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�Motivation

� Biological neural networks can easily do logical reasoning.

� Why is it so difficult with artificial ones?
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�Some Other Motivation

Artificial neural networks constitute a robust and successful machine

learning paradigm.

But they are black boxes.

Symbolic logic provides declaratively well understood knowledge

representation and reasoning paradigms.

Which lack robustness and powerful learning abilities.

We seek intergrated paradigms retaining the best of both worlds!
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�Contents

• Artificial Neural Networks

• The challenge: Representing first-order logic programs

• Logic programs and iterated function systems

• Logic programs as recurrent neural networks

The second author acknowledges support by the Boole Center for Research in

Informatics, BCRI, Cork, Ireland, for presenting this work.
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Biological neural nets

Neuron,

with dendrites, soma, and axon.

(Purkinje cell from cerebellum)

Picture:

Spektrum der Wissenschaft 10,

October 2001
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Artificial neural nets/Connectionist systems

Finite set of units (nodes, neurons) with connections.

In particular:

• Every unit computes a simple real input-output function.

• The units are blind concerning the sources of their input and the

targets of their output.

Information (knowledge)

is being represented by the

(weighted) connections

in the network!

� Connectionist systems.
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The first-order challenge

We need to represent something infinite using finitely many nodes/weights!

Variable bindings?

male(x) ∧ hasSon(x, y) → father(x)

Term representation?

member(X, [a, b, c|[d, e]])

Infinite ground instantiations?

∀x(prime(x) ∧ ¬equalTo(x, 2) → odd(x))
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Approach taken

Idea:

Hölldobler, Kalinke, Störr 1999

Given (first-order) logic program P .

Represent semantic operator TP by I/O-function of a neural network.

TP can be understood to represent the (declarative) meaning of P .

TP : IP → IP

where IP = 2BP ≈ 2N is space of all interpretations.

TP computes one-step consequences along ←.

odd(x) ← prime(x) ∧ ¬equalTo(x, 2)
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Self-Similarity of TP

Graph of TP visualized via embedding into [0, 1] × [0, 1].

R : IP → R : I �→ ∑
A∈I B−l(A), where l : BP → N injective, B > 2.

Representation of TP -operator in the reals:

n(0).

n(s(X)) ← n(X).
⇒

Shows self-similarity by zooming in:
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Examples of graphs of logic programs

n(0).

n(s(X))←n(X).

e(0).

e(s(X))←not e(X).

o(X)←not e(X).

p(0).

p(s(X))←p(X).

p(X)←not p(X).

Self-similarity observed for all programs.
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(Hyperbolic) Iterated function systems (IFSs)

Can be used for generating self-similar images, e.g. the Sierpinski Triangle:

Idea: Use it for generating graph of TP .

IFS: ⇒ ⇒ . . . ⇒
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First representation theorem

P logic program. R : IP → R p-adic embedding.
(
R

2, d, Ω =
{(

ω1
i , ω2

i

)})
hyperbolic IFS, attractor A.

Then

graph(R(TP )) = A

iff

π1(A) = range(R) and

R(TP )
(
ω1

i (a)
)

= ω2
i (a) for all a ∈ graph(R(TP )) and all i.
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Second representation theorem

P logic program with Lipschitz-continuous R(TP ).
Then there exists IFS with attractor graph(R(TP )).

Idea: Set ω2
i (x) = R(TP )(ω1

i (x)).
Choose ω1

i (x) such that it generates range(R). This is possible with

arbitrarily small contraction, the necessary size of which can be determined

by the Lipschitz constant of R(TP ).
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Concrete approximation by interpolation

a ∈ N accuracy.

l injective level mapping (enumeration of BP ).

Interpolation points: (R(I), R(TP (I)), where I ∈ D = {A | l(A) < a}.
IFS with Ωa = {(ω1

i , ω2
i )}, where

ω1
i (x) =

1
Ba

x + d1
i

ω2
i (x) =

1
Ba

+ R(TP )
(
d1

i

) − R(TP )(0)
Ba

Attractors Aa are graphs of continuous functions.

(Aa)a converges in function space (with sup-metric) to R(TP )
if R(TP ) Lipschitz-continuous.
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Encoding as radial basis function network
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Neural-symbolic integration research

We need to find constructive representations using standard architectures.

We need to study learning and information extraction.

We need to develop use cases to guide our research.

Recently: learning of ontologies for the Semantic Web.
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