Symbolic knowledge representation with artificial neural networks

Sebastian Bader ${ }^{1}$ and Pascal Hitzler ${ }^{2}$
${ }^{1}$ ICCL, TU Dresden, Germany
${ }^{2}$ AIFB © Universität Karlsruhe, Germany

- Biological neural networks can easily do logical reasoning.
-Why is it so difficult with artificial ones?

Some Other Motivation

Artificial neural networks constitute a robust and successful machine learning paradigm.
But they are black boxes.

Symbolic logic provides declaratively well understood knowledge representation and reasoning paradigms.
Which lack robustness and powerful learning abilities.

We seek intergrated paradigms retaining the best of both worlds!

Contents

- Artificial Neural Networks
- The challenge: Representing first-order logic programs
- Logic programs and iterated function systems
- Logic programs as recurrent neural networks

The second author acknowledges support by the Boole Center for Research in Informatics, BCRI, Cork, Ireland, for presenting this work.

Biological neural nets

Neuron,
with dendrites, soma, and axon.
(Purkinje cell from cerebellum)

Picture:
Spektrum der Wissenschaft 10,
October 2001

Artificial neural nets/Connectionist systems

Finite set of units (nodes, neurons) with connections.
In particular:

- Every unit computes a simple real input-output function.
- The units are blind concerning the sources of their input and the targets of their output.

Information (knowledge)
is being represented by the
(weighted) connections
in the network!

- Connectionist systems.

The first-order challenge

We need to represent something infinite using finitely many nodes/weights!

Variable bindings?

$$
\operatorname{male}(x) \wedge \text { hasSon }(x, y) \rightarrow \text { father }(x)
$$

Term representation?

$$
\operatorname{member}(X,[a, b, c \mid[d, e]])
$$

Infinite ground instantiations?

$$
\forall x(\operatorname{prime}(x) \wedge \neg \text { equalTo }(x, 2) \rightarrow \operatorname{odd}(x))
$$

Approach taken

Idea:
Hölldobler, Kalinke, Störr 1999
Given (first-order) logic program P.
Represent semantic operator T_{P} by I/O-function of a neural network.
T_{P} can be understood to represent the (declarative) meaning of P.
$T_{P}: I_{P} \rightarrow I_{P}$
where $I_{P}=2^{B_{P}} \approx 2^{\mathbb{N}}$ is space of all interpretations.
T_{P} computes one-step consequences along \leftarrow.

$$
\operatorname{odd}(x) \leftarrow \operatorname{prime}(x) \wedge \neg \text { equalTo }(x, 2)
$$

Self-Similarity of T_{P}

Graph of T_{P} visualized via embedding into $[0,1] \times[0,1]$.
$R: I_{P} \rightarrow \mathbb{R}: I \mapsto \sum_{A \in I} B^{-l(A)}$, where $l: B_{P} \rightarrow \mathbb{N}$ injective, $B>2$.
Representation of T_{P}-operator in the reals:

$$
\begin{aligned}
& \mathrm{n}(0) . \\
& \mathrm{n}(\mathrm{~s}(\mathrm{X})) \leftarrow \mathrm{n}(\mathrm{X}) .
\end{aligned}
$$

Shows self-similarity by zooming in:

Examples of graphs of logic programs

$$
\begin{array}{|l|}
\hline \mathrm{e}(0) . \\
\mathrm{e}(\mathrm{~s}(\mathrm{X})) \leftarrow \operatorname{not} \mathrm{e}(\mathrm{X}) . \\
\mathrm{o}(\mathrm{X}) \leftarrow \operatorname{not} \mathrm{e}(\mathrm{X}) . \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \mathrm{p}(0) . \\
& \mathrm{p}(\mathrm{~s}(\mathrm{X})) \leftarrow \mathrm{p}(\mathrm{X}) . \\
& \mathrm{p}(\mathrm{X}) \leftarrow \operatorname{not} \mathrm{p}(\mathrm{X}) .
\end{aligned}
$$

Self-similarity observed for all programs.

(Hyperbolic) Iterated function systems (IFSs)

Can be used for generating self-similar images, e.g. the Sierpinski Triangle:

Idea: Use it for generating graph of T_{P}.

First representation theorem

P logic program. $R: I_{P} \rightarrow \mathbb{R} p$-adic embedding.
$\left(\mathbb{R}^{2}, d, \Omega=\left\{\left(\omega_{i}^{1}, \omega_{i}^{2}\right)\right\}\right)$ hyperbolic IFS, attractor A.

Then

$$
\begin{gathered}
\operatorname{graph}\left(R\left(T_{P}\right)\right)=A \\
\text { iff } \\
R\left(T_{P}\right)\left(\omega_{i}^{1}(a)\right)=\omega_{i}^{2}(a) \text { for all } a \in \operatorname{graph}\left(R\left(T_{P}\right)\right) \text { and all } i .
\end{gathered}
$$

Second representation theorem

P logic program with Lipschitz-continuous $R\left(T_{P}\right)$.
Then there exists IFS with attractor $\operatorname{graph}\left(R\left(T_{P}\right)\right)$.

Idea: Set $\omega_{i}^{2}(x)=R\left(T_{P}\right)\left(\omega_{i}^{1}(x)\right)$.
Choose $\omega_{i}^{1}(x)$ such that it generates range (R). This is possible with arbitrarily small contraction, the necessary size of which can be determined by the Lipschitz constant of $R\left(T_{P}\right)$.

Concrete approximation by interpolation

$a \in \mathbb{N}$ accuracy.
l injective level mapping (enumeration of B_{P}).
Interpolation points: $\left(R(I), R\left(T_{P}(I)\right)\right.$, where $I \in D=\{A \mid l(A)<a\}$.
IFS with $\Omega_{a}=\left\{\left(\omega_{i}^{1}, \omega_{i}^{2}\right)\right\}$, where

$$
\begin{aligned}
& \omega_{i}^{1}(x)=\frac{1}{B^{a}} x+d_{i}^{1} \\
& \omega_{i}^{2}(x)=\frac{1}{B^{a}}+R\left(T_{P}\right)\left(d_{i}^{1}\right)-\frac{R\left(T_{P}\right)(0)}{B^{a}}
\end{aligned}
$$

Attractors A_{a} are graphs of continuous functions.
$\left(A_{a}\right)_{a}$ converges in function space (with sup-metric) to $R\left(T_{P}\right)$ if $R\left(T_{P}\right)$ Lipschitz-continuous.

Encoding as radial basis function network

Neural-symbolic integration research

We need to find constructive representations using standard architectures.
We need to study learning and information extraction.

We need to develop use cases to guide our research.
Recently: learning of ontologies for the Semantic Web.

