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Abstract. It has recently been shown that the MapReduce
framework for distributed computation can be used effectively
for large-scale RDF Schema reasoning, computing the deduc-
tive closure of over a billion RDF triples within a reasonable
time [23]. Later work has carried this approach over to OWL
Horst [22]. In this paper, we provide a MapReduce algorithm
for classifying knowledge bases in the description logic EL++,
which is essentially the OWL 2 profile OWL 2 EL. The tra-
ditional EL++ classification algorithm is recast into a form
compatible with MapReduce, and it is shown how the revised
algorithm can be realized within the MapReduce framework.
An analysis of the circumstances under which the algorithm
can be effectively used is also provided.

1 Introduction

The successful incorporation of large-scale automated reason-
ing is central to realizing the Semantic Web vision [7]. The
assertions comprising Semantic Web ontologies are expressed
in a formal knowledge representation language—RDF [13] and
OWL [8] being the languages most commonly used—and one
of the ultimate goals of the Semantic Web is the development
of efficient tools for drawing logical conclusions from these as-
sertions. The primary obstacle to the creation of such tools
has been that traditional reasoning algorithms do not scale
particularly well, and this makes them incapable of handling
the number of assertions contained in large ontologies. This is
due essentially to the inherent complexity of the underlying
reasoning tasks. E.g., the worst-case complexity of classify-
ing SROIQ ontologies (SROIQ being the description logic
upon which OWL 2 is based) lies in the class N2ExpTime. Re-
stricted profiles [15] of OWL 2 (including OWL 2 EL, which
is essentially the description logic EL++ [2]) do exist, and the
standard reasoning tasks for these can be solved in polynomial
time. Nevertheless, it is unlikely that the current algorithms
for even these will scale to the number of assertions predicted
to be stored on the Web. E.g., a recent discussion of Linked
Open Data [4] estimates that approximately 4.7 billion RDF
triples are on the Web, interlinked by 142 million RDF links
[4].2 In order to reason with such data, scalable reasoning al-
gorithms are essential, and parallelization of reasoning is one
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2 Some OWL is used as well, usually for indicating that two re-

sources should be considered equal, using owl:sameAs.

of the obvious routes to investigate in achieving the required
scalability.

The present paper describes continued steps toward cre-
ating parallel reasoning algorithms for the Semantic Web.
Specifically, we present a parallel algorithm for classifying
EL++ ontologies using MapReduce, which is a programming
model and software framework for distributed processing of
data on clusters of machines. In doing so, we follow the lead of
[22, 23], where MapReduce was successfully used for comput-
ing RDF Schema closure and for reasoning with OWL Horst.

These publications are part of a recent trend in Seman-
tic Web research to explore parallelization of reasoning tasks.
Some of the most notable recent developments are the use of
the MapReduce framework for RDF [20, 22, 23], using dis-
tributed hash tables for RDF Schema [9], the MaRVIN peer-
to-peer platform for RDF [16], and the approach in [24] for
parallel computation of RDF Schema closures. However, there
is relatively little work on attempting to carry these successes
over to OWL reasoning, apart from some investigations into
OWL Horst [19, 22], OWL RL [12], distributed resolution for
SHIQ ontology networks [17], and some other preliminary
investigations [1, 5].

The remainder of the paper is structured as follows. Sec-
tion 2 provides an overview of the description logic EL++

and the traditional polynomial-time algorithm for classify-
ing EL++ ontologies. We then briefly recall the MapReduce
framework in Section 3. Modifications to the EL++ classifica-
tion algorithm, needed in order to make the algorithm paral-
lelizable using MapReduce, are then presented in Section 4.
In Section 5 we show how to cast the revised algorithm into
MapReduce, and a theoretical discussion is given in Section 6.
Section 7 concludes with directions for future research.

Acknowledgements. We thank Keke Chen, Frank van Harme-
len, Spyros Kotoulas and Jacopo Urbani for helpful discus-
sions.

2 Classifying EL++ Ontologies

The description logic EL++ [2] (which could also be called
ELRO following more standard nomenclature [3]) is the de-
scription logic underlying the OWL 2 profile OWL 2 EL.
It appeared on the scene a few years ago [2], and received
widespread attention due to the fact that it was the first
known polynomial time description logic which found appli-
cation in a commercial setting: The commercial SNOMED



ontology,3 with about 300,000 axioms, falls within EL++,
and with the advent of the algorithm it was for the first
time possible to formally classify this ontology [18]. This
success spawned considerable and still expanding interest in
polynomial-time description logics.

Concepts in EL++ are formed according to the grammar

C ::= A | > | ⊥ | {a} | C uD | ∃r.C

where A ranges over concept names, a over individual names,
r over role names, and C,D over (possibly complex) concepts.
An EL++ ontology (or constraint box ) is a finite set of general
concept inclusions (GCIs) C v D and role inclusions (RIs)
r1 ◦ · · · ◦ rn v r, where C,D are concepts, n is a positive
integer and r, r1, . . . , rn are role names.
EL++ also allows what are called concrete domains in con-

cept descriptions. However, since we are interested here in
the purely logical fragment of EL++, we omit a discussion of
them. Given this, EL++ is essentially EL+ extended with a
bottom concept, ⊥, and nominals {a}, where {a} is the class
containing only individual a.

The formal semantics of EL++ is given in model-theoretic
terms, following the standard approach employed for descrip-
tion logics, which can, e.g., be found in [3]. We refrain from
repeating this here. The OWL 2 profile OWL 2 EL [15] is a
syntactic variant of EL++ with a few minor additions, which
we ignore for the sake of clarity.

The primary reasoning task for EL++ ontologies is classi-
fication—the computation of the complete subsumption hier-
archy between all concept names and nominals occurring in
the ontology. Other tasks, such as concept satisfiability and
the consistency of so-called ABox assertions, are reducible to
classification. The classification algorithm for EL++ is shown
in Figure 1. It requires the input ontology O to be in normal
form, where all concept inclusions have one of the forms

C1 v D | C1 v ∃r.C2 | C1 u C2 v D | ∃r.C1 v D

and all role inclusions have the form r v s or else r ◦ s v t.
Each C1 and C2 must be in the set BCO, where BCO is the
set consisting of >, each concept name, and each nominal.
Each D must be in the set BC⊥O , where BC⊥O is BCO ∪ {⊥}.

The transformation into normal form can be done in linear
time [2], and the process potentially introduces concept names
not found in the original ontology. The normalized ontology
is a conservative extension of the original, in the sense that
every model of the original can be extended into one for the
normalized ontology. In the following, we assume that all of
the ontologies we deal with are already in normal form.

The classification algorithm makes use of two mappings S
and R, where S(X) maps each element X ∈ BCO to a subset
of BC⊥O , and R(r) maps each role name r to a binary rela-
tion over BC⊥O . Intuitively, B ∈ S(A) implies A v B, while
(A,B) ∈ R(r) implies A v ∃r.B. In the algorithm, for each
element X ∈ BCO, S(X) is initialized to contain just {X,>},
and R(r), for each role name r, is initialized to ∅. The sets
S(X) and R(r) are then extended by applying the completion
rules shown in Figure 1 until no rule is applicable.

The condition C  R D in rule C6 is used to indicate that
there are concepts C1, . . . , Ck ∈ BCO such that

3 http://www.ihtsdo.org/snomed-ct/

C1 If C′ ∈ S(C), C′ v D ∈ O, and D 6∈ S(C),
then S(C) := S(C) ∪ {D}

C2 If C1, C2 ∈ S(C), C1 u C2 v D ∈ O, and D 6∈ S(C),
then S(C) := S(C) ∪ {D}

C3 If C′ ∈ S(C), C′ v ∃r.D ∈ O, and (C,D) 6∈ R(r),
then R(r) := R(r) ∪ {(C,D)}

C4 If (C,D) ∈ R(r), D′ ∈ S(D), ∃r.D′ v E ∈ O,
and E 6∈ S(C), then S(C) := S(C) ∪ {E}

C5 If (C,D) ∈ R(r), ⊥ ∈ S(D), and ⊥ 6∈ S(C),
then S(C) := S(C) ∪ {⊥}

C6 If {a} ∈ S(C) ∩ S(D), C  R D, and S(D) * S(C),
then S(C) := S(C) ∪ S(D)

C10 If (C,D) ∈ R(r), r v s ∈ O, and (C,D) 6∈ R(s),
then R(s) := R(s) ∪ {(C,D)}

C11 If (C,D) ∈ R(r1), (D,E) ∈ R(r2), r1 ◦ r2 v r3 ∈ O,
and (C,E) 6∈ R(r3), then R(r3) := R(r3) ∪ {(C,E)}

Figure 1. The classification completion rules for EL++. Rules
C7–C9 in [2] deal with concrete domains and so are not included.

1. C1 ∈ {C,>} ∪ {{b}| b an individual},
2. (Cj , Cj+1) ∈ R(rj) for some role name rj (1 ≤ j < k), and
3. Ck = D.

This condition differs slightly from the one presented in [2],
which is incorrect.4 We follow the corrected version from [10].

The classification algorithm is guaranteed to terminate in
polynomial time relative to the size of the input ontology, and
it is also sound and complete: For all class names A and B,
A v B if and only if either S(A) ∩ {B,⊥} 6= ∅, or else there
is an {a} ∈ BCO such that ⊥ ∈ S({a}).

3 MapReduce

MapReduce is a programming model for distributed process-
ing of large amounts of data on clusters of machines (called
nodes) [6]. The input is manipulated in two stages (called the
map phase and reduce phase, respectively), and both input
and output are in the form of key-value pairs. A central Mas-
ter node divides the data into chunks, and each chunk is as-
signed to an idle Map node. A domain specific map function
processes the data, producing intermediate key-value pairs.
These are typically written to a local disk, and their locations
are forwarded to Reduce nodes via the Master. Each Reduce
node then processes the values indexed by a given key, pro-
ducing zero or more output pairs.

As an example of how MapReduce could be used in the
context of EL++ reasoning, consider rule C1 in Figure 1. Ig-
noring the constraint ensuring that no duplicates are added
to S(C), the rule has only two preconditions: C′ ∈ S(C) and
C′ v D ∈ O. Both of these make use of a common element
C′, and this can be used as a key. When implemented in
the MapReduce framework, the map function is used to iden-
tify the preconditions relevant to C1 (indexing them using
the key), and the reduce function processes the identified el-
ements, completing the application of the rule. In the case of

4 The algorithm in [2] omits the case where C1 = >. It is clear,
however, that this case must also be considered.
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C1, this means that each relevant S(C) is updated appropri-
ately.

There are several prominent implementations of the
MapReduce model.5 Using them, developers need only de-
fine the map and reduce functions, leaving lower level and
administrative tasks to general purpose components of the
system.

4 Making the EL++ Algorithm
Parallelizable

To use MapReduce with EL++, we follow the lead of [23],
which describes a MapReduce algorithm for computing RDF
Schema closures. However, since the completion rules from
Figure 1 are structurally more complicated than the RDF
Schema completion rules, we cannot straightforwardly adopt
their approach. In [22], the authors extend their approach to
OWL Horst [21], facing structurally similar problems. How-
ever, due to the specific knowledge bases they are looking at,
they choose a solution which is not applicable in our case.

Certain rules of the original EL++ classification algorithm
are already amenable to implementation in a MapReduce
framework, in the sense that the preconditions of the rules
possess a common element that can serve as key—see the ex-
ample for rule C1 in Section 3. Rules C2, C4, C6, and C11,
however, cannot be used directly, and each must first be split
into multiple rules of a more suitable form. This is explained
below.

In the revised algorithm, new structures are used in ad-
dition to R and S. Specifically, the functions P and L map
each element of BCO to a subset of BC⊥O × BC⊥O , while H
maps each element of BCO to a subset of BC⊥O . N is a sub-
set of BC⊥O , while J is a subset of BC⊥O × BC⊥O . Intuitively,
(C1, D) ∈ P (C2) means C1 uC2 v D. L is used as a counter-
part to R, the difference being that L represents axioms with
the existential restriction on the left-hand side: (C,D) ∈ L(r)
implies ∃r.C v D. The set J is used to indicate that some
nominal is a superclass of two concepts: (C,D) ∈ J implies
{o} ∈ S(C) and {o} ∈ S(D) for some nominal {o}. D ∈ N
indicates that a sequence of the form

C1 v ∃r1.C2, C2 v ∃r2.C3, . . . , Ck−1 v ∃rk−1.D

holds, where C1 is either > or else some nominal {o}. D ∈
H(C) implies that a similar sequence holds, with C1 = C.

The reformulation of the algorithm also requires that R be
altered to map binary role chains r ◦ s (in addition to simple
roles) to a subset of BC⊥O ×BC⊥O . The intuition remains the
same, however: (C,D) ∈ R(r ◦ s) implies C v ∃(r ◦ s).D. The
latter expression is not grammatically correct in EL++, but it
is semantically unproblematic, and furthermore it causes no
problems in the algorithm.

During the initialization of the algorithm, for each C ∈
BCO, S(C) is set to {C,>}, while P (C) and H(C) are set to
∅. Similarly, J , N are initialized to ∅, as is each R(r), R(r◦s)
and L(r), where r and s are simple role names. Applying the
completion rules adds to these sets.

The completion rules of the revised algorithm are shown
in Figure 2. With the exception of the removal of the con-

5 Hadoop (http://hadoop.apache.org/) is a popular Java imple-
mentation.

Completion Rule Key

C1 If C′ ∈ S(C) and C′ v D ∈ O C′

then S(C) := S(C) ∪ {D}
C2-1 If C1 ∈ S(C) and C1 u C2 v D ∈ O C1

then P (C) := P (C) ∪ {(C2, D)}
C2-2 If C2 ∈ S(C) and (C2, D) ∈ P (C) C2

then S(C) := S(C) ∪ {D}
C3 If C′ ∈ S(C), C′ v ∃r.D ∈ O C′

then R(r) := R(r) ∪ {(C,D)}
C4-1 If D′ ∈ S(D) and ∃r.D′ v E ∈ O D′

then L(r) := L(r) ∪ {(D,E)}
C4-2 If (C,D) ∈ R(r) and (D,E) ∈ L(r) r

then S(C) := S(C) ∪ {E}
C5 If (C,D) ∈ R(r), ⊥ ∈ S(D) D

then S(C) := S(C) ∪ {⊥}
C6-1 If {a} ∈ S(C) and {a} ∈ S(D) a

then J := J ∪ {(C,D)}
C6-2-1 If (C,D) ∈ R(r) C

then H(C) := H(C) ∪ {D}
C6-2-2 If (C,D) ∈ R(r) and C ∈ H(E) C

then H(E) := H(E) ∪ {D}
C6-2-3 If (C,D) ∈ J and D ∈ H(C), C

then S(C) := S(C) ∪ S(D)
C6-3-1 If ({b}, D) ∈ R(r) or (>, D) ∈ R(r) D

then N := N ∪ {D}
C6-3-2 If (C,D) ∈ R(r) and C ∈ N C

then N := N ∪ {D}
C6-3-3 If (C,D) ∈ J and D ∈ N , D

then S(C) := S(C) ∪ S(D)
C10 If (C,D) ∈ R(r), r v s ∈ O r

then R(s) := R(s) ∪ {(C,D)}
C11-1 If (C,D) ∈ R(r1), and (D,E) ∈ R(r2) D

then R(r1 ◦ r2) := R(r1 ◦ r2) ∪ {(C,E)}

Figure 2. Revised EL++ algorithm. In C10, r is allowed to be
of the form r1 ◦ r2. The keys are used in the MapReduce

algorithm presented in Section 5.

straint preventing duplicate additions (see the below discus-
sion), rules C1, C3, and C5 are left unchanged. Rule C10 is
altered to apply to both simple roles and binary role chains.
This modification is semantically sound, and it does not affect
the correctness of the algorithm.

The changes to the other rules are more substantial. The
action of C2 is simulated by applying C2-1 and then C2-
2. Rule C4 is simulated by subsequent applications of C4-1
and C4-2, and rule C11 is simulated by C11-1 and C10.
E.g., if (C,D) ∈ R(r) and (D,E) ∈ R(s), then C11-1 yields
(C,E) ∈ R(r ◦ s). If r ◦ s v t is an axiom of O, then since it
matches the template for C10, it follows that (C,E) ∈ R(t).

The rules replacing C6 are more difficult to understand.
Rules C6-2-1 and C6-2-2, and also C6-3-1 and C6-3-2, are
used to explicitly generate the sets C1, C2, . . ., Ck establishing
C  R D. Each pair of rules covers a distinct way in which
C  R D may be established.

Specifically, C6-2-1 and C6-2-2 cover the case where
C1 = C. The sequence C1, C2, . . ., Ck is begun using rule
C6-2-1 and extended with repeated applications of C6-2-
2. The presence of Ci in H(C) implies that (C,C2) ∈ R(r),
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(C2, C3) ∈ R(r2), . . ., (Ci−1, Ci) ∈ R(ri−1) all hold, and this
is sufficient to establish C  R Ci.

As a concrete example, consider the below set of GCIs:

A v ∃r1.B B v ∃r2.C
C v ∃r3.D D v ∃r4.E

Given the way S(X) is initialized, it must be that X ∈
S(X) for each X ∈ BCO. As this is so, Rule C3 yields
(A,B) ∈ R(r1), (B,C) ∈ R(r2), (C,D) ∈ R(r3), and
(D,E) ∈ R(r4). Given this, it is clear that A  R E holds
(according to the original definition). Using the revised rules,
C6-2-1 yields B ∈ H(A). Iterative applications of C6-2-2
yield {B,C,D,E} ⊆ H(A), and so for any element X ∈ H(A)
(including E), A R X holds.

In a similar way, rules C6-3-1 and C6-3-2 are used to cover
the case where C  R D holds and the initial concept C1 in
the sequence C1, C2, . . ., Ck is a nominal {b} or else >. As
with H(C), for each element X ∈ N , C  R X holds. Observe
that the particular nature of C1 in this case is unimportant
(and it need not be related to C). This explains why N is a
set and not a function from BCO to BC⊥O .

In rule C6-1, (C,D) ∈ J is used solely to encode that
{a} ∈ S(C) ∩ S(D) holds for some individual a. (C,D) ∈ J
is used together with the results of C6-2-1 and C6-2-2 (al-
ternatively, C6-3-1 and C6-3-2) as input into C6-2-3 (al-
ternatively, C6-3-3). Applying C6-2-3 or C6-3-3 completes
the simulation of C6 in the original algorithm.

Each addition to S(C), P (C), R(r), L(r), H(C), J and N is
entailed by the knowledge base O, and so the rules are sound.
The additions also do not cause any problems with respect
to termination, since there is a finite upper bound on the
number of additions to any of the sets. The revised algorithm
terminates if no application of any of the rules causes fur-
ther additions. This alteration from the original scheme was
made because it makes the algorithm more compatible with
the MapReduce format. It is easy to see that the new termina-
tion condition is equivalent to the additional constraints used
in the original rules. Indeed, using a straightforward inductive
argument, it is easy to show that the revised algorithm yields
the same results as the original, and so it is sound, complete,
and terminating. It is also of polynomial worst-case complex-
ity in the size of the input ontology; this can be shown along
the lines of argument presented in [2].

5 Parallelization using MapReduce

The rules are now in a form amenable to implementation using
the MapReduce framework. In the discussion below, we will
slightly abuse terminology by referring to all expressions of
the form D ∈ S(C) (and (C,D) ∈ P (E), (C,D) ∈ R(r),
C ∈ N , etc.), in addition to the original elements of O, as
axioms.

The general strategy of the algorithm is as follows: The
completion rules are applied in an iterative manner, with one
rule being applied in a given iteration and the results of previ-
ous iterations being reused. Newly generated output is added
to a database storing the contents of O, S, P , R, H, N , and
J . Within a given iteration, the axioms obtained thus far are
divided into multiple chunks. Each chunk is distributed to dif-
ferent computing nodes, which first act as map nodes and then

as reduce nodes. Each map-reduce cycle results in the parallel
application of one of the completion rules. In the map phase,
based on the rule chosen to be applied, the axioms satisfying
any of the preconditions of the rule are found, and intermedi-
ate 〈key, value〉 pairs are generated. In each pair, key is a con-
cept or relation common to each precondition of the rule (as
indicated in Figure 2), while value is the axiom itself (which
matches the precondition). In the reduce phase, all axioms be-
longing to the same key are collected from different nodes and
the conclusions of the completion rule are computed, taking
all valid combinations of axioms into account. All outputs are
stored in a database without duplication. Iterations continue
until a fixpoint is reached.

We refrain from giving descriptions of the map and reduce
functions for all of the revised completion rules. The functions
for C6-3-2 and C6-3-3 are given in Figures 3 and 4, however,
and we will walk through an example using C6-3-3. The other
rules are handled in an analogous manner, using the keys
listed in Figure 2.

{b} v ∃r1.C2 C v {a}
C2 v ∃r2.C3 D v {a}
C3 v ∃r3.D F v {a}
D v E D v G

Given the above inclusion axioms, C1 can be used to yield the
following: {a} ∈ S(C), {a} ∈ S(D), {a} ∈ S(F), E ∈ S(D),
and G ∈ S(D). C3 yields ({b},C2) ∈ R(r1), (C2,C3) ∈ R(r2),
and (C3,D) ∈ R(r3). C6-1 yields the following pairs in J :
(C,D), (C,F), (D,F), (D,C), (F,C), (F,D).6 Applying C6-3-
1 and C6-3-2 repeatedly yields C2 ∈ N , C3 ∈ N , and D ∈ N .
Given all of these as input, C6-3-3 can now be applied. In
the map phase, the following intermediate key-value pairs are
produced.

〈C2,C2 ∈ N〉 〈C3,C3 ∈ N〉 〈D,D ∈ N〉
〈D,(C,D) ∈ J〉 〈C,(D,C) ∈ J〉 〈F,(C,F) ∈ J〉
〈C,(F,C) ∈ J〉 〈F,(D,F) ∈ J〉 〈D,(F,D) ∈ J〉

Observe that D ∈ N , (C,D) ∈ J , and (F,D) ∈ J are all
indexed by the same key (D), and so will be processed by the
same reduce node. Every combination of values passed to a
reduce node will be tried. When this occurs, (C,D) ∈ J and
D ∈ N cause Di ∈ S(C) to be generated for each Di ∈ S(D).
Similarly, (F,D) ∈ J and D ∈ N cause Di ∈ S(F) to be
generated for each Di ∈ S(D). In particular, since E ∈ S(D)
and G ∈ S(D), it follows that E ∈ S(C), G ∈ S(C), E ∈
S(F), and G ∈ S(F) are all generated. Note that the values
taken from S(D) and added to S(C) and S(F) are stored in a
database and not included in the values passed to the reduce
node.

6 Theoretical Analysis

Reasoning algorithms are usually not naturally parallelizable.
Furthermore, it is known that the worst-case complexity of
P-complete problems (such as EL++ ontology classification)
cannot gain from parallelization [14]. Nevertheless, the ability
to be able to run several computations in parallel is bound to

6 In C6-1, we assume no pair (C,D) is added to J when C = D.
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map(key, value)

//key: a line number (ignored); value: an axiom

{
if(value == (C,D) ∈ R(r))

emit(〈C, (C,D) ∈ R(r)〉);
else if(value == C ∈ N)

emit(〈C, C ∈ N〉);
}
reduce(key, iterator values)

//key: a concept name or nominal; values: (axioms)

{
for each v1 in values

for each v2 in values

{
if(v1 == (C,D) ∈ R(r) and v2 == C ∈ N

emit(D ∈ N);

}
}

Figure 3. MapReduce algorithm for C6-3-2. The input of the
map function is an axiom, taken from O, S, P , R, H, J , or N .

Key-value pairs are generated in the map phase, and these serve
as input in the reduce phase. For a given key, every possible

combination of values is examined to determine whether C6-3-2
is applicable. Ultimately, a list of axioms is produced as output.

map(key, value)

//key: a line number (ignored); value: an axiom

{
if(value == (C,D) ∈ J)

emit(〈D, (C,D) ∈ J〉);
else if(value == C ∈ N)

emit(〈C, C ∈ N〉);
}
reduce(key, iterator values)

//key: a concept name or nominal; values: (axioms)

{
for each v1 in values

for each v2 in values

{
if(v1 == (C,D) ∈ J and v2 == D ∈ N

for each E ∈ S(D) emit(E ∈ S(C));
}

}

Figure 4. MapReduce algorithm for C6-3-3.

have a significant impact on performance, at least for suitable
knowledge bases. At the same time, however, this impact can-
not be more than a decrease in the runtime by k, where k is
the number of nodes employed in parallel.

In this section, we show that in the worst case we indeed
gain nothing at all. In the best case, however, we gain optimal
speed-up. This indicates that the gain from parallelization de-
pends substantially on the structure of the knowledge base.
This insight is encouraging since it suggests that application
scenarios for parallelization of EL++ knowledge base classifi-

cation exist.
In the following, we use n to indicate the size of the input

knowledge base, and k to indicate the number of nodes for
parallelization. For our qualitative discussion, it is useful to
assume that k is of the order of magnitude of n, or to simply
assume n ≤ k, as it yields an order of magnitude for the
impact of the parallelization.

For the best-case scenario, consider a knowledge base con-
sisting of n axioms Ai v Ai+1, where 1 ≤ i < n. For the
complete classification, there are n2−n− 1 new inclusions to
be computed, which requires n2 − n − 1 ∈ O(n2) executions
of rule C1. At the same time, however the same computation
can be achieved by making only n

2
∈ O(n) calls to the par-

allel MapReduce algorithm for the C1 rule. Note that this
holds even if k = 1, which is misleading, since each MapRe-
duce call would in this case be much more expensive (order of
magnitude: n-times as expensive) than a call to the sequen-
tial C1 rule. However, assuming k ≥ n as discussed above,
the speed-up is indeed in the order of magnitude of decreas-
ing a quadratic time to a linear time (assuming k grows with
n). Note that this is an extreme case which potentially allows
for massive parallelization through MapReduce—and in this
case having n nodes really pays off, although the assumption
is unrealistic for large n. Realistic cases will usually not be as
extreme.

On the other end of the spectrum is the worst-case scenario,
which does not allow any significant speed-up. Consider the
knowledge base consisting of the axioms Ai v ∃r.Ai+1, for
1 ≤ i < n, and An v ⊥. If we assume that the initializa-
tion of the R function according to rule C3 has already been
performed before the actual running of the algorithm (which
is not an unreasonable assumption), the sequential algorithm
requires n − 1 calls of rule C5 to arrive at the classification
(namely, Ai v ⊥ for all i). The parallel algorithm, however,
also requires n − 1 calls to the MapReduce version of C5,
since each call results in only one new axiom.

We have ignored the general overhead which MapReduce
implementations generally have. In Hadoop, for example,
there is a significant overhead at start-up, which indicates
that an overall gain will only be made if the input knowl-
edge base is very large. We still must perform experiments
to determine what size and what type of knowledge base is
most suitable for our approach, but indications are that we
will require knowledge bases which are of a size not currently
available, unless artificially created. However, realistic knowl-
edge bases will be required for a final verdict on the usability
of any reasoning approach.

7 Conclusion and Future Work

The amount of information stored on the Web using formal
knowledge representation languages is already of considerable
size, and it will only increase as time progresses [4]. As this is
so, there is an ever increasing need for parallelizable reasoning
algorithms. In this paper, following the lead of existing work
on scalable implementations of RDF Schema closure, we have
provided a MapReduce algorithm for classifying EL++ ontolo-
gies. While a formal guarantee of a performance increase over
sequential algorithms cannot be provided, we believe that the
parallel approach is scalable and for some large ontologies will
significantly reduce the time needed to compute the subsump-
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tion hierarchy.
We currently have a crude prototype implementation of our

approach making use of Hadoop and the infrastructure at our
institute. Toy examples work out fine. However, we have not
been able to evaluate it—and measure runtimes—on large
data sets yet. The experiences reported in [22, 23] on using
MapReduce for RDF Schema indicate that optimizations, in
particular concerning the choice of which completion rule is
applied next, will have a profound effect on performance. This
is, of course, to be expected. Since the output of some comple-
tion rules is used exclusively by certain other rules, the order
in which rules are applied is significant. It is not beneficial
to attempt C2-2, for instance, unless C2-1 has successfully
produced new output. We envision that in the completed im-
plementation, the master node monitors the outputs obtained
during each iteration and dynamically schedules the comple-
tion rules to apply next. Our current research is dedicated in
part to studying which scheduling algorithms and heuristics
may be applied to yield good results.

The results presented in [22, 23] also indicate that the
MapReduce approach requires rather large data sets to show
a pay-off in terms of performance. In our case, this will likely
require the generation of artificial data sets for initial experi-
ments. While there are currently few if any natural data sets
that can be used in order to fully evaluate the framework,
we do not believe that this will always be the case—at least
in part, the sizes of knowledge bases used in practice are re-
stricted by the capabilities of the reasoning tools processing
them.

We furthermore consider this line of work to be only the
starting point for investigations into more expressive lan-
guages, including ELP [11] and OWL 2 DL.
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