Approximate Resolution for OWL ABox Reasoning

Pascal Hitzler AIFB, Universität Karlsruhe

Boris Motik FZI Karlsruhe

KnowledgeWeb

Problem Description

Terminology: TBox+RBox Annotations: ABox To date: approx. 25 million active websites.

Consequence: Scalability is an ABox size problem.

ABox reasoning is worst-case exponential even without nominals.

We propose a polynomial complete but unsound approximate reasoning algorithm.

Idea

We facilitate recent results due to *Hustadt, Motik, Sattler, Studer 2003/2004* on casting OWL-DL into disjunctive Datalog. (currently being implemented in KAON2)

Prolog

We approximate ABox reasoning by regarding disjunctive heads of rules as conjunctions.

We can use standard SLD-resolution.

Resulting data complexity polynomial instead of NP-hard.

Human \sqsubseteq Male \sqcup Female \longrightarrow Male(x) \lor Female(x) \leftarrow Human(x)

 \longrightarrow Male(x) \land Female(x) \leftarrow Human(x)

AIFB

Reduction to Disjunctive Datalog

Start with OWL-DL ontology.

 $\mathsf{D} \equiv \{\mathsf{o}_1,\mathsf{o}_2\} \longrightarrow \{\mathsf{o}_1,\mathsf{o}_2\} \sqsubseteq \mathsf{D}$

- **1.** Get rid of nominals. $\longrightarrow SHIQ(D)$ (language weakening)
- **2.** OWL-DL is subset of first-order logic. So translate into clausal form.
- **3.** Saturate TBox+RBox by taking all consequences. [Exponential]
- 4. Eliminate function symbols. [No modification of semantics!]

Result: Function- and negation-free disjunctive logic program.

Human ⊑ ∃Parent.Human

 $\longrightarrow \forall x \exists y (Human(x) \rightarrow Parent(x,y) \land Human(y))$

 \longrightarrow Parent(x,f(x)) \land Human(f(x)) \leftarrow Human(x)

 \longrightarrow Parent(x,fx)) \land Human(fx) \leftarrow Human(x)

KnowledgeWeb

TBox reasoning

ABox reasoning with disjunctive datalog is exponential.

We speed it up by changing the inference.

Disjunctive heads become conjunctive. Use standard SLD-resolution.

Complexity becomes polynomial.

NonMonotonic Reasoning

New inference can be described semantically using standard NMR terminology.

Prolog

KnowledgeWeb

Approximate SLD-Resolution

Answering of conjunctive (non-ground) queries.

Human ⊑ Male ⊔ Female. Human(Rudi).

Human ⊑ Male ⊓ Female. Human(Rudi).

?- Male(X). X=Rudi ?- Female(X). X=Rudi

Complete (no nominals!) but unsound.

Semantic effect of nominal elimination unclear.

Semantic description

NMR: Associate set of models \mathcal{M} with program P.

A is a *brave consequence* of P if it is true with respect to *at least one* model in \mathcal{M} .

For approximate SLD-resolution \mathcal{M} is the set of all well-supported models of P.

Variant of standard notion for non-disjunctive programs. Shown by Fages (1994) to be equivalent to stable models.

Reiter's Default Logic

Answer Set Programming

KnowledgeWeb

Performance forecast

Trade-off between performance gain and correctness of answers.

Many disjunctions in ontology: Higher speed-up.

Few disjunctions in ontology:Only little speed-up.Few incorrect answers.

Currently, disjunctions are rarely being used in applications.

References

- **1.** Hustadt, Motik, Sattler. Reducing SHIQ-Description Logic to Disjunctive Datalog Programs. KR 2004.
- **2.** Hustadt, Motik, Sattler. Reasoning in Description Logic with a Concrete Domain in the Framework of Resolution. ECAI2004.
- **3.** Hustadt, Motik, Sattler. Reasoning for Description Logics around *SHIQ* in a Resolution Framework. FZI Technical Report 3-8-04/04, 2004.
- **4.** Motik, Sattler, Studer. Query Answering for OWL-DL with Rules. ISWC 2004.
- New results forthcoming in Hitzler, Motik, Vrandecic. Approximate Resolution for OWL ABox reasoning (tentative title).

AIFB