Topological Aspects of First-Order Neural-Symbolic Integration

Invited talk for the lecture on Logic Programming and Connectionist Systems

by Steffen Hölldobler

- 1. Short review of [HKS99]
- 2. Topology
- 3. The atomic topology Q on I_P
- 4. Funahashi's theorem revisited
- 5. Generalization to multi-valued logics
- 6. Recursive architecture: Reasoning
- 7. Generalization to measurable operators
- 8. Treatment of nonmonotonic reasoning

Hölldobler, Kalinke, Störr 1999 [HKS99]

First-order logic programs (acyclic, with injective level mapping) can be approximated by standard sigmoidal feedforward networks.

Existential result via continuity of the T_P -operator.

Features of the approach:

- Shows representability in principle.
- Single existing approach for first-order LPs with function symbols.

Limitations of the approach:

- No algorithm how to construct the network.
- Very restricted class of programs.
- Proofs highly dependent on specific assumptions.

Today: Lifting to a more general setting. Next week: How to construct the networks.

Embedding T_P into the reals

 $T_P: I_P \to I_P$, where $I_P = 2^{B_P} \approx 2^{\mathbb{N}}$ $2^{\mathbb{N}}$: all (countably infinite) binary sequences \rightsquigarrow interpret sequence as expansion in *b*-adic number system! (b > 2)

- 1. Choose an *enumeration* of B_P (= bijective level mapping).
- 2. Choose a base b > 2 for the number system.
- 3. Choose integers $t \neq f$ with $0 \leq t, f < b$.
- 4. Given an interpretation $I \subseteq B_P$, set $a_i = f$ if the *i*-th element of I is false, and set $a_i = t$ otherwise.
- 5. Set $R(I) = \sum_{i=0}^{\infty} a_i b^i$.

Denote $R(I_P)$ by D_R .

Embedding T_P into the reals

Set
$$f_P: D_R \to D_R: x \mapsto R(T_P(R^{-1}(x)))$$
.

$$I \in I_P \xrightarrow{T_P} I' \in I_P$$

$$\uparrow_{R^{-1}} R \downarrow$$

$$x \in R(I) \xrightarrow{f_P} x' \in R(I)$$

$$f_P(R(I))$$

Domain of *f_P* is *totally disconnected*. (Is *Cantor set*: discussed later.)
 → There is a *gap* between any two points.

Approaching Topology

- [Funahashi 89] treats *continuous functions* (on \mathbb{R}^n).
- We have seen *metrics* (distance functions) playing a role both on \mathbb{R} and on I_P .
- Iterative behaviour of T_P (convergence of iterates) important.
- Continuity, metrics, and convergence are notions known from $\mathbb R.$
- They can be studied on much more general spaces (including I_P).
- Corresponding mathematical subject: (Set-theoretic) *Topology*.

Topology:

- Qualitative and quantitative (metric) notions of *distance*.
- Continuity of functions in the sense of *preservation of limits*.
- Notions of approximation in various spaces.
- Abstracts, e.g. allows to link \mathbb{R} and I_P in a sound way.
- Bridge between the continuous (networks) and the discrete (logics).

Table of Contents

- 1. Short review of [HKS99]
- 2. Topology
- 3. The atomic topology Q on I_P
- 4. Funahashi's theorem revisited
- 5. Generalization to multi-valued logics
- 6. Recursive architecture: Reasoning
- 7. Generalization to measurable operators
- 8. Treatment of nonmonotonic reasoning

Standard (natural) topology on ${\mathbb R}$

Open intervals: known.

Open sets (opens): All unions of open intervals.

Open neighborhood of $x \in \mathbb{R}$: Open set containing x.

The following hold:

(i) All unions of opens are open.

(ii) All *finite* intersections of opens are open.

Conditions (i) and (ii) define: The set of all opens is a *topology* on \mathbb{R} .

Note: Infinite intersections of open intervals are not necessarily open.

E.g.
$$\bigcap_{n=1}^{\infty} \left[0 - \frac{1}{n}, 1 + \frac{1}{n} \right] = [0, 1].$$

 \rightarrow A **topology** \mathcal{O} on a set X is a set of subsets of X s.t. (i) and (ii) hold.

Note: The *empty* union (= all of X) is in every topology!

Standard (natural) topology on \mathbb{R}

Standing assumption (for us): There exists a countable subset \mathcal{B} of \mathcal{O} s.t. every open is a union of members of \mathcal{B} .

 \mathcal{B} called a *base* for \mathcal{O} .

Condition called: \mathcal{O} is second countable (C2).

For \mathbb{R} : Take as base e.g. all intervals with rational endpoints.

S is a *subbase* of O if the set of all finite intersections of sets in S are a base for O.

Subspace: A subset $X \subseteq \mathbb{R}$ inherits a topology from \mathbb{R} , consisting of all $O \cap X$ for all $O \in \mathcal{O}$.

Example: [0, 1] as subspace of \mathbb{R} . Some open sets of [0, 1]: \emptyset [0, 1] [0, 0.5[]]0.1, 0.6[...

Standard (natural) topology on ${\mathbb R}$

Convergence: Sequence (x_n) converges to x (written $x_n \to x$) iff (x_n) is *eventually* in every open neighborhood of x.

Note: Limits are not necessarily unique. Example: $X = \{0, 1\}$, $\mathcal{O} = \{\emptyset, X\}$. Then the sequence $1, 1, 1, \ldots$ converges to 0 and 1.

Continuity: A function $f : \mathbb{R} \to \mathbb{R}$ is *continuous* iff the pre-image $f^{-1}(O)$ is open for each open O.

Then: $x_n \to x$ implies $f(x_n) \to x$.

This condition *characterizes* continuity on many spaces (e.g. C2 spaces).

All definitions hold also for more general topologies.

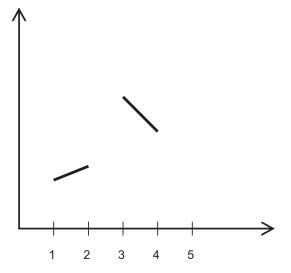
Continuity: Example

Functions on \mathbb{R} are continuous if they can be drawn without lifting the pen. $x \mapsto 2x \quad x \mapsto x^2 \quad x \mapsto \ln x \quad x \mapsto 5 \sin \frac{x}{\pi} \dots$

Now consider the subspace $X = [1, 2] \cup [3, 4] \subseteq \mathbb{R}$. X consists of two connected pieces. X is *not connected* (as a whole).

 $f: X \to \mathbb{R}$

is continuous iff *on each of the connected parts it can be drawn without lifting the pen*. See example on the right.



Cantor Space

A subspace of \mathbb{R} .

$$C = [0,1] \cap \left(\left[0,\frac{1}{3}\right] \cup \left[\frac{2}{3},1\right] \right) \cap \left(\left[0,\frac{1}{9}\right] \cup \left[\frac{2}{9},\frac{1}{3}\right] \cup \left[\frac{2}{3},\frac{7}{9}\right] \cup \left[\frac{8}{9},1\right] \right) \cap \dots$$

- Encoding 0=left, 1=right, each point x ∈ C is an (infinite) binary sequence seq(x).
- C is uncountable.
- There is a *gap* between each two points of C.
- A base: $\{B_n(x) \mid x \in C\}$, where

 $B_n(x) = \{y \in C \mid seq(x), seq(y) \text{ coincide on the first } n \text{ digits}\}.$

Metrics

A metric on a set X is a function $d: X \times X \to \mathbb{R}$ which satisfies the following for all $x, y, z \in X$.

(i)
$$d(x,y) = 0$$
 iff $x = y$.
(ii) $d(x,y) = d(y,x)$.
(iii) $d(x,z) \le d(x,y) + d(y,z)$. (triangle inequality)

Abstract notion of *distance*.
E.g. on ℝ: d(x, y) = |x - y|.

Collection of all $B_{\varepsilon}(x) = \{y \in X \mid d(x, y) < \varepsilon\}$ is base of a topology. But not every topology comes from a metric!

- $B_{\varepsilon}(x)$ is called the open ball with center x and radius ε .
- Every metric induces exactly one topology!

Metric inherited from \mathbb{R} :

For $x, y \in C$ set d(x, y) = |x - y|.

Induced topology: subspace topology inherited from \mathbb{R} .

Prefix distance on sequences:

For $x, y \in C$ set $\delta(x, y) = 2^{-n}$, where n is least s.t. seq(x) and seq(y) differ on the n-th digit.

Prefix distance produces base $\{B_{2^{-n}}(x) \mid x \in C\}$, where $B_{2^{-n}}(x) = \{y \in C \mid seq(x), seq(y) \text{ coincide on the first } n \text{ digits}\}.$ \sim The base mentioned before!

We will call the prefix distance also Fitting metric.

Cantor space

- Can be characterized by the following properties: totally disconnected, compact, Hausdorff, second countable, dense in itself.
- It is a very *well-known* and omnipresent topological space.

- Cantor space sometimes known as *Cantor dust*.
- Cantor space is *self-similar*.

Zooming in on it produces a very similar picture.

- It is a *fractal* as known from *Chaos theory* or *topological dynamics*.
- Can be "produced" by iterated function systems.
 - \rightsquigarrow More about this in two weeks!

Table of Contents

- 1. Short review of [HKS99]
- 2. Topology
- 3. The atomic topology Q on I_P
- 4. Funahashi's theorem revisited
- 5. Generalization to multi-valued logics
- 6. Recursive architecture: Reasoning
- 7. Generalization to measurable operators
- 8. Treatment of nonmonotonic reasoning

A topology on I_P : The atomic topology Q

[Batarekh & Subrahmanian 1989] [Seda 1995]

For each finite conjunction $C = L_1 \land \cdots \land L_n$ of literals, set $\mathcal{G}(C) = \{I \in I_P \mid I \models C\}.$ $\{\mathcal{G}(C) \mid C \text{ a finite conjunction of literals}\}$ is a *base* of the topology Q.

A sequence (I_n) in I_P converges wrt. Q to some $I \in I_P$ iff

- For each $A \in I$ exists n_0 s.t. for all $k \ge n_0$: $A \in I_k$.
- For each $A \notin I$ exists n_1 s.t. for all $m \ge n_1$: $A \notin I_m$.

A result:

If $T_P^n(K) \to I$ then $I \subseteq T_P(I)$, i.e. I is a model of P. If T_P is also continuous, then $I = T_P(I)$.

A topology on I_P : The atomic topology Q

Another base for Q:

- Fix an enumeration (injective level mapping) on B_P : A_1, A_2, A_3, \ldots
- Let C be conjunctions of the form L₁,..., L_n, where L_i is A_i or ¬A_i. Set G(C) = {I ∈ I_P | I ⊨ C} as before. Then {G(C) | C of the indicated form } is a base of the topology Q.
 (Clear: This is a subbase. But it really is also a base!)

Metric characterization of Q:

- $d(I, K) = 2^{-n}$, where n is least such that the enumerations of elements in I and K differ at the n-th position.
- \rightsquigarrow Exactly the same as the prefix distance (Fitting metric)!

I_P and \mathbb{R} — topological link

Cantor space:

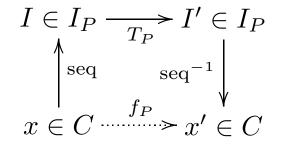
Dinary sequence	==	= =								

```
(via the graphical construction) \rightsquigarrow x \in C \subset \mathbb{R}
```

 I_P with Q: binary sequence (via enumeration of interpretation) $\rightsquigarrow I \in I_P$

Fitting metric (prefix distance) topologizes both spaces.

 $\Rightarrow I_P$ with Q is topologically the same as C! $\Rightarrow f_P$ is continuous iff T_P is!



[HKS99] in topological light

[Hitzler, Hölldobler & Seda, 2004]

- Injective level mapping = enumeration of B_P .
- R: I_P → C has Cantor space as range. (may be different concrete set on ℝ, but topologically the same)
- *R* is a *topological homeomorphism* (mapping preserving the topological structure).
- Acyclicity of the program: guarantees continuity of T_P.
 → More about this later.
- \Rightarrow Hence: f_P as representation of T_P on \mathbb{R} is continuous and can be approximated by feedforward networks!

$$I \in I_P \xrightarrow{T_P} I' \in I_P$$

$$\uparrow_{R^{-1}} \qquad R \downarrow$$

$$x \in R(I) \xrightarrow{f_P} x' \in R(I)$$

Table of Contents

- 1. Short review of [HKS99]
- 2. Topology
- 3. The atomic topology Q on I_P
- 4. Funahashi's theorem revisited
- 5. Generalization to multi-valued logics
- 6. Recursive architecture: Reasoning
- 7. Generalization to measurable operators
- 8. Treatment of nonmonotonic reasoning

Funahashi's theorem revisited

Theorem (Funahashi 1989, simplified version):

 σ sigmoidal

 $K \subseteq \mathbb{R}$ compact, $f: K \to \mathbb{R}$ continuous,

 $\varepsilon > 0.$

Then there exists perceptron with sigmoidal σ and I/O-function $\overline{f}: K \to \mathbb{R}$ with

$$\max_{x \in K} \left\{ d\left(f(x), \bar{f}(x)\right) \right\} < \varepsilon;$$

d metric which induces natural topology on $\mathbb R.$

I.e. every continuous function $f: K \to \mathbb{R}$ can be uniformly approximated by I/O-functions of perceptrons.

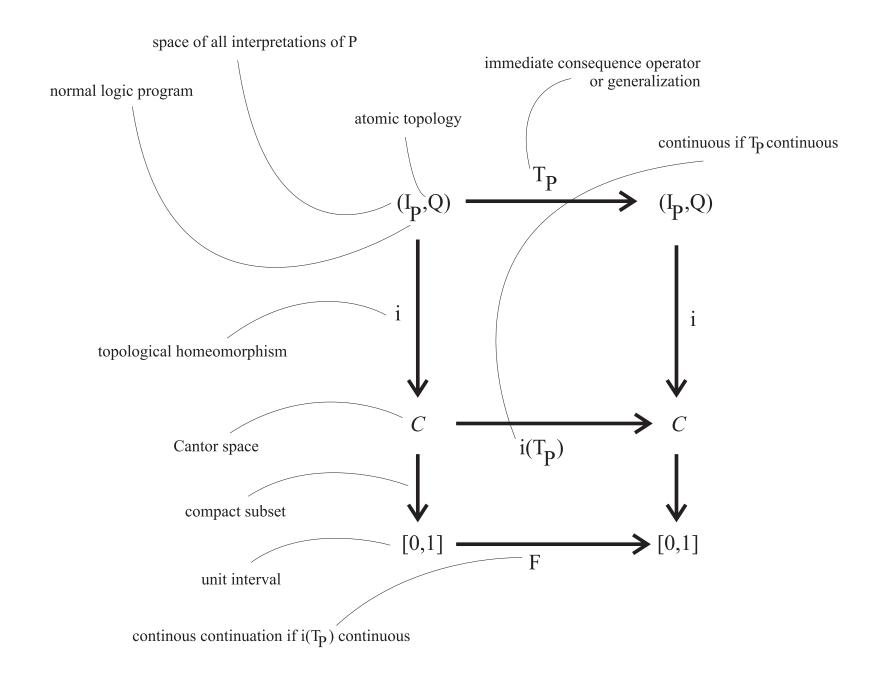


Table of Contents

- 1. Short review of [HKS99]
- 2. Topology
- 3. The atomic topology Q on I_P
- 4. Funahashi's theorem revisited
- 5. Generalization to multi-valued logics
- 6. Recursive architecture: Reasoning
- 7. Generalization to measurable operators
- 8. Treatment of nonmonotonic reasoning

General consequence operators: multi-valued logics

- Truth values $\mathcal{T} = \{t_1, \ldots, t_n\}.$
- Interpretations are functions $I: B_P \to \mathcal{T}$.
- $I_{P,n} = I_P$ set of all interpretations.
- B_A set of all atoms in bodies of clauses in ground(P) with head
 A ∈ B_P.
- $T: I_P \to I_P$ consequence operator for P, if for all $I \in I_P$ and all $A \leftarrow \text{body in } P$ we have that $T(I)(A) \leftarrow I(\text{body})$ holds via truth table.
- *T* local if T(I)(A) = T(K)(A) for all $A \in B_P$ and all $I, K \in I_P$ which agree on \mathcal{B}_A .
- T_P is a local consequence operator.

Other examples: Operators as defined by Fitting (1985,199x) in three- or four-valued logic.

Cantor topology \mathcal{Q}

- For Q, we considered *binary* sequences (two truth values).
- Now consider sequences, where each element can be one out of n values (n truth values).

Use the same prefix distance:

For $I, K \in I_{P,n}$ set $\delta(I, K) = 2^{-n}$, where n is least s.t. I and K differ on the n-th element.

Topological structure turns out to be the same!

 $\Rightarrow \mathcal{Q} \text{ is the same as the Cantor topology!}$ $\Rightarrow I_{P,n} \text{ is the same as Cantor space!}$ Approximation of continuous consequence operators

Theorem (Hitzler & Seda 2003)

Let P be a logic program, T be a locally finite consequence operator, and ι be a homeomorphism from $(I_{P,n}, \mathcal{Q})$ to \mathcal{C} . Then $\iota(T)$ can be uniformly approximated by I/O-functions of 3lfns.

This holds *mutatis mutandis* e.g. for radial basis function networks (activation function is gaussian).

 ι normally given via some enumeration (injective level mapping) $l: B_P \to \mathbb{N}$ and some corresponding *p*-adic expansion.

There exist *uncountably many homeomorphisms* from I_P to C. Lots of degrees of freedom!

Characterizing continuity in ${\cal Q}$

Consequence operator T on I_P is *locally finite*, if for all $A \in B_P$ and all $I \in I_P$ there exists a finite set $S \subseteq \mathcal{B}_A$ with T(J)(A) = T(I)(A) for all $J \in I_P$ which agree with I on S.

Theorem

A local consequence op. is locally finite iff it is continuous in Q.

Sufficient:

• *P* is *covered*, i.e. does not contain any *local variables* (occuring in some body, but not in corresponding head).

Continuity of T_P

Continuity of T_P is guaranteed under any of the following conditions:

- *P* is propositional.
- P does not contain function symbols.
- P is acyclic with respect to an injective level mapping.
- *P* is covered.

Open Question

Describe a maximal class \mathcal{A} of programs such that for each $P \in \mathcal{A}$ there exists a *covered* program Q with $T_Q = T_P$.

Does \mathcal{A} contain all programs P with continuous T_P ? Probably not, but it may contain all computationally relevant such programs.

Table of Contents

- 1. Short review of [HKS99]
- 2. Topology
- 3. The atomic topology Q on I_P
- 4. Funahashi's theorem revisited
- 5. Generalization to multi-valued logics
- 6. Recursive architecture: Reasoning
- 7. Generalization to measurable operators
- 8. Treatment of nonmonotonic reasoning

Recursive architecture: Reasoning

T locally finite consequence operator. f approximating ${\rm I/O}\mbox{-function}.$

• For all $I \in I_P$ and $n \in \mathbb{N}$ we have $|f^n(\iota(I)) - \iota(T^n(I))| \leq \varepsilon \frac{1-\lambda^n}{1-\lambda}$.

Need: λ Lipschitz-constant of F (i.e. $|F(x) - F(y)| \le \lambda |x - y|$ for all x, y), and F the continuation of $\iota(T)$ to [0, 1]. ε bound on approximation error.

• If F is contraction, then $(F^k(\iota(I)))$ converges for all I to unique fixed point x of F and $\exists m \in \mathbb{N} \ \forall n \ge m$: $|f^n(\iota(I)) - x| \le \varepsilon \frac{1}{1-\lambda}$. Furthermore, T is a contraction on the complete space I_P (with suitable metric), and we have $\iota(M) = x$ for the unique fixed point M of T.

• Assume there is $I \in I_P$ s.t. $T^n(I)$ converges in \mathcal{Q} to a fixed point M of T.

Then for every $\delta > 0$ there exists some $n \in \mathbb{N}$ and a network with $|f^n(\iota(I)) - \iota(M)| < \delta.$

Table of Contents

- 1. Short review of [HKS99]
- 2. Topology
- 3. The atomic topology Q on I_P
- 4. Funahashi's theorem revisited
- 5. Generalization to multi-valued logics
- 6. Recursive architecture: Reasoning
- 7. Generalization to measurable operators
- 8. Treatment of nonmonotonic reasoning

Remarks on measurability

An alternative to [Funahashi 89]:

Theorem (Hornik, Stinchcombe, White 1989, simplified version)

 $\sigma:\mathbb{R}\rightarrow(0,1)$ monotonic increasing, onto.

- $f:\mathbb{R} \to \mathbb{R}$ Borel measurable,
- μ Borel probability measure on $\mathbb R,$

 $\varepsilon > 0.$

Then there is a perceptron with sigmoidal activation function σ and I/O-function $\overline{f}: \mathbb{R} \to \mathbb{R}$ with

$$\varrho_{\mu}(f,\bar{f}) = \inf\left\{\delta > 0 : \mu\left\{x : \left|f(x) - \bar{f}(x)\right| > \delta\right\} < \delta\right\} < \varepsilon.$$

I.e. the set of I/O-functions which can be computed using 3Ifns is dense with respect to ρ_{μ} in the set of all Borel measurable functions $f : \mathbb{R} \to \mathbb{R}$. Measurable consequence operators

Theorem (Hitzler & Seda 2000)

Local consequence operators are always measurable with respect to $\sigma(\mathcal{Q})$.

But:

Approximation by networks is only *almost everywhere*.

Cantor set has measure 0.

Result can be improved to some extent, but principal problem remains. \Rightarrow Continuity approach appears to be more promising!

Table of Contents

- 1. Short review of [HKS99]
- 2. Topology
- 3. The atomic topology Q on I_P
- 4. Funahashi's theorem revisited
- 5. Generalization to multi-valued logics
- 6. Recursive architecture: Reasoning
- 7. Generalization to measurable operators
- 8. Treatment of nonmonotonic reasoning

Non-monotonic reasoning

Fixed points of operator GL_P yield the *stable models* of P. (as in Answer Set Programming)

[DK89] Phan M. **Dung** and Kanchana **Kanchanasut**, A fixpoint approach to declarative semantics of logic programs. Proc. NACLP'89, 1989.

Program transformation $P \mapsto \operatorname{fix}(P)$.

Complete unfolding through positive body literals.

[Wen02] Matthias **Wendt**, Unfolding the well-founded semantics, Journal of Electrical Engineering 2002.

Shows $GL_P(I) = T_{fix(P)}(I)$ for all interpretations I.

 \sim Allows to carry over results. (Bader & Hitzler, in preparation) \sim Works similarly also for well-founded semantics.

Quasi-interpretation K: set of clauses of form $A \leftarrow \neg B_1, \ldots, \neg B_m$.

Program P: set of (ground) clauses of form

$$A \leftarrow A_1, \ldots, A_n, \neg B_1, \ldots, \neg B_m.$$

$$\begin{array}{ll} T'_P(K) \mbox{ set of } A \leftarrow \mbox{body}_1, \dots, \mbox{body}_n, \neg B_1, \dots, \neg B_m \\ \mbox{where} & A \leftarrow A_1, \dots, A_n, \neg B_1, \dots, \neg B_m & \mbox{ in } P \\ \mbox{and} & A_i \leftarrow \mbox{body}_i & \mbox{ in } K \mbox{ for all } i. \end{array}$$

 $T'_P \uparrow \omega = \operatorname{fix}(T'_P) = \operatorname{fix}(P)$ quasi-interpretation.

PCS • Dresden • Germany • June 2005

Thank You!

Pascal Hitzler

Sebastian Bader, Steffen Hölldobler

INTERNATIONAL CENTER FOR COMPUTATIONAL LOGIC

www.neural-symbolic.org