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Hölldobler, Kalinke, Störr 1999 [HKS99]

First-order logic programs (acyclic, with injective level mapping) can be

approximated by standard sigmoidal feedforward networks.

Existential result via continuity of the TP -operator.

Features of the approach:

• Shows representability in principle.

• Single existing approach for first-order LPs with function symbols.

Limitations of the approach:

• No algorithm how to construct the network.

• Very restricted class of programs.

• Proofs highly dependent on specific assumptions.

Today: Lifting to a more general setting.

Next week: How to construct the networks.
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Embedding TP into the reals

TP : IP → IP , where IP = 2BP ≈ 2N

2N: all (countably infinite) binary sequences

� interpret sequence as expansion in b-adic number system! (b > 2)

1. Choose an enumeration of BP (= bijective level mapping).

2. Choose a base b > 2 for the number system.

3. Choose integers t �= f with 0 ≤ t, f < b.

4. Given an interpretation I ⊆ BP , set ai = f if the i-th element of I is

false, and set ai = t otherwise.

5. Set R(I) =
∑∞

i=0 aib
i.

Denote R(IP ) by DR.
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Embedding TP into the reals

I ∈ IP
TP

�� I ′ ∈ IP

R

��
x ∈ R(I)

fP ��

R−1

��

x′ ∈ R(I)
Set fP : DR → DR : x �→ R(TP (R−1(x))).

0.5
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0.45

0.1

0.4

0.35

0 0.50.40.3
R(I)

fP (R(I))

even(0).

even(s(X)) ← ¬even(X).

• Domain of fP is totally disconnected. (Is Cantor set: discussed later.)

� There is a gap between any two points.
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Approaching Topology

• [Funahashi 89] treats continuous functions (on R
n).

• We have seen metrics (distance functions) playing a role

both on R and on IP .

• Iterative behaviour of TP (convergence of iterates) important.

– Continuity, metrics, and convergence are notions known from R.

– They can be studied on much more general spaces (including IP ).

– Corresponding mathematical subject: (Set-theoretic) Topology.

Topology:

• Qualitative and quantitative (metric) notions of distance.

• Continuity of functions in the sense of preservation of limits.

• Notions of approximation in various spaces.

• Abstracts, e.g. allows to link R and IP in a sound way.

• Bridge between the continuous (networks) and the discrete (logics).
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Standard (natural) topology on R

Open intervals: known.

Open sets (opens): All unions of open intervals.

Open neighborhood of x ∈ R: Open set containing x.

The following hold:

(i) All unions of opens are open.

(ii) All finite intersections of opens are open.

Conditions (i) and (ii) define: The set of all opens is a topology on R.

Note: Infinite intersections of open intervals are not necessarily open.

E.g.
⋂∞

n=1

]
0 − 1

n , 1 + 1
n

[
= [0, 1].

� A topology O on a set X is a set of subsets of X s.t. (i) and (ii) hold.

Note: The empty union (= all of X) is in every topology!
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Standard (natural) topology on R

Standing assumption (for us): There exists a countable subset B of O s.t.

every open is a union of members of B.

B called a base for O.

Condition called: O is second countable (C2).

For R: Take as base e.g. all intervals with rational endpoints.

S is a subbase of O if the set of all finite intersections of sets in S are a

base for O.

Subspace: A subset X ⊆ R inherits a topology from R, consisting of all

O ∩ X for all O ∈ O.

Example: [0, 1] as subspace of R.

Some open sets of [0, 1]: ∅ [0, 1] [0, 0.5[ ]0.1, 0.6[ . . .
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Standard (natural) topology on R

Convergence: Sequence (xn) converges to x (written xn → x) iff (xn) is

eventually in every open neighborhood of x.

Note: Limits are not necessarily unique.

Example: X = {0, 1}, O = {∅, X}.
Then the sequence 1, 1, 1, . . . converges to 0 and 1.

Continuity: A function f : R → R is continuous iff the pre-image f−1(O)
is open for each open O.

Then: xn → x implies f(xn) → x.

This condition characterizes continuity on many spaces (e.g. C2 spaces).

All definitions hold also for more general topologies.

LPCS • Dresden • Germany • June 2005 Hitzler • 10



�

�

�

	
Continuity: Example

Functions on R are continuous if they can be drawn without lifting the pen.

x �→ 2x x �→ x2 x �→ lnx x �→ 5 sin x
π . . .

Now consider the subspace X = [1, 2] ∪ [3, 4] ⊆ R.

X consists of two connected pieces.

X is not connected (as a whole).

f : X → R

is continuous iff on each of the connected

parts it can be drawn without lifting the pen.

See example on the right.
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Cantor Space

A subspace of R.

C = [0, 1]∩
([

0,
1
3

]
∪

[
2
3
, 1

])
∩

([
0,

1
9

]
∪

[
2
9
,
1
3

]
∪

[
2
3
,
7
9

]
∪

[
8
9
, 1

])
∩. . .

• Encoding 0=left, 1=right, each point x ∈ C is an (infinite) binary

sequence seq(x).
• C is uncountable.

• There is a gap between each two points of C.

• A base: {Bn(x) | x ∈ C}, where

Bn(x) = {y ∈ C | seq(x), seq(y) coincide on the first n digits}.

LPCS • Dresden • Germany • June 2005 Hitzler • 12



�

�

�

�Metrics

A metric on a set X is a function d : X × X → R which satisfies the

following for all x, y, z ∈ X .

(i) d(x, y) = 0 iff x = y.

(ii) d(x, y) = d(y, x).
(iii) d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)

• Abstract notion of distance.

E.g. on R: d(x, y) = |x − y|.

Collection of all Bε(x) = {y ∈ X | d(x, y) < ε} is base of a topology.

But not every topology comes from a metric!

• Bε(x) is called the open ball with center x and radius ε.

• Every metric induces exactly one topology!
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Metrics on Cantor Space

Metric inherited from R:

For x, y ∈ C set d(x, y) = |x − y|.
Induced topology: subspace topology inherited from R.

Prefix distance on sequences:

For x, y ∈ C set δ(x, y) = 2−n,

where n is least s.t. seq(x) and seq(y) differ on the n-th digit.

Prefix distance produces base {B2−n(x) | x ∈ C}, where

B2−n(x) = {y ∈ C | seq(x), seq(y) coincide on the first n digits}.
� The base mentioned before!

We will call the prefix distance also Fitting metric.
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Cantor space

• Can be characterized by the following properties: totally disconnected,

compact, Hausdorff, second countable, dense in itself.

• It is a very well-known and omnipresent topological space.

• Cantor space sometimes known as Cantor dust.

• Cantor space is self-similar.

Zooming in on it produces a very similar picture.

• It is a fractal as known from Chaos theory or topological dynamics.

• Can be “produced” by iterated function systems.

� More about this in two weeks!
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A topology on IP : The atomic topology Q

[Batarekh & Subrahmanian 1989] [Seda 1995]

For each finite conjunction C = L1 ∧ · · · ∧ Ln of literals,

set G(C) = {I ∈ IP | I |= C}.
{G(C) | C a finite conjunction of literals} is a base of the topology Q.

A sequence (In) in IP converges wrt. Q to some I ∈ IP iff

• For each A ∈ I exists n0 s.t. for all k ≥ n0: A ∈ Ik.

• For each A �∈ I exists n1 s.t. for all m ≥ n1: A �∈ Im.

A result:

If T n
P (K) → I then I ⊆ TP (I), i.e. I is a model of P .

If TP is also continuous, then I = TP (I).
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A topology on IP : The atomic topology Q

Another base for Q:

• Fix an enumeration (injective level mapping) on BP : A1, A2, A3, . . .

• Let C be conjunctions of the form L1, . . . , Ln, where Li is Ai or ¬Ai.

Set G(C) = {I ∈ IP | I |= C} as before.

Then {G(C) | C of the indicated form } is a base of the topology Q.

(Clear: This is a subbase. But it really is also a base!)

Metric characterization of Q:

• d(I, K) = 2−n, where n is least such that the enumerations of

elements in I and K differ at the n-th position.

� Exactly the same as the prefix distance (Fitting metric)!
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IP and R — topological link

Cantor space:

binary sequence

(via the graphical construction)

� x ∈ C ⊆ R

IP with Q:

binary sequence (via enumeration of interpretation)

� I ∈ IP

I ∈ IP
TP

�� I ′ ∈ IP

seq−1

��
x ∈ C

fP ��

seq

��

x′ ∈ C

Fitting metric (prefix distance) topologizes both spaces.

⇒ IP with Q is topologically the same as C!

⇒ fP is continuous iff TP is!
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[HKS99] in topological light

[Hitzler, Hölldobler & Seda, 2004]

I ∈ IP
TP

�� I ′ ∈ IP

R

��
x ∈ R(I)

fP ��

R−1

��

x′ ∈ R(I)

• Injective level mapping = enumeration of BP .

• R : IP → C has Cantor space as range.

(may be different concrete set on R, but

topologically the same)

• R is a topological homeomorphism

(mapping preserving the topological structure).

• Acyclicity of the program: guarantees continuity of TP .

� More about this later.

⇒ Hence: fP as representation of TP on R is continuous

and can be approximated by feedforward networks!
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�Funahashi’s theorem revisited

Theorem (Funahashi 1989, simplified version):

σ sigmoidal

K ⊆ R compact,

f : K → R continuous,

ε > 0.

Then there exists perceptron with sigmoidal σ and I/O-function f̄ : K → R

with

max
x∈K

{
d

(
f(x), f̄(x)

)}
< ε;

d metric which induces natural topology on R.

I.e. every continuous function f : K → R can be uniformly approximated by

I/O-functions of perceptrons.
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General consequence operators: multi-valued logics

• Truth values T = {t1, . . . , tn}.
• Interpretations are functions I : BP → T .

• IP,n = IP set of all interpretations.

• BA set of all atoms in bodies of clauses in ground(P ) with head

A ∈ BP .

• T : IP → IP consequence operator for P , if for all I ∈ IP and all

A ← body in P we have that T (I)(A) ← I(body) holds via truth table.

• T local if T (I)(A) = T (K)(A) for all A ∈ BP and all I, K ∈ IP which

agree on BA.

• TP is a local consequence operator.

Other examples: Operators as defined by Fitting (1985,199x) in three- or

four-valued logic.
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Cantor topology Q

• For Q, we considered binary sequences (two truth values).

• Now consider sequences, where each element can be one out of n values

(n truth values).

Use the same prefix distance:

For I, K ∈ IP,n set δ(I, K) = 2−n,

where n is least s.t. I and K differ on the n-th element.

Topological structure turns out to be the same!

⇒ Q is the same as the Cantor topology!

⇒ IP,n is the same as Cantor space!
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Approximation of continuous consequence operators

Theorem (Hitzler & Seda 2003)

Let P be a logic program, T be a locally finite consequence operator,

and ι be a homeomorphism from (IP,n,Q) to C.

Then ι(T ) can be uniformly approximated by I/O-functions of 3lfns.

This holds mutatis mutandis e.g. for radial basis function networks

(activation function is gaussian).

ι normally given via some enumeration (injective level mapping) l : BP → N

and some corresponding p-adic expansion.

There exist uncountably many homeomorphisms from IP to C.

Lots of degrees of freedom!
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Characterizing continuity in Q

Consequence operator T on IP is locally finite, if for all A ∈ BP and all

I ∈ IP there exists a finite set S ⊆ BA with T (J)(A) = T (I)(A) for all

J ∈ IP which agree with I on S.

Theorem

A local consequence op. is locally finite iff it is continuous in Q.

Sufficient:

• P is covered, i.e. does not contain any local variables

(occuring in some body, but not in corresponding head).
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Continuity of TP

Continuity of TP is guaranteed under any of the following conditions:

• P is propositional.

• P does not contain function symbols.

• P is acyclic with respect to an injective level mapping.

• P is covered.

Open Question

Describe a maximal class A of programs such that for each P ∈ A
there exists a covered program Q with TQ = TP .

Does A contain all programs P with continuous TP ?

Probably not, but it may contain all

computationally relevant such programs.
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Recursive architecture: Reasoning

.  .  .

x

yT locally finite consequence operator. f approximating I/O-function.

• For all I ∈ IP and n ∈ N we have |fn(ι(I)) − ι(T n(I))| ≤ ε 1−λn

1−λ .

Need: λ Lipschitz-constant of F (i.e. |F (x) − F (y)| ≤ λ|x − y|
for all x, y), and F the continuation of ι(T ) to [0, 1].
ε bound on approximation error.

• If F is contraction, then
(
F k(ι(I))

)
converges for all I to unique

fixed point x of F and ∃m ∈ N ∀n ≥ m: |fn(ι(I)) − x| ≤ ε 1
1−λ .

Furthermore, T is a contraction on the complete space IP (with suitable

metric), and we have ι(M) = x for the unique fixed point M of T .

• Assume there is I ∈ IP s.t. T n(I) converges in Q to a fixed point M of T .

Then for every δ > 0 there exists some n ∈ N and a network with

|fn(ι(I)) − ι(M)| < δ.
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Remarks on measurability

An alternative to [Funahashi 89]:

Theorem (Hornik, Stinchcombe, White 1989, simplified version)

σ : R → (0, 1) monotonic increasing, onto.

f : R → R Borel measurable,

μ Borel probability measure on R,

ε > 0.

Then there is a perceptron with sigmoidal activation function σ and

I/O-function f̄ : R → R with

�μ(f, f̄) = inf
{
δ > 0 : μ

{
x :

∣∣f(x) − f̄(x)
∣∣ > δ

}
< δ

}
< ε.

I.e. the set of I/O-functions which can be computed using 3lfns is dense

with respect to �μ in the set of all Borel measurable functions f : R → R.
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Measurable consequence operators

Theorem (Hitzler & Seda 2000)

Local consequence operators are always mea-

surable with respect to σ(Q).

But:

Approximation by networks is only almost everywhere.

Cantor set has measure 0.

Result can be improved to some extent, but principal problem remains.

⇒ Continuity approach appears to be more promising!
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Non-monotonic reasoning

Fixed points of operator GLP yield the stable models of P .

(as in Answer Set Programming)

[DK89] Phan M. Dung and Kanchana Kanchanasut, A fixpoint approach to declarative

semantics of logic programs. Proc. NACLP’89, 1989.

Program transformation P �→ fix(P ).
Complete unfolding through positive body literals.

[Wen02] Matthias Wendt, Unfolding the well-founded semantics, Journal of Electrical

Engineering 2002.

Shows GLP (I) = Tfix(P )(I) for all interpretations I.

� Allows to carry over results. (Bader & Hitzler, in preparation)

� Works similarly also for well-founded semantics.
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The Fixpoint Completion

Quasi-interpretation K: set of clauses of form A ← ¬B1, . . . ,¬Bm.

Program P : set of (ground) clauses of form

A ← A1, . . . , An,¬B1, . . . ,¬Bm.

T ′
P (K) set of A ← body1, . . . , bodyn,¬B1, . . . ,¬Bm

where A ← A1, . . . , An,¬B1, . . . ,¬Bm in P

and Ai ← bodyi in K for all i.

T ′
P ↑ω = fix(T ′

P ) = fix(P ) quasi-interpretation.
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Thank You!

Pascal Hitzler Universität Karlsruhe (TH)

Sebastian Bader, Steffen Hölldobler

www.neural-symbolic.org
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