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2022, 17 chapters 2023, 30 chapters 

Neurosymbolic AI community slack
currently over 800 members
email hitzler@ksu.edu to get an invite

mailto:hitzler@ksu.edu
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Neuro-symbolic AI
Publications on neuro-symbolic AI in major conferences 
(research papers only):

See
Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler
Neuro-Symbolic Artificial Integration: Current Trends
AI Communications 34 (3), 197-209, 2022.
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Neurosymbolic? Neuro-symbolic? 
Neural-Symbolic? Symbolic-Subsymbolic?
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Neural

• Refers to computational abstractions of (natural) neural 
network systems.

• Prominently includes Artificial Neural Networks and Deep 
Learning as machine learning paradigms.

• More generally sometimes referred to as connectionist systems.

• Prominent applications come from the machine learning world.

• And of course, there is the current deep learning hype.
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Symbolic

• Refers to (computational) symbol manipulations of all kind.

• Graphs and trees, traversal, data structure operations.
• Knowledge representation in explicit symbolic form (data base, 

ontology, knowledge graph)
• Inductive and statistical inference.
• Formal logical (deductive or abductive) reasoning.

• Prominent applications all over computer science, including 
expert systems (and their modern versions), information 
systems, data management, added value of data annotation, etc.

• Semantic Web data is inherently symbolic.
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Neural-Symbolic

Computer Science perspective:

• Connectionist machine learning systems are
– very powerful for some machine learning problems
– robust to data noise
– very hard to understand or explain
– really poor at symbol manipulation
– unclear how to effectively use background (domain) knowledge

• Symbolic systems are
– Usually rather poor regarding machine learning problems
– Intolerant to data noise
– Relatively easy to analyse and understand
– Really good at symbol manipulation
– Designed to work with other (background) knowledge 
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Neural-Symbolic

Computer Science perspective:

• Let’s try to get the best of both worlds:
– very powerful machine learning paradigm
– robust to data noise
– easy to understand and assess by humans
– good at symbol manipulation
– work seamlessly with background (domain) knowledge

• How to do that?
– Endow connectionist systems with symbolic components?
– Add connectionist learning to symbolic reasoners?
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Neural-Symbolic

Note:

• Deep Learning systems are a far cry from how natural neural 
networks work.

• There are things that our brain can do, and things that symbolic 
approaches can do, where we do not have the faintest idea how to 
solve them through deep learning (or any other connectionist 
learning approach). 

• The argument that we “just don’t have enough training data” 
speaks (understandably) to the current hype, but is a hope that is 
unfounded: While this may be the case in some cases, there is no 
rationale to overgeneralize. 
[Note: if we had “enough computational power,” we could also 
solve all reasonable-size NP-complete problems in an instant.]
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The Interface Issue
• Symbolic knowledge comes as logical theories (sets of 

formulas over a logic)
• Subsymbolic systems process tuples of real/float numbers 

(vectors, matrices, tensors)

• How do you interface?
• How do you map between the symbolic world and the 

subsymbolic world?

Some key problems that need to be overcome:
• Logic is full of highly structured objects, how to represent them 

in Real Space?
• How to represent variable bindings in a distributed setting?
• The required length of logical deduction chain is not known up 

front.
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Representation Issues
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McCulloch & Pitts, 1943
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McCulloch & Pitts follow-on



RPI, September 2023

McCulloch & Pitts follow-on
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McCulloch & Pitts follow-on
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McCulloch & Pitts follow-on
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The catch

• This is all propositional.

• There’s only that much you can do with propositional logic.

• In particular, in terms of knowledge representation and 
reasoning, propositional logic doesn’t really get you anything 
useful.

E.g.
• RDF (knowledge graphs) is already much closer to datalog than 

to propositional logic.

• OWL (knowledge graph schemas) is a fragment of first-order 
predicate logic.



RPI, September 2023

Variable Binding

Problems: • It’s still essentially datalog.        * It doesn’t really learn.
• It has a globally bounded reasoning depth.
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Logic in Real Space

[Hitzler, Dissertation, 2001]
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Logic in Real Space

Architecture is mix of radial basis
function network and neural gas
approach.

Bader, Hitzler, Hölldobler, 
Witzel, IJCAI-07
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Logic in Real Space

But it works only for toy size problems.
The theoretically required embedding into real numbers cannot scale. 

Bader, Hitzler, Hölldobler, 
Witzel, IJCAI-07
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Some other early contributions
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[Bader, Hitzler, 2004]

23

Consequence operators of logic programs mapped to the Cantor 
set in the real numbers are fractals (self-similar) – and can formally 
described by means of Iterated Function Systems.
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Rule Extraction

[Lehmann, Bader, Hitzler 2010; Labaf, Hitzler, Evans 2017]

• There is always a unique reduced/minimal (definite) 
propositional logic program that captures the input-output 
behavior of a given ANN (3-layer feedforward neural network 
with threshold activation functions).

• Corresponding programs always exist and are usually smaller if 
additional background knowledge is taken into account, but 
uniqueness is not guaranteed then.

24
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Current Trends
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Neuro-symbolic AI
Publications on neuro-symbolic AI in major conferences 
(research papers only):

See
Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler
Neuro-Symbolic Artificial Integration: Current Trends
AI Communications 34 (3), 197-209, 2022.
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Comparison with 2005 survey [Bader, Hitzler 2005]
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Kautz 2020 Categories
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[Bader and Hitzler 2005]

Neuro-symbolic Learning Cycle

29



RPI, September 2023

Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, since 2005.
Joint with Artur d’Avila Garcez.
http://neural-symbolic.org/

Barbara Hammer and Pascal Hitzler (eds), Perspectives of 
Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation 
Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, 
Howard Bowman, Pedro Domingos, Pascal Hitzler, 
Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, 
Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, 
Hoifung Poon, Gerson Zaverucha
https://arxiv.org/abs/1711.03902 (2017)

Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs 
for eXplainable Artificial Intelligence: Foundations, Applications and 
Challenges. Studies on the Semantic Web Vol. 47, IOS Press, 2020. 

http://neural-symbolic.org/
https://arxiv.org/abs/1711.03902
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Thanks!
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