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Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, since 2005.
Joint with Artur d’Avila Garcez.
http://neural-symbolic.org/

Barbara Hammer and Pascal Hitzler (eds), Perspectives of
Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation

Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader,
Howard Bowman, Pedro Domingos, Pascal Hitzler,
Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd,
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B.Hammer - P. Hitzler
(Eds.)

Perspectives of
Neural-Symbolic
Integration

Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas,
Hoifung Poon, Gerson Zaverucha '

https://arxiv.org/abs/1711.03902 (2017)

llaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs
for eXplainable Artificial Intelligence: Foundations, Applications and
Challenges. Studies on the Semantic Web Vol. 47, I0S Press, 2020.
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Neuro-symbolic Al

Publications on neuro-symbolic Al in major conferences

(research papers only):

Cpseran

conference | 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 | total
ICML 0 0 0 0 0 1 3 2 5 6 17
NeurIPS 0 0 0 0 0 0 0 4 2 4 10
AAAI 0 0 0 0 0 1 0 1 1 1 4
IJCALI 1 0 0 0 0 0 2 2 0 2 7
ICLR N/A  N/A 0 0 0 0 1 1 1 3 6
total 1 0 0 0 0 2 6 10 9 16 44
See

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler
Neuro-Symbolic Artificial Integration: Current Trends
Al Communications 34 (3), 197-209, 2022.
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New Book for 2023

Compendium of Neuro-Symbolic Artificial Intelligence (tentative mb
approx. 30 chapters and 700 pages
Each chapter based on 2 or more related published papers.

Book will provide an even more comprehensive overview of the
state of the art.

[We can still add a few chapters — see
https://daselab.cs.ksu.edu/content/call-book-chapter-proposals-
compendium-neuro-symbolic-artificial-intelligence and send your
chapter proposal very quickly.]
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Neural

 Refers to computational abstractions of (natural) neural ELab
network systems.

 Prominently includes Artificial Neural Networks and Deep
Learning as machine learning paradigms.

« More generally sometimes referred to as connectionist systems.

* Prominent applications come from the machine learning world.

« And of course, there is the current deep learning hype.

KANSAS STATE ECNLPIR, July 2022
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Symbolic

» Refers to (computational) symbol manipulations of all kind. mb

« Graphs and trees, traversal, data structure operations.

« Knowledge representation in explicit symbolic form (data base,
ontology, knowledge graph)

* Inductive and statistical inference.
 Formal logical (deductive or abductive) reasoning.

 Prominent applications all over computer science, including
expert systems (and their modern versions), information
systems, data management, added value of data annotation, etc.

« Semantic Web data is inherently symbolic.

KANSAS STATE ECNLPIR, July 2022
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Neuro-Symbolic

Computer Science perspective: eLab

« Let'stryto getthe best of both worlds:
— very powerful machine learning paradigm
— robust to data noise
— easy to understand and assess by humans
— good at symbol manipulation
— work seamlessly with background (domain) knowledge

e How to do that?
— Endow connectionist systems with symbolic components?

— Add connectionist learning to symbolic reasoners?
— ..”

KANSAS STATE ECNLPIR, July 2022
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Neuro-symbolic Al

conference | 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 | total >_
ICML 0 0 0 0 0 I 3 2 5 6| 17 dgetab
NeurIPS 0 0 0 0 0 0 0 4 2 4 10—
AAAI 0 0 0 0 0 1 0 1 1 1 4
[ICAI I 0 0 0 0 0 2 2 0 2 7
ICLR N/A  N/A 0 0 0 0 1 I 1 3 6
total I 0 0 0 0 2 6 10 9 6 | 44

[Al Communications 34 (3), 197-209, 2022]

Analysis based on

o structured survey from 2005 [Bader and Hitzler, Dimensions of
Neural-symbolic Integration — A Structured Survey]

o categories presented by Henry Kautz at AAAI 2020 [cf. Kautz, Al
Magazine 43, 2022, 105-125]

How did themes, methods, emphases change?
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Neuro-symbolic Learning Cycle

Cpseran

Fefined Knowledge

!

Expert Knowledge — Symbalic system

A
Feasoning
Fepresentation Extraction
Y
Connectionist System
Training Feasoning

[Bader and Hitzler 2005]
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McCulloch & Pitts, 1943

 McCulloch & Pitts 1943
— Neurons with binary activation functions.

— Modelling of propositional connectives.
— Networks equivalent to finite automata.

1

Values 0 (,false®) and 1 1 ; 1
(,true®) being propagated. >

Y

v

Simultaneous update of all 1 @ 1
nodes in network. >

A 4

KANSAS STATE

ECNLPIR, July 2022
UNIVERSITY
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disjunction
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McCulloch & Pitts follow-on

« Holldobler & Kalinke 1994
— Extends the approach by McCulloch & Pitts.

— Representation of propositional logic programs
and their semantics.

— ,Massively parallel reasoning.”

logic program ——» core net —— recurrent net

a+
b+ a
c+—aAb
d«e
e«—d

KANSAS STATE ECNLPIR, July 2022
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McCulloch & Pitts follow-on

Logic program P e core net

a <+
b+ a

c+aAb

d«e —

e «—d

- Update ,along implication®.
« Corresponds to computing the semantic operator Th.
* Tp represents meaning (semantics) of P through its fixed points.

KANSAS STATE ECNLPIR, July 2022
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McCulloch & Pitts follow-on

core net —_— recurrent net

» Repeated updates along layers corresponds to iterations of the semantic
operator.

« Semantics of the program (= fixed point of the operator) can be
computed in a parallel manner.

KANSAS STATE ECNLPIR, July 2022
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McCulloch & Pitts follow-on

« Garcez & Zaverucha 1999
Garcez, Broda & Gabbay 2001

« Development of a learning paradigm from the Core Method. -

« Required: differentiable activation function.

— Allows learning with standard methods.

— Backpropagation algorithm. —

« Establishing the neural-symbolic learning cycle.

knowledge network

modify bl learn

initial untrained .
(background) —Taise > neural /

KANSAS STATE ECNLPIR, July 2022

learned < trained
knowledge extract neural
network .
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The catch

 This is all propositional. eLab

« There’s only that much you can do with propositional logic. [For
what you can do, see extensive research by Artur Garcez et al ]

* In particular, in terms of knowledge representation and

reasoning, propositional logic doesn’t really get you anything
useful.

KANSAS STATE ECNLPIR, July 2022
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Variable Binding

—
SHRUTI ]

Shastri & Ajjanagadde 1993
Variable binding
via time synchronization.
Reflexive (i.e. fast)
reasoning possible.

- Picture: Holldobler,
Introduction to
Computational Logic, 2001

gives(X,Y,Z) — owns(Y,Z) gives(john,josephine,book)

buys(X,Y) — owns(X,Y) (3X) buys(john,X)

owns(X,Y) — can-sell(X)Y) owns(josephine,ball)

Problems: It’s still essentially datalog. * It doesn’t really learn.
' It has a globally bounded reasoning depth.




Logic in Real Space
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Interpretations with

Cantor topolo T
PoIoSY (InQ) > Q)

] i .
Homeomorphism | '

M i(Tp) v
Cantor » Cantor

Cantor space as compact
subspace

of R_
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Logic in Real Space
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ESWN

Se Lab

Architecture is mix of radial basis
function network and neural gas
approach.
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Logic in Real Space

We observe convergence to unique supported
model of the program.

Bader, Hitzler, Holldobler,
Witzel, IJCAI-07
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But it works only for toy size problems.

The theoretically required embedding into real numbers cannot scale.
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Analysis
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Copseran

dimension (a) (b) N/A
Interrelation  integrated (a) vs. hybrid (b) 43 0 0
neuronal (a) vs. connectionist (b) 0 43 0
local (a) vs. distributed (b) 2 42 0
standard (a) vs. nonstandard (b) 43 0 0
Language symbolic (a) vs. logical (b) 21 24 0

propositional (a) vs. first-order (b) 3 22 18

s

Usage extraction (a) vs. representation (b) 6 37

learning (a) vs. reasoning (b) 19 29 0

KANSAS STATE ECNLPIR, July 2022
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Kautz 2020 Categories

category number of papers e Lab

[symbolic Neuro symbolic] 13
[Symbolic[Neuro]] 0
[Neuro U compile(Symbolic)] 10
[Neuro — Symbolic] 13
[Neuro[Symbolic]] 0

Refined Knowledge

(6) We finally come to the approach to neuro-symbolic "o =49 | Symbalic “ﬁf"”

reasoning that I believe has the greatest potential to com- Reasoning
bine the strengths of logic-based and neural-based Al,
namely the Neuro[Symbolic] architecture (Figure 15).
The basic idea is to embed a symbolic reasoning engine
inside a neural engine, with the goal of enabling super-

neuro and combinatorial reasoning. The architecture is
hacad nn Nanieal Kahnaman’e thenrv nf “thinkinoc fact and Training Reasoning

Representation Extraction

L J

Connectionist System

KANSAS STATE ECNLPIR, July 2022
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Deep Deductive Reasoners

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler,
Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners.
Applied Intelligence 51 (9), 6326-6348, 2021.

Pascal Hitzler, Frank van Harmelen
A reasonable Semantic Web.
Semantic Web 1 (1-2), 39-44, 2010.

KANSAS STATE ECNLPIR, July 2022
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Deep Deductive Reasoners

« We trained deep learning systems to do deductive reasoning. mb

 Why is this interesting?
— For dealing with noisy data (where symbolic reasoners do
very poorly).
— For speed, as symbolic algorithms are of very high
complexity.
— Out of principle because we want to learn about the
capabilities of deep learning for complicated cognitive tasks.

— To perhaps begin to understand how our (neural) brains can
learn to do highly symbolic tasks like formal logical
reasoning, or in more generality, mathematics.

A fundamental quest in Cognitive Science.

KANSAS STATE ECNLPIR, July 2022
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Reasoning as Classification

« Given a set of logical formulas (a theory). ELab
« Any formula expressible over the same language is either
— alogical consequence or

— not a logical consequence.

 This can be understood as a classification problem for machine
learning.

|t turns out to be areally hard machine learning problem.

KANSAS STATE ECNLPIR, July 2022
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Knowledge Materialization

« Given aset of logical formulas (a theory). “ab

 Produce all logical consequences under certain constraints.

 Without the qualifier this is in general not possible as the set of
all logical consequences is infinite.

« So we have to constrain to consequences of, e.g., a certain
syntactic form. For relatively simple logics, this is often
reasonably possible.

KANSAS STATE ECNLPIR, July 2022
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Published deep deductive reasoning work

b
paper logic transfer | generative scale performance [} ek
[12] RDFS yes no moderate high /2
[25] RDFS no yes low high
[10] ELT no yes moderate low
[20] | OWL RL no* no low high
6] FOL no yes very low high
(new) RDFS yes yes moderate high?
(new) EL+ yes yes moderate high?

[12]: Ebrahimi, Sarker, Bianchi, Xie, Eberhart, Doran, Kim, Hitzler,
AAAI-MAKE 2021

KANSAS STATE

25]: Makni, Hendler, SWJ 2019
10]: Eberhart, Ebrahimi, Zhou, Shimizu, Hitzler, AAAI-MAKE 2020
20]: Hohenecker, Lukasiewicz, JAIR 2020

6]: Bianchi, Hitzler, AAAI-MAKE 2019
(new): Ebrahimi, Eberhart, Hitzler (preliminary report)

ECNLPIR, July 2022
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RDFS Reasoning using Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie,
Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler,

Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment.
In: Proc. AAAI-MAKE 2021.

additional analysis by Sulogna Chowdhury, Aaron Eberhart
and Brayden Pankaskie

KANSAS STATE ECNLPIR, July 2022
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RDF reasoning

» [Note: RDF is one of the simplest useful knowledge “ab
representation languages that is not propositional.]

« Think knowledge graph.
« Think node-edge-node triples such as

BarackObama rdf:type President
BarackObama husbandOf MichelleObama
President rdfs:subClassOf Human

husbandOf rdfs:subPropertyOf  spouseOf

« Then thereis a (fixed, small) set of inference rules, such as
rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)

KANSAS STATE ECNLPIR, July 2022
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RDF reasoning

« Essentially, RDF reasoning is Datalog reasoning restricted to eLab

— Unary and binary predicates only.

— A fixed set of rules that are not facts.
 You can try the following:
Use a vector embedding for one RDF graph.

KANSAS STATE
UNIVERSITY

Create all logical consequences.

Throw n% of them away.

Use the rest to

train a DL system. i

““:“- C5
Check how many szV_]

of those you

threw away can o

be recovered this =

way. SR :
_

Editorial Board

Editors-in-Chief
Pascal Hitzler

ticWeb - | perability, Usability, Applicability an IOS Press Journal

About Calls Blog Issues UnderReview Reviewed ForAuthors ForReviewers Scientometrics FAQ

Deep Learning for Noise-Tolerant RDFS Reasoning

Submitted by Bassem Makni on 10/01/2018 - 0102
Tracking #: 2028-3241

A new version of this paper is available

Authors:
Bassem Makni
James Hendler

Responsible editor:
Guest Editors Semantic Deep Learning 2018

Submission type:
Full Paper
Abstract:

Since the 2001 envisioning of the Semantic Web (3W] [1] a5 an extension to the World Wide Web, the main research focus in
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RDF reasoning

« The problem with the approach just described: ELab
— It works only with that graph.

« What you'd really like to do is:

— Train a deep learning system so that you can present a new,
unseen graph to it, and it can correctly derive the deductively
inferred triples.

e Note:

— You don’t know the IRIs in the graph up front. The only
overlap may or may not be the IRIs in the rdf/s namespace.

— You don’t know up front how “deep” the reasoning needs to
be.

— There is no lack of training data, it can be auto-generated.

KANSAS STATE ECNLPIR, July 2022
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Representation

Goal is to be able to reason over unseen knowledge graphs. ELab
l.e. the out-of-vocabulary problem needs addressing.

 Normalization of vocabulary (i.e., it becomes shared
vocabulary across all input knowledge graphs.

« Onevocabulary item becomes a one-hot vector
(dimension d, number of normalized vocabulary terms)

* Onetriple becomes a 3 x d matrix.

« The knowledge graph becomes an n x 3 x d tensor
(n is the number of knowledge graph triples)

« Knowledge graph is stored in “memory”

KANSAS STATE ECNLPIR, July 2022
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Mechanics

 An attention mechanism retrieves memory slots useful for ELab
finding the correct answer to a query.

« These are combined with the query and run through a (learned)
matrix to retrieve a new (processed) query.

 This is repeated (in our experiment with 10 “hops”).
 The final out put is a yes/no answer to the query.

KANSAS STATE ECNLPIR, July 2022
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Experiments: Performance

?

Base Inferred Invalid
Test Dataset RO - opaes T #Em0 [ %Css | %lndv [ %R | %Axiom. | #Facs | #EaL | %Class | %Indv | %R | %Axiom | #Facts
OWL-Centric 2d6d 1 99 832 14 19 3 ] 494 832 4 0.01 I 20 462 i
Linked Data 20527 | 999 181 3 22 J ] 124 87 3 0.006 1 83 124
OWL-Centric Test 5et | 21 622 400 36 41 3 0 837 400 36 3 1 12 476
Synthetic Dala 2 152 s06 52 0 1 0 126356 506 52 0 1 0.07 700
Table 2: Statistics of various datasets used in experiments
Baseline: non-normalized embeddings, same architecture
Training Datasct Test Dataset Valid TrlErle& Class Invalid Trl!:l]-f:}; Class Accuracy
Precision Recall F-measure | Precision Recall F-measure
’ {Sensitivity : {Specificity :
OWL-Centric Dataset Linked [ata K] U5 Ui Us U3 Y3 Ui
OWL-Centric Dataset (90%) | OWL-Centric Dataset (10%) | 88 01 89 20 88 89 9%
OWL-Centric Dataset OWL-Centric Test Set ® 79 62 68 70 84 16 69
OWL-Centric Dataset Synthetic Data 65 49 40 32 34 42 52
OWL-Centric Dataset Linked Data * KE | o8 10 o1 16 27 B6
OWL-Centric Dataset * Linked Data * 62 72 67 67 36 61 01
OWL-Centric Dataset(90%) *| OWL-Centric Dataset(10%) *| 79 72 75 74 g1 77 80
OWL-Centric Dataset OWL-Centric Test Set 7 38 68 62 62 30 M 38
OWL-Centric Dataset ® OWL-Centric Test Set 2° 77 57 65 66 82 73 73
OWL-Centric Dataset Synthetic Data * 70 51 40 47 52 38 51
OWL-Centric Dataset ® Synthetic Data ® &7 3 25 52 &0 62 50
Baseline
OWL-Centric Dataset Linked Data 73 o8 B3 PE] 46 61 43
OWL-Centric Dataset (909%) | OWL-Centric Dataset (10%) | 84 83 B4 84 84 B 82
OWL-Centric Dataset OWL-Centric Test Set 62 84 70 80 40 48 1
OWL-Centric Dataset Synthetic Data 35 41 32 48 35 45 45

® More Tricky Mos & Balanced Dataset
® Completely Different Domain.

Table 3: Experimental results of proposed model



Experiments: Reasoning Depth

Test Dataset o H-;}:u{p 0 - Hop 1 Hop 2 Hop3 Hop 4 Hop 3 Hop 6 Hop T HopE Hop 9 Hop 10
Tinked Data® | 0 | 0 | 0 | &0 | 99 | &5 | &9 | 97 | 9% | 17 | 94 Bh
Linked Data® | 2 D [0 [8 [ o1& |89 [98 9379|100 &8
]
3

OWLCenine™[ 19 [ 3 [ 7AETAEEE TR [HE[H [H[S [THE]6 T- - - - - - - - - - - - - - - - - -
Synthebc I EEIENEEA R sl e [de [ S 1 [ 5 [ [ 332414530 54302236 ]2

* LemonUby Ontology
A grovoe Oniology
£ Compleiely Dhifferent Domaim

Table 4: Experimental results over each reasoning hop

Dataset Hopl | Hop2 | Hop3 | Hop4 | Hop5 | Hop6 | Hop7 Hop 8 Hop 9 Hop 10
OWL-Centric* | 8% 67% 24% 0.01% | 0% 0% 0% 0% 0% 0%
Linked Data” 31% 50% 19%% 0% 0% 0% 0% 0% 0% 0%
Linked Data® 34% 46% 20% 0% 0% 0% 0% 0% 0% 0%
OWL-Centric® | 5% 64% 30% 1% 0% 0% 0% 0% 0% 0%
Synthetic Data | 0.03% | 1.42% | 1% 1.56% | 3.09% | 6.03% | 11.46% | 20.48% | 31.25% | 23.65%

* Training Set

h LemonUby Ontology

“ Agrovoc Ontology

4 Completely Different Domain

Table 5: Data distribution per knowledge graph over each reasoning hop

Training time: just over a full day
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Pointer Networks

e Pointer Networks ‘point’ to input elements! “ab

e Ptr-Net approach specifically targets problems whose outputs are
discrete and correspond to positions in the input.

e At each time step, the distribution of the attention is the answer!

e Application:
— NP-hard Travelling Salesman Problem (TSP)
— Delaunay Triangulation
— Convex Hull
— Text Summarization
— Code completion
— Dependency Parsing
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UNIVERSITY



Pointer Networks for Reasoning

« To mimic human reasoning behaviour where one can learn to choose “ab
a set of symbols in different locations and copy these symbols to

suitable locations to generate new logical consequences based on a set of
predefined logical entailment rules

b v v v v v v
Vv v Yy v v
l l 121 ' l l l

CCD,ACCw— ACD
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Results without transfer

e Lab
Pointer Networks Transformer

Logic | KG Size . ) . - : Not-Normalized LSTM
SubWordText | Tokemzer Normahzed SubWordText | Tokemizer

RDF | 3-735 87% 09% 5% 25% A% 0.17%

e On RDF, slightly outperforms [Hendler Makni SWJ 2019] approach.
e Our approach is a more straightforward application.
e Evaluation is on the same dataset.
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Results with transfer

Table 6 Exact Match Accuracy Results for Transfer Learning/Representation: SubWord-

Text Tokenization Encoding

—,

T Test 1 L UBM | Awards University
Tramn ——

LUBM * 5% 8%
Awards 79% * TT%
University 81% 82% *

Bise ab

Table 7 Exact Match Accuracy Results for Transfer Learning/ Representation: Whitespace
Tokenization Encoding

KANSAS STATE

UNIVERSITY

—~—_  Test

Train LUBM | Awards | University
rain —

LUBM * 61% 47%
Awards 96 % * 84%
University 82% 88% *
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Cpseran

Completion Reasoning Emulation for the
Description Logic EL+

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler,
Completion Reasoning Emulation for the Description Logic EL+.

In: Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug
Lenat, Reinhard Stolle, Frank van Harmelen (eds.), Proceedings of the

AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge

Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25,
2020, Volume I.
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EL+ Is essentially OWL 2 EL

KAN
UNII

] -
Table 2: ££7 Completion Rules :
CXCCY
|
CXNCYCCZ (1) ACC CCD — AC D
CX C 3RY.CZ (2) AL, ACC; CiNnC:CDEACD
JRX.CY C CZ (3) ACC CCIJdR.D = ACdR.D
RX CRY 4 ACJRB BCC dJRCCD EACD
RX o RY C RZ (5) AC 35D SCR —ACdR.D
ACdR . C CC3dR,.D Rie R CR=EACIR.D
Table 1: ££7 Semantics
Description Expression Semantics
Individual a ac Al
Top T AT
Bottom 1 @
Concept C ct c At
Role R RT C AT x AT
Conjunction cnp cInp*
Existential Restriction dR.C { a|there is b € AT such that (a,b) € RT and b e CT }
Concept Subsumption CCD cTcpr
Role Subsumption RC S RT C 5T
Role Chain Rio---oR,CR RIo.--oRICRT 46

with o signifying standard binary composition




Results

Table 7: Average Precision Recall and F1-score For each Distance Evaluation

Cpseran

Atomic Levenshtein Distance

Character Levenshtein Distance

Predicate Distance

Prcc1.~;mn| Recall |P]—scmr+:

Pn:msmn| Kecall |I-']—scnn:

PI'-I'_‘['lEi.I{}]'Il Recall |I-']—scnrr:

Synthetic Data

Piecewise Prediction |(. 138663 | 0.142208 (0.140412( 0.138663 |0.142208)|0.140412 {0.138646(0.141923(0.140264
Deep Prediction 0154398 0.156056 (0.155222( 0.1534398 |0.156056| 0.155222 (0. 154258 (0. 1535736 (0. 154993
Flat Prediction 0.140410] 0.142976 (0.141681( 0.140410 10.142976| 0.141681 [0.140375(0.142687 | 0.141521
Random Prediction [0.010951 |0.0200518(0.014166( 0.006833 |0.012401 | 0.008811 [0.004352|0.007908 | 0.007908
SNOMED Data
Piecewise Prediction |(0.010530] 0.013554 [0.011845( 0.010530 |0.013554 | 0.011845 [0.010521 {0.013554|0.011839
Deep Prediction 0013983 |0.0172811 [ 0.016395( 0.015983 (0017281 0.016395 [0.015614 (0.017281 [0.016396
Flat Prediction 0.014414] 0.018300 (0.016112{0.0144140)0.018300| 0.016112 {0.013495 [ 0.018300|0.015525
Random Prediction |0.002807 | 0.006803 [0.003975( 0.001433 |0.003444) 0.002023 [0.001769(0.004281 [ 0.002504

KANSAS STATE

UNIVERSITY
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Results with transfer

Cpseran

Pointer Networks Transformer

Logic | KG Size Not-Normalized LSTM
SubWordText | Tokenizer

SubWord Text Tokenizer Normalized

40 3% 73% 8% 8% 0.4 % 0%
ER 50 6870 685 11% 11% 0.3% 0%
120 49% 49% 15% NA NA 0%

e same architecture as before
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Conclusions
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Conclusions

Cpseran

 Bridging the neuro-symbolic gap is still a major quest.

« Research on Deep Deductive Reasoning is at the heart of neuro-
symbolic Artificial Intelligence

— Research is needed to push the envelope with respect to core
aspects such as

— more complex logics

— higher reasoning accuracy
— Dbetter transfer

— scalability

KANSAS STATE ECNLPIR, July 2022
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Thanks!
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