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Parrots don’t really know what
they are talking about.

They do not have introspection.
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...life is like a box of chocolates, you 
never know what you’re gonna get...
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Status – and what we need

• The above are just examples, and there are similar issues 
with other deep learning approaches.

• To date, the best we have is really statistical assessments of 
correctness.
But in many situations, this is just insufficient.

• We need methods to assess what deep learning systems are 
doing, which go beyond statistical assessments.

• In particular, we need to add introspection – understanding what 
happens in the hidden layers.
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Overview: Concept Induction for Hidden 
Layer Analysis

Abhilekha Dalal, Adrita Barua, Md Kamruzzaman Sarker, Pascal Hitzler, in 
preparation.
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Concept Induction

Approach similar to inductive logic programming, but using 
Description Logics (the logic underlying OWL).

Positive examples:                               negative examples:

Task: find a class description (logical formula) which separates 
positive and negative examples.
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DL-Learner

Positive examples:                               negative examples:

DL-Learner result:

In FOL:

Theory and system: [Lehmann & Hitzler 2010], DL-Learner 
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Images

Come from the MIT ADE20k dataset
http://groups.csail.mit.edu/vision/datasets/ADE20K/
They come with annotations of objects in the picture:

001 # 0 # 0 # sky # sky # ""
002 # 0 # 0 # road, route # road # ""
005 # 0 # 0 # sidewalk, pavement # sidewalk # ""
006 # 0 # 0 # building, edifice # building # ""
007 # 0 # 0 # truck, motortruck # truck # ""
008 # 0 # 0 # hovel, hut, hutch, shack, shanty # hut # ""
009 # 0 # 0 # pallet # pallet # ""
011 # 0 # 0 # box # boxes # ""
001 # 1 # 0 # door # door # ""
002 # 1 # 0 # window # window # ""
009 # 1 # 0 # wheel # wheel # ""

http://groups.csail.mit.edu/vision/datasets/ADE20K/
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Mapping to Background Knowledge

• Wikipedia category hierarchy (curated) [KGSWC2020]
• approx. 2M concepts
• For each known object in image, create an individual for the 

ontology which is in the appropriate class.

contains road1
contains window1
contains door1
contains wheel1
contains sidewalk1
contains truck1
contains box1
contains building1



PFIA, July 2023

ECII: heuristic Concept Induction system

• For scalability, we developed ECII (Efficient Concept Induction 
from Instances) which trades some correctness for speed. 
[Sarker, Hitzler, AAAI-19]
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Trained CNN

• Scene classification on ADE20k
• Resnet50 V2; 64 hidden nodes in the dense layer

precision    recall  f1-score   support
bathroom      0.90      0.78      0.84       134
bedroom       0.89      0.88      0.88      277
building_facade 0.68      0.60     0.64        45
conference_room 0.77      0.91     0.83        33
dining_room 0.75      0.84      0.79        82
highway       0.96      0.88      0.92        59
kitchen       0.84      0.87      0.86       130
living_room 0.76      0.74      0.75       139
skyscraper      0.90      0.88      0.89        64
street       0.92      0.96      0.94       407

accuracy                           0.87      1370
macro avg       0.84      0.83      0.83      1370
weighted avg       0.87      0.87      0.87      1370

Concept induction yields logical formulae, however we simply this 
(for now) by taking only the set of class names from the formulae.
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Dalal, Barua,
Sarker, Hitzler,
In preparation
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Example neurons

• Neuron #3
– Concept(s) assigned: night_table
– verification: yes (activates 90.4% for night tables)
– how often does it activate for non-target input? 59.1%

• Neuron #6
– Concept(s) assigned: dishcloth, toaster
– verification: no (activates 35.8% for dishcloths, toasters)

• Neuron #43
– Concept(s) assigned: central_reservation
– verification: yes (activates 95.5% for central_reservations)
– how often does it activate for non-target input? 85.2%
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Neurons overview

• Out of 64 neurons, 18 concept assignments have been 
confirmed (activation over 80%)

19

Neuron concepts target activation non-target activation
neuron_0 building 89.0 74.2
neuron_1 cross_walk 88.7 30.2
neuron_3 night_table 90.4 59.2
neuron_8 shower_stall, cistern 84.8 51.6
neuron_14 rocking_horse, rocker 81.1 53.0
neuron_18 slope 92.1 67.7
neuron_19 wardrobe, air_conditionin 84.6 64.7
neuron_22 skyscrapper 99.4 59.2
neuron_29 lid, soap_dispenser 92.5 78.6
neuron_43 central_reservation 95.5 85.2
neuron_44 saucepan, dishrack 80.5 32.7
neuron_48 road 100.0 74.9
neuron_49 footboard, chain 95.7 67.5
neuron_51 road, car 94.8 48.9
neuron_54 skyscraper 98.7 72.0
neuron_56 flusher, soap_dish 89.4 60.7
neuron_57 Shower_stall, screen_door 81.7 29.7
neuron_63 edifice, skyscraper 89.4 50.6

average 90.5 58.9
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Neurons overview – second CI response

• Out of 64 neurons, 14 concept assignments have been 
confirmed (activation over 80%)
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Neuron concepts target activation non-target activation
neuron_0 building, dome 90.4 76.0
neuron_1 cross_walk 88.7 28.6
neuron_3 pillow 98.2 64.4
neuron_7 clamp_lamp 95.1 59.1
neuron_18 slope 92.1 64.2
neuron_22 skyscrapper 99.4 62.4
neuron_29 faucet, flusher 95.7 76.0
neuron_36 tap, shower_screen 86.2 72.0
neuron_43 central_reservation 95.5 90.4
neuron_48 route 100.0 79.3
neuron_50 pillow 99.4 66.9
neuron_51 route, car 92.6 49.8
neuron_54 skyscrapper 98.7 74.7
neuron_63 building, skyscraper 94.4 51.5

average 94.7 65.4
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Are Concept Induction Explanations 
Meaningful to Humans?

Cara Widmer, Md Kamruzzaman Sarker, Srikanth Nadella, Joshua Fiechter, Ion 
Juvina, Brandon Minnery, Pascal Hitzler, Joshua Schwartz, Michael Raymer, 
Towards Human-Compatible XAI: Explaining Data Differentials with Concept 
Induction over Background Knowledge 
https://arxiv.org/abs/2209.13710

https://arxiv.org/abs/2209.13710
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Are the results human-compatible? Part I

• Hypothesis:
– ECII explanations are better than semi-random explanations, 

but worse than human-generated explanations.
• Experimental setting as before.
• 300 Amazon Mechanical Turk participants
• Seven concepts taken from top ECII results.
• 45 image set pairs, each set corresponding to a category.

22
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Are the results human-compatible? Part I

23
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Are the results human-compatible? Part I

24

87-13                  97-3                   87-12
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Are the results human-compatible? Part II
• Hypothesis:

– ECII explanations matched to correct images better than 
chance, but not as frequently as human generated 
explanations

• Experimental setting as before.
• 100 Amazon Mechanical Turk participants
• 16 image sets, from ML decision errors (logistic regression 

classifier)

25
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Are the results human-compatible? Part II
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Are the results human-compatible? Part II
• Bayesian hierarchical signal-detection model (SDT)

– yields discriminability measure

27
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Summary

• We have clear indications that concept induction can help 
decipher hidden layer activations.

• Concept induction explanations appear to be meaningful to 
humans.

• There is lots of work to do
– sharpening the explanation results
– in particular, understanding metaparameters
– in particular, what does *not* activate each neuron?
– does the activated neuron contribute to the output?
– how can we cast this into a practical explanations interace?

28
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Thanks!
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Thanks!
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