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Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, since 2005.
Joint with Artur d’Avila Garcez.
http://neural-symbolic.org/

Barbara Hammer and Pascal Hitzler (eds), Perspectives of 
Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation 
Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, 
Howard Bowman, Pedro Domingos, Pascal Hitzler, 
Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, 
Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, 
Hoifung Poon, Gerson Zaverucha
https://arxiv.org/abs/1711.03902 (2017)

Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs 
for eXplainable Artificial Intelligence: Foundations, Applications and 
Challenges. Studies on the Semantic Web Vol. 47, IOS Press, 2020. 

http://neural-symbolic.org/
https://arxiv.org/abs/1711.03902
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2022 Book
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Neuro-symbolic Artificial Intelligence: The State of the Art
Pascal Hitzler and Md Kamruzzaman Sarker, editors
Fontriers in AI and Applications Vol. 342, IOS Press, Amsterdam, 2022
https://www.iospress.com/catalog/books/neuro-symbolic-artificial-intelligence-the-state-of-the-art

https://www.iospress.com/catalog/books/neuro-symbolic-artificial-intelligence-the-state-of-the-art
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Neuro-symbolic AI
Publications on neuro-symbolic AI in major conferences 
(research papers only):

See
Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler
Neuro-Symbolic Artificial Integration: Current Trends
AI Communications 34 (3), 197-209, 2022.
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New Book for 2023

Compendium of Neuro-Symbolic Artificial Intelligence (tentative)

approx. 30 chapters and 700 pages

Each chapter based on 2 or more related published papers.

Book will provide an even more comprehensive overview of the 
state of the art.

[We can still add a few chapters – see 
https://daselab.cs.ksu.edu/content/call-book-chapter-proposals-
compendium-neuro-symbolic-artificial-intelligence and send your 
chapter proposal very quickly.]
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Neural

• Refers to computational abstractions of (natural) neural 
network systems.

• Prominently includes Artificial Neural Networks and Deep 
Learning as machine learning paradigms.

• More generally sometimes referred to as connectionist systems.

• Prominent applications come from the machine learning world.

• And of course, there is the current deep learning hype.



ECNLPIR, July 2022

Symbolic

• Refers to (computational) symbol manipulations of all kind.

• Graphs and trees, traversal, data structure operations.
• Knowledge representation in explicit symbolic form (data base, 

ontology, knowledge graph)
• Inductive and statistical inference.
• Formal logical (deductive or abductive) reasoning.

• Prominent applications all over computer science, including 
expert systems (and their modern versions), information 
systems, data management, added value of data annotation, etc.

• Semantic Web data is inherently symbolic.
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Neuro-Symbolic

Computer Science perspective:

• Let’s try to get the best of both worlds:
– very powerful machine learning paradigm
– robust to data noise
– easy to understand and assess by humans
– good at symbol manipulation
– work seamlessly with background (domain) knowledge

• How to do that?
– Endow connectionist systems with symbolic components?
– Add connectionist learning to symbolic reasoners?
– ... ?
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Neuro-symbolic AI

[AI Communications 34 (3), 197-209, 2022]

Analysis based on
• structured survey from 2005 [Bader and Hitzler, Dimensions of 

Neural-symbolic Integration – A Structured Survey]
• categories presented by Henry Kautz at AAAI 2020 [cf. Kautz, AI 

Magazine 43, 2022, 105-125]

How did themes, methods, emphases change?
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[Bader and Hitzler 2005]

Neuro-symbolic Learning Cycle
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Three “Old” Examples
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McCulloch & Pitts, 1943



ECNLPIR, July 2022

McCulloch & Pitts follow-on
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McCulloch & Pitts follow-on
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McCulloch & Pitts follow-on
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McCulloch & Pitts follow-on
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The catch

• This is all propositional.

• There’s only that much you can do with propositional logic. [For 
what you can do, see extensive research by Artur Garcez et al.]

• In particular, in terms of knowledge representation and 
reasoning, propositional logic doesn’t really get you anything 
useful.
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Variable Binding

Problems: • It’s still essentially datalog.        * It doesn’t really learn.
• It has a globally bounded reasoning depth.
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Logic in Real Space
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Logic in Real Space

Architecture is mix of radial basis
function network and neural gas
approach.

Bader, Hitzler, Hölldobler, 
Witzel, IJCAI-07
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Logic in Real Space

But it works only for toy size problems.
The theoretically required embedding into real numbers cannot scale. 

Bader, Hitzler, Hölldobler, 
Witzel, IJCAI-07
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Analysis
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2005 Survey
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Kautz 2020 Categories
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Deep Deductive Reasoners

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, 
Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners. 
Applied Intelligence 51 (9), 6326-6348, 2021.

Pascal Hitzler, Frank van Harmelen
A reasonable Semantic Web.
Semantic Web 1 (1-2), 39-44, 2010.
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Deep Deductive Reasoners

• We trained deep learning systems to do deductive reasoning.

• Why is this interesting? 
– For dealing with noisy data (where symbolic reasoners do 

very poorly).
– For speed, as symbolic algorithms are of very high 

complexity.
– Out of principle because we want to learn about the 

capabilities of deep learning for complicated cognitive tasks.

– To perhaps begin to understand how our (neural) brains can 
learn to do highly symbolic tasks like formal logical 
reasoning, or in more generality, mathematics.
A fundamental quest in Cognitive Science.
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Reasoning as Classification

• Given a set of logical formulas (a theory).

• Any formula expressible over the same language is either 
– a logical consequence or
– not a logical consequence.

• This can be understood as a classification problem for machine 
learning.

• It turns out to be a really hard machine learning problem.
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Knowledge Materialization

• Given a set of logical formulas (a theory).

• Produce all logical consequences under certain constraints.

• Without the qualifier this is in general not possible as the set of 
all logical consequences is infinite.

• So we have to constrain to consequences of, e.g., a certain 
syntactic form. For relatively simple logics, this is often 
reasonably possible.
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Published deep deductive reasoning work

[12]: Ebrahimi, Sarker, Bianchi, Xie, Eberhart, Doran, Kim, Hitzler, 
AAAI-MAKE 2021

[25]: Makni, Hendler, SWJ 2019
[10]: Eberhart, Ebrahimi, Zhou, Shimizu, Hitzler, AAAI-MAKE 2020
[20]: Hohenecker, Lukasiewicz, JAIR 2020
[6]: Bianchi, Hitzler, AAAI-MAKE 2019
(new): Ebrahimi, Eberhart, Hitzler (preliminary report)
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(new)        RDFS            yes                yes moderate                   high?
(new)           EL+            yes                yes moderate                   high?
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RDFS Reasoning using Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie, 
Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler, 
Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment. 
In: Proc. AAAI-MAKE 2021.

additional analysis by Sulogna Chowdhury, Aaron Eberhart 
and Brayden Pankaskie
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RDF reasoning

• [Note: RDF is one of the simplest useful knowledge 
representation languages that is not propositional.]

• Think knowledge graph. 
• Think node-edge-node triples such as 

BarackObama rdf:type President
BarackObama husbandOf MichelleObama
President rdfs:subClassOf Human
husbandOf rdfs:subPropertyOf spouseOf

• Then there is a (fixed, small) set of inference rules, such as
rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)
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RDF reasoning

• Essentially, RDF reasoning is Datalog reasoning restricted to:
– Unary and binary predicates only.
– A fixed set of rules that are not facts.

• You can try the following:
– Use a vector embedding for one RDF graph.
– Create all logical consequences.
– Throw n% of them away.
– Use the rest to 

train a DL system.
– Check how many 

of those you 
threw away can 
be recovered this
way.
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RDF reasoning

• The problem with the approach just described:
– It works only with that graph.

• What you’d really like to do is:
– Train a deep learning system so that you can present a new, 

unseen graph to it, and it can correctly derive the deductively 
inferred triples. 

• Note: 
– You don’t know the IRIs in the graph up front. The only 

overlap may or may not be the IRIs in the rdf/s namespace.
– You don’t know up front how “deep” the reasoning needs to 

be.
– There is no lack of training data, it can be auto-generated.
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Representation

• Goal is to be able to reason over unseen knowledge graphs.
I.e. the out-of-vocabulary problem needs addressing.

• Normalization of vocabulary (i.e., it becomes shared 
vocabulary across all input knowledge graphs.

• One vocabulary item becomes a one-hot vector 
(dimension d, number of normalized vocabulary terms)

• One triple becomes a 3 x d matrix.
• The knowledge graph becomes an n x 3 x d tensor

(n is the number of knowledge graph triples)

• Knowledge graph is stored in “memory”
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Mechanics

• An attention mechanism retrieves memory slots useful for 
finding the correct answer to a query.

• These are combined with the query and run through a (learned) 
matrix to retrieve a new (processed) query.

• This is repeated (in our experiment with 10 “hops”).
• The final out put is a yes/no answer to the query.
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Memory Network based on MemN2N



ECNLPIR, July 2022

Experiments: Performance

Baseline: non-normalized embeddings, same architecture
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Experiments: Reasoning Depth

Training time: just over a full day
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Generative RDFS Reasoning 
using Pointer Networks

Monireh Ebrahimi,  Aaron Eberhart, Pascal Hitzler
On the Capabilities of Pointer Networks for Deep Deductive Reasoning
https://arxiv.org/abs/2106.09225

https://arxiv.org/abs/2106.09225
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● Pointer Networks ‘point’ to input elements!

● Ptr-Net approach specifically targets problems whose outputs are 
discrete and correspond to positions in the input.

● At each time step, the distribution of the attention is the answer!

● Application:
– NP-hard Travelling Salesman Problem (TSP)
– Delaunay Triangulation
– Convex Hull
– Text Summarization
– Code completion
– Dependency Parsing

Pointer Networks
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Pointer Networks for Reasoning

C ⊑ D , A ⊑ C ⇒ A ⊑ D

⇐

5

2

3

⇐

• To mimic human reasoning behaviour where one can learn to choose 
a set of symbols in different locations and copy these symbols to 
suitable locations to generate new logical consequences based on a set of 
predefined logical entailment rules
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Results without transfer

● On RDF, slightly outperforms [Hendler Makni SWJ 2019] approach.
● Our approach is a more straightforward application. 
● Evaluation is on the same dataset.
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Results with transfer
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Completion Reasoning Emulation for the 
Description Logic EL+

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler, 
Completion Reasoning Emulation for the Description Logic EL+. 
In: Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug 
Lenat, Reinhard Stolle, Frank van Harmelen (eds.), Proceedings of the 
AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge 
Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25, 
2020, Volume I. 
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EL+ is essentially OWL 2 EL
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Results
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Generative EL Reasoning 
using Pointer Networks

Monireh Ebrahimi,  Aaron Eberhart, Pascal Hitzler
On the Capabilities of Pointer Networks for Deep Deductive Reasoning
https://arxiv.org/abs/2106.09225

https://arxiv.org/abs/2106.09225
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Results with transfer
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• same architecture as before
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Conclusions
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Conclusions

• Bridging the neuro-symbolic gap is still a major quest.

• Research on Deep Deductive Reasoning is at the heart of neuro-
symbolic Artificial Intelligence
– Research is needed to push the envelope with respect to core 

aspects such as
– more complex logics
– higher reasoning accuracy
– better transfer
– scalability



ECNLPIR, July 2022

Thanks!
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