary 1. Let L be a finite lattice. Then for every finite pointed poset P
which can be embedded join- and meet-densely into L, the set of all singleton-
generated theories over P is isomorphic to L.

We know that every complete lattice is the concept lattice of some formal con-
text. We can thus interpret the elements of the Dedekind-MacNeille completion
of a pointed poset P, which can in turn be identified with singleton-generated

6 P. Hitzler and M. Wendt

theories over P, as concepts in the corresponding concept lattice. This indicates
that the logic RZ might be used as a knowledge representation formalism. This,
and details of the relationship between the logic RZ on finite pointed posets and
concept lattices will be explained in more detail in the next section.

4 Representation of Formal Contexts by Finite Posets

In the previous section we have shown that each finite pointed poset P can be
interpreted as a formal context whose concept lattice B(P, P, <) is isomorphic
to the set of all singleton-generated theories over P. In this formal context, each
element of the poset is both object and attribute, resembling the fact that in
the domain logic of a finite pointed poset, each element can be both a singleton
clause and a model.

Since we consider finite lattices, [16, Proposition 12] implies that there is
a unique reduced context, the standard context of (P, P, <), having a concept
lattice isomorphic to B(P, P, <). The objects of the standard context are those
elements of P whose object concept is join-irreducible in B(P, P, <), the at-
tributes are those whose attribute concept is meet-irreducible. Considering the
principal ideal embedding of P into B(P, P, <), we find that the irreducible ob-
jects of (P, P, <) are those which are not the join of all elements strictly below
them, whereas the irreducible attributes are those which are not the meet of all
elements strictly above them.

From these considerations it follows immediately that any singleton-genera-
ted theory over P is completely determined by the set of irreducible objects it
contains as singletons: any singleton which is not an irreducible object can be
represented as the join of all the irreducible objects below it, hence is derivable
from these objects in the logic RZ. Formally, we can state the following lemma.

Lemma 1. Let P be a finite pointed poset and Ty, To be two singleton-generated
theories over P which coincide on all irreducible objects of P. Then T, = T5.

Proof. Assume {z} € T} for some reducible object € P. Now z is the join
of all the irreducible objects below it, and by logical closure {m} € T3 for all
elements m < x, hence {m} € Ty for all irreducible objects m < z. So by logical
closure of Tb we obtain {z} € Ts. The argument clearly reverses and therefore
suffices.

At this stage our way of interpreting singleton-generated theories as concepts
becomes almost obvious. An object g € P is in the extent of a concept (i.e. of
a singleton-generated theory) T if {g} € T, and an attribute m € P is in the
intent of a concept T if m |= T. The latter means that every object contained
as singleton in T necessarily has attribute m. Furthermore, if an object g is a
model for a theory, then it is necessary for any other object in the corresponding
concept extent to have all the attributes ¢ has. If an attribute is contained as a
singleton in a theory, then any object having this attribute is also contained as
a singleton in the theory.

Formal Concept Analysis and Resolution in Algebraic Domains 7

When reasoning about the knowledge represented in a poset P, we can —
according to Lemma 1 — restrict our attention to the irreducible objects. But
we can also incorporate the attributes into the reasoning, if desired, as a kind of
macros for describing collections of objects. This perspective will be employed
later on when discussing the logic programming framework developed by Rounds
and Zhang [11] in terms of formal concept analysis. Reasoning with objects
probably seems unusual from the point of view of formal concept analysis, since
it is more common to consider the logic behind the attributes, focusing on the
implicational theory of the attributes. The emphasis on objects in this paragraph
stems from the domain theoretic intuition on which the logic RZ is based, namely
that x < y stands for the situation in which y contains more information than x.
When representing concept lattices by singleton generated theories in the logic
R7Z, it is therefore more intuitive to consider the concept lattice in its reverse
order, or equivalently, the dual context in which the attributes are considered to
be the new objects, with which we reason. We will do this in the following.

The next theorem makes explicit the representation of finite formal contexts
by finite pointed posets, such that the concept lattice of the formal context is
isomorphic (in the reverse order) to the set of all singleton generated theories of
the finite pointed poset.

Theorem 3. Let (G, M,I) be a reduced finite formal context. Then B(G, M, I),
under the reverse order, is isomorphic to the set of all singleton-generated theo-
ries of a finite pointed poset P, under subset inclusion, if and only if there exist
bijections v : G — M(P) and p : M — J(P), where (J(P), M(P),<) is the
reduced context of (P, P, <), such that for all g € G and m € M we have gIm if
and only if v(g) > u(m).

Proof. Immediate from [16, Proposition 12], the Basic Theorem of Concept Lat-
tices {Theorem 1) and Theorem 2.

So the singleton-generated theories in the logic RZ have the same implica-
tional logic as the attributes of the represented context (G, M, I}, whenever we
restrict to the irreducible objects.

Next, we will give a specific example for a construction of a finite pointed
poset from a given context (G, M, I). Note that also B(G, M, T), reversely or-
dered, is a finite pointed poset trivially satisfying the conditions from Theorem 3.

Ezample 1. Let (G, M,I) be a formal context, where G and M are finite and
disjoint. Define the following ordering on G U M:

(i) For my,mg € M let my < mo if mj 2 mk.

(ii) For g1,92 € G let g1 < g2 if g7 C g5.

(iii) For g € G and m € M let m < g if gIm.

(ivy For g e Gand m € M let g < m if for all h € G and all n € M we have
that gIn and hIm imply hin.

The above construction yields a preorder on G U M. We obtain from this a
partial order, also denoted by <, by taking the quotient order in the usual way.

8 P. Hitzler and M. Wendt

Table 1. Formal context for Example 2.

salad|starter|fish|meat|red wine|white wine|water|dessert|coflfee|expensive
1 X X X
2 X X X
3| x X X X X X
4 X X X X X X
5 x X X X
6 x X X X X
71 x X X X X X X X
8 X X X
9] x X X

If (GU M/~.,<) does not have a least element, we add L to G U M/. and
set L < xforallz € GU M/.. The latter amounts to adding an additional
attribute m with m’ = G to the context.

The main intuition behind this construction is to use the set consisting of all
objects and attributes as a join- and meet-dense subset of the concept lattice
and to supply the induced order by constructions directly available from the
formal context. The first three items do exactly this. However, we have to take
care of those elements which are both join- and meet-irreducible in the concept
lattice. This is achieved with (iv) and the quotient order construction, where
those object-attribute pairs are identified which will result in doubly irreducible
elements. This construction of endowing G U M/ with the induced order from
B(G, M, I) is also known as the Galois subhierarchy introduced in [22], see also
[23] and the references contained therein. Formally, we can state the following.

Proposition 1. Given o finite formal context (G, M,I} and the poset P =
(GUM/.,<) as defined in Example 1, we have B(G, M, I) = B(P, P, <).

Example 2. Consider the formal context given in Table 1. It shall represent,
in simplified form, a selection of set dinners from a restaurant menu. Using
Example 1, we obtain the finite pointed poset depicted in Figure 1. Concepts
in this setting correspond to types of dinners, e.g. one may want to identify the
concept with extent {4,6,7} and intent {st, m, c}, using the abbreviations from
Figure 1, to be the heavy meals, while the expensive ones are represented by
the attribute concept of e, and turn out to always include coffee. Using the logic
RZ, we can for example conclude that a customer who wants salad and fish will
choose one of the meals 3 or 5, since these elements of the poset are exactly
those which are both objects and models of the theory {{sd},{f}}. Also, he
will always get a starter or a dessert, formally {{sd},{f}} E {st,d}. To give
a slightly more sophisticated example, suppose that a customer wants salad or
a starter, additionally fish or a dessert, and drinks water. From this we can
conclude that in any case he will get both a salad and a starter. Formally, we

Formal Concept Analysis and Resolution in Algebraic Domains 9

Fig. 1. Figure for Example 2. Abbreviations are: sd salad, st starter, f fish, m meat,
rw red wine, ww white wine, w water, d dessert, ¢ coffee, e expensive.

obtain {{sd, st},{f,d}, {w}} = {sd} and {{sd, st}, {f,d},{w}} &= {st}. A little

bit of reflection on the context makes it clear that these inferences are indeed
natural ones, in fact also follow from the implicational theory of the context.

Having established Theorem 3 as a link between the logic RZ and formal
concept analysis, we will now discuss how the different techniques on both sides
embed. In particular, we will shortly consider a proof theory for the logic RZ,
discussed next, and also the contextual attribute logic of formal concept analysis,
discussed in Section 5.

In [11], the following hyperresolution rule was presented:

X1 Xo... X, a;€X; forl<i<n; mubfai,...,an}EY
YUU]SiSn(Xi\{ai})

In words, this rule says that from clauses X1,...,X,, a; € X; for all 7, and
mub{ai,...,a,} E Y with respect to the logic RZ, the clause Y U J; <, <, (Xi \
{a;}) may be derived. This rule, together with two special rules treating the cases
of an empty selection of clauses resp. an empty clause in the premise of the rule,
yields a proof theory resp. entailment relation - which is sound and complete
w.r.t. the model theory given in Definition 1. From our results, in particular
from Theorem 3, we obtain that the following restriction of the hyperresolution
rule to singleton clauses induces an entailment relation b, which is equivalent to
the concept closure operator (-)” : P(G) — P(G) which maps any set of objects
B to the extent B” of the corresponding concept (B”, B):

10 P. Hitzler and M. Wendt

{a1} {az}... {a,}; mubfai,...,a,} E {a}
{a}

Thus we can conclude that the logic RZ can be used for knowledge representa-
tion in much the same way as formal concept analysis: There is a correspondence
between finite formal contexts and finite pointed posets and, moreover, both the
proof and the model theory of [11] lend themselves to an easy characterization
of concept closure. This is probably not too surprising from the viewpoint of
formal concept analysis resp. lattice theory. However, from the viewpoint of do-
main theory it is certainly interesting that there is such a close correspondence
between domain logics developed for reasoning about program semantics [4] and
a knowledge representation mechanism like formal concept analysis.

5 Contextual Attribute Logic and the Logic RZ

In this section, we will show that the correspondence between the logic RZ and
formal concept analysis is not exhausted by the relationship between singleton-
generated theories and concept closure. In particular, we will show how to iden-
tify part of the contextual attribute logic due to [17] in a finite pointed poset
P by means of the logic RZ. We first show how clauses and theories resemble
constructions of compound attributes in the poset.

In [17], compound attributes are defined to be compositions of attributes
w.r.t. their extent. More precisely, for any set A C M of attributes of a formal
context (G, M,), the compound attribute \/ A has the extent | J{m' | m € A},
and the compound attribute A A has the extent (\{m' | m € A}. For an attribute
m € M, the compound attribute —m has the extent G\ m’.

Now we can relate compound attributes and theories in the logic RZ by
the following proposition, which is in fact a straightforward consequence of our
previous results, so we skip the proof.

Proposition 2. Let P be a finite pointed poset and consider the formal context
(G, M, I) obtained from it as indicated in Theorem 3, and let v, u be as in the
same theorem. Then for all AC M, g € G, and m € M the following hold.

— g is in the extent of \/ A if and only if v(g) E p(A4).
— g is in the extent of A\ A if and only if v(g) E {{u(a)} | a € A}.
— g 18 in the extent of —m if and only if v(g) = {u(m)}.

We thus see, that the formation of conjunction and disjunction of attributes
to compound attributes corresponds exactly to the formation of singleton gen-
erated theories resp. clauses. Negation, however, is more difficult to represent
in the logic RZ, since the set of all models of =m is not an upper set, but a
lower set, more precisely it is the complement of a principal filter in P. Thus it
seems that the Scott topology, on which the logic RZ is implicitly based, is not
appropriate for handling this kind of negation — which could be a candiate for
a strong negation in the logic programming paradigm discussed in Section 6. It

Formal Concept Analysis and Resolution in Algebraic Domains 11

remains to be investigated whether the results presented in [11] carry over to
the Lawson topology and the Plotkin powerdomain, see [1] for definitions, which
according to what has been said above may be the correct setting for handling
this negation.

In [17], sequents of the form (A4, S), where A, S C M, were introduced as a
possible reading of compound attributes \/(SU{—m | m € A}). A sequent (4, 5)
may thus be interpreted as an implication \/ S «— A A. A clause set over M is
a set of sequents over M. The clause logic, called contextual attribute logic, of a
finite pointed poset P is then the set of all sequents that are all-extensional in
P, i.e. all sequents whose extent contains the set of all objects of P. This means
that the implication represented by the sequent holds for all the objects in P.

Due to the difficulties with negation discussed above we restrict our attention,
for the time being, to all-extensional sequents (A, S) with A = (. So consider
again the setting of Proposition 2, and let X C M. Then (0, X) is an all-
extensional sequent if and only if v(z) E p(X) for all # € G. This is easily
verified using Theorem 3 and Proposition 2.

Apart from investigating compound attributes involving negation — as dis-
cussed above — it also remains to be determined whether there exists a way of
identifying the contextual attribute logic by means of the proof theory defined
by Rounds and Zhang [11]. This will be subject to further research.

6 Conclusions and Further Work

We have displayed a strong relationship between formal concept analysis and
the domain logic RZ. The restriction of inference to singleton clauses yields the
concept closure operator of formal concept analysis. Furthermore, any logically
closed theory in the logic RZ can be understood as a clause set over a formal
context, in the sense of contextual attribute logic, and the hyperresolution rule
of [11] can be used to reason about such knowledge present in a given formal
context in much the same way as the resolution rule proposed in [17]. This of
course can be a foundation for logic programming over formal contexts, i.e. logic
programming with background knowledge which is taken from a formal context
and uscd as “hard constraints”.

The appropriate way of doing this on domains was also studied by Rounds
and Zhang. In their logic programming paradigm on coherent algebraic cpos a
logic program is a set of rules of the form # «— 7, where 6 and 7 are clauses
over the respective domain. The models of such a rule § «— 7 are exactly those
elements w of the domain which satisfy w | 8 whenever w = 7. The rule

X1 Xo... Xny a;€X; forl<i<n; O8—7€P; mub{ay,...,an} =7
ou Ulgign(Xi \ {@1:})

corresponds to inference taking the clause 6 <« 7 into account. By adjoining to
the usual proof theory the inference rules for all the clauses in a given program,
one can define a monotonic and continuous operator Tp on the set of all logically

12 P. Hitzler and M. Wendt

closed theories, whose least fixed point yields a very satisfactory semantics for
the considered program P.

This logic programming paradigm can be understood as logic programming
with background knowledge, since the semantics of the program does not only
satisfy the program, in a reasonable sense, but also takes into account those
implications which are hidden in the underlying domain, i.e. in the context.
It is interesting to note that the knowledge implicit in the context need not be
made explicit, e.g. by computing the stem base of the context. This implicational
knowledge is implicitly represented by the inference rules constituting the proof
theory of the logic RZ. The authors are currently investigating the potential of
this approach.

Ezxample 3. Consider again the setting from Example 2 and suppose that a cus-
tomer’s wishes can be expressed by the following rules.

{rw} —{m}
{e,ww} —{d}
{sd, st} — {L}

We understand, that the customer does not want meat without red wine, that
for him a dessert should always go with white wine or coffee, and that in any case
he wants a starter or a salad. The models for this program are 3, 4, 5, 7, sd, and
st, which do not constitute an upper set. Possible choices by the customer are
again those models which are also objects, i.e. 3, 4, 5, and 7. Drawing inferences
from this program alone, however, yields counterintuitive results, e.g. because
every clause which is a logical consequence must contain both st and sd (or
the bottom element). Consequently, {e, f} is not a logical consequence although
each possible choice of meal by the customer will include fish or be expensive.
This situation is caused by the fact that objects and attributes are no longer
distinguished in the domain-theoretic setting, and that the information that
salad or starter are part of every meal which is satisfactory for the customer, is
necessarily part of every inference drawn. We can rectify this by adding another
rule

{1,2,3,4,5,6,7,8,9} — {1}

to the program, which can be interpreted as saying that the customer also wants
a meal (obviously). The logical consequences from this program are then as
can be expected from the context, e.g. {e, f} as discussed above. So evaluating
the set of rules amounts to querying the background knowledge represented by
the context from Table 1. We suspect a strong relationship to inferences from
the contextual attribute logic underlying the context, but details remain to be
worked out.

In this paper, we have restricted our considerations to the case of finite
pointed posets. So let us shortly discuss some of the difficulties involved in car-
rying over our results to the case of arbitrary coherent algebraic cpos. The corre-
spondence between singleton-generated theories and Dedekind cuts underlying

Formal Concept Analysis and Resolution in Algebraic Domains 13

Theorem 2 carries over to the infinite case without major restrictions — one
just has to correctly adjust it to compact elements and to keep in mind that any
non-compact element can be represented as the supremum of all compact ele-
ments below it. Difficulties occur when trying to characterize the lattices which
arise as Dedekind-MacNeille completions of coherent algebraic ¢cpos, since on the
domain-theoretic side one has to deal with the topological notion of coherence,
which is not really present on the lattice-theoretic side. Furthermore, the Scott
topology we are implicitly dealing with when working with the logic RZ is not
completion invariant, which means that the properties defined in terms of the
Scott topology, e.g. continuity of the poset, do not carry over to the completion
[24]. These issues will also have to be subject to further research. A construction
similar to Example 1 carries over to a restricted infinite case, and details can be
found in [21].

We finally note the very recent paper by Zhang [25], which also studies re-
lationships between domain theory and formal concept analysis, though from a
very different perspective involving Chu spaces.

References

1. Abramsky, S., Jung, A.: Domain theory. In Abramsky, S., Gabbay, D., Maibaum,
T.S., eds.: Handbook of Logic in Computer Science. Volume 3. Clarendon, Oxford
(1994)

2. Scott, D.S.: Domains for denotational semantics. In Nielsen, M., Schmidt,
E.M., eds.: Automata, Languages and Programming, 9th Colloquium, July 1982,
Aarhus, Denmark, Proceedings. Volume 140 of Lecture Notes in Computer Sci-
ence., Springer, Berlin (1982) 577613

3. Smyth, M.B.: Powerdomains and predicate transformers: A topological view. In
Diaz, J., ed.: Automata, Languages and Programming, 10th Colloquium, July 1989,
Barcelona, Spain, Proceedings. Volume 298 of Lecture Notes in Computer Science.,
Springer, Berlin (1989) 662-675

4. Abramsky, S.: Domain theory in logical form. Annals of Pure and Applied Logic
51 (1991) 1-77

5. Zhang, G.Q.: Logic of Domains. Birkhauser, Boston (1991)

6. Seda, A.K., Hitzler, P.: Topology and iterates in computational logic. In: Proceed-
ings of the 12th Summer Conference on Topology and its Applications: Special
Session on Topology in Computer Science, Ontario, August 1997. Volume 22 of
Topology Proceedings. (1997) 427-469

7. Hitzler, P.: Generalized Metrics and Topology in Logic Programming Semantics.
PhD thesis, Department of Mathematics, National University of Ireland, University
College Cork (2001)

8. Hitzler, P., Seda, A.K.: Generalized metrics and uniquely determined logic pro-
grams. Theoretical Computer Science (200x) To appear.

9. Zhang, G.Q., Rounds, W.C.: Reasoning with power defaults (preliminary report).
In Dix, J., Furbach, U., Nerode, A., eds.: Proceedings of the Fourth International
Conference on Logic Programming and Non-Monotonic Reasoning, LPNMR’97,
Dagstuhl, Germany. Volume 1265 of Lecture Notes in Computer Science., Springer
(1997) 152-169

14

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

P. Hitzler and M. Wendt

Zhang, G.Q., Rounds, W.C.: Semantics of logic programs and representation of
Smyth powerdomains. In Keimel, K., et al., eds.: Domains and Processes. Kluwer
(2001) 151-179

Rounds, W.C., Zhang, G.Q.: Clausal logic and logic programming in algebraic
domains. Information and Computation 171 (2001) 156-182

Marek, V.W., Truszczynski, M.: Stable models and an alternative logic program-
ming paradigm. In Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S.,
eds.: The Logic Programming Paradigm: A 25-Year Persepective. Springer, Berlin
(1999) 375-398

Reiter, R.: A logic for default reasoning. Artificial Intelligence 13 (1980) 81-132
Hitzler, P.: Towards nonmonotonic reasoning on hierarchical knowledge. In: Pro-
ceedings of the 17th Workshop Logische Programmierung, WLP02, December 2002,
Dresden, Germany. (200x) To appear.

Wille, R.: Restructuring lattice theory: An approach based on hierarchies of con-
cepts. In Rival, 1., ed.: Ordered Sets. Reidel, Dordrecht-Boston (1982) 445-470
Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foundations.
Springer, Berlin (1999)

Ganter, B., Wille, R.: Contextual attribute logic. In Tepfenhart, W.M., Cyre, W.R.,
eds.: Conceptual Structures: Standards and Practices. Proceedings of the 7th Inter-
national Conference on Conceptual Structures, ICCS 99, July 1999, Blacksburgh,
Virginia, USA. Volume 1640 of Lecture Notes in Artificial Intelligence., Springer,
Berlin (1999) 377-388

Ganter, B.: Attribute exploration with background knowledge. Theoretical Com-
puter Science 217 (1999) 215-233

Wille, R.: Boolean judgement logic. In Delugach, H., Stumme, G., eds.: Conceptual
Structures: Broadening the Base, Proceedings of the 9th International Conference
on Conceptual Structures, ICCS 2001, July 2001, Stanford, LA, USA. Volume 2120
of Lecture Notes in Artificial Intelligence., Springer, Berlin (2001) 115-128
Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University
Press (1990}

Hitzler, P.: Contexts, concepts and logic of domains. Technical Report WV-02-
12, Knowledge Representation and Reasoning Group, Department of Computer
Science, Dresden University of Technology, Dresden, Germany (2002)

Godin, R., Mineau, G., Missaoui, R., Mili, H.: Méthodes de classification con-
ceptuelle basées sur les treillis de galois et applications. Revue d’Intelligence Arti-
ficielle 9 (1995) 105-137

Huchard, M., Roume, C., Valtchev, P.: When concepts point at other concepts: the
case of UML diagram reconstruction. In Liquiére, M., et al., eds.: Proceedings of
the Second International Workshop on Advances in Formal Concept Analysis for
Kunowledge Discovery in Databases (FCAKDD), Lyoun, France, July 2002. (2002)
32-43

Erné, M.: A completion-invariant extension of the concept of continuous lattices.
In Banaschewski, B., Hoffmann, R.E., eds.: Continuous Lattices: Proceedings of
the Conference on Topological and Categorical Aspects of Continuous Lattices.
Volume 871 of Lecture Notes in Mathematics., Berlin, Springer (1979) 43-60
Zhang, G.Q.: Chu spaces, concept lattices, and domains. In: Proceedings of the
Nineteenth Conference on the Mathematical Foundations of Programming Seman-
tics, March 2003, Montreal, Canada. Electronic Notes in Theoretical Computer
Science (2003) To appear.

	all.pdf
	hhs04.pdf
	Logic programs and connectionist networks
	Introduction
	Basic notions
	Logic programs
	Metric spaces and contraction mappings
	Connectionist networks

	Propositional logic programs
	Hidden layers are needed
	Relating propositional programs to networks
	Extensions
	Learning.
	Rule extraction.
	Propositional modal logics.

	First-order logic programs
	Previous work
	Continuity of semantic operators
	Approximation by artificial neural networks

	Conclusions and further work
	Acknowledgements
	References

	bh04.pdf
	Logic programs, iterated function systems, and recurrent radial basis function networks
	Introduction
	Preliminaries
	Logic programs
	Iterated function systems

	Logic programs as iterated function systems
	Representation of logic programs by iterated function systems
	Worked examples

	Logic programs by fractal interpolation
	Logic programs as recurrent RBF-networks
	Related work
	Conclusions and further work
	Acknowledgements
	References

	ki03.pdf
	Introduction
	Preliminaries and Notation
	Maximally Circular Stable Semantics
	Maximally Circular Well-Founded Semantics
	Conclusions and Further Work

