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�Motivation

� Biological neural networks can easily do logical reasoning.

� Why is it so difficult with artificial ones?

Oberseminar Wissensmanagement • AIFB • Universtität Karlsruhe (TH) • 11.2004 1



�

�

�

�Some Other Motivation

Artificial neural networks constitute a robust and successful machine

learning paradigm.

But they are black boxes.

Symbolic logic provides declaratively well understood knowledge

representation and reasoning paradigms.

Which lack robustness and powerful learning abilities.

We seek intergrated paradigms retaining the best of both worlds!
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�Contents

• Artificial neural networks

• Propositional Logic and Connectionism

– Problem description

– McCulloch-Pitts Networks

– CILP and KBANN

– Hopfield networks

• First-Order Logic and Connectionism

– Particular difficulties

– SHRUTI

– RAAM architectures

– Approximation of logic programs

• Ontology learning as a use case

Research collaborators: Sebastian Bader (Dresden, Germany), Artur S. d’Avila Garcez

(London, UK), Steffen Hölldobler (Dresden, Germany), Anthony K. Seda (Cork, Ireland).
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Biological neural nets

Neuron,

with dendrites, soma, and axon.

(Purkinje cell from cerebellum)

Picture:

Spektrum der Wissenschaft 10,

October 2001
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Biological neural nets

Potentials are being propagated

from the dendrites to the soma.

If the accumulated potetial is

above a certain threshold, the neuron fires.

The resulting potential is being

propagated to other neurons via the

axon.

Pictures: Birbaumer & Schmidt, Biologische Psychologie, 21991
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�Artificial neural nets

(Finite) set of units (nodes, neurons) with connections.

� graph

• Potentials are real numbers.

• Propagation doesn’t need time.

• Potentials accumulate as weighted sums.

(Weights stand for synaptic activity and can be learned.)

• Units become active in discrete time steps.

• Threshold function is the same everywhere in the network.

There exist many competing architectures.
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�Artificial neural nets

In particular:

• Every unit computes a simple input-output function.

• The units are blind concerning the sources of their input and the

targets of their output.

Information (knowledge)

is being represented by the

(weighted) connections

in the network!

� Connectionist systems.
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3-layer feedforward nets/perceptrons

input layer

hidden layer

output layer
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xi inputs; y output; wji, c connection weights

I/O-function:

y = f(x1, . . . , xr) =
∑

j

cjσ

(∑
i

wjixi − θj

)

θj thresholds

σ threshold function (e.g. sigmoidal or gaussian bell)
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Example: TD-Gammon

Tesauro 1995

Backgammon program based on standard neural network architecture.

Learns by playing against itself.

Reaches almost professional player’s strength by itself.

After some manual adjustements, it is now far beyond human level.

We play Backgammon symbolically. The learning of some known strategic

insights could be observed when the program was trained.

Can we learn from the program how to play better?
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Propositional Logic and Connectionism

Idea:

� Representation of knowledge via network.

� Training of the network.

� Extraction of learned knowledge.

Issues:

• How to represent the knowledge?

• Standard network architectures preferred.

• How to extract the knowledge?

• How to advance beyond propositional logic?
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�McCulloch-Pitts networks
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McCulloch & Pitts 1943

Neurons with binary threshold functions

for ∨, ∧, ¬.

Updates are being computed for all

units at the same time.

McCulloch-Pitts networks are exactly the finite automata.

Picture: Hölldobler, Lecture notes Introduction to Computational Logic, 2001
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CILP, KBANN

Hölldobler & Kalinke 1994: Representation of propositional logic programs

by 3-layer feedforward networks, extending on McCulloch and Pitts.

D’Avila Garcez, Broda, Gabbay, Zaverucha 1999/2001:

Extension to sigmoidal (differentiable) threshold functions.

Learning possible via backpropagation (gradient descent).

CILP system

similar: KBANN (Towell and Shavlik 1994)

CILP evaluation:

Initiating network using background knowledge

increases learning performance.

Extraction of knowledge after learning very difficult.
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Symmetric nets and propositional logic
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Pinkas 199x: Hopfield networks with symmetric connections.

Update by probabilistic choice of unit.

There exsists relation between stable states in network

and models of propositional formulae (via energy minimization).

� Treatment of some non-monotonic propositional logic.

Pictures: Hölldobler, Introduction to Computational Logic, 2001
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Beyond propositional logic

We need to represent something infinite using finitely many nodes!

Variable bindings?

male(x) ∧ hasSon(x, y) → father(x)

Term representation?

member(X, [a, b, c|[d, e]])

Infinite ground instantiations?

∀x∀y(male(x) ∧ hasSon(x, y) → father(x))
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�SHRUTI
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Shastri & Ajjanagadde 1993

Variable binding

via time synchronization.

Reflexive (i.e. fast)

reasoning possible.

Picture: Hölldobler,

Introduction to

Computational Logic, 2001

gives(X,Y,Z) → owns(Y,Z) gives(john,josephine,book)

buys(X,Y) → owns(X,Y) (∃X) buys(john,X)

owns(X,Y) → can-sell(X,Y) owns(josephine,ball)
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�RAAM architectures

Recursive AutoAssociative Memory.

Pollack 1990 and others.

Holographic memory.

Learning of first order terms, represented as trees.

Performs badly for deeper nestings.

Inferencing/reasoning not studied and appears to be difficult.
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Approximation of logic programs

Idea:

Hölldobler, Kalinke, Störr 1999

extended by Hitzler, Hölldobler, Seda JAL 2004

Given (first-order) logic program P .

Represent semantic operator TP by I/O-function of a neural network.

TP can be understood to represent the (declarative) meaning of P .

Issues:

TP needs to be embedded in the reals.

Representation may not be possible, but approximation.

Existence results are already difficult.

Constructing approximating networks is more difficult.
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Continuity

Theorem (Funahashi 1989, simplified version):

σ sigmoidal

K ⊆ R compact,

f : K → R continuous,

ε > 0.

Then there exists perceptron with sigmoidal σ and I/O-function f̄ : K → R

with

max
x∈K

{
d
(
f(x), f̄(x)

)}
< ε;

d metric which induces natural topology on R.

I.e. every continuous function f : K → R can be uniformly approximated by

I/O-functions of perceptrons.
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Alternative Approach: Self-Similarity

An obseration by Sebastian Bader.

Approached worked out by Bader and Hitzler JAL 2004.

Graph of TP visualized via embedding into [0, 1] × [0, 1]
using p-adic numbers.

R : IP → R : I �→∑
A∈I B−l(A), where l : BP → N injective, B > 2.

Graph shows self-similarity.

(The following pictures were provided by Sebastian Bader.)
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Examples of graphs of logic programs

n(0).

n(s(X))←n(X).

e(0).

e(s(X))←not e(X).

o(X)←not e(X).

p(0).

p(s(X))←p(X).

p(X)←not p(X).
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(Hyperbolic) Iterated function systems (IFSs)

Space H: Compact subsets of R
2 with Hausdorff metric.

Set Ω = {ωi} of contraction mappings on R
2.⋃

Ω(A) =
⋃

i ωi(A) contraction on H with unique fixed point

(attractor).
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First representation theorem

P logic program. R : IP → R p-adic embedding.(
R

2, d, Ω =
{(

ω1
i , ω2

i

)})
hyperbolic IFS, attractor A.

Then

graph(R(TP )) = A

iff

π1(A) = range(R) and

R(TP )
(
ω1

i (a)
)

= ω2
i (a) for all a ∈ graph(R(TP )) and all i.
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Second representation theorem

P logic program with Lipschitz-continuous R(TP ).
Then there exists IFS with attractor graph(R(TP )).

Idea: Set ω2
i (x) = R(TP )(ω1

i (x)).
Choose ω1

i (x) such that it generates range(R). This is possible with

arbitrarily small contraction, the necessary size of which can be determined

by the Lipschitz constant of R(TP ).
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Concrete approximation by interpolation

a ∈ N accuracy.

l injective level mapping (enumeration of BP ).

Interpolation points: (R(I), R(TP (I)), where I ∈ D = {A | l(A) < a}.
IFS with Ωa = {(ω1

i , ω2
i )}, where

ω1
i (x) =

1
Ba

x + d1
i

ω2
i (x) =

1
Ba

+ R(TP )
(
d1

i

)− R(TP )(0)
Ba

Attractors Aa are graphs of continuous functions.

(Aa)a converges in function space (with sup-metric) to R(TP )
if R(TP ) Lipschitz-continuous.

Oberseminar Wissensmanagement • AIFB • Universtität Karlsruhe (TH) • 11.2004 27



�

�

�

	
Encoding as radial basis function network

∑
∑
∑

=

=

=

s′

x′

y′

s

x

y

1/Ba
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Use case ontology learning

Why should it work?

• Languages (e.g. OWL-DL,DLP) are of finitary nature.

Dealing with non-decidable fragments of FOL probably not necessary.

• Propositional case already interesting

e.g. for learning hierarchies.

• Neural-symbolic approaches lend themselves naturally to dealing with

noisy and/or probabilistic data.
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Use case ontology learning

Issues

• Need symbolic representations to start with.

Text can be preprocessed using e.g. TextTo/2Onto.

Other domains (e.g. bioinformatics) may be accessible more directly.

• Extensive research concerning connectionist representations of

logic programs exist already.

DLP appears to be a good starting point.

Suitable connectionist paradigm has yet to be developed.

• Other ideas? Neural Gas?
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�Current Actions

• Investigate the use of CILP for ontology learning.

(with S. Bader)

• Investigate using ILP for knowledge extraction.

(with S. Bader, S. Hölldobler and J. Lehmann)

• Advance first-order representations with perceptrons.

(with S. Bader, S. Hölldobler and A. Witzel)

• Workshop NeSy’05 at IJCAI-05.

(with A. Garcez and J. Elman)

• Course at ESSLLI 2005 summer school.

(with S. Bader and S. Hölldobler)

• International research proposal in the making.

(coordinated by A. Garcez)
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