Generalized Metric Spaces in Logic Programming Semantics

Pascal Hitzler and Anthony Seda

Dagstuhl Seminar 00231, June 2000
Topology in Computer Science: Constructivity; Asymmetry and Partiality; Digitalization

Contents

- Logic Programs: Fixpoint Semantics
- Overview: Fixpoint Theorems
- Overview: Classes of Programs
- Metrics
- Generalized Ultrametrics
- Dislocated Metrics
- Dislocated Generalized Ultrametrics
- Discussion

Dept. of Mathematics, University College, Cork, Ireland \{phitzler,aks\}@ucc.ie http://maths.ucc.ie/~ \{pascal,aks\}/

Logic Programs: Fixpoint Semantics

A logic program P is a finite set of clauses

$$
\forall\left(A \leftarrow L_{1} \wedge \cdots \wedge L_{n}\right)
$$

from first order logic usually written as

$$
A \leftarrow L_{1} \wedge \cdots \wedge L_{n},
$$

where A an atom, L_{i} a literal, $n \geq 0$.
B_{P} : Herbrand base.
$I_{P}=2^{B_{P}}$: set of all Herbrand interpretations. ground (P) : set of all ground clauses of P.

Denotational semantics is given by models with additional properties.
We focus on the supported model semantics.

Define (nonmonotonic) operator $T_{P}: I_{P} \rightarrow I_{P}$ by $T_{P}(I)$ is set of all $A \in B_{P}$
for which there is a clause $A \leftarrow L_{1} \wedge \cdots \wedge L_{n}$ in $\operatorname{ground}(P)$ s.t. $I \models L_{1} \wedge \cdots \wedge L_{n}$.
I is a supported model iff $T_{P}(I)=I$.
We seek ways of finding fixed points of T_{P}.

Generalized Metric Fixpoint Theorems

Banach
metric

Matthews omit " $\mathrm{d}(\mathrm{x}, \mathrm{x})=0$ for all $\mathrm{x} "$ dislocated metric

Priess Crampe \& Ribenboim ultrametric mapping into poset generalized ultrametric (gum)

MPC\&R
dislocated gum

Theorems, if applicable, yield unique fixed points.

Programs which can be analysed with them will have unique supported models
(i.e. are uniquely determined).

* Matthews 1985
* Priess-Crampe \& Ribenboim 2000

Classes of Uniquely Determined Programs

acyclic

A level mapping is a function $l: B_{P} \rightarrow \gamma_{P}$, where γ_{P} is a (countable) ordinal.
P is locally hierarchical(lh) if for each $A \leftarrow L_{1}, \ldots, L_{n}$ in $\operatorname{ground}(P)$, $l(A)>l\left(L_{i}\right)$ for all i.
P is acyclic if it is lh and $\gamma_{P}=\omega$.

* Cavedon 1989, Apt\&Pedreschi 1993, H\&S 1999

Basic Construction

P logic program.
l level mapping for P.
For $J, K \in I_{P}$ define
$d(J, K)=0$ if $J=K$ and
$d(J, K)=2^{-\alpha}$
where J, K disagree on $A \in B_{P}$ with $l(A)=\alpha$ and agree on all atoms of level less than α.
$\left(2^{-\alpha}<2^{-\beta}\right.$ iff $\left.\beta<\alpha\right)$

If P acyclic:

- $\left(I_{P}, d\right)$ is complete ultrametric space.
- T_{P} is a contraction relative to d.
- T_{P} has unique fixed point.
- P has unique supported model M.
- $T_{P}^{n}(K) \rightarrow M$ in the Cantor topology on I_{P} (for all $K \in I_{P}$).
P locally hierarchical:
- $\left(I_{P}, d\right)$ generalized ultrametric (gum), i.e.
$\circ d: X \times X \rightarrow \Gamma\left(X=I_{P}\right), \Gamma$ poset, $\min \Gamma=0$
- $d(x, y)=0$ iff $x=y$ (for all x, y)
$\circ d(x, y)=d(y, x)($ for all $x, y)$
$\circ d(x, y) \leq \gamma$ and $d(y, z) \leq \gamma \Rightarrow d(x, z) \leq \gamma$ (for all x, y, z, γ)
- $\left(I_{P}, d\right)$ spherically complete i.e.
$\bigcap \mathcal{C} \neq \emptyset$ for each chain \mathcal{C} of (nonempty) balls
$\left(B_{\gamma}(y)=\{x \mid d(x, y) \leq \gamma\}\right)$.
- T_{P} strictly contracting i.e.
$d\left(T_{P}(x), T_{P}(y)\right)<d(x, y)$ for all $x \neq y$.
- T_{P} has unique fixed point.

PC\&R Theorem: (X, d) sph. comp. gum, f str. contr., then f has a unique fixed point.

- P has unique supported model M.
- M can be obtained as the limit of a transfinite iterative process involving T_{P} and the Cantor topology on I_{P}.

Domains as Gums

D algebraically complete cpo (e.g. I_{P}).
γ countable ordinal, $\Gamma_{\gamma}=\left\{2^{-\alpha} \mid \alpha<\gamma\right\}$.
$r: D_{C} \rightarrow \gamma+1$ rank function.
$d_{r}: D \times D \rightarrow \Gamma_{\gamma+1}$ defined by
$d_{r}(x, y)=\inf \left\{2^{-\alpha} \mid\right.$
$(c \sqsubseteq x$ iff $c \sqsubseteq y)$ for all $c \in D_{C}$ with $\left.r(c)<\alpha\right\}$.
$\left(D, d_{r}\right)$ is a spherically complete gum.

Proof uses the following observations:
○ $x \in B_{2^{\beta}}(y) \Rightarrow\{c \in \operatorname{approx}(x) \mid r(c)<\beta\}$

$$
=\{c \in \operatorname{approx}(y) \mid r(c)<\beta\}
$$

- $B_{\beta}=\sup \{c \in \operatorname{approx}(y) \mid r(c)<\beta\}$ exists
- $B_{\beta} \in B_{2^{\beta}}(y)$
- $B_{2^{\alpha}}(x) \subseteq B_{2^{\beta}}(y) \Rightarrow B_{\beta} \sqsubseteq B_{\alpha}$
* cf. Smyth 1989/91
* generalizes earlier result Seda \& Hitzler 1997
* PC\&R Theorem is more general than applied * bottom element of D not needed

Dislocated Metrics

(X, ϱ) dislocated metric space (d-metric)
(Matthews 1985: metric domain):
ϱ satisfies all conditions of a metric except

- $\varrho(x, x)=0$ for all $x \in X$.

Remaining notions as in the metric case.
Matthews: (X, ϱ) complete d-metric space, $f: X \rightarrow X$ contraction. Then f has a unique fixed point.
P is Φ^{*}-accessible if

- I model for P
- I supported model of P^{-}(negative part of P)

○ l level mapping for P s.t.
for all $A \leftarrow L_{1}, \ldots, L_{n}$ in ground (P) either $I \models L_{1} \wedge \cdots \wedge L_{n}$ and $l(A)>l\left(L_{i}\right)$ for all i or exists i s.t. $I \notin L_{i}$ and $l(A)>l\left(L_{i}\right)$.
P is Φ_{ω}^{*}-accessible if it is Φ^{*}-accessible and $\gamma_{P}=\omega$.

* cf. Apt \& Pedreschi 1993: acceptable programs

Generalized Fitting Construction

Neg_{P}^{*} : predicates occurring negatively in P and all predicates on which they depend. P^{-}: all ground clauses with head from Neg_{P}^{*}. $K \in I_{P}$, then K^{\prime} is K restricted to predicates not in N.

Definitions: $I \in I_{P}$ and level map l fixed.

- $f(K)=0$ if $K \subseteq I$.
$\circ f(K)=2^{-\alpha}$ with α least s.t. exists $A \in K \backslash I$ with $l(A)=\alpha$.
- $u(K)=\max \left\{f\left(K^{\prime}\right), d\left(K^{\prime}, I\right)\right\}$.
- $\varrho(J, K)=\max \{d(J, K), u(J), u(K)\}$
P is Φ_{ω}^{*}-accessible:
- $\left(I_{P}, \varrho\right)$ complete d-metric.
- T_{P} contraction.
- T_{P} has unique fixed point.
- P has unique supported model M.
- $T_{P}^{n}(K) \rightarrow M$ in the Cantor topology on I_{P} (for all $K \in I_{P}$).
* cf. Fitting 1994

Dislocated GUMs

(X, ϱ) dislocated gum (d-gum):
ϱ satisfies all conditions of a gum except

- $\varrho(x, x)=0$ for all $x \in X$.

Remaining notions as in the gum case.
(X, ϱ) spherically complete d-gum,
$f: X \rightarrow X$ strictly contracting.
Then f has a unique fixed point.
$P \Phi^{*}$-accessible:

- $\left(I_{P}, \varrho\right)$ spherically complete d-gum.
- T_{P} strictly contracting.
- T_{P} has unique fixed point.
- P has unique supported model M.
- M can be obtained as the limit of a transfinite iterative process involving T_{P} and the Cantor topology on I_{P}.

Another Application

P is Φ-accessible if I model for P and l level map s.t. each $A \in B_{P}$ satisfies either (i) or (ii).
(i) Exists $A \leftarrow L_{1}, \ldots, L_{n}$ in ground (P) s.t. $I \models L_{1} \wedge \cdots \wedge L_{n}$ and $l(A)>l\left(L_{i}\right)$ for all i.
(ii) For each $A \leftarrow L_{1}, \ldots, L_{n}$ in ground (P) exists i with $I \not \vDash L_{i}, I \not \vDash A, l(A)>l\left(L_{i}\right)$.

* P is Φ-accessible iff P has total model under Fitting-semantics (Fitting 1985).

Define $\delta(J, K)=\max \{d(J, I), d(K, I)\}$.

- $\left(I_{P}, \delta\right)$ spherically complete d-gum.
- T_{P} strictly contracting.
- M can be obtained as the limit of a transfinite iterative process involving T_{P} and the Cantor topology on I_{P}.

Discussion

- Understanding nonmonotonic reasoning.

Rounds \& Zhang 199x

- Exploring the "space" of all logic programs.
- Extensions to uncertain reasoning?
van Emden 1986
Mateis 1999
- Connections to topological dynamics.

Seda \& Hitzler 1997/8

- Relationships to artificial neural networks.

Hölldobler et al. 199x
Hitzler \& Seda 2000

Appendix: Atomic Topology Q on I_{P}

B_{P} countable
then Q homeomorphic to Cantor set.
Equivalent characterizations:

- Product toplogy on $2^{B_{P}}$
where $2=\{0,1\}$ carries discrete topology.
- Subbase $\{\mathcal{G}(L) \mid L$ literal $\}$,
$\mathcal{G}(L)=\left\{I \in I_{P} \mid I \models L\right\}$.
- $I_{n} \rightarrow I$ if
each $A \in I$ is eventually in I_{n} and each $A \notin I$ is eventually not in I_{n}.

For the transfinite iterative processes above:
For limit ordinal α, set I_{α} to be set of all $A \in B_{P}$ which are eventually in $\left(I_{\beta}\right)_{\beta<\alpha}$.

For successor ordinal α, set $I_{\alpha}=T_{P}\left(I_{\alpha-1}\right)$.
Transfinite sequence obtained converges in Q.

* Batarekh \& Subrahmanian 1989:

Query Topology

Appendix: General Version of MPC\&R

(X, ϱ) spherically complete d-gum.
$f: X \rightarrow X$ non-expanding
$(d(f(x), f(y)) \leq d(x, y)$ for all $x, y \in X)$
and f strictly contracting on orbits
$\left(d\left(f^{2}(x), f(x)\right)<d(f(x), x)\right.$
for all $x \in X$ with $x \neq f(x))$.
Then f has fixed point.
f strictly contracting then fixed point is unique.

- Also generalizes theorem by Khamsi, Kreinovich \& Misane 1993.
- Constructive proof for applied special case possible.

Level mappings to rank functions:
$I \in I_{P}$ finite set (i.e. compact element of I_{P}).
$r(I)=\max \{l(A) \mid A \in I\}$.

Appendix: Metrics and D-metrics

(X, d) complete ultrametric.
$u: X \rightarrow \mathbb{R}_{0}^{+}$continuous.
Then $\varrho(x, y)=\max \{d(x, y), u(x), u(y)\}$
is complete d-ultrametric.
(X, ϱ) complete d-metric.
$d(x, y)=0$ if $x=y$,
$d(x, y)=\varrho(x, y)$ otherwise.
Then d complete metric.
If f contraction in ϱ
then f contraction in d.

- Can prove the theorem of Matthews from Banach theorem.
- Anologous results hold for d-gums/gums.

