

## Neurosymbolic Artificial Intelligence and Knowledge Graphs: Some Results



Pascal Hitzler

Data Semantics Laboratory (DaSe Lab)

Kansas State University

http://www.daselab.org



#### **Neuro-symbolic Al**

## Publications on neuro-symbolic Al in major conferences (research papers only):

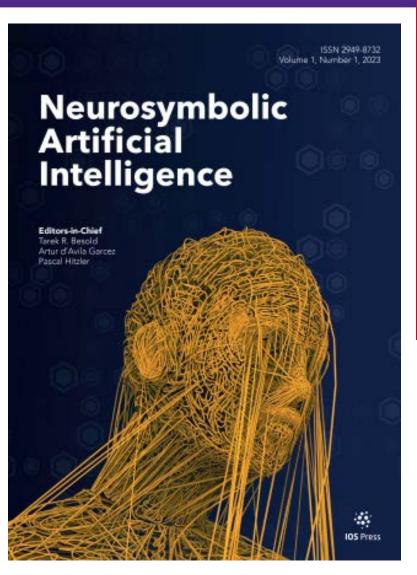


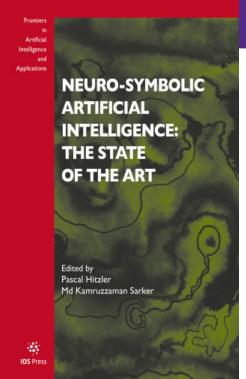
| conference | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | total |
|------------|------|------|------|------|------|------|------|------|------|------|-------|
| ICML       | 0    | 0    | 0    | 0    | 0    | 1    | 3    | 2    | 5    | 6    | 17    |
| NeurIPS    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 4    | 2    | 4    | 10    |
| AAAI       | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 1    | 1    | 1    | 4     |
| IJCAI      | 1    | 0    | 0    | 0    | 0    | 0    | 2    | 2    | 0    | 2    | 7     |
| ICLR       | N/A  | N/A  | 0    | 0    | 0    | 0    | 1    | 1    | 1    | 3    | 6     |
| total      | 1    | 0    | 0    | 0    | 0    | 2    | 6    | 10   | 9    | 16   | 44    |

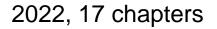
#### See

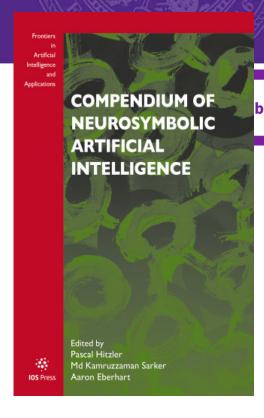
Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler Neuro-Symbolic Artificial Integration: Current Trends Al Communications 34 (3), 197-209, 2022.











2023, 30 chapters

Neurosymbolic Al community slack currently over 800 members email <a href="mailto:hitzler@ksu.edu">hitzler@ksu.edu</a> to get an invite



# Problem setting: why we need strong explainabilty for deep learning systems

#### The black box problem



There have been enormous strides recently in methods and applications of Deep learning.

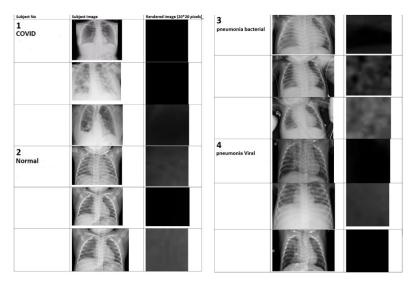
#### However

- Deep Learning system are black boxes
- Evaluation is only done statistically

This is insufficient for many application areas, and problematic for most.

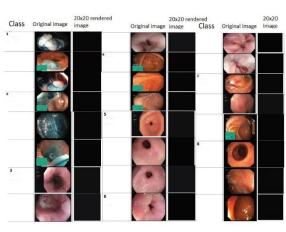
#### The black box problem

#### **COVID-19 detection**



## Gastrointestinal disease detection (Kvasir dataset)





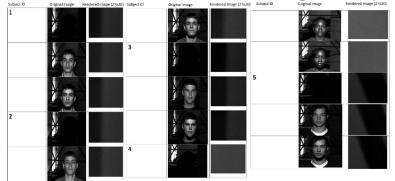
#### CNN classification accuracy:

Original images – 77%
Blank background images – 41%
Mere chance accuracy – 12%

#### **CNN** classification accuracy:

Original images – 67% Blank background images – 62% Mere chance accuracy – 25%

#### Face recognition (Yale B)



#### CNN classification accuracy:

Original images – 99% Blank background images – 87% Mere chance accuracy – 4%

Dhar, S., Shamir, L., 2021, Visual Informatics, 5(3), 92-101 – thanks to Lior Shamir for the slides input



#### Galaxy image annotation



Classification to spiral galaxies and elliptical galaxies

When the test set and training set are from the same part of the sky, the CNN shows a different Universe than when the training and test images come from different parts of the sky.



**SDSS** 



**Pan-STARRS** 



Training set and test set from the same part of the sky

|            | Elliptical | Spiral |
|------------|------------|--------|
| Elliptical | 2891       | 109    |
| Spiral     | 85         | 2915   |

Training set and test set from the same part of the sky

|            | Elliptical | Spiral |
|------------|------------|--------|
| Elliptical | 7850       | 150    |
| Spiral     | 756        | 7244   |

Training set and test set from different parts of the sky

|            | Elliptical | Spiral |
|------------|------------|--------|
| Elliptical | 2704       | 296    |
| Spiral     | 31         | 2969   |

Training set and test set from the same part of the sky

|            | Elliptical | Spiral |
|------------|------------|--------|
| Elliptical | 7699       | 301    |
| Spiral     | 450        | 7550   |

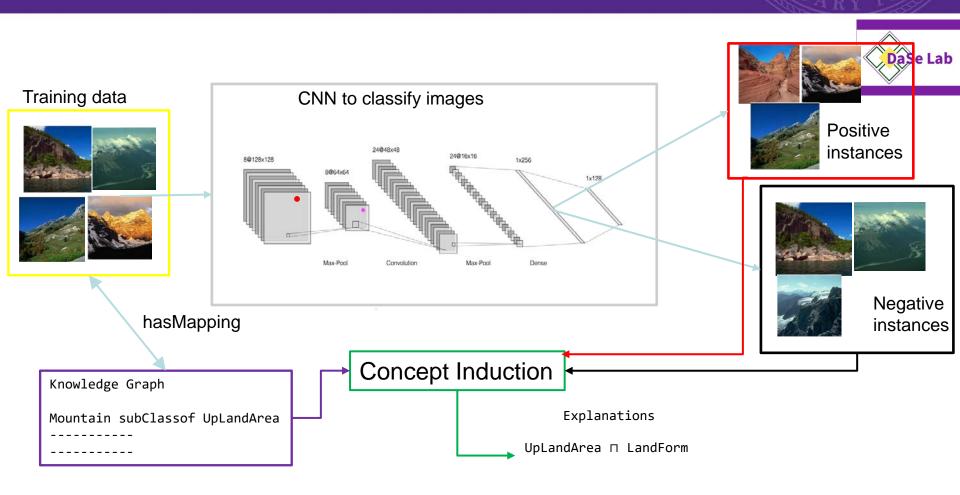
Dhar, S., Shamir, L., 2022, Astronomy and Computing, 38, 100545





## Approach: Concept Induction for Hidden Layer Analysis

#### Idea



New results based on: Abhilekha Dalal, Md Kamruzzaman Sarker, Adrita Barua, Eugene Vasserman, Pascal Hitzler <a href="https://arxiv.org/abs/2308.03999">https://arxiv.org/abs/2308.03999</a>.



## **Concept Induction**

Some slides adapted from Joshua Schwartz, with permission.

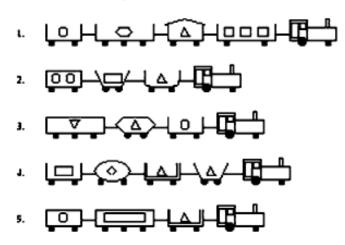


#### **Concept Induction**

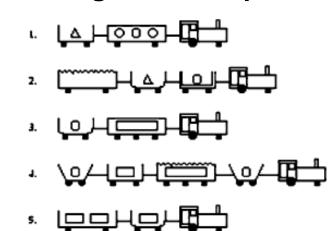


Approach similar to inductive logic programming, but using Description Logics (the logic underlying OWL).

#### **Positive examples:**



#### negative examples:



Task: find a class description (logical formula) which separates positive and negative examples.

#### **DL-Learner**

## DaSe Lab

#### **Positive examples:**

#### negative examples:

**DL-Learner result:** 

∃hasCar.(Closed □ Short)

In FOL:  $\{x \mid \exists y (\operatorname{hasCar}(x, y) \land \operatorname{Closed}(y) \land \operatorname{Short}(y))\}$ 

Theory and system: [Lehmann & Hitzler 2010], DL-Learner

```
// eastbound train 1
has car(east1, car 11).
has car(east1, car 12).
has car(east1, car 13).
has car(east1, car 14).
short(car 12).
closed(car 12).
long(car 11).
long(car 13).
short(car 14).
open car(car 11).
open car(car 13).
open car(car 14).
shape(car 11, rectangle).
shape(car 12, rectangle).
shape(car 13, rectangle).
shape(car 14, rectangle).
load(car 11, rectangle).
load count(car 11,three).
load(car 12,triangle).
load_count(car_12,one).
load(car 13, hexagon).
load count(car 13,one).
load(car 14,circle).
load(car_14, one).
wheels(car 11, two).
wheels(car 12, two).
wheels(car 13,three).
wheels(car 14, two).
```

```
car(car 11).
              car(car 12). car(car 13).
car(car 14).
car(car 21).
              car(car 22). car(car 23).
car(car 31).
              car(car 32). car(car 33).
car(car_41).
              car(car 42). car(car 43).
car(car 44).
car(car 51).
              car(car 52).
                            car(car 53).
car(car 61).
              car(car 62).
car(car 71).
              car(car 72).
                            car(car 73).
car(car 81).
              car(car 82).
                            car(car_93).
car(car_91).
              car(car 92).
car(car 94).
car(car 101).
               car(car 102).
               train(east2).
train(east1).
                              train(east3).
train(east4).
               train(east5).
train(west6).
               train(west7).
                              train(west8).
train(west9).
               train(west10).
```



#### Somewhat more formally...

generating complex description logic class expressions S from a given description logic knowledge base (or ontology)  $\mathcal{O}$  and sets P and N of instances, understood as positive and negative examples, such that  $\mathcal{O} \models S(a)$  for all  $a \in P$ , and  $\mathcal{O} \not\models S(b)$  for all  $b \in N$ 

#### Algorithmically – Refinement Operator

Start with simple formula E (e.g.,  $\top$  )



Loop: Expand E minimally in all possible ways to E1,...,En

Check accuracy for E1 through En regarding P and N Replace E by highest-scoring Ei

Exit loop if perfect solution found or other stopping criteria met

Return E

In reality, a list of formulas is returned, ranked by accuracy.

Accuracy can be f-measure, precision, recall, etc.

Checking accuracy needs deductive reasoning, i.e., is expensive.

[Lehmann & Hitzler, Machine Learning, 2010], DL-Learner system

### Algorithmically – heuristic



- Restrict allowed syntax expansions (e.g., conjunctions only)
- Restrict complexity of logic in background knowledge (e.g., class hierarchy only)

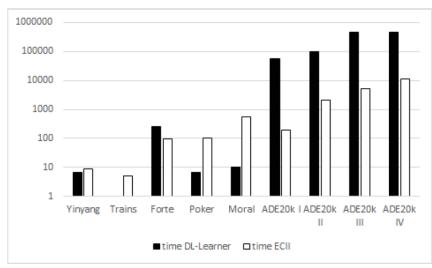


Figure 1: Runtime comparison between DL-Learner and ECII. The vertical scale is logarithmic in hundredths of seconds, and note that DL-Learner runtime has been capped at 4,500 seconds for ADE20k III and IV. For ADE20k I it was capped at each run at 600 seconds.

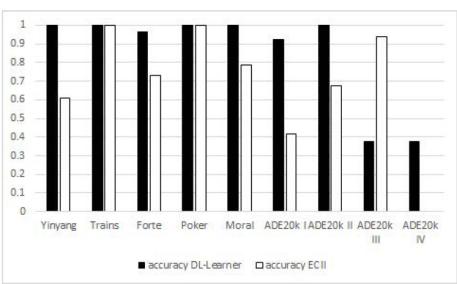


Figure 2: Accuracy ( $\alpha_3$ ) comparison between DL-Learner and ECII. For ADE20k IV it was not possible to compute an accuracy score within 3 hours for ECII as the input ontology was too large.

#### [Sarker & Hitzler, AAAI, 2019]: ECII system





## **Background Knowledge**



### Background knowledge



- Based on Wikipedia category hierarchy
  - which is not a hierarchy because it has loops, caused by crowd-sourcing
- Heuristically curated by removing loops
- Resulting class hierarchy has approx. 2M concepts
- Broad coverage (all things in Wikipedia)
- Can easily refer to it from instances by mapping to Wikipedia pages and looking up the page categories.

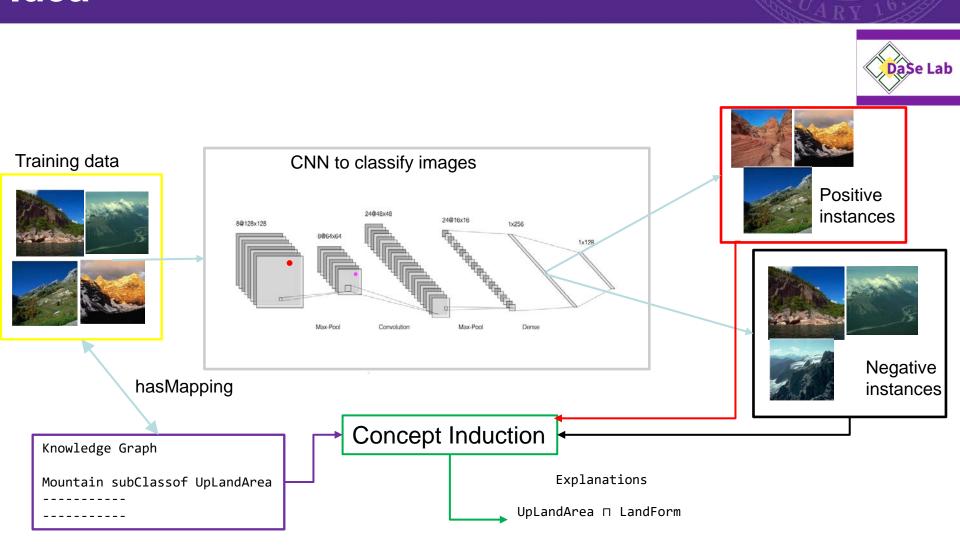
[Sarker et al., KGSWC2020]



## **Concrete Setting**



#### Idea



#### Scenario



- Scene recognition (from images)
- MIT ADE20k dataset http://groups.csail.mit.edu/vision/datasets/ADE20K/
- 10 overlapping scenes selected for our study
- Resnet50V2 trained (best of those we tried)
  - Training accuracy 87.6%
  - Validation accuracy 86.5%

#### **Images annotations**

The ADE20k images come with annotations of objects in the picture:

```
001 # 0 # 0 # sky # sky # ""

002 # 0 # 0 # road, route # road # ""

005 # 0 # 0 # sidewalk, pavement # sidewalk # ""

006 # 0 # 0 # building, edifice # building # ""

007 # 0 # 0 # truck, motortruck # truck # ""

008 # 0 # 0 # hovel, hut, hutch, shack, shanty # hut # ""

009 # 0 # 0 # pallet # pallet # ""

011 # 0 # 0 # box # boxes # ""

001 # 1 # 0 # door # door # ""

002 # 1 # 0 # window # window # ""

009 # 1 # 0 # wheel # wheel # ""
```

We ignore everything but the types of object on each image.



### Mapping to Background Knowledge



 String matching (Levenshtein with edit distance 0) from object types to Wikipedia categories

contains(img1,road1)
contains(img1, window1)
contains(img1, door1)
contains(img1, wheel1)
contains(img1, sidewalk1)
contains(img1, truck1)
contains(img1, box1)
contains(img1, building1)





## Label Hypothesis Generation and Confirmation

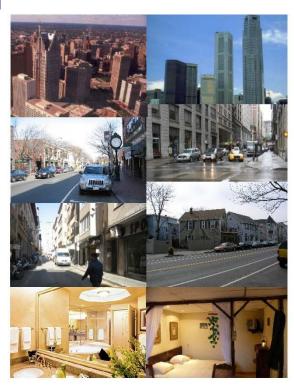
#### Trained CNN

DaSe Lab

- Scene classification on ADE20k
- Resnet50V2; 64 hidden nodes in the dense layer

|                 | precision | recall | f1-score | support |
|-----------------|-----------|--------|----------|---------|
| bathroom        | 0.90      | 0.78   | 0.84     | 134     |
| bedroom         | 0.89      | 0.88   | 0.88     | 277     |
| building_facade | 0.68      | 0.60   | 0.64     | 45      |
| conference_room | 0.77      | 0.91   | 0.83     | 33      |
| dining_room     | 0.75      | 0.84   | 0.79     | 82      |
| highway         | 0.96      | 0.88   | 0.92     | 59      |
| kitchen         | 0.84      | 0.87   | 0.86     | 130     |
| living_room     | 0.76      | 0.74   | 0.75     | 139     |
| skyscraper      | 0.90      | 0.88   | 0.89     | 64      |
| street          | 0.92      | 0.96   | 0.94     | 407     |
|                 |           |        |          |         |
| accuracy        |           |        | 0.87     | 1370    |
| macro avg       | 0.84      | 0.83   | 0.83     | 1370    |
| weighted avg    | 0.87      | 0.87   | 0.87     | 1370    |





ADE20K DATASET



Positive Images

Classify images as positive (above) as negative (below)

Collect new images using keyword "cross\_walk"



Negative Images



**GOOGLE IMAGES DATASET FOR NEURON 1** 

Figure 1: Example of images that were used for generating and confirming the label hypothesis for neuron 1

## workflow: label hypothesis generation and confirmation of label hypothesis with new images from Google images



| Neuron # | Obtained Label(s)          | Images | Coverage | Target % | Non-Target % |
|----------|----------------------------|--------|----------|----------|--------------|
| 0        | building                   | 164    | 0.997    | 89.024   | 72.328       |
| 1        | cross_walk                 | 186    | 0.994    | 88.710   | 28.923       |
| 3        | night_table                | 157    | 0.987    | 90.446   | 56.714       |
| 6        | dishcloth, toaster         | 106    | 0.999    | 16.038   | 39.078       |
| 7        | toothbrush, Pipage         | 112    | 0.991    | 75.893   | 59.436       |
| 8        | shower_stall, cistern      | 136    | 0.995    | 100.000  | 53.186       |
| 11       | river_water                | 157    | 0.995    | 31.847   | 22.309       |
| 12       | baseboard, dish_rag        | 108    | 0.993    | 75.926   | 48.248       |
| 14       | rocking_horse, rocker      | 86     | 0.985    | 54.651   | 47.816       |
| 16       | mountain, bushes           | 108    | 0.995    | 87.037   | 24.969       |
| 17       | stem                       | 133    | 0.993    | 30.827   | 31.800       |
| 18       | slope                      | 139    | 0.983    | 92.086   | 69.919       |
| 19       | wardrobe, air_conditioning | 110    | 0.999    | 89.091   | 65.034       |
| 20       | fire_hydrant               | 158    | 0.990    | 5.696    | 13.233       |
| 22       | skyscraper                 | 156    | 0.992    | 99.359   | 54.893       |
| 23       | fire_escape                | 162    | 0.996    | 61.111   | 18.311       |
| 25       | spatula, nuts              | 126    | 0.999    | 2.381    | 0.883        |
| 26       | skyscraper, river          | 112    | 0.995    | 77.679   | 35.489       |
| 27       | manhole, left_arm          | 85     | 0.996    | 35.294   | 26.640       |
| 28       | flooring, fluorescent_tube | 115    | 1.000    | 38.261   | 33.198       |
| 29       | lid, soap_dispenser        | 131    | 0.998    | 99.237   | 78.571       |
| 30       | teapot, saucepan           | 108    | 0.998    | 81.481   | 47.984       |
| 31       | fire_escape                | 162    | 0.961    | 77.160   | 63.147       |
| 33       | tanklid, slipper           | 81     | 0.987    | 41.975   | 30.214       |
| 34       | left_foot, mouth           | 110    | 0.994    | 20.909   | 49.216       |

| Neuron # | Obtained Label(s)            | Images | Coverage | Target % | Non-Target % |
|----------|------------------------------|--------|----------|----------|--------------|
| 35       | utensils_canister, body      | 111    | 0.999    | 7.207    | 11.223       |
| 36       | tap, crapper                 | 92     | 0.997    | 89.130   | 70.606       |
| 37       | cistern, doorcase            | 101    | 0.999    | 21.782   | 24.147       |
| 38       | letter_box, go_cart          | 125    | 0.999    | 28.000   | 31.314       |
| 39       | side_rail                    | 148    | 0.980    | 35.811   | 34.687       |
| 40       | sculpture, side_rail         | 119    | 0.995    | 25.210   | 21.224       |
| 41       | open_fireplace, coffee_table | 122    | 0.992    | 88.525   | 16.381       |
| 42       | pillar, stretcher            | 117    | 0.998    | 52.137   | 42.169       |
| 43       | central_reservation          | 157    | 0.986    | 95.541   | 84.973       |
| 44       | saucepan, dishrack           | 120    | 0.997    | 69.167   | 36.157       |
| 46       | Casserole                    | 157    | 0.999    | 45.223   | 36.394       |
| 48       | road                         | 167    | 0.984    | 100.000  | 73.932       |
| 49       | footboard, chain             | 126    | 0.982    | 88.889   | 66.702       |
| 50       | night_table                  | 157    | 0.972    | 65.605   | 62.735       |
| 51       | road, car                    | 84     | 0.999    | 98.810   | 48.571       |
| 53       | pylon, posters               | 104    | 0.985    | 11.538   | 17.332       |
| 54       | skyscraper                   | 156    | 0.987    | 98.718   | 70.432       |
| 56       | flusher, soap_dish           | 212    | 0.997    | 90.094   | 63.552       |
| 57       | shower_stall, screen_door    | 133    | 0.999    | 98.496   | 31.747       |
| 58       | plank, casserole             | 80     | 0.998    | 3.750    | 3.925        |
| 59       | manhole, left_arm            | 85     | 0.994    | 35.294   | 21.589       |
| 60       | paper_towels, jar            | 87     | 0.999    | 0.000    | 1.246        |
| 61       | ornament, saucepan           | 102    | 0.995    | 43.137   | 17.274       |
| 62       | sideboard                    | 100    | 0.991    | 21.000   | 29.734       |
| 63       | edifice, skyscraper          | 178    | 0.999    | 92.135   | 48.761       |



### **Evaluation**



#### **Approach**



- Each row of the table is a hypothesis, e.g. "neuron 1 activates more strongly on cross\_walk images (retrieved from Google images using keyword "cross\_walk") than on other images."
- Null hypothesis: There is no difference in activations.
- There is no reason to assume a normal distribution,
- hence using Mann-Whitney U test for assessment.

#### **Evaluation results**

| 2.7      | <b>.</b>                     |        |           |          | 3.5  |       |      | •     |         | <u>^</u> |
|----------|------------------------------|--------|-----------|----------|------|-------|------|-------|---------|----------|
| Neuron # | Label(s)                     | Images | # Activat | ions (%) | M    | ean   | Me   | dian  | z-score | p-value  |
|          |                              |        | targ      | non-t    | targ | non-t | targ | non-t |         |          |
| 0        | building                     | 42     | 80.95     | 73.40    | 2.08 | 1.81  | 2.00 | 1.50  | -1.28   | 0.0995   |
| 1        | cross_walk                   | 47     | 91.49     | 28.94    | 4.17 | 0.67  | 4.13 | 0.00  | -8.92   | <.00001  |
| 3        | night_table                  | 40     | 100.00    | 55.71    | 2.52 | 1.05  | 2.50 | 0.35  | -6.84   | <.00001  |
| 8        | shower_stall, cistern        | 35     | 100.00    | 54.40    | 5.26 | 1.35  | 5.34 | 0.32  | -8.30   | <.00001  |
| 16       | mountain, bushes             | 27     | 100.00    | 25.42    | 2.33 | 0.67  | 2.17 | 0.00  | -6.72   | <.00001  |
| 18       | slope                        | 35     | 91.43     | 68.85    | 1.59 | 1.37  | 1.44 | 1.00  | -2.03   | 0.0209   |
| 19       | wardrobe, air_conditioning   | 28     | 89.29     | 65.81    | 2.30 | 1.28  | 2.30 | 0.84  | -4.00   | <.00001  |
| 22       | skyscraper                   | 39     | 97.44     | 56.16    | 3.97 | 1.28  | 4.42 | 0.33  | -7.74   | <.00001  |
| 29       | lid, soap_dispenser          | 33     | 100.00    | 80.47    | 4.38 | 2.14  | 4.15 | 1.74  | -5.92   | <.00001  |
| 30       | teapot, saucepan             | 27     | 85.19     | 49.93    | 2.52 | 1.05  | 2.23 | 0.00  | -4.28   | <.00001  |
| 36       | tap, crapper                 | 23     | 91.30     | 70.78    | 3.24 | 1.75  | 2.82 | 1.29  | -3.59   | <.00001  |
| 41       | open_fireplace, coffee_table | 31     | 80.65     | 15.11    | 2.03 | 0.14  | 2.12 | 0.00  | -7.15   | <.00001  |
| 43       | central_reservation          | 40     | 97.50     | 85.42    | 7.43 | 3.71  | 8.08 | 3.60  | -5.94   | <.00001  |
| 48       | road                         | 42     | 100.00    | 74.46    | 6.15 | 2.68  | 6.65 | 2.30  | -7.78   | <.00001  |
| 49       | footboard, chain             | 32     | 84.38     | 66.41    | 2.63 | 1.67  | 2.30 | 1.17  | -2.58   | 0.0049   |
| 51       | road, car                    | 21     | 100.00    | 47.65    | 5.32 | 1.52  | 5.62 | 0.00  | -6.03   | <.00001  |
| 54       | skyscraper                   | 39     | 100.00    | 71.78    | 4.14 | 1.61  | 4.08 | 1.12  | -7.60   | <.00001  |
| 56       | flusher, soap_dish           | 53     | 92.45     | 64.29    | 3.47 | 1.48  | 3.08 | 0.86  | -6.47   | <.00001  |
| 57       | shower_stall, screen_door    | 34     | 97.06     | 32.31    | 2.60 | 0.61  | 2.53 | 0.00  | -7.55   | <.00001  |
| 63       | edifice, skyscraper          | 45     | 88.89     | 48.38    | 2.41 | 0.83  | 2.36 | 0.00  | -6.73   | <.00001  |

Table 3: Evaluation details as discussed in Section 4. Images: number of images used for evaluation. # Activations: (targ(et)): Percentage of target images activating the neuron (i.e., activation at least 80% of this neuron's activation maximum); (non-t): Same for all other images used in the evaluation. Mean/Median (targ(et)/non-t(arget)): mean/median activation value for target and non-target images.



### **Discussion**







Note: "bushes, bush" is the third-highest concept induction output (coverage 0.993; 48.052% of target images activating the neuron)

#### **Going forward**

We would really want to have labels with high target activation and low non-target activation.

- make use of more concept induction results
- better background knowledge
- optimize parameters (like thresholds)
- investigate neuron ensembles (

| Label(s)                     | <b>Images</b> | # Activat |       |
|------------------------------|---------------|-----------|-------|
|                              |               | targ      | non-t |
| building                     | 42            | 80.95     | 73.40 |
| cross_walk                   | 47            | 91.49     | 28.94 |
| night_table                  | 40            | 100.00    | 55.71 |
| shower_stall, cistern        | 35            | 100.00    | 54.40 |
| mountain, bushes             | 27            | 100.00    | 25.42 |
| slope                        | 35            | 91.43     | 68.85 |
| wardrobe, air_conditioning   | 28            | 89.29     | 65.81 |
| skyscraper                   | 39            | 97.44     | 56.16 |
| lid, soap_dispenser          | 33            | 100.00    | 80.47 |
| teapot, saucepan             | 27            | 85.19     | 49.93 |
| tap, crapper                 | 23            | 91.30     | 70.78 |
| open_fireplace, coffee_table | 31            | 80.65     | 15.11 |
| central_reservation          | 40            | 97.50     | 85.42 |
| road                         | 42            | 100.00    | 74.46 |
| footboard, chain             | 32            | 84.38     | 66.41 |
| road, car                    | 21            | 100.00    | 47.65 |
| skyscraper                   | 39            | 100.00    | 71.78 |
| flusher, soap_dish           | 53            | 92.45     | 64.29 |
| shower_stall, screen_door    | 34            | 97.06     | 32.31 |
| edifice, skyscraper          | 45            | 88.89     | 48.38 |
|                              |               |           |       |

### Concluding



- It works!
- But it needs to be refined.



## Thanks!



#### References

Md Kamruzzaman Saker, Lu Zhou, Aaron Eberhart, Pascal Hitzler, Neuro-Symbolic Artificial Intelligence: Current Trends. Al Communications 34 (3), 197-209, 2022.



Pascal Hitzler, Md Kamruzzaman Sarker (eds.), Neuro-Symbolic Artificial Intelligence - The State of the Art. Frontiers in Artificial Intelligence and Applications Vol. 342, IOS Press, Amsterdam, 2022.

Pascal Hitzler, Md Kamruzzaman Sarker, Aaron Eberhart (eds.), Compendium of Neurosymbolic Artificial Intelligence. Frontiers in Artificial Intelligence and Applications Vol. 369, IOS Press, Amsterdam, 2023.

Jens Lehmann, Pascal Hitzler, Concept Learning in Description Logics Using Refinement Operators. Machine Learning 78 (1-2), 203-250, 2010.



#### References

Md Kamruzzaman Sarker, Pascal Hitzler, Efficient Concept Induction for Description Logics. In:The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press 2019, pp. 3036-3043.

Md Kamruzzaman Sarker, Joshua Schwartz, Pascal Hitzler, Lu Zhou, Srikanth Nadella, Brandon Minnery, Ion Juvina, Michael L. Raymer, William R. Aue, Wikipedia Knowledge Graph for Explainable Al. In: Boris Villazón-Terrazas, Fernando Ortiz-Rodríguezm Sanju M. Tiwari, Shishir K. Shandilya (eds.), Knowledge Graphs and Semantic Web. Second Iberoamerican Conference and First Indo-American Conference, KGSWC 2020, Mérida, Mexico, November 26-27, 2020, Proceedings. Communications in Computer and Information Science, vol. 1232, Springer, Heidelberg, 2020, pp. 72-87.

#### References



Dhar, S., Shamir, L., 2021, Visual Informatics, 5(3), 92-101

Dhar, S., Shamir, L., 2022, Astronomy and Computing, 38, 100545

Cara Widmer, Md Kamruzzaman Sarker, Srikanth Nadella, Joshua Fiechter, Ion Juvina, Brandon Minnery, Pascal Hitzler, Joshua Schwartz, Michael Raymer, Towards Human-Compatible XAI: Explaining Data Differentials with Concept Induction over Background Knowledge <a href="https://arxiv.org/abs/2209.13710">https://arxiv.org/abs/2209.13710</a>

New results based on: Abhilekha Dalal, Md Kamruzzaman Sarker, Adrita Barua, Eugene Vasserman, Pascal Hitzler, <a href="https://arxiv.org/abs/2308.03999">https://arxiv.org/abs/2308.03999</a>.



## Thanks!

