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Abstract

Every Scott-domain can be viewed as a generalized ultrametric space with proper-
ties which allow to apply a generalization of the Banach contraction mapping theorem.
We will give this construction in detail and apply it to a class of programs which is
stricly larger than the class of all acyclic programs. The paper is taken from [Hit98,
Chapter 4].

1 Domains as Generalized Ultrametric Spaces

We first introduce Scott-domains and generalized ultrametric spaces. The following is

taken from [SLG94].

1.1 Definition (Scott-Ershov-domain) A partially ordered set A is called consistent
if it has an upper bound, and is called directed if every finite subset of A has an upper
bound in A. A partial ordered set (D, <) is called a complete partial order (epo) if

(1) there exists L € D such that for all @ € D we have L < a (L is called the bottom
element of D) and

(2) if AC D is a directed set, then sup A exists in D.

An element ¢ of a cpo is called compact (or finite) if, for every directed set A C D with
¢ < sup A, there is some a € A with ¢ < a. We denote the set of all compact elements
of D by D..

A cpo D is called a (Scott-Ershov-) domain if

(1) for every a € D the set approx(a) := {¢ € D. | ¢ < a} is directed, a =
sup approx(a) (D is algebraic) and

(2) every consistent set in D has a supremum (D is consistently complete).



Intuitively, * < y in a domain can be interpreted as “x approximates y”. Compact
elements can be considered as practically implementable objects in a computer system,
so that every object of interest can be arbitrarily closely approximated by those.

The following is taken from [PR9T].

1.2 Definition (generalized ultrametric space) Let X be a set and let I' be a
partial order with least element 0. We call (X,d) a generalized ultrametric space if
d: X x X — I'is a function such that for all z,y,z € X

(1) d(x,y) =0 if and only if @ =y,
(2) d(z,y) = d(y, ), and
(3) if d(z,y),d(y,z) <y then d(z,z) < .

For 0 #~ € I'and = € X, the set B,(z) :={y € X | d(x,y) <~} is called a (y-)ball in
X. A generalized ultrametric space is called spherically complete if for any chain (C, Q)

of balls in X, (C # 0.
A function f: X — X is called

(1) contractive if d(f(x), f(y)) < d(x,y) for all z,y € X,

(2) strictly contracting on orbits if d(f*(z), f(z)) < d(f(x),x) for every x € X with
x # f(x), and
(3) strictly contracting if d(f(x), f(y)) < d(x,y) for all z,y € X with « # y.

We will need the following observations, which are well-known for ultrametric spaces.

1.3 Lemma Let (X, d, ') be a generalized ultrametric space. For a, 8 € I' and z,y € X
the following statements hold.

(1) If @ < 8 and B,(x) N B(y) # 0, then B,(z) C Bs(y).
(2) If Bo(z) N Ba(y) # 0, then B, (x) = B, (y).

(3) Bd(x,y)(x) = Bd(x,y)(y)‘

Proof: Let a € B,(x) and b € B,(x) N Bs(y). Then d(a,z) < o and d(b, z) < «, hence
d(a,b) < o < . Since d(b,y) < 3, we have d(a,y) < 3, hence a € Bg(y), which proves
the first statement. The second follows by symmetry and the third by replacing a by
d(x,y). [ |

The following theorem was given in [PR97] in a more general form.

1.4 Theorem (Priess-Crampe and Ribenboim) Let (X, d) be a spherically com-
plete generalized ultrametric space and let f : X — X be contractive and strictly
contracting on orbits. Then f has a fixed point. Moreover, if f is strictly contracting on
X, then f has a unique fixed point.



Proof: Assume that f has no fixed point. Then d(x, f(x)) # 0 for all @ € X. We
define the set B := {Bj,s)(z) | + € X}. Now let C be a maximal chain in B. Since
X is spherically complete, there exists z € (|C. We show, that By sy € ()C. Let
B, tzy)(x) € C. Since z € By p(z))(x), we get d(z,2) < d(z, f(x)) and d(z, f(z)) <
d(x, f(x)). By non-expansiveness of f, we get d(f(2), f(x)) < d(z,2) < d(x, f(x)). It
follows, that d(z, f(2)) < d(z, f(x)) and therefore By. ¢(.))(2) C Ba(e,f(x))(z) by Lemma
1.3. Since & was chosen arbitrarily, By(. ;) (2) C (C.

Now since f is strictly contracting on orbits, d(f(z), f*(z)) < d(z, f(#)), and there-
fore 2 & Ba),p2(:)([(2)) C Bagez))(f(2)). By Lemma 1.3, this is equivalent to
Bis(2),12(2))(f(2)) C Ba(z,5())(2), which is a contradiction to the maximality of C. So f
has a fixed point.

Now let f be strictly contracting on X and assume that z, y are two distinct fixed points
of f. Then we get d(z,y) = d(f(z), f(y)) < d(x,y) which is impossible. So the fixed

point of f is unique in this case. [ |

Note that the above given proof is not constructive, so it does not indicate a means by
which one can actually find a fixed point.

In order to apply this result, we show first how every domain can be viewed as a spher-
ically complete generalized ultrametric space. For some countable ordinal +, let I', be
the set {27% | @ < 4} of symbols 27 with ordering 27 < 277 if and only if 3 < a.

1.5 Definition (see [SH97]) Let D be a domain and r : D, — v a function, called a
rank function, and denote 277 by 0. Define d, : D x D — I',1; by

d.(z,y) :=1inf{27% | ¢ < 2 if and only if ¢ < y for every ¢ € D. with r(¢) < a}.
Then (D,d,) is called the generalized ultrametric space induced by r.

It is straightforward to see, that (D, d,) is indeed a generalized ultrametric space.
We proceed to show, that (D,d,) is spherically complete. For every generalized ultra-
metric which is induced by some rank function, we will denote the ball By—a(x) in the

following by B, (x).

1.6 Lemma (see [SHIT]) Let B,(x) C Bs(y) (so 8 < «). Then the following statements
hold.

(1) {c € approx(z) | r(c) < 8} = {c € approx(y) | r(c) < 5}.

(2) B, := sup{c € approx(z) | r(¢) < a} and Bg := sup{e € approx(y) | r(c) < 5}
both exist.

(3) Bs < B..

Proof: Since d,(x,y) < 277, the first statement follows immediately from the definition
of d,.. The second statement follows from the fact that every domain is consistently com-
plete. The third statement follows from the observation that Bs = sup{c € approx(y) |

r(c) < B} =sup{c € approx(x) | r(c) < B} < sup{c € approx(z) | r(c) <a}=B,. N



1.7 Theorem (see [SH97]) (D, d,) is spherically complete.

Proof: By the previous lemma, every chain (B,(x,)) of balls in D gives rise to a chain
(By) in D in reverse order. Let B :=sup B,. Now let B,(x) be an arbitrary ball in the
chain. It suffices to show that B € B,(x). Since B, € B,(x), we have d,.(B,,z) < 27,
and since d, is an ultrametric, it remains to show that d,.(B,B,) < 27°. For every
¢ < B,, we have ¢ < B by construction of B. Now let ¢ < B with ¢ € D, and r(¢) < a.
We have to show that ¢ < B,. Since D is a domain, hence an algebraic cpo, there exists
Bgs in the chain with ¢ < Bj. Now suppose Bs > B, (otherwise ¢ < B, immediately).
Then by the above lemma and the fact that the collection (B, (x,)) is a chain, we have
Bs(zg) C B,(z,) and therefore ¢ € {c¢ € approx(zs) | r(c) < a} = {¢ € approx(z,) |
r(c) < a}. Since B, is the supremum of the right-hand set, ¢ < B,. [ |

It should be noted that we needed both algebraicity and consistent completeness of
domains to prove the previous theorem.

2 Application to Generalized Acyclic Logic Pro-
grams

We apply this result to logic programming. We next introduce level mappings on Ip,
which will be used for defining rank functions. For the following, we denote the set of
all finite subsets of Ip, which is the set of all compact elements in Ip, by I..

2.1 Definition (level mapping) Let P be a normal logic program and let v € Q. A
mapping [ : Bp — v is called a level mapping. We call [ an w-level mapping if v = w.
We set L, :={A € Bp | l(A) < a} for a <y and Ly = 0.

We define the rank function induced by the level mapping [ by r([) := max{l(A) | A € I}
for every I € I.. A generalized ultrametric obtained by such a rank function will further

be denoted by d;.

The following proposition makes calculation of distances easier.

2.2 Proposition Let P be a normal logic program, let [ be a level mapping for P and
let I,J € Ip. Then di(1,J) =inf{27* | INL,=JNL,}.

Proof: [Immediate by the observation that for every I € Ip, I = sup{{A}|Ael}. N

The results obtained so far will be applied to the semantics of a class of programs which
is introduced next.

2.3 Definition (see [SH97]) Let P be a normal logic program. We call P gener-
alized acyclic if there exists a level mapping [ such that for every clause H <
By,....,B,,=Cq,...,=Cp, in ground(P) {(B;) < l[(H) and {(C;) < I(H) hold for every

1=1,...,npand 7 =1,...,ns.



Acyclic programs, i.e. programs with the property given in the previous definition, where
the level mapping is an w-level mapping, were studied in [AP93] in the context of
termination problems. If we weaken the “<”-condition in Definition 2.3 to “<” for
positive body literals, we obtain locally stratified programs as introduced in [Prz88]. It
was shown in [Fit94] that acyclic programs have a unique supported model. We will see
that this in fact carries over to generalized acyclic programs. Note that locally stratified
programs in general do have more than one supported model since every definite program
is locally stratified.

2.4 Theorem (see [SHI7]) Let P be a generalized acyclic program with respect to a
level mapping [. Then Tp is strictly contracting on (Ip,d;).

Proof: Let Iy, Iy € Ip with d(Iy, [5) =27°.

(1) Let & = 0, so [; and I differ on some element of Bp with level 0. Let A € Tp([y) with
[(A) = 0. Since P is generalized acyclic, A must be the head of a clause in ground(P) and
so A € Tp(I3). By the same argument, if A € Tp(l3) with [(A) = 0, then A € Tp(l1).
So Tp(Ily) N Ly =Tp(ly) N Ly, and it follows that

d(Tp(1), Tp(L,)) < 271 < 270 = d(I, 1)

as required.

(2) Let @ > 0, so I; and [y differ on some element of Bp with level a but agree
on all ground atoms of lower level. Let A € Tp(l;) with {[(A) < a. Then there is a
clause A < Ay,..., Ay, B1,...,m By, € ground(P), where ky,l; > 0, with A, € [4
and B; ¢ I for all & = 1,...,k;, { = 1,...,{1. Since P is generalized acyclic and
LNnL, =1,NnL,, it follows that A, € [y and B; € Iy for k =1,... k, l =1,...,1.
Therefore, A € Tp(l3). By the same argument, if A € Tp(ly) with [(A) = 0, then
AeTp(ly). SoTp(ly) N Loy1 = Tp(1lz) N Loy, and it follows that

d(Tp(1), Tp(L)) < 270 < 272 = d(14, 1)

as required. [ |

2.5 Theorem (see [SH97]) Let P be a generalized acyclic logic program. Then Tp has
a unique fixed point and hence P has a unique supported model.

Proof: Immediate by Theorem 1.4 and the previous theorems. [ |

2.6 Program Consider the following program P:
q(0) < —p(X), ~p(s(X))
p(0)
p(s(X)) = —~p(X)

Define [ : Bp — w + 1 by I(p(s"(0))) = n and [(¢(s"(0))) = w as a level mapping. By
Theorem 2.5, P has a unique supported model which is the set {p(s**(0)) | n € N}.
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2.7 Program Let P be the following program:

p(0,0) «
p(s(Y),0) = =p(Y, X), =p(Y, 5(X))
p(Y,S(X)) — _'p(YvX)

Define a level mapping on Bp by (p(s*(0),57(0))) = wk + j. Then P is strictly level-
decreasing and hence has a unique supported model which turns out to be {p(0, s*"(0)) |

n € N} U {p(s"*t1(0),s**1(0)) | k,n € N},

Note that Theorem 1.4 only yields the existence of a unique model for generalized acyclic
programs. Its proof does not provide a method for actually finding it. In [SH97], such a
method is given and is expanded on in [Hit97]. Again in [Hit97], computational adequacy
of generalized acyclic programs is studied.

3 Summary

We have seen that the theorem of Priess-Crampe and Ribenboim can be applied to
logic programming semantics. In fact, it was possible to show that generalized acyclic
programs have a unique supported model. Therefore, all the standard approaches to logic
programming semantics coincide for these programs. Furthermore, we have seen that
there is a relationship between domains and generalized ultrametric spaces comparable
with the relationship between domains and quasi-metrics as studied in [Smy91].

4 Problems

Problem 1 To what extent can the construction of generalized ultrametric spaces out
of domains, as done in Section 1, be reversed?

Problem 2 Examine the relationships between domains and generalized ultrametric
spaces.

Problem 3 To what extent can Theorem 2.5 be reversed?

Problem 4 Try to find a contructive proof of Theorem 1.4 in order to find a fixed point
of the function given there in the hypothesis.
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