
Defeasible Inference with Circumscribed OWL

Ontologies

Stephan Grimm1 and Pascal Hitzler2

1 FZI Research Center for Information Technologies at the University of Karlsruhe
stephan.grimm@fzi.de

2 Institute AIFB, University of Karlsruhe, hitzler@aifb.uni-karlsruhe.de

Abstract. The Web Ontology Language (OWL) adheres to the open-
world assumption and can thus not be used for forms of nonmonotonic
reasoning or defeasible inference, an acknowledged desirable feature in
open Semantic Web environments. We investigate the use of the for-
malism of circumscriptive description logics (DLs) to realise defeasible
inference within the OWL framework. By example, we demonstrate how
reasoning with (restricted) circumscribed OWL ontologies facilitates var-
ious forms of defeasible inference, also in comparison to alternative ap-
proaches. Moreover, we sketch an extension to DL tableaux for handling
the circumscriptive case and report on a preliminary implementation.

1 Introduction

Within the Semantic Web community, the Web Ontology Language OWL [17]
is well-established as a language for knowledge representation based on descrip-
tion logics (DLs) [1] to semantically annotate web content. However, its strict
adherence to the open-world assumption makes it awkward for certain forms of
knowledge representation based on nonmonotonic reasoning. In particular, OWL
does not allow for any kind of defeasible inference or default reasoning.

Defeasible inferences are drawn based on assumptions about what typically
holds. They become invalid whenever evidence for the atypical case is encoun-
tered, which makes reasoning nonmonotonic. Defeasible inference is an acknowl-
edged desirable feature in knowledge-based systems with various applications
also in the Semantic Web context [10, 8, 11, 18].

Circumscription [13] is a well-known approach to nonmonotonic reasoning
that has recently been integrated into the description logic framework in [4].
Circumscriptive description logics allow for various forms of defeasible inference
by imposing a local closure on selected concepts through minimisation of their
extensions. In contrast to other nonmonotonic extensions to DLs, such as au-
toepistemic DL [6] or terminological defaults [2], it particularly allows for the
handling of unknown individuals introduced through existential quantification,
which facilitates the realisation of defeasible inheritance.

In [4], some decidability and complexity results have been achieved for cir-
cumscriptive variants of sub-languages of the DL underlying OWL. However,

2 Stephan Grimm and Pascal Hitzler

while tableaux algorithms for circumscription in first-order logic have been inves-
tigated in the literature (see e.g. [15]), no practical algorithmisation for reasoning
with circumscriptive DLs has been proposed so far, and a treatment of such rea-
soning within the currently successful tableaux calculi used in state-of-the-art
DL reasoners is highly desirable. Moreover, there is not much awareness for cir-
cumscriptive DLs as a means for nonmonotonic reasoning in the Semantic Web
context, and its characteristics for defeasible inferencing with OWL ontologies
has not been investigated thoroughly from an ontology engineering perspective.

In this paper, we investigate the use of circumscriptive DLs within the OWL
framework for the realisation of various forms of defeasible inference. We moti-
vate the need for defeasible inference by means of an example scenario that is
characteristic for an open and uncontrolled Semantic Web environment, pick-
ing up the popular domain of pizza delivery used in [19]. We demonstrate how
a circumscriptive extension of the OWL language can be used to realise the
various forms of defeasible inference with OWL ontologies by means of compre-
hensive examples. We report on how circumscriptive DLs compare to alternative
approaches in terms of the various kinds of defeasible inference and other non-
monotonic features. Moreover, we suggest an extension to the DL tableaux cal-
culus for reasoning with part of OWL in the circumscriptive case (for the details
of which we refer to a technical report [7]). In particular, we introduce the notion
of a “preference clash” to filter out tableaux branches which do not represent
models of a circumscribed knowledge base. Furthermore, we report on a first
proof-of-concept implementation, which we have used to verify our examples.

2 OWL and Circumscriptive Description Logic

In this section, we describe the OWL language, giving formal treatment to the
fragment covered by our algorithmisation of reasoning with circumscribed ontolo-
gies, and we introduce the basic concepts of circumscriptive description logics.

Description Logics and OWL

OWL [17] has been standardised by the W3C consortium as a language for se-
mantic annotation of web content and is widely accepted within the Semantic
Web community. Its most recognised variant OWL-DL is based on the descrip-
tion logic (DL [1]) formalism and provides sophisticated knowledge representa-
tion and inferencing capabilities. We will use DL syntax throughout the paper
as the most compact way of rendering statements in OWL.

The basic elements used to represent knowledge in the description logic for-
malism are concepts, such as Pizza, roles, such as topping, and individuals, such
as margarita. Complex concept expressions can be formed out of these basic el-
ements using concept constructors in a nested way. For example, the complex
concept Pizza⊓∃ topping .Mozarella⊓∀ topping .¬Meat denotes the class of all pizzas
that have some mozarella topping but no meat toppings.

Defeasible Inference with Circumscribed OWL Ontologies 3

While the DL underlying OWL-DL is SHOIN (D), the fragment that we in-
vestigate for defeasible reasoning is the logic ALCO, which we introduce formally.
ALCO provides top and bottom concepts, concept conjunction and disjunction,
full negation, existential and universal restriction and nominals, where complex
concepts C are formed out of atomic concepts A, individuals ai and roles r

according to the following grammar.

C → A | ⊥ | ⊤ | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∃r.C | ∀r.C | {a1, . . . , an}

An OWL-DL ontology consists of statements that represent the axioms of
a corresponding DL knowledge base KB composed of a TBox and an ABox.
The TBox describes terminological knowledge by inclusion axioms of the form
C1 ⊑ C2 which state subsumption between two concepts C1 and C2. For example,
the axiom Pizza⊓∃ topping .Chili ⊑ SpicyDish states that any pizza that has some
chili topping is a spicy dish. Another kind of TBox axiom is a concept equivalence
of the form C1 ≡ C2, which is a shortcut for the two inclusions C1 ⊑ C2 and
C2 ⊑ C1. For example, VegetarianPizza ≡ Pizza ⊓ ∀ topping .¬Meat states that
vegetarian pizzas are exactly those pizzas all of whose toppings are not meat.

The ABox, on the other hand, describes assertional knowledge by assertion
axioms of the forms C(a) and r(a, b), which state membership of an individual a

to a concept C and association of two individuals a and b via the role r, respec-
tively. For example, the concept assertion axiom Pizza⊓ SpicyDish(Vesufo) states
that Vesufo is a spicy pizza, while the role assertion axiom offers(Paolo’s,Vesufo)
says that Paolo’s delivery service offers the pizza Vesufo.

The semantics of description logics, and thus that of OWL-DL, is defined in
a model-theoretic way by means of interpretations. Formally, an interpretation
I consists of a set ∆I , called the domain of the interpretation, and a mapping
from the concept, role and individual names, where individuals directly map to
elements of ∆I , concepts map to subsets of ∆I , and roles map to binary relations
over ∆I , which are called their extensions, respectively. Table 1 specifies this
semantics technically in form of conditions for the various constructors, which an
interpretation I must satisfy. Intuitively, an interpretation specifies a particular
arrangement of objects in the interpretation domain in terms of membership in
concept and role extensions. If the arrangement of objects in I is in accordance
with the axioms in a knowledge base KB then I is called a model of KB . Formally,
I is a model of KB if it satisfies the conditions CI ⊆ DI , CI = DI , rI

1
⊆ rI

2
,

aI ∈ CI and (aI , bI) ∈ rI for all the various forms of axioms in KB , respectively.

⊤I = ∆I , ⊥I = ∅ , AI ⊆ ∆I , rI ⊆ ∆I × ∆I

(C ⊓ D)I = CI ∩ DI , (C ⊔ D)I = CI ∪ DI

(¬C)I = ∆I \ CI , {a1, . . . , an}
I = {aI

1 , . . . , aI
n}

(∀ r.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ rI → b ∈ CI}
(∃ r.C)I = {a ∈ ∆I | ∃b.(a, b) ∈ rI ∧ b ∈ CI}

Table 1. Model-theoretic semantics for ALCO constructs.

4 Stephan Grimm and Pascal Hitzler

Even after filtering out those interpretations that do not satisfy all axioms,
a knowledge base has in general a multitude of models in which things are
interpreted differently. For example, if we did not say in our ontology whether a
particular pizza is spicy or not, there are models in which it is and such in which
it is not. In such a case, we say that we have incomplete knowledge about the
spiciness of pizzas, which is captured by the situation of multiple models. This
style of semantics is also referred to as “open-world” semantics, since we assume
that we do not have full knowledge about the domain under consideration.

Reasoning with OWL-DL ontologies is based on the standard reasoning tasks
defined for a DL knowledge base. Intuitively, knowledge base satisfiability checks
an ontology for consistency, concept satisfiability checks whether a concept can
have instances, instance checking tests an individual to be an instance of a
concept, and subsumption tells us whether a concept is in general more specific
than another one. In classical DLs all these tasks can be reduced to each other.

Circumscriptive Description Logics

Circumscription [13] is an approach to nonmonotonic reasoning that rests on the
principle of minimising the extensions of selected predicates to enforce a local
closure of dedicated parts of the domain model. These ideas have recently been
incorporated into description logics in [4], yielding a formalism of circumscrip-
tive DLs. For our presentation of defeasible reasoning with OWL ontologies, we
present a simplified form of this formalism restricted to parallel concept circum-
scription in the logic ALCO (without fixation of concepts or prioritisation among
minimised concepts).3

Intuitively, minimisation of concepts restricts their extensions to contain only
those individuals, for which there is evidence for containment in the extension.
For example, if a concept VegetarianDish – to represent the class of vegetarian
dishes – is minimised, then it is only satisfiable with respect to some knowledge
base if this knowledge base contains evidence for the existence of any vegetarian
dish. With respect to the empty knowledge base, for example, it is unsatisfiable.
Moreover, any individual which cannot be concluded to be a vegetarian dish is
automatically derived to be non-vegetarian, i.e. it is an instance of the concept
¬VegetarianDish, which is a desirable inferencing behaviour in many situations,
e.g. when the ordering of a non-vegetarian dish shall be avoided in a situation
with incomplete information about the menu.

The concepts whose extensions are to be minimised are indicated in a cir-

cumscription pattern, which is a pair CP = (M,V) where M and V are finite
mutually disjoint sets of concept names called the minimised and the varying

3 Our intention is to demonstrate that already such a simplified form of circumscription
is sufficient to realise some useful features of common-sense reasoning in the Semantic
Web context. Hence, we skip more complicated notions such as concept prioritisation
and fixation. Moreover, fixed concepts can be simulated by minimising them together
with their complements (see [7] for details).

Defeasible Inference with Circumscribed OWL Ontologies 5

concepts, respectively.4 Based on a circumscription pattern CP, a preference re-
lation <CP allows to compare interpretations in terms of their extensions for the
minimised concepts indicated in CP. An interpretation J is preferred over an
interpretation I, denoted by J <CP I, if the extensions of minimised concepts
in J “miss some instances” compared to those in I. Formally, J <CP I holds
for two interpretations J and I if the following conditions are satisfied:

(i) ∆J = ∆I and aJ = aI for all individuals a

(ii) there is some Ã ∈ M such that ÃJ ⊂ ÃI

(iii) ÃJ ⊆ ÃI for all Ã ∈ M

Condition (i) says that only interpretations are compared which share the same
domain and also the same assignment of individuals. Conditions (ii) and (iii)
assure that J is actually “smaller” than I in the extension of some minimised
concept, while it is not “bigger” in the extension of any other minimised concept.

Given a circumscription pattern CP, the preferred models of a knowledge base
KB are those models of KB that are minimal with respect to <CP. Intuitively,
those models are preferred that have the least extensions for the minimised
concepts. Reasoning in circumscriptive DL is then performed on a circumscribed

knowledge base circCP(KB), whose models are just the preferred models of KB

with respect to CP, and reasoning tasks are defined in the standard way.

– Concept satisfiability : a concept C is satisfiable with respect to circCP(KB)
if there exists a model I of circCP(KB) in which the extension CI of C is
non-empty.

– Instance checking : an individual a is an instance of a concept C with respect
to circCP(KB), denoted by circCP(KB) |= C(a), if aI ∈ CI holds for all models
I of circCP(KB).

– Subsumption: a concept C1 is subsumed by a concept C2 with respect to
circCP(KB), denoted by circCP(KB) |= C1 ⊑ C2, if CI

1
⊆ CI

2
holds for all

models I of circCP(KB).

In contrast with other nonmonotonic extensions of DLs, such as autoepis-
temic DL [6], the reasoning task of knowledge base satisfiability does not play
a specific role in the circumscriptive case. The satisfiability of a circumscribed
knowledge base is not affected by just modifying its circumscription pattern,
which is captured in the following straightforward proposition.

Proposition 1 (knowledge base satisfiability). Let KB be an ALCO knowl-

edge base and let CP be a circumscription pattern. Then circCP(KB) is satisfiable

if and only if KB is satisfiable.

4 In [4], a circumscription pattern is defined as a quadruple CP = (�, M, F, V) in terms
of predicates in general (rather than concepts only) and it has two more components,
namely a further set of fixed predicates that are not affected by minimisation and a
partial ordering that determines prioritisation among minimised predicates. As we
don’t use these features, we omit these two elements, and we further restrict the
remaining sets to be finite in the context of practical use.

6 Stephan Grimm and Pascal Hitzler

Proof.

⇒ : As circCP(KB) is satisfiable, it has a model, which by definition is a (pre-
ferred) model of KB . Hence, KB is also satisfiable.

⇐ : Assume that KB has a model. Due to the finite model property5, there is a
model I of KB all of whose concept extensions are finite. Thus, the set of models
J of KB with J <CP I is also finite. Hence, there is some model J in this set
that is minimal with respect to <CP, and which is thus a model of circCP(KB).
This shows satisfiability of circCP(KB).

3 Defeasible Inferences with Circumscribed Ontologies

A characteristics of much of our knowledge is that it is quite general but not
without exception. While in classical (description) logics a statement either holds
universally or it does not, we would sometimes rather like to state that something
“typically holds”. Inferences based on such knowledge are inherently defeasible6,
which means that we are willing to retract conclusions drawn on the basis on
what typically holds in favour of evidence for the abnormal case.

In this section, we illustrate in which ways the formalism of circumscriptive
DLs can be used to state what typically holds and what kinds of defeasible
inference can be realised by circumscribing the knowledge in ontologies.

3.1 Running Example

Throughout the section, we use a running example taken from the popular pizza
domain introduced in the OWL context in [19]. In our scenario similar to that
used in [9], pizza delivery services allow to order pizzas via the web. On their web
sites, they describe their offerings in form of semantic annotations formulated
in terms of the vocabulary of a general ontology about pizzas. A Semantic Web
agent that comes across such annotations might encounter situations in which
the properties of a pizza offering are incompletely specified but still needs to
reason about them. To better handle such situations of incomplete knowledge, it
can be a desirable strategy for an agent to make common-sense conjectures based
on assumptions about what typically holds and to perform defeasible inferencing.

Consider the following ontology OPizza that pizza delivery services are sup-
posed to use as a basis to semantically annotate their offerings.

OPizza = { DeliveryService ⊑ ∀ offers .Pizza,Vegetable ⊑ ¬Meat

PizzaVerdura ≡ Pizza ⊓ ∀ topping .Vegetable

Pizza ⊓ ∃ topping .Chili ⊑ SpicyDish

VegetarianDish ≡ ∀ topping .¬Meat }

It states, for example, that delivery services offer pizzas, that vegetables are not
meat, and that pizzas with chili toppings are spicy dishes.

5 Shown in [12] for SHOQ, which contains ALCO.
6 http://plato.stanford.edu/entries/reasoning-defeasible/

Defeasible Inference with Circumscribed OWL Ontologies 7

Using the knowledge in OPizza, our agent shall reason about annotations
under the assumptions that “pizzas are typically not spicy” and that “dishes

are only vegetarian if they are said to be”. This is achieved by including an
additional axiom yielding the knowledge base

KB := OPizza ∪ {Pizza ⊑ ¬SpicyDish ⊔ HotPizza}

and by using the circumscription pattern

CP = (M = {HotPizza,VegetarianDish},
V = {DeliveryService,Vegetable,Meat,PizzaVerdura, SpicyDish,Chili})

for reasoning with the circumscribed knowledge base circCP(KB). By minimisa-
tion of the concepts for hot pizzas and vegetarian dishes, the agent does not
believe that there are such pizzas, unless it encounters direct evidence for it.
The additional axiom in KB can then be read as the general rule of pizzas being
non-spicy with the exceptional case of them being “hot”, which typically does
not occur.

In our example, the pizza delivery services of Giovanni, Emilio, Paolo, Alberto
and Ernesto provide semantic annotations of their offerings as follows.

OGiovanni = { PizzaVerdura(Verdura),
DeliveryService(Giovanni’s), offers(Giovanni’s,Verdura) }

OEmilio = { Pizza ⊓ VegetarianDish ⊓ SpicyDish(Vesufo),
DeliveryService(Emilio’s), offers(Emilio’s,Vesufo) }

OPaolo = { PizzaVerdura ⊓ ∃ topping .Chili(Diabolo),
DeliveryService(Paolo’s), offers(Paolo’s,Diabolo) }

OAlberto = { DeliveryService ⊓ ∀ offers .VegetarianDish(Alberto’s),
∃ offers .(Pizza ⊓ SpicyDish)(Alberto’s) }

OErnesto = { Pizza ⊑ SpicyDish,DeliveryService(Ernesto’s) }

We will look at how the agent reasons about these annotations in both the clas-
sical case using KB and in the circumscriptive case using circCP(KB), considering
the various standard reasoning tasks introduced in Section 2.

3.2 Defeasible Retrieval

Retrieval asks for the known instances of a given concept and can be reduced to
the reasoning task of instance checking. Our agent could want to query annota-
tions for offerings of dishes that are not spicy by retrieving the instances of the
concept ¬SpicyDish. However, not all delivery services have indicated whether
the pizzas they offer are spicy or not. From Giovanni’s annotation, for example,
it does not classically follow that pizza Verdura is non-spicy.

KB ∪ OGiovanni 6|= ¬SpicyDish(Verdura)

“Switching on” the agent’s common-sense assumption that “pizzas are typically

not spicy if not said otherwise”, however, we get a different result, and reasoning
with the circumscribed knowledge yields that pizza Verdura is non-spicy.

circCP(KB ∪ OGiovanni) |= ¬SpicyDish(Verdura)

8 Stephan Grimm and Pascal Hitzler

As there is no evidence in KB ∪OGiovanni for pizza Verdura being spicy, it is not
in the extension of the minimised concept HotPizza and is thus concluded to be
an instance of ¬SpicyDish due to the additional inclusion axiom in KB .

Conclusions derived on the basis of such assumptions can be defeated by
adding assertions without causing a contradiction, whereas in a purely classical
setting adding counter-evidence for a conclusion results in inconsistency.

One kind of defeat is to directly contradict the defeasible conclusion by as-
serting its contrary. From Emilio’s annotation, for example, it cannot be derived
that Vesufo is non-spicy although it is a pizza, too.

circCP(KB ∪ OEmilio) 6|= ¬SpicyDish(Vesufo)

As in OEmilio Vesufo is directly asserted to be a spicy pizza, it must be in the
extension of the concept HotPizza despite this concept being minimised.

Another kind of defeat is to indirectly contradict the defeasible conclusion by
deriving counter-evidence from what has been stated. From Paolo’s annotation,
for example, pizza Diabolo cannot be derived to be non-spicy.

circCP(KB ∪ OPaolo) 6|= ¬SpicyDish(Diabolo)

Since in OPaolo pizza Diabolo is stated to have a chili topping, it is inferred to
be a spicy dish from the knowledge in OPizza.

3.3 Defeasible Incoherency

An ontology is incoherent if it contains concepts that cannot have any instances,
which is verified by the reasoning task of concept satisfiability. Our agent could
want to check whether a dish can be spicy and vegetarian at the same time
according to a particular annotation. With respect to Giovanni’s annotation,
the concept SpicyDish ⊓ VegetarianDish is classically satisfiable, however, it be-
comes unsatisfiable once we take the agent’s assumptions about spicy pizzas and
vegetarian dishes into account by reasoning with the circumscribed knowledge.

SpicyDish ⊓ VegetarianDish is unsatisfiable w.r.t circCP(KB ∪ OGiovanni)

The only individual for which there is evidence to be a vegetarian dish is pizza
Verdura, which can be concluded to be non-spicy, as we have seen before. Hence,
within Giovanni’s annotation no dish can be both spicy and vegetarian, although
the two concepts SpicyDish and VegetarianDish remain satisfiable for themselves.

Again, such inference can be defeated in various ways. One way is to directly
defeat the unsatisfiability of a concept by the explicit assertion of an individual.
In Emilio’s offers, pizza Vesufo is said to be both spicy and vegetarian, which
makes the concept satisfiable with respect to Emilio’s annotation.

SpicyDish ⊓ VegetarianDish is satisfiable w.r.t circCP(KB ∪ OEmilio)

The explicit assertion of the individual Vesufo to both the concepts SpicyDish and
VegetarianDish clearly gives evidence for an overlap of the concepts’ extensions.

A more indirect evidence for a dish that is spicy and also vegetarian is given
by pizza Diabolo in Paolo’s offering, making the concept satisfiable, too.

SpicyDish ⊓ VegetarianDish is satisfiable w.r.t circCP(KB ∪ OPaolo)

Defeasible Inference with Circumscribed OWL Ontologies 9

Here, pizza Diabolo is concluded to be both vegetarian, as it is of type PizzaVerdura

having only vegetable toppings, and spicy, as it has a chili topping.
Moreover, unsatisfiability of a concept can even be defeated by evidence for

the existence of unknown individuals being instances of the concept. Alberto,
for example, used the ontology OPizza in a different way by not modelling pizza
offerings in form of explicit individuals. Instead, the knowledge in Alberto’s an-
notation imposes the existence of some spicy vegetarian pizza offered by Alberto,
which also makes the concept satisfiable.

SpicyDish ⊓ VegetarianDish is satisfiable w.r.t circCP(KB ∪ OAlberto)

As Alberto states to offer some spicy pizza, there is some individual in the
extension of the concept SpicyDish in all models of KB ∪ OAlberto, although it is
not named. Since all offerings of Alberto are also said to be vegetarian dishes,
this unknown individual is always in the extension of the concept VegetarianDish,
and hence the conjunction of the two concepts is satisfiable despite minimisation.

3.4 Defeasible Inheritance

Automated classification of concepts in inheritance hierarchies is the most ubiq-
uitous application of description logics and is realised by the reasoning task
of concept subsumption. Our agent could want to classify concepts for dishes
offered according to some particular annotation, to also report on inferred sub-
sumptions at the level of intensional knowledge. For example, it could want to
ask whether pizzas are classified under non-spicy dishes when a certain situa-
tion of offerings is considered. However, the derivation of inclusion axioms in
a classical setting is not dependent on a particular situation of individuals and
their concept membership, and from Giovanni’s annotation it does not follow
that pizzas are non-spicy in general by using conventional reasoning methods.

KB ∪ OGiovanni 6|= Pizza ⊑ ¬SpicyDish

Nevertheless, in the particular situation of Giovanni’s offers the exceptional hot
pizza case does not occur, so that pizzas do become a subclass of non-spicy dishes
when activating the agent’s assumptions by reasoning with circumscription.

circCP(KB ∪ OGiovanni) |= Pizza ⊑ ¬SpicyDish

The only pizza offered by Giovanni is Verdura, which cannot be concluded to
be spicy. Hence, there is no counter-evidence to the assumption that pizzas are
non-spicy and the general subsumption statement can thus be derived.

Also inheritance derived based on assumptions can be defeated in various
ways, similar to incoherence. As subsumption states full containment of one
concept’s extension in another one’s on a general level, it can be defeated by
giving evidence for some individual being in the extension of the subconcept
but not in that of the superconcept. One way to achieve this is, again, by ex-
plicit assertion of an individual to the subconcept and to the complement of the
superconcept, which is the case in Emilio’s annotation for pizza Vesufo.

circCP(KB ∪ OEmilio) 6|= Pizza ⊑ ¬SpicyDish

10 Stephan Grimm and Pascal Hitzler

Here, the presence of the spicy pizza Vesufo gives direct counter-evidence for the
agent’s assumption that pizzas are typically non-spicy in general.

As before, an indirect way of defeat is by deriving counter-evidence. From
Paolo’s annotation it can be concluded that pizza Diabolo is spicy as it has Chili
on it, which also rules out the subsumption of pizzas being non-spicy in general.

circCP(KB ∪ OPaolo) 6|= Pizza ⊑ ¬SpicyDish

Furthermore, also inheritance can be defeated by anonymous individuals. As
before, from Alberto’s annotation the existence of some unknown individual can
be derived that is a pizza and spicy at the same time, which gives sufficient
counter-evidence to the general subsumption.

circCP(KB ∪ OAlberto) 6|= Pizza ⊑ ¬SpicyDish

Observe that in different models of KB ∪ OAlberto the spicy pizza offered by
Alberto does not necessarily need to be the same individual, but it still needs to
exist such that there is no preferred model without any spicy pizza.

Finally, inheritance can also be defeated on the intensional level by the mere
addition of an inclusion axiom, without introducing any individuals. Ernesto,
for example, states, with respect to his offerings, that all pizzas are spicy dishes,
which also defeats the general subsumption between pizzas and non-spicy dishes.

circCP(KB ∪ OErnesto) 6|= Pizza ⊑ ¬SpicyDish

In case of Ernesto’s annotation, there are even no individuals involved at all in
producing counter-evidence. Observe that if there were individuals involved then
this kind of defeat would coincide with one of those mentioned earlier, using the
inclusion axiom to just derive another concept membership.

3.5 Relation to Other Nonmonotonic Extensions of DLs

In the literature on nonmonotonic extensions to DLs, two other approaches have
been investigated. The formalism of autoepistemic DL [6, 5, 14] incorporates epis-
temic operators as an additional language construct to express what a knowledge
base “knows” in an introspective way. An epistemic operator K refers to classes
of things that are “known” to have certain properties, while another operator
is related to negation-as-failure. As an alternative approach, terminological de-
faults [2] result from incorporating default rules, known from default logic, into
the DL framework. Such defaults provide a form of concept inclusions that al-
low for exceptions, and research on them has recently been picked up again for
implementation in the state-of-the-art DL reasoner Pellet in [20].

Both the autoepistemic and default extensions to DLs are restricted to rea-
soning with explicitly named individuals only, which makes them awkward for
certain forms of defeasible inferencing presented here. Defeasible retrieval can in
principle be realised with those approaches, as known individuals are particularly
asked for. In a similar scenario defeasible retrieval based on epistemic operators
has been demonstrated in [9]. Also defeasible incoherence can be realised at
least with autoepistemic DLs, as demonstrated e.g. in [10] and [8]. However, this
approach does not allow for any defeat that is based on the mere existence of

Defeasible Inference with Circumscribed OWL Ontologies 11

unknown individuals. Analogously, none of the approaches restricted to reason-
ing with known individuals can be used to realise defeasible inheritance. The
reason is that inclusion axioms cannot be derived on the basis of conclusions for
known individuals only, simply because subsumption affects all individuals, also
the unknown ones.

On the other hand, circumscriptive DLs can also principally not be used
for some other forms of nonmonotonic reasoning that have been investigated in
the context of alternative approaches. One feature that has been realised with
epistemic operators are integrity constraints [6], which allow for the formulation
of axioms as restrictions on known individuals, and whose violation leads to
an unsatisfiable knowledge base. As a direct consequence of Proposition 1 from
Section 2, constraint violation cannot be indicated by knowledge base unsatis-
fiability in circumscriptive DLs, since circumscription alone does not affect the
satisfiability of a knowledge base.

Another feature that has been realised with epistemic operators are epis-

temic queries [5, 14], which are queries that contain epistemic operators posed
to a conventional, non-epistemic knowledge base. While restricting expressive-
ness, this separation of queries from the knowledge base yields a gain in retrieval
performance. In circumscriptive DLs, however, such a separation cannot be es-
tablished, since the indication for minimisation of concepts in a circumscription
pattern applies universally to any occurrence of the concept in both the query
and the knowledge base.

4 DL Tableaux Extension for Circumscription

In this section, we sketch an extension of the DL tableaux calculus to handle the
circumscriptive case. We sketch an algorithm for reasoning with circumscribed
knowledge bases and describe a prototypical implementation, while details are
given in the technical report [7].

Algorithmisation

Most state-of-the-art DL reasoners, such as Pellet7, Racer8 or FaCT9, are based
on tableaux procedures that try to build a model for a concept with respect to a
knowledge base. Such algorithms decompose the complex constructs in the ax-
ioms into simpler ones to finally yield atomic assertions. For certain constructs,
such as disjunctions, there are several ways of decomposition, and the algorithm
branches into non-deterministic choices, constructing a tableaux tree. A fully
decomposed branch in this tree represents a class of models that can be con-
structed from the atomic assertions in the branch, unless it contains a clash,
which represents a direct contradiction. (For details on DL tableaux procedures
see for example [3].)

7 http://www.mindswap.org/2003/pellet/
8 Meanwhile RacerPro – http://www.racer-systems.com/
9 Meanwhile FaCT++ – http://owl.man.ac.uk/factplusplus/

12 Stephan Grimm and Pascal Hitzler

Algorithm 1 Construct a knowledge base KB ′.

Require: a tableaux branch B produced for an initial ALCO knowledge base KB
circumscribed with a circumscription pattern CP = (M, V)

1: D := {⊥}, KB ′ := KB
2: for all Ã ∈ M do

3: if there are assertions Ã(a1), . . . , Ã(an) ∈ B then

4: KB ′ := KB ′ ∪ {Ã ⊑ {a1, . . . , an}}
5: D := D ∪ {{a1, . . . , an} ⊓ ¬Ã}
6: else

7: KB ′ := KB ′ ∪ {Ã ⊑ ⊥}
8: end if

9: end for

10: KB ′ := KB ′ ∪ {(
⊔

D
Ã
∈D

D
Ã
)(ι)}, with ι a new individual

In the circumscriptive case, detection of “normal” clashes is not sufficient to
filter out invalid branches, since it might be the case that none of the models
represented by a clash-free branch is actually a preferred one. To this end, we
introduce the notion of a preference clash to additionally test whether a branch
represents non-preferred models only.

Definition 1 (preference clash). Let B be a tableaux branch constructed with

respect to a circumscribed ALCO knowledge base circCP(KB). B contains a pref-
erence clash if the ALCO knowledge base KB ′, constructed according to Algo-

rithm 1, is satisfiable.

A preference clash in a tableaux branch indicates that the construction of this
branch has not led to finding a model for the case of a circumscribed knowledge
base, as none of the models represented by the branch is preferred – the respective
tableaux procedure needs to further expand the tableaux tree at other places,
if there are any left. Detection of a preference clash is reduced to a classical
satisfiability test for a knowledge base KB ′, according to Definition 1.

The knowledge base KB ′, constructed from the original circumscribed knowl-
edge base circCP(KB) and the tableaux branch B according to Algorithm 1, is
initialised with the axioms in KB in line 2, to ensure that models of KB ′ are also
models of KB . Then, the extensions of all minimised concepts Ã, determined by
positive assertions Ã(ai) of individuals ai in B, are used as an upper bound for
the models of KB ′, by adding appropriate inclusion axioms in line 5. Any such
inclusion axiom ensures the extension of a minimised concept to contain at most
the individuals asserted in B, reflecting condition (iii) defined for the relation
<CP. If there are no positive assertions then the respective minimised concept is
restricted to be empty in line 8. Finally, also condition (ii) is encoded into the
axioms of KB ′ by including the disjunctive concept assertion in line 11, which
introduces a new individual ι that does not occur in KB . For at least one of the
disjuncts, ι is unified with some individual ai in the nominal constructs collected
in line 6, ensuring that for some minimised concept at least one individual of
those asserted in B is actually not in the extension.

Defeasible Inference with Circumscribed OWL Ontologies 13

By this, the models of KB ′ are preferred over all models represented by B
with respect to <CP. Hence, the existence of a model for KB ′ falsifies any model
represented by B to be preferred, and thus indicates a preference clash in B.

However, to ensure completeness of the extended tableaux procedure, possible
equality of newly introduced individuals (e.g. by existential quantifiers) with
individuals already known needs to be taken into account. For example, if a
new individual x is introduced in a branch due to existential quantification, the
least model with respect to <CP might be one in which x is unified with some
individual ai that occurs in the nominal constructs used in the lines 5 and 6. To
handle this case, we introduce an additional expansion rule to the underlying
standard tableaux procedure, which creates a new branch for any unification of
a new individual with an already existing one. The details of the full tableaux
procedure can be found in the technical report [7].

A similar idea has been applied in [15] for circumscriptive reasoning in first-
order logic, where a tableaux for first-order formulas in clausal form was pre-
sented. However, this calculus does not directly yield a decision procedure for
reasoning with DLs as it is only decidable if function symbols are disallowed,
which correspond to existential restrictions in DLs. Unlike earlier approaches
such as [16], the work in [15] and ours have in common that only a single tableaux
branch needs to be kept in memory at a time during computation.

Implementation and Ideas for Optimisation

We have prototypically implemented the aforementioned tableaux procedure for
reasoning in circumscriptive ALCO, to test our examples from Section 3. The
prototype is implemented in Java and runs as a server application supporting the
DIG10 interface for DL reasoning tasks. In this way, it can e.g. communicate with
the Protégé11 ontology editor and provides reasoning services with (restricted)
circumscribed OWL-DL ontologies. As OWL has no means to express circum-
scription patterns, however, minimised concepts are determined by their name:
any concept whose name starts with the string “Ab ” is being minimised.12

The prototype, available for download13, is a first direct implementation of
the preferential tableaux procedure without any optimisations and can be used
for testing small examples only. The worst-case complexity of reasoning with
circumscriptive DLs has been shown to be NExpNP in [4], and experiences with
our prototype confirm that a straightforward implementation does not yield a
practically feasible performance. Instead, optimisation techniques are required,
and it remains to be investigated whether known DL tableaux optimisations (see
e.g. [1, Chapter 9]) apply in the same way in the circumscriptive case to cope with
the high complexity of reasoning with this formalism in practice. Moreover, there

10 http://dl.kr.org/dig/interface.html
11 http://protege.stanford.edu/
12 In the circumscription literature, minimised predicates are often called “abnormal”

as part of circumscriptive abnormality theories – hence the abbreviation “Ab ”.
13 http://www.fzi.de/downloads/wim/sgr/CircDL.zip

14 Stephan Grimm and Pascal Hitzler

can be optimisations that are specific to preferential tableaux and minimisation.
First ideas of such specific optimisations comprise the following:

– model caching for KB ′ – An observation from our experiments is that the
content of KB ′ is identical over many cases of preference clash checks. Hence,
techniques of model caching can be employed to avoid repeated model con-
struction for identical versions of KB ′.

– postponing non-minimal assertions – Another idea is to avoid the construc-
tion of non-minimal models affecting the order in which tableaux expansion
rules are applied. The assertion of individuals to minimised concepts could
be postponed, such that branches with the least extensions of minimised
predicates are completed first.

– early closing of non-preferred branches – Preference clash checks can either
be performed after completion of a branch or any time a branch is modified.
The latter case allows for additional optimisations by closing a branch early
due to non-minimality, even if in classical tableaux it would be further ex-
panded, which was already pointed out in [15]. In our first experiments, for
either strategy of detecting preference clashes examples could be found in
which the alternative strategy was outperformed. Hence, also the scheduling
of preference clash checks provides room for optimisation.

5 Summary and Outlook

In this paper, we have investigated the use of circumscriptive DLs for the realisa-
tion of defeasible inference with OWL ontologies, restricted to the logic ALCO.
By means of examples, we have demonstrated how reasoning with circumscribed
knowledge bases results in various forms of defeasible inference that are useful
in a Semantic Web context. We have also pointed out the primary difference of
such inferencing to alternative approaches as their restriction to reasoning with
known individuals only, which disallows certain kinds of defeat as well as defea-
sible inheritance. Furthermore, we have sketched an extension to DL tableaux
algorithms that includes detection of preference clashes to find preferred mod-
els of a circumscribed knowledge base, and we have reported on a preliminary
implementation and first ideas for performance optimisation.

As future work, it remains to extend our algorithm to also cover other lan-
guage constructs of OWL, such as number restrictions, and also more complex
features of circumscription, such as prioritisation among minimised concepts.
As detection of preference clashes constitutes only a slight modification of con-
ventional tableaux algorithms, it should easily integrate with current optimised
state-of-the-art DL reasoners, and it would be interesting to see how well their
built-in optimisations apply to the circumscriptive case in terms of performance.
Moreover, optimisations specific to minimisation need to be devised on top of
these. Furthermore, a methodology remains to be developed for the formulation
of appropriate circumscription patterns in various cases of defeasible inferencing,
in particular for the more complicated notions of prioritisation and fixation not
addressed in this paper.

Defeasible Inference with Circumscribed OWL Ontologies 15

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, 2003.

2. F. Baader and B. Hollunder. Embedding Defaults into Terminological Represen-
tation Systems. J. Automated Reasoning, 14:149–180, 1995.

3. F. Baader and U. Sattler. Tableau Algorithms for Description Logics. In Proc. of
Intern. Conf. on Aut. Reas. with Tableaux and Related Methods, pages 1–18, 2000.

4. P. Bonatti, C. Lutz, and F. Wolter. Expressive Non-Monotonic Description Log-
ics Based on Circumscription. In Proc. of 10th Intern. Conf. on Principles of
Knowledge Representation and Reasoning (KR’06), pages 400–410, 2006.

5. F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf. An Epistemic
Operator for Description Logics. Artif. Intell., 100(1-2):225–274, 1998.

6. F. M. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal Knowledge
and Negation as Failure. ACM Transactions on Comput. Logic, 3(2):177–225, 2002.

7. S. Grimm and P. Hitzler. Reasoning in Circumscriptive ALCO. Technical re-
port, FZI at University of Karlsruhe, Germany, September 2007. Available at
http://www.fzi.de/downloads/wim/sgr/circDL.pdf.

8. S. Grimm and P. Hitzler. Semantic Matchmaking of Web Resources with Local
Closed-World Reasoning. Int. Journal of eCommerce (IJEC), 12(2):89–126, 2008.

9. S. Grimm and B. Motik. Closed-World Reasoning in the Semantic Web through
Epistemic Operators. In CEUR Proc. of the OWL ED Workshop, 2005.

10. S. Grimm, B. Motik, and C. Preist. Matching Semantic Service Descriptions with
Local Closed-World Reasoning. In Proceedings of the 3rd European Semantic Web
Conference (ESWC’06), pages 575–589, 2006.

11. V. Kolovski, B. Parsia, Y. Katz, and J. Hendler. Representing Web Service Policies
in OWL-DL. In Proc. of the 4th Int. Sem. Web Conf. (ISWC), pages 461–475, 2005.

12. C. Lutz, C. Areces, I. Horrocks, and U. Sattler. Keys, Nominals, and Concrete
Domains. J. of Artificial Intelligence Research, 23:667–726, 2004.

13. J. McCarthy. Circumscription – A Form of Non-Monotonic Reasoning. Artificial
Intelligence, 13(1–2):27–39, 1980.

14. B. Motik, I. Horrocks, R. Rosati, and U. Sattler. Can OWL and Logic Programming
Live Together Happily Ever After? In Proc. of the 5th Int. Semantic Web Conf.
(ISWC’06), volume 4273 of LNCS, pages 501–514. Springer, November 2006.

15. I. Niemelä. Implementing Circumscription Using a Tableau Method. In Proc. of
the 12th Europ. Conf. on Artificial Intelligence (ECAI’96). J. Wiley & Sons, 1996.

16. N. Olivetti. A tableaux and Sequent Calculus for Minimal Entailment. Journal of
Automated Reasoning, 9:99–139, 1992.

17. P. F. Patel-Schneider, P. Hayes, I. Horrocks, and F. van Harmelen. OWL Web
Ontology Language; Semantics and Abstract Syntax, W3C Candidate Recommen-
dation. http://www.w3.org/TR/owl-semantics/, November 2002.

18. A. Rector. Defaults, Context, and Knowledge: Alternatives for OWL-Indexed
Knowledge Bases. In Pacific Symposium on Biocomputing, pages 226–237, 2004.

19. A. Rector et al. OWL Pizzas: Common Errors & Common Patterns from Practical
Experience of Teaching OWL-DL. In Proc. of the 11th Intern. Conf. on World
Wide Web, pages 89–98, 2002.

20. Y. Katz V. Kolovski, B. Parsia. Implementing OWL Defaults. In CEUR Proceed-
ings of the OWL Experiences and Directions Workshop, Athens, USA, 2006.

