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Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, Since 2005.
http://neural-symbolic.org/

Barbara Hammer and Pascal Hitzler (eds), Perspectives of 
Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation 
Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, 
Howard Bowman, Pedro Domingos, Pascal Hitzler, 
Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, 
Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, 
Hoifung Poon, Gerson Zaverucha
https://arxiv.org/abs/1711.03902 (2017)

Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs 
for eXplainable Artificial Intelligence: Foundations, Applications and 
Challenges. Studies on the Semantic Web Vol. 47, IOS Press, 2020. 

http://neural-symbolic.org/
https://arxiv.org/abs/1711.03902
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Neural-Symbolic? Symbolic-Subsymbolic?
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Neural-Symbolic

Computer Science perspective:

• Let’s try to get the best of both worlds:
– very powerful machine learning paradigm
– robust to data noise
– easy to understand and assess by humans
– good at symbol manipulation
– work seamlessly with background (domain) knowledge

• How to do that?
– Endow connectionist systems with symbolic components?
– Add connectionist learning to symbolic reasoners?
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The Interface Issue
• Symbolic knowledge comes as logical theories (sets of 

formulas over a logic)
• Subsymbolic systems process tuples of real/float numbers 

(vectors, matrices, tensors)

• How do you interface?
• How do you map between the symbolic world and the 

subsymbolic world?

Some key problems that need to be overcome:
• Logic is full of highly structured objects, how to represent them 

in Real Space?
• How to represent variable bindings in a distributed setting?
• The required length of logical deduction chain is not known up 

front.
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Representation Issues
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McCulloch & Pitts, 1943
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Variable Binding

Problems: • It’s still essentially datalog.        * It doesn’t really learn.
• It has a globally bounded reasoning depth.
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Logic in Real Space
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Logic in Real Space

Architecture is mix of radial basis
function network and neural gas
approach.
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Logic in Real Space

But it works only for toy size problems.
The theoretically required embedding into real numbers cannot scale. 

Bader, Hitzler, Hölldobler, 
Witzel, IJCAI-07
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RDFS Deductive Reasoning via Deep 
Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi,
Ning Xie, Derek Doran, Pascal Hitzler
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RDF reasoning

• Essentially, RDF reasoning is Datalog reasoning restricted to:
– Unary and binary predicates only.
– A fixed set of rules that are not facts.

• You can try the following:
– Use a vector embedding for one RDF graph.
– Create all logical consequences.
– Throw n% of them away.
– Use the rest to 

train a DL system.
– Check how many 

of those you 
threw away can 
be recovered this
way.
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RDF reasoning

• The problem with the approach just described:
– It works only with that graph.

• What you’d really like to do is:
– Train a deep learning system so that you can present a new, 

unseen graph to it, and it can correctly derive the deductively 
inferred triples. 

• Note: 
– You don’t know the IRIs in the graph up front. The only 

overlap may or may not be the IRIs in the rdf/s namespace.
– You don’t know up front how “deep” the reasoning needs to 

be.
– There is no lack of training data, it can be auto-generated.
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RDF reasoning

• [Note: RDF is one of the simplest useful knowledge 
representation languages beyond propositional logic.]

• Think knowledge graph. 
• Think node-edge-node triples such as 

BarackObama rdf:type President
BarackObama husbandOf MichelleObama
President rdfs:subClassOf Human
husbandOf rdfs:subPropertyOf spouseOf

• Then there is a (fixed, small) set of inference rules, such as
rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)
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Representation

• Goal is to be able to reason over unseen knowledge graphs.
I.e. the out-of-vocabulary problem needs addressing.

• Normalization of vocabulary (i.e., it becomes shared 
vocabulary across all input knowledge graphs.

• One vocabulary item becomes a one-hot vector 
(dimension d, number of normalized vocabulary terms)

• One triple becomes a 3 x d matrix.
• The knowledge graph becomes an n x 3 x d tensor

(n is the number of knowledge graph triples)

• Knowledge graph is stored in “memory”
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Mechanics

• An attention mechanism retrieves momory slots useful for 
finding the correct answer to a query.

• These are combined with the query and run through a (learned) 
matrix to retrieve a new (processed) query.

• This is repeated (in our experiment with 10 “hops”).
• The final out put is a yes/no answer to the query.
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Memory Network based on MemN2N
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Experiments: Performance

Baseline: non-normalized embeddings, same architecture
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Experiments: Reasoning Depth

Training time: just over a full day
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Completion Reasoning Emulation for the 
Description Logic EL+

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler
AAAI-MAKE 2020
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EL+ is essentially OWL 2 EL
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Support
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Architecture
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Architecture
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Architecture
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Encoding
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Results
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Noisy data
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Noisy data
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Fuzzy Deductive Reasoning via Logic 
Tensor Networks

Federico Bianchi, Pascal Hitzler
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Logic Tensor Networks

Based on Neural Tensor Networks.
Logic Tensor Networks are due to Serafini and Garcez (2016).
They have been used for image analysis under background 
knowledge.

Their capabilities for deductive reasoning have not been 
sufficiently explored.

Underlying logic: First-order predicate, fuzzyfied. 
Every language primitive becomes a vector/matrix/tensor.
Terms/Atoms/Formulas are embedded as corresponding 
tensor/matrix/vector multiplications over the primitives. 
Embeddings of primitives are learned s.t. the truth values of all 
formulas in the given theory are maximized.
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A-priori Limitations

• Not clear how to adapt this such that you can transfer to 
unseen input theories.

• Scalability is an issue.

• While apparently designed for deductive reasoning, the 
inventors hardly report on this issue.
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Transitive closure

parentheses: only newly entailed part of KB
MAE: mean absolute error; 
Matthews: Matthews coefficient (for unbalanced classes) 
top: top performing model, layer size and embeddings: 20
Bottom: one of the worst performing models.
Multi-hop inferences difficult.
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More take-aways from experiments

• Error decreases with
increasing satisfiability.

• Adding redundant formulas 
to the input KB decreases
error. 
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More take-aways from experiments

• Higher arity of predicates significantly increases learning 
time.
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More take-aways from experiments

• Model seems to often end up in local minima. This may be 
addressable using known approaches.

• LTNs seem to predict many false positives, while they are better 
regarding true negatives. This may be just because of the test 
knowledge bases we used, but needs to be looked at.

• Overfitting is a problem, but it doesn’t seem straightforward to 
address this for LTNs. [e.g. cross-validation may need 
completeness information, which may bias the network]

• Increasing layers and embedding size makes optimizing 
parameters much more difficult.

• Hence, there’s a path for more investigations, we’re only starting 
to understand this.
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Explaining Deep Learning via Symbolic 
Background Knowledge
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Explainable AI

• Explain behavior of trained (deep) NNs.

• Idea: 
– Use background knowledge in the form of linked data 

and ontologies to help explain.
– Link inputs and outputs to background knowledge.
– Use a symbolic learning system (e.g., DL-Learner) to 

generate an explanatory theory.

• We’re just starting on this, I report on very first experiments.
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Concept

40
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KGSWC paper

Md Kamruzzaman Sarker, Joshua Schwartz, Pascal Hitzler, 
Lu Zhou, Srikanth Nadella, Brandon Minnery, Ion Juvina, 
Michael L. Raymer, William R. Aue
Wikipedia Knowledge Graph for Explainable AI
In: Proceedings KGSWC 2020.

Sarker (first author) is presenting.

41
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Conclusions
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Conclusions

• Bridging the symbolic-subsymbolic gap is still a major quest.

• But there are tons of opportunities.
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Thanks!
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