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Explainable Al using deductive reasoning
over background knowledge
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Problem setting:
why we need strong explainabilty
for deep learning systems
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The black box problem

There have been enormous strides recently in methods and
applications of Deep learning.

However
« Deep Learning system are black boxes
 Evaluation is only done statistically

This is insufficient for many application areas, and problematic for
most.
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The black box problem

COVID-19 detection Gastrointestinal disease detection N Lab
T v (Kvasir dataset)

Original image image Class oOriginal image Image

neumonia bacterial
covm 4 / ~
2020 rendered 2020
- - — Class  Originalimage image

CNN classification accuracy:

I . . - Original images — 77%

F “ y: "\ , a | | Blank background images —
) 41%

Mere chance accuracy —

12%
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CNN classification accuracy:

‘3

Original images — 67%
Blank background images — 62%

Mere chance accuracy — 25% CNN classification accuracy:

Original images — 99%
Blank background images —
87%

Mere chance accuracy — 4%

Dhar, S., Shamir, L., 2021, Visual Informatics, 5(3), 92-101 — thanks to Lior Shamir for the slides input

KANSAS STATE RPI, September 2023

UNIVERSITY




Galaxy image annotation

e Lab
Classification to spiral galaxies and elliptical galaxies

When the test set and training set are
from the same part of the sky, the CNN
shows a different Universe than when
the training and test images come from
different parts of the sky.

spss o Pan-STARRS

Training set and test set from the same part of the sky Training set and test set from the same part of the sky
Elliptical | Spiral Elliptical | Spiral
Elliptical 2801 100 Elliptical 7850 150
Spiral 33 2915 Spiral 7156 7244
Training set and test set from different parts of the sky Training set and test set from the same part of the sky
Elliptical | Spiral Elliptical | Spiral
Elliptical 2704 296 Elliptical 7699 301
Spiral 31 2969 Spiral 450 7550

Dhar, S., Shamir, L., 2022, Astronomy and Computing, 38, 100545
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Approach: Concept Induction for Hidden
Layer Analysis
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Training data

881282128

CNN to classify images

g2 | Positive
R instances

Negative
hasMapping instances
i T [
P P— » Concept Induction
Mountain subClassof UpLandArea Explanations

UpLandArea M LandForm

—

New results based on: Abhilekha Dalal, Md Kamruzzaman Sarker,
Adrita Barua, Eugene Vasserman, Pascal Hitzler https://arxiv.org/abs/2308.03999.
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Concept Induction

Some slides adapted from Joshua Schwartz, with permission.
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Concept Induction

Approach similar to inductive logic programming, but using “ab
Description Logics (the logic underlying OWL).

Positive examples: negative examples:
v LloH o HaHoooHB o |LaBooHB
2 oL - 2 - e Mo B
. [ <G o HHE— v Lo T HE
i |Oallox]a at B . \No Al 0
. [ HT—Hal B O o | o | O

Task: find a class description (logical formula) which separates
positive and negative examples.

KANSAS STATE RPI, September 2023

UNIVERSITY



Positive examples: negative examples: eLab
: - e HETRHED
2 EggL e HRET 2 [ H e Ho -
. [T <A o - »o Lo TP
=1 a/ BN 2 \oAlo 0
.. [o {0 B R | o | O )
DL-Learner result: JdhasCar.(Closedrn Short)

inFoL: {z | dy(hasCar(zx,y) A Closed(y) A Short(y))}

Theory and system: [Lehmann & Hitzler 2010], DL-Learner
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car(car_11).
car(car_14).
car(car_21).
car(car_31).
car(car_41).
car(car_44).
car(car_51).
car(car_61).
car(car_71).
car(car_81).
car(car_91).

car(car_94).

car(car_101).

car(car_12).

car(car_22).
car(car_32).
car(car_42).

car(car_52).
car(car_62).
car(car_72).
car(car_82).
car(car_92).

car(car_102).

car(car_13).
car(car_23).
car(car_33).
car(car_43).
car(car_53).

car(car_73).

car(car_93).

train(eastl).
train(east4).
train(west6).
train(west9).

train(east2).
train(east5).
train(west?7).
train(west10).
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train(east3).

train(west8).

// eastbound train 1

has_car(eastl,car_11).
has_car(eastl,car_12).
has_car(eastl,car_13).
has_car(eastl,car_14).

short(car_12).
closed(car_12).
long(car_11).
long(car_13).
short(car_14).
open_car(car_11).
open_car(car_13).
open_car(car_14).
shape(car_11,rectangle).
shape(car_12,rectangle).
shape(car_13,rectangle).
shape(car_14,rectangle).
load(car_11,rectangle).

load_count(car_11,three).

load(car_12,triangle).
load_count(car_12,o0ne).
load(car_13,hexagon).
load_count(car_13,o0ne).
load(car_14,circle).
load(car_14,0ne).
wheels(car_11,two).
wheels(car_12,two).
wheels(car_13,three).
wheels(car_14,two).

b




Somewhat more formally...

O

KANSAS STATE
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generating complex description logic
class expressions S from a given description logic knowl-
edge base (or ontology) O and sets P and /N of instances,
understood as positive and negative examples, such that

= S(a) forall a € P, and O

£ S(b) forallb € N

UNIVERSITY
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Algorithmically — Refinement Operator
Start with simple formula E (e.g., T) ELab
Loop: Expand E minimally in all possible ways to
El,...,En
Check accuracy for E1 through En regarding P and N

Replace E by highest-scoring Ei

Exit loop 1f perfect solution found or other stopping
criteria met

Return E

In reality, a list of formulas is returned, ranked by accuracy.
Accuracy can be f-measure, precision, recall, etc.
Checking accuracy needs deductive reasoning, i.e., is expensive.

[Lehmann & Hitzler, Machine Learning, 2010], DL-Learner system
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Algorithmically — heuristic

 Restrict allowed syntax expansions (e.g., conjunctions only) eLab

 Restrict complexity of logic in background knowledge (e.g.,
class hierarchy only)
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1
Yinyang Trains Forte Poker Moral ADE20k 1ADE20k ADE20k ADE20k 0
Yinyang Trains Forte Poker Moral ADE20k 1ADE20k Il ADE20k ADE20k
Wtime DL-Learner Otime EC )
W accuracy DL-Learner  Oaccuracy EC
Figure I: Runtime comparison between DL-Learner and
ECII. The vertical scale is logarithmic in hundredths of sec- Figure 2: Accuracy (as) comparison between DL-Learner
onds, and note that DL-Learner runtime has been capped at and ECII. For ADE20k IV it was not possible to compute an
4.500 seconds for ADE20k III and IV. For ADE20k I it was accuracy score within 3 hours for ECII as the input ontology
capped at each run at 600 seconds. was too large.

[Sarker & Hitzler, AAAI, 2019]: ECII system
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Background Knowledge
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Background knowledge

Based on Wikipedia category hierarchy eLab

 which is not a hierarchy because it has loops, caused by
crowd-sourcing

 Heuristically curated by removing loops
 Resulting class hierarchy has approx. 2M concepts
 Broad coverage (all things in Wikipedia)

 Can easily refer to it from instances by mapping to Wikipedia
pages and looking up the page categories.

[Sarker et al., KGSWC2020]
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Concrete Setting
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Training data CNN to classify images

== Positive
R instances

24@48x48

801284128 2481615

e
e

s [ _
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Max-Pool Convolution Max-Pool Danss

e

Negative
hasMapping instances
i T [
PP — * Concept Induction
Mountain subClassof UpLandArea Explanations

___________ UpLandArea M LandForm
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Scenario

e Scene recognition (from images) eLab

 MIT ADE20k dataset
http://groups.csail.mit.edu/vision/datasets/ADE20K/

« 10 overlapping scenes selected for our study

* Resnet50V2 trained (best of those we tried)
— Training accuracy 87.6%
— Validation accuracy 86.5%

KANSAS STATE RPI, September 2023
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Images annotations

The ADE20k images come with annotations of
objects in the picture:

001 # O # O # sky # sky # """

002 # O # 0 # road, route # road # "

005 # O # 0 # sidewalk, pavement # sidewalk # "'
006 # O # O # building, edifice # building # ""
007 # O # 0O # truck, motortruck # truck # "

008 # O # 0 # hovel, hut, hutch, shack, shanty # hut # ™"
009 # O # 0 # pallet # pallet # "

011 # O # O # box # boxes # ""

001 # 1 # O # door # door # ""

002 # 1 # O # window # window # ™"

009 # 1 # O # wheel # wheel # ""

We ignore everything but the types of object on each image.
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Mapping to Background Knowledge

« String matching (Levenshtein with edit distance 0) from
object types to Wikipedia categories

contains(imgl,roadl)
contains(imgl, window1)
contains(imgl, doorl)
contains(imgl, wheell)

contains(imgl, sidewalkl)
contains(imgl, truckl)
contains(imgl, box1)
contains(imgl, buildingl)

KANSAS STATE RPI, September 2023
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Label Hypothesis
Generation and Confirmation
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Trained CNN

 Scene classification on ADE20k eLab
« Resnet50V2; 64 hidden nodes in the dense layer

precision recall fl-score support

bathroom 0.90 0.78 0.84 134
bedroom 0.89 0.88 0.88 277
building_facade 0.68 0.60 0.64 45
conference_room 0.77 0.91 0.83 33
dining_room 0.75 0.84 0.79 82
highway 0.96 0.88 0.92 59
kitchen 0.84 0.87 0.86 130
living_room 0.76 0.74 0.75 139
skyscraper 0.90 0.88 0.89 64
street 0.92 0.96 0.94 407
accuracy 0.87 1370
macro avg 0.84 0.83 0.83 1370
weighted avg 0.87 0.87 0.87 1370

KANSAS STATE RPI, September 2023
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Positive Images

A Classify images
« as positive (above) Collect new images using
as negative (below) keyword “cross_walk”

ADE20K DATASET GOOGLE IMAGES DATASET FOR NEURON 1

Negative Images

Figure 1: Example of images that were used for generating and confirming the label hypothesis for neuron 1

workflow: label hypothesis generation and
confirmation of label hypothesis with new images from Google images
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Neuron # Obtained Label(s) Images Coverage Target %  Non-Target %
0 building 164 0.997 89.024 72.328
1 cross_walk 186 0.994 88.710 28.923
3 night_table 157 0.987 90.446 56.714
6 dishcloth, toaster 106 0.999 16.038 39.078
7 toothbrush, Pipage 112 0.991 75.893 59.436
8 shower_stall, cistern 136 0.995 100.000 53.186
11 river_water 157 0.995 31.847 22.309
12 baseboard, dish_rag 108 0.993 75.926 48.248
14 rocking_horse, rocker 86 0.985 54.651 47.816
16 mountain, bushes 108 0.995 87.037 24.969
17 stem 133 0.993 30.827 31.800
18 slope 139 0.983 92.086 69.919
19 wardrobe, air_conditioning 110 0.999 89.091 65.034
20 fire_hydrant 158 0.990 5.696 13.233

22 skyscraper 156 0.992 99.359 54.893
23 fire_escape 162 0.996 61.111 18.311
25 spatula, nuts 126 0.999 2.381 0.883
26 skyscraper, river 112 0.995 77.679 35.489
27 manhole, left_arm 85 0.996 35.294 26.640
28 flooring, fluorescent_tube 115 1.000 38.261 33.198
29 lid, soap_dispenser 131 0.998 99.237 78.571
30 teapot, saucepan 108 0.998 81.481 47.984
31 fire_escape 162 0.961 77.160 63.147
33 tanklid, slipper 81 0.987 41.975 30.214
34 left_foot, mouth 110 0.994 20.909 49.216




Neuron # Obtained Label(s) Images Coverage Target % Non-Target %
35 utensils_canister, body 111 0.999 7.207 11.223
36 tap, crapper 92 0.997 89.130 70.606
37 cistern, doorcase 101 0.999 21.782 24.147
38 letter_box, go_cart 125 0.999 28.000 31.314
39 side_rail 148 0.980 35.811 34.687
40 sculpture, side_rail 119 0.995 25.210 21.224
41 open_fireplace, coffee_table 122 0.992 88.525 16.381
42 pillar, stretcher 117 0.998 52.137 42.169
43 central_reservation 157 0.986 95.541 84.973
44 saucepan, dishrack 120 0.997 69.167 36.157
46 Casserole 157 0.999 45.223 36.394
48 road 167 0.984  100.000 73.932
49 footboard, chain 126 0.982 88.889 66.702
50 night_table 157 0.972 65.605 62.735
51 road, car 84 0.999 98.810 48.571
53 pylon, posters 104 0.985 11.538 17.332
54 skyscraper 156 0.987 98.718 70.432
56 flusher, soap_dish 212 0.997 90.094 63.552
57 shower_stall, screen_door 133 0.999 98.496 31.747
58 plank, casserole 80 0.998 3.750 3.925
59 manhole, left_arm 85 0.994 35.294 21.589
60 paper_towels, jar 87 0.999 0.000 1.246
61 ornament, saucepan 102 0.995 43.137 17.274
62 sideboard 100 0.991 21.000 29.734
63 edifice, skyscraper 178 0.999 92.135 48.761




=
ogseran

Evaluation
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« Each row of the table is a hypothesis, e.g. “neuron 1 activates
more strongly on cross_walk images (retrieved from Google
Images using keyword “cross_walk”) than on other images.”

 Null hypothesis: There is no difference in activations.

e Thereis noreason to assume a normal distribution,
 hence using Mann-Whitney U test for assessment.

KANSAS STATE RPI, September 2023
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Evaluation results

F
Neuron # Label(s) Images # Activations (%) Mean Median z-score  p-value
targ non-t | targ non-t | targ non-t

0 building 42 80.95 73.40 | 2.08 1.81 | 2.00 1.50 -1.28 0.0995

1 cross_walk 47 91.49 28.94 | 4.17 0.67 | 4.13 0.00 -8.92  <.00001
3 night_table 40 100.00 55.71 | 2.52 1.05 | 2.50 0.35 -6.84  <.00001
8 shower_stall, cistern 35 100.00 54.40 | 5.26 1.35 | 5.34 0.32 -8.30  <.00001
16 mountain, bushes 27 100.00 25.42 | 2.33 0.67 | 2.17 0.00 -6.72  <.00001
18 slope 35 91.43 68.85 | 1.59 1.37 | 1.44 1.00 -2.03 0.0209
19 wardrobe, air_conditioning 28 89.29 65.81 | 2.30 1.28 | 2.30 0.84 -4.00  <.00001
22 skyscraper 39 97.44 56.16 | 3.97 1.28 | 4.42 0.33 -7.74  <.00001
29 lid, soap_dispenser 33 100.00 80.47 | 4.38 2.14 | 4.15 1.74 -5.92  <.00001
30 teapot, saucepan 27 835.19 49,93 | 2.52 1.05 | 2.23 0.00 -4.28  <.00001
36 tap, crapper 23 91.30 70.78 | 3.24 1.75 | 2.82 1.29 -3.59  <.00001
41 open_fireplace, coftee_table 31 80.65 15.11 | 2.03  0.14 | 2.12  0.00 -7.15  <.00001
43 central_reservation 40 97.50 85.42 | 7.43 3.71 | 8.08 3.60 -5.94  <.00001
48 road 42 100.00 74.46 | 6.15 2.68 | 6.65 2.30 -7.78  <.00001
49 footboard, chain 32 84.38 66.41 | 2.63 1.67 | 2.30 1.17 -2.58 0.0049
51 road, car 21 100.00 47.65 | 5.32 1.52 | 5.62 0.00 -6.03  <.00001
54 skyscraper 39 100.00 71.78 | 4.14 1.61 | 4.08 1.12 -7.60  <.00001
56 flusher, soap_dish 53 92.45 64.29 | 3.47 1.48 | 3.08 0.86 -6.47  <.00001
57 shower_stall, screen_door 34 97.06 32.31 | 2.60 0.61 | 2.53 0.00 -7.55  <.00001
63 edifice, skyscraper 45 88.89 48.38 | 2.41 0.83 | 236  0.00 -6.73  <.00001

Table 3: Evaluation details as discussed in Section 4. Images: number of images used for evaluation. # Activations: (targ(et)):
Percentage of target images activating the neuron (i.e., activation at least 80% of this neuron’s activation maximum); (non-t):
Same for all other images used in the evaluation. Mean/Median (targ(et)/non-t(arget)): mean/median activation value for target
and non-target images.
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Discussion
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m||||‘i iy =E

-target images not activating neuron 1 Non-target images activating neuron 1

Figure 2: Examples of some Google images used: target images (“cross_walk™) that did not activate the neuron; non-target
images from labels like “central_reservation,” “road and car,” and “fire_hydrant™ that activated the neuron.

Note: “bushes, bush” is the third-highest concept induction output
(coverage 0.993; 48.052% of target images activating the neuron)
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Going forward

I
N s

We would really want to have Label(s) Images # ‘L‘t‘;lg" ations ()

labels with high target @ building i) 8005  73.40 m
; : _ cross_walk 47 91.49 28.94
act!vat!on and low non-target ot table 10 0000 5571
activation. shower_stall, cistern 35 100.00 54.40
mountain, bushes 27 100.00 25.42
slope 35 91.43 68.85
o wardrobe, air_conditioning 28 89.29 65.81
_make l_'lse of more Concept @ skyscraper 39 97.44 56.16
Induction results lid, soap_dispenser 33 100.00  80.47
teapot, saucepan 27 85.19 49.93
 better background tap, crapper 23 0130 70.78
knowled ge open_fireplace, coffee_table 31 80.65 15.11
o . central_reservation 40 97.50 85.42
e optimize parameters (like road 42 | 100.00 7446
hr hol footboard, chain 32 84.38 66.41
thresho dS) road, car 21 100.00 47.65
e investigate neuron @ skyscraper 39 100.00 71.78
flusher, soap_dish 53 92.45 64.29
ensembles (. ) shower_stall, screen_door 34 97.06 32.31
@ cdifice, skyscraper 45 88.89 48.38
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e |t works!

e But it needs to be refined.
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Are Concept Induction Explanations
Meaningful to Humans?

Cara Widmer, Md Kamruzzaman Sarker, Srikanth Nadella, Joshua Fiechter, lon
Juvina, Brandon Minnery, Pascal Hitzler, Joshua Schwartz, Michael Raymer,
Towards Human-Compatible XAl: Explaining Data Differentials with Concept
Induction over Background Knowledge

https://arxiv.org/abs/2209.13710
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Are the results human-compatible? Part |

] eLab
Hypothesis:

— ECII explanations are better than semi-random explanations,
but worse than human-generated explanations.

 Experimental setting as before.

« 300 Amazon Mechanical Turk participants

 Seven concepts taken from top ECII results.

45 image set pairs, each set corresponding to a category.

Which of these better represents what the images in group A have that the images in group B do not?
UNIVERSITY Bake, Bakery, Bread, Indoor, Product, Store, Woman Basket, Bread, Cake, Ceiling, Floor, Person, Wall



Are the results human-compatible? Part |

Which of these better represents what the images in group A have that the images in group B do not?

Bake, Bakery, Bread, Indoor, Product, Store, Woman Basket, Bread, Cake, Ceiling, Floor, Person, Wall
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Are the results human-compatible? Part |

87-13 97-3 87-12 e Lab

5000
4500
4000
3500
3000
2500

4287
2000 3856 3862

1500
1000

500
580 153 578
0 '

Times Chosen

Human v ECII Human v Random ECIl v Random

OHuman OECI ORandom

KANSAS STATE RPI, September 2023

UNIVERSITY



Are the results human-compatible? Part |

Hypothesis: "
— ECII explanations matched to correct images better than

chance, but not as frequently as human generated

explanations

 Experimental setting as before.
« 100 Amazon Mechanical Turk participants

« 16 image sets, from ML decision errors (logistic regression
classifier)

Explanation: Home, Manufacturing, Clothing, Clothing Manufacturers, People, Chairs, Tableware

Which group of images do you think this explanation refers to?

KANSAS STATE
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Are the results human-compatible? Part |

Explanation: Home, Manufacturing, Clothing, Clothing Manufacturers, People, Chairs, Tableware

Which group of images do you think this explanation refers to?

Image Group A Image Group B

KANSAS STATE RPI, September 2023
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Are the results human-compatible? Part |

 Bayesian hierarchical signal-detection model (SDT) eLab
— yields discriminability measure

ECII Human

~ 31 157
)
2
S 21 10 1
g == ®
=
5 1 51
b e
)] ¢

0 1 0 1

FNvs TN FPvs TN TP vs FP TP vs FN FNvs TN FPvs TN TP vs FP TP vs FN
Comparison
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« We have clear indications that concept induction can help eLab
decipher hidden layer activations.

« Concept induction explanations appear to be meaningful to
humans.

« Thereis lots of work to do
— sharpening the explanation results
— In particular, understanding metaparameters
— In particular, what does *not* activate each neuron?
— does the activated neuron contribute to the output?
— how can we cast this into a practical explanations interace?
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Deep Deductive Reasoning

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler,
Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners.
Applied Intelligence 51 (9), 6326-6348, 2021.

Pascal Hitzler, Frank van Harmelen, A reasonable Semantic Web.
Semantic Web 1 (1-2), 39-44, 2010.

Hitzler, Rayan, Zalewski, Saki Norouzi, Eberhart, Vasserman, Deep Deductive
Reasoning is a Hard Deep Learning Problem, 2023, under review for
Neurosymbolic Atrtificial Intelligence.
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Deep Deductive Reasoners

« We trained deep learning systems to do deductive reasoning. eLab

« Why is this interesting?
— For dealing with noisy data (where symbolic reasoners do
very poorly).
— For speed, as symbolic algorithms are of very high
complexity.
— Out of principle because we want to learn about the
capabilities of deep learning for complicated cognitive tasks.

— To perhaps begin to understand how our (neural) brains can
learn to do highly symbolic tasks like formal logical
reasoning, or in more generality, mathematics.

A fundamental quest in Cognitive Science.
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Reasoning as Classification

« Given a set of logical formulas (a theory). eLab
 Any formula expressible over the same language is either
— alogical consequence or

— not alogical consequence.

 This can be understood as a classification problem for machine
learning.

e Itturns out to be areally hard machine learning problem.
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Knowledge Materialization

« Given a set of logical formulas (a theory). °La'°

 Produce all logical consequences under certain constraints.

 Without the qualifier this is in general not possible as the set of
all logical consequences is infinite.

« So we have to constrain to consequences of, e.g., a certain
syntactic form. For relatively simple logics, this is often
reasonably possible.
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Published DDR work

pseran

[Hitzler, Rayan, Zalewski, Saki Norouzi, Eberhart, Vasserman, NAI 2023]

Method  Logic Generative  Transferable  Scalability  Training time  Testing time  Accuracy

[7] RDF No No Moderate ~ 60 min < 1ms Accuracy of 87-99%
[8] RDF Yes No Moderate N/A N/A F1-score of 0.03-1

[9] RDES Yes No Low ~ 12 min N/A Accuracy of =~ 100%
[10] RDES Yes No Low N/A N/A Accuracy of 95%

[11] RDFS No Yes Moderate N/A N/A Accuracy of 52-96%
[12] ELT Yes No Moderate N/A N/A Somewhat better than guessing
[13] ECctt No No High N/A N/A Hits at rank 1 =~ 0.06
[14] OWL 2 RL No No Low N/A N/A Accuracy of 99%

[15] ASP Yes No Very low N/A N/A N/A

[16] OWL DL Yes No High N/A <3555 Fl-score of == 0.95
[17] ALC No No Moderate < 27 min N/A Accuracy of == 97%
[18] FOL Yes No Very low ~ 20 sec N/A Precision of 0.7

KANSAS STATE RPI, September 2023
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DDR theoretical limitations

With reasonable assumptions on complexity analysis: eLab

 Logics of ExpTime or harder (such as OWL DL) are beyond the
scope of deep learning — more precisely it is not possible to
learn precise reasoning over such logics under reasonable
assumptions on the size of the network.

« This means that even NP-complete reasoning (such as SAT) may
be out of scope.

Details/discussion in
Reasoning is a Hard Deep Learning Problem, 2023, under review for
Neurosymbolic Artificial Intelligence.
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RDFS Reasoning using Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie,
Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler,

Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment.
In: Proc. AAAI-MAKE 2021.

additional analysis by Sulogna Chowdhury, Aaron Eberhart
and Brayden Pankaskie
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RDF reasoning

« [Note: RDF is one of the simplest useful knowledge “ab
representation languages that is not propositional.]

« Think knowledge graph.
« Think node-edge-node triples such as

BarackObama rdf:type President
BarackObama husbandOf MichelleObama
President rdfs:subClassOf Human

husbandOf rdfs:subPropertyOf spouseOf

« Then there is a (fixed, small) set of inference rules, such as
rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)

KANSAS STATE RPI, September 2023
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RDF reasoning

« Essentially, RDF reasoning is Datalog reasoning restricted to eLab

— Unary and binary predicates only.

— A fixed set of rules that are not facts.
 You can try the following:
Use a vector embedding for one RDF graph.

KANSAS STATE
UNIVERSITY
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RDF reasoning

« The problem with the approach just described: eLab
— It works only with that graph.

« What you’d really like to do is:

— Train a deep learning system so that you can present a new,
unseen graph to it, and it can correctly derive the deductively
Inferred triples.

e Note:

— You don’t know the IRIs in the graph up front. The only
overlap may or may not be the IRIs in the rdf/s namespace.

— You don’t know up front how “deep” the reasoning needs to
be.

— There is no lack of training data, it can be auto-generated.
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Representation

Goal is to be able to reason over unseen knowledge graphs. eLab
l.e. the out-of-vocabulary problem needs addressing.

« Normalization of vocabulary (i.e., it becomes shared
vocabulary across all input knowledge graphs.

« One vocabulary item becomes a one-hot vector
(dimension d, number of normalized vocabulary terms)

* Onetriple becomes a 3 x d matrix.

« The knowledge graph becomes an n x 3 x d tensor
(n is the number of knowledge graph triples)

« Knowledge graph is stored in “memory”

KANSAS STATE RPI, September 2023
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Mechanics

 An attention mechanism retrieves memory slots useful for eLab
finding the correct answer to a query.

e These are combined with the query and run through a (learned)
matrix to retrieve a new (processed) query.

 This is repeated (in our experiment with 10 “hops”).
« The final out put is ayes/no answer to the query.
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Memory Network based on MemN2N
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Experiments: Performance

pseran

Training | Test Valid Triples Class Invalid Triples Class Accuracy
Prec (%) | Rec | F-Measure | Prec | Rec | F-Measure
A LD 1 93 98 96 98 93 95 96
A(90%) | A(10%) | 88 91 89 90 88 89 90
A B 79 62 68 70 84 76 69
A Synth 1 | 65 49 | 40 52 | 54 | 42 52
A LD 2 54 98 70 91 16 27 86
C LD 2 62 72 67 67 56 61 o1
CO0%) | C(10%) | 79 72 75 74 81 77 80
A D 58 68 62 62 50 54 58
C D 77 57 65 66 82 73 73
A Synth 2 | 70 51 40 47 52 38 51
C Synth 2 | 67 23 25 52 80 62 50

Baseline: non-normalized embeddings, same architecture
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Experiments: Reasoning Depth

Test Dataset o H-;}:u{p 0 - Hop 1 Hop 2 Hop3 Hop 4 Hop 3 Hop 6 Hop T HopE Hop 9 Hop 10
Tinked Data® | 0 | 0 | 0 | &0 | 99 | &5 | &9 | 97 | 9% | 17 | 94 Bh
Linked Data® | 2 D [0 [8 [ o1& |89 [98 9379|100 &8
]
3

OWLCenine™[ 19 [ 3 [ 7AETAEEE TR [HE[H [H[S [THE]6 T- - - - - - - - - - - - - - - - - -
Synthebc I EEIENEEA R sl e [de [ S 1 [ 5 [ [ 332414530 54302236 ]2

* LemonUby Ontology
A grovoe Oniology
£ Compleiely Dhifferent Domaim

Table 4: Experimental results over each reasoning hop

Dataset Hopl | Hop2 | Hop3 | Hop4 | Hop5 | Hop6 | Hop7 Hop 8 Hop 9 Hop 10
OWL-Centric* | 8% 67% 24% 0.01% | 0% 0% 0% 0% 0% 0%
Linked Data” 31% 50% 19%% 0% 0% 0% 0% 0% 0% 0%
Linked Data® 34% 46% 20% 0% 0% 0% 0% 0% 0% 0%
OWL-Centric® | 5% 64% 30% 1% 0% 0% 0% 0% 0% 0%
Synthetic Data | 0.03% | 1.42% | 1% 1.56% | 3.09% | 6.03% | 11.46% | 20.48% | 31.25% | 23.65%

* Training Set

h LemonUby Ontology

“ Agrovoc Ontology

4 Completely Different Domain

Table 5: Data distribution per knowledge graph over each reasoning hop

Training time: just over a full day
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Thanks!
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DDR via Logic Tensor Networks
—doesn’t scale

Federico Bianchi, Pascal Hitzler
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Logic Tensor Networks

Based on Neural Tensor Networks. eLab

Logic Tensor Networks are due to Serafini and Garcez (2016).
They have been used for image analysis under background
knowledge.

Their capabilities for deductive reasoning have not been
sufficiently explored.

Underlying logic: First-order predicate, fuzzyfied.
Every language primitive becomes a vector/matrix/tensor.

Terms/Atoms/Formulas are embedded as corresponding
tensor/matrix/vector multiplications over the primitives.

Embeddings of primitives are learned s.t. the truth values of all
formulas in the given theory are maximized.

KANSAS STATE RPI, September 2023
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A-priori Limitations

pseran

 Not clear how to adapt this such that you can transfer to
unseen input theories.

e Scalability is an issue.

« While apparently designed for deductive reasoning, the
Inventors hardly report on this issue.
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Transitive closure

e Va.b,ce A : (.S'H.b(a_, b) A -S'H.b(b,_ C)) — Sub(a, r:) eLab

e Va € A: —subla,a)
e Va.b: subla,b) — —sub(b.a)

Satisfiability MAE Matthews F1 Precision  Recall

0.99 0.12(0.12) | 0.58 (0.45) | 0.64 (0.51) | 0.60 (0.47) | 0.68 (0.55)
0.56 0.51(0.52) | 0.09 (0.06) | 0.27(0.20) | 0.20 (0.11) | 0.95(0.93)
Random 0.50 (0.50) | 0.00 (0.00) | 0.22(0.17) | 0.14(0.10) | 0.50 (0.50)

parentheses: only newly entailed part of KB

MAE: mean absolute error;

Matthews: Matthews coefficient (for unbalanced classes)

top: top performing model, layer size and embeddings: 20, mean
aggregator

Bottom: one of the worst performing models.
Multi-hop inferences difficult.

KANSAS STATE RPI, September 2023
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More take-aways from experiments

e Error decreases with
Increasing satisfiability.

=1
]

Mean Absohile Erar
=}
-]

=]
]

0.56 057 0.58 0.83 0.85 0.87 o7 0.81 0.85 0.89
Salisfiabilily

- Figure 3: Average MAE for the ancestors tasks on rounded
’ Addmg redundant formulas level of satisfiability. MAE decreases with the increase of
to the input KB decreases satisfiability.

error.

Tvpe MAE Matthews F1 Precision Recall
Six Axioms 0.16 (0.17) | 0.73 (0.61) | 0.77 (0.62) | 0.64 (0.47) | 0.96 (0.92)
Eight Axioms | 0.14(0.14) | 0.83(0.69) | 0.85 (0.72) | 0.80 (0.66) | 0.89 (0.79)
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More take-aways from experiments

pseran

 Higher arity of predicates significantly increases learning
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More take-aways from experiments

pseran

« Model seems to often end up in local minima. This may be
addressable using known approaches.

« LTNs seem to predict many false positives, while they are better
regarding true negatives. This may be just because of the test
knowledge bases we used, but needs to be looked at.

« Overfitting is a problem, but it doesn’t seem straightforward to
address this for LTNSs. [e.g. cross-validation may need
completeness information, which may bias the network]

* Increasing layers and embedding size makes optimizing
parameters much more difficult.

« Hence, there’s a path for more investigations, we're only starting
to understand this.
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Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment.
In: Proc. AAAI-MAKE 2021.

additional analysis by Sulogna Chowdhury, Aaron Eberhart
and Brayden Pankaskie

KANSAS STATE RPI, September 2023

UNIVERSITY



RDF reasoning

« [Note: RDF is one of the simplest useful knowledge “ab
representation languages that is not propositional.]

« Think knowledge graph.
« Think node-edge-node triples such as

BarackObama rdf:type President
BarackObama husbandOf MichelleObama
President rdfs:subClassOf Human

husbandOf rdfs:subPropertyOf spouseOf

« Then there is a (fixed, small) set of inference rules, such as
rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)

KANSAS STATE RPI, September 2023
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RDF reasoning

« Essentially, RDF reasoning is Datalog reasoning restricted to eLab

— Unary and binary predicates only.

— A fixed set of rules that are not facts.
 You can try the following:
Use a vector embedding for one RDF graph.

KANSAS STATE
UNIVERSITY

Create all logical consequences.

Throw n% of them away.

Use the rest to
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RDF reasoning

« The problem with the approach just described: eLab
— It works only with that graph.

« What you’d really like to do is:

— Train a deep learning system so that you can present a new,
unseen graph to it, and it can correctly derive the deductively
Inferred triples.

e Note:

— You don’t know the IRIs in the graph up front. The only
overlap may or may not be the IRIs in the rdf/s namespace.

— You don’t know up front how “deep” the reasoning needs to
be.

— There is no lack of training data, it can be auto-generated.
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Representation

Goal is to be able to reason over unseen knowledge graphs. eLab
l.e. the out-of-vocabulary problem needs addressing.

« Normalization of vocabulary (i.e., it becomes shared
vocabulary across all input knowledge graphs.

« One vocabulary item becomes a one-hot vector
(dimension d, number of normalized vocabulary terms)

* Onetriple becomes a 3 x d matrix.

« The knowledge graph becomes an n x 3 x d tensor
(n is the number of knowledge graph triples)

« Knowledge graph is stored in “memory”
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Mechanics

 An attention mechanism retrieves memory slots useful for eLab
finding the correct answer to a query.

e These are combined with the query and run through a (learned)
matrix to retrieve a new (processed) query.

 This is repeated (in our experiment with 10 “hops”).
« The final out put is ayes/no answer to the query.
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Memory Network based on MemN2N
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Experiments: Performance

pseran

Training | Test Valid Triples Class Invalid Triples Class Accuracy
Prec (%) | Rec | F-Measure | Prec | Rec | F-Measure
A LD 1 93 98 96 98 93 95 96
A(90%) | A(10%) | 88 91 89 90 88 89 90
A B 79 62 68 70 84 76 69
A Synth 1 | 65 49 | 40 52 | 54 | 42 52
A LD 2 54 98 70 91 16 27 86
C LD 2 62 72 67 67 56 61 o1
CO0%) | C(10%) | 79 72 75 74 81 77 80
A D 58 68 62 62 50 54 58
C D 77 57 65 66 82 73 73
A Synth 2 | 70 51 40 47 52 38 51
C Synth 2 | 67 23 25 52 80 62 50

Baseline: non-normalized embeddings, same architecture
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Experiments: Reasoning Depth

Test Dataset o H-;}:u{p 0 - Hop 1 Hop 2 Hop3 Hop 4 Hop 3 Hop 6 Hop T HopE Hop 9 Hop 10
Tinked Data® | 0 | 0 | 0 | &0 | 99 | &5 | &9 | 97 | 9% | 17 | 94 Bh
Linked Data® | 2 D [0 [8 [ o1& |89 [98 9379|100 &8
]
3

OWLCenine™[ 19 [ 3 [ 7AETAEEE TR [HE[H [H[S [THE]6 T- - - - - - - - - - - - - - - - - -
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Table 4: Experimental results over each reasoning hop

Dataset Hopl | Hop2 | Hop3 | Hop4 | Hop5 | Hop6 | Hop7 Hop 8 Hop 9 Hop 10
OWL-Centric* | 8% 67% 24% 0.01% | 0% 0% 0% 0% 0% 0%
Linked Data” 31% 50% 19%% 0% 0% 0% 0% 0% 0% 0%
Linked Data® 34% 46% 20% 0% 0% 0% 0% 0% 0% 0%
OWL-Centric® | 5% 64% 30% 1% 0% 0% 0% 0% 0% 0%
Synthetic Data | 0.03% | 1.42% | 1% 1.56% | 3.09% | 6.03% | 11.46% | 20.48% | 31.25% | 23.65%

* Training Set

h LemonUby Ontology

“ Agrovoc Ontology

4 Completely Different Domain

Table 5: Data distribution per knowledge graph over each reasoning hop

Training time: just over a full day
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Experiments: Performance

m

Base Inferred Invalid
Test Dataset RO e T#ERC [ %CTass | %lndv [ %R | %Axiom. | #Facs | #Eat | %Class [ %lndv | %R | %Axiom | #Facts
OWL-Centric 2464 | 996 832 14 Y 3 ] 494 832 14 0.01 I 20 462 i
Linked Data 20527 | 999 187 3 22 J ] 124 87 3 0.006 1 83 124
OWL-Centric Test Set | 21 622 400 36 41 3 0 837 400 36 3 1 12 476
Synthetic Data 2 152 sb6 52 0 1 0 126356 506 52 0 1 0.07 700
Table 2: Statistics of various datasets used in experiments
Baseline: non-normalized embeddings, same architecture
Training Dataset Test Dataset Walid Triples Class Invalid Triples Class Acecuracy
Precision Recall F-measure | Precision Recall F-measure -
’ fSensitivity ' {Specificity ”
OWL-Centric Dataset Linked Data 93 U B U 93 935 U6
OWL-Centric Dataset (90%) | OWL-Centric Dataset (10%) | 88 21 89 20 88 89 9%
OWL-Centric Dataset OWL-Centric Test Set ® 79 H2 68 70 84 16 69
OWL-Centric Dataset Synthetic Data 65 49 40 32 34 42 52
OWL-Centric Dataset Linked Data * 54 o8 0 o1 16 27 86
OWL-Centric Dataset * Linked Data * 62 72 67 67 36 61 91
OWL-Centric Dataset(90%) *| OWL-Centric Dataset(10%) *| 79 72 75 74 g1 77 80
OWL-Centric Dataset OWL-Centric Test Set *® 58 ikl 62 62 30 iy} 38
OWL-Centric Dataset ® OWL-Centric Test Set 2° 77 37 63 6 82 73 73
OWL-Centric Dataset Synthetic Data * 70 51 40 47 32 38 51
OWL-Centric Dataset ® Synthetic Data ® 67 3 25 52 20 62 50
Baseline
OWL-Centric Dataset Linked Data 73 o8 B3 PE] 46 61 43
OWL-Centric Dataset (909 ) | OWL-Centric Dataset (10%) | 84 83 B4 84 84 B 82
OWL-Centric Dataset OWL-Centric Test Set ® 62 84 70 80 40 48 1
OWL-Centric Dataset Synthetic Data 35 41 32 48 35 45 48

® More Tricky Mos & Balanced Dataset
® Completely Different Domain.

Table 3: Experimental results of proposed model
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Generative RDFS Reasoning
using Pointer Networks — doesn’t work
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Pointer Networks

e Pointer Networks ‘point’ to input elements! °La'°

e Ptr-Net approach specifically targets problems whose outputs are
discrete and correspond to positions in the input.

e At each time step, the distribution of the attention is the answer!

e Application:
— NP-hard Travelling Salesman Problem (TSP)
— Delaunay Triangulation
— Convex Hull
— Text Summarization
— Code completion
— Dependency Parsing

KANSAS STATE RPI, September 2023

UNIVERSITY



Pointer Networks for Reasoning

« To mimic human reasoning behaviour where one can learn to choose eLab
a set of symbols in different locations and copy these symbols to

suitable locations to generate new logical consequences based on a set of
predefined logical entailment rules

b v v v v v
Vv v ¥
v 121 Pl

v I
LY
PR

CCDACC—ALCD

'
!
I
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Completion Reasoning Emulation for the
Description Logic EL+ - hardly works

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler,
Completion Reasoning Emulation for the Description Logic EL+.

In: Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug
Lenat, Reinhard Stolle, Frank van Harmelen (eds.), Proceedings of the

AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge

Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25,
2020, Volume I.

KANSAS STATE RPI, September 2023
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EL+ is essentially OWL 2 EL

KAN
UNII

) -
Table 2: ££7 Completion Rules :
CXCCY
|
CXNCYCCZ (1) ACC CCD — AC D
CX C 3RY.CZ (2) AL ACCy; CiNnC:CDEACD
JRX.CYLC CZ (3) ACC CCdR.D — ACJdR.D
RX C RY 4 ACJRB BCC ARCCD EACD
RXoRYLCRZ () ACIS D SCR = ACdR.D
GeGACdR,.C CC3dR,.D Rie R CR=EACAR.D
Table 1: ££7 Semantics
Description Expression Semantics
Individual a ac Al
Top T AT
Bottom 1 ]
Concept C ct c AT
Role R R C AT x AT
Conjunction cnpD cTnpt
Existential Restriction dR.C { a|there is b € AT such that (a,b) € RT and b e CT }
Concept Subsumption CCD cTcpt
Role Subsumption RCS RL C §1
Role Chain Rio---oR,CR Rlfo---oRICRT

with o signifying standard binary composition




Results

Table 7: Average Precision Recall and F1-score For each Distance Evaluation

pseran

Atomic Levenshtein Distance

Character Levenshtein Distance

Predicate Distance

Prcc1.~;mn| Recall |P]—scmr+:

Pn:msmn| Kecall |I-']—scnn:

PI'-I'_‘['lEi.I{}]'Il Recall |I-']—scnrr:

Synthetic Data

Piecewise Prediction |(. 138663 | 0.142208 (0.140412( 0.138663 |0.142208)|0.140412 {0.138646(0.141923(0.140264
Deep Prediction 0154398 0.156056 (0.155222( 0.1534398 |0.156056| 0.155222 (0. 154258 (0. 1535736 (0. 154993
Flat Prediction 0.140410] 0.142976 (0.141681( 0.140410 10.142976| 0.141681 [0.140375(0.142687 | 0.141521
Random Prediction [0.010951 |0.0200518(0.014166( 0.006833 |0.012401 | 0.008811 [0.004352|0.007908 | 0.007908
SNOMED Data
Piecewise Prediction |(0.010530] 0.013554 [0.011845( 0.010530 |0.013554 | 0.011845 [0.010521 {0.013554|0.011839
Deep Prediction 0013983 |0.0172811 [ 0.016395( 0.015983 (0017281 0.016395 [0.015614 (0.017281 [0.016396
Flat Prediction 0.014414] 0.018300 (0.016112{0.0144140)0.018300| 0.016112 {0.013495 [ 0.018300|0.015525
Random Prediction |0.002807 | 0.006803 [0.003975( 0.001433 |0.003444) 0.002023 [0.001769(0.004281 [ 0.002504

KANSAS STATE

UNIVERSITY

RPI, September 2023
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