

Neuro-Symbolic Artificial Intelligence: A Brief History, and Recent Advances

Pascal Hitzler

Data Semantics Laboratory (DaSe Lab)

Kansas State University

http://www.daselab.org

Neuro-Symbolic

Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, since 2005. Joint with Artur d'Avila Garcez.

http://neural-symbolic.org/

Barbara Hammer and Pascal Hitzler (eds), Perspectives of Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, Gerson Zaverucha

https://arxiv.org/abs/1711.03902 (2017)

Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges. Studies on the Semantic Web Vol. 47, IOS Press, 2020.

ECNLPIR, July 2022

B. Hammer · P. Hitzler (Eds.)

Perspectives of Neural-Symbolic Integration

Studies on the Semantic Web

llaria Tiddi, Freddy Lécué and Pascal Hitzler (Eds.)

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges

2022 Book

Neuro-symbolic Artificial Intelligence: The State of the Art

Pascal Hitzler and Md Kamruzzaman Sarker, editors Fontriers in AI and Applications Vol. 342, IOS Press,						
https://www.iospress.com/catalog/books/neuro-symbo Preface: The 3rd AI wave is coming, and it needs a theory Frank van Harmelen	v	TUITCIAI-INTERIIGENCE-THE-STATE-OI-THE-AIT Edited by Pascal Hitzler Md Kamruzzaman Sarker				
Introduction Pascal Hitzler and Md Kamruzzaman Sarker	ix	IOS Press	Tes !			
Chapter 1. Neural-Symbolic Learning and Reasoning: A Survey and Interpretation Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe Kühnberger, Luis C. Lamb, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon and Gerson Zaverucha		Chapter 9. Spike-Based Symbolic Computations on Bit Strings and Numbers Ceca Kraišniković, Wolfgang Maass and Robert Legenstein				
		Chapter 10. Explainable Neuro-Symbolic Hierarchical Reinforcement Learning Daoming Lyu, Fangkai Yang, Hugh Kwon, Bo Liu, Wen Dong and Levent Yilmaz				
Chapter 2. Symbolic Reasoning in Latent Space: Classical Planning as an Example Masataro Asai, Hiroshi Kajino, Alex Fukunaga and Christian Muise	52	Chapter 11. Neuro-Symbolic Semantic Reasoning Bassem Makni, Monireh Ebrahimi, Dagmar Gromann and Aaron Eberhart	253			
Chapter 3. Logic Meets Learning: From Aristotle to Neural Networks Vaishak Belle	78	Chapter 12. Learning Reasoning Strategies in End-to-End Differentiable Proving Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp, Edward Grefenstette and Tim Rocktäschel	280			
Chapter 4. Graph Reasoning Networks and Applications Qingxing Cao, Wentao Wan, Xiaodan Liang and Liang Lin	103	Chapter 13. Generalizable Neuro-Symbolic Systems for Commonsense Question Answering	1 294			
Chapter 5. Answering Natural-Language Questions with Neuro-Symbolic Knowledge Bases	126	Alessandro Oltramari, Jonathan Francis, Filip Ilievski, Kaixin Ma and Roshanak Mirzaee				
Haitian Sun, Pat Verga and William W. Cohen		Chapter 14. Combining Probabilistic Logic and Deep Learning for Self-Supervised Learning	311			
Chapter 6. Tractable Boolean and Arithmetic Circuits Adnan Darwiche	146	Hoifung Poon, Hai Wang and Hunter Lang	221			
Chapter 7. Neuro-Symbolic AI = Neural + Logical + Probabilistic AI	173	Chapter 15. Human-Centered Concept Explanations for Neural Networks Chih-Kuan Yeh, Been Kim and Pradeep Ravikumar	337			
Robin Manhaeve, Giuseppe Marra, Thomas Demeester, Sebastijan Dumančić, Angelika Kimmig and Luc De Raedt		Chapter 16. Abductive Learning Zhi-Hua Zhou and Yu-Xuan Huang	353			
Chapter 8. A Constraint-Based Approach to Learning and Reasoning Michelangelo Diligenti, Francesco Giannini, Marco Gori, Marco Maggini and Giuseppe Marra	192 P	Chapter 17. Logic Tensor Networks: Theory and Applications Luciano Serafini, Artur d'Avila Garcez, Samy Badreddine, Ivan Donadello, Michael Spranger and Federico Bianchi	370			

NEURO-SYMBOLIC

ARTIFICIAL INTELLIGENCE:

Neuro-symbolic Al

Publications on neuro-symbolic AI in major conferences (research papers only):

conference	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	total
ICML	0	0	0	0	0	1	3	2	5	6	17
NeurIPS	0	0	0	0	0	0	0	4	2	4	10
AAAI	0	0	0	0	0	1	0	1	1	1	4
IJCAI	1	0	0	0	0	0	2	2	0	2	7
ICLR	N/A	N/A	0	0	0	0	1	1	1	3	6
total	1	0	0	0	0	2	6	10	9	16	44

See

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler Neuro-Symbolic Artificial Integration: Current Trends Al Communications 34 (3), 197-209, 2022.

New Book for 2023

approx. 30 chapters and 700 pages

Each chapter based on 2 or more related published papers.

Book will provide an even more comprehensive overview of the state of the art.

[We can still add a few chapters – see https://daselab.cs.ksu.edu/content/call-book-chapter-proposals-compendium-neuro-symbolic-artificial-intelligence and send your chapter proposal very quickly.]

Neural

- Refers to computational abstractions of (natural) neural network systems.
- Prominently includes Artificial Neural Networks and Deep Learning as machine learning paradigms.
- More generally sometimes referred to as connectionist systems.

- Prominent applications come from the machine learning world.
- And of course, there is the current deep learning hype.

Symbolic

Refers to (computational) symbol manipulations of all kind.

- Graphs and trees, traversal, data structure operations.
- Knowledge representation in explicit symbolic form (data base, ontology, knowledge graph)
- Inductive and statistical inference.
- Formal logical (deductive or abductive) reasoning.
- Prominent applications all over computer science, including expert systems (and their modern versions), information systems, data management, added value of data annotation, etc.
- Semantic Web data is inherently symbolic.

Neuro-Symbolic

Computer Science perspective:

- Let's try to get the best of both worlds:
 - very powerful machine learning paradigm
 - robust to data noise
 - easy to understand and assess by humans
 - good at symbol manipulation
 - work seamlessly with background (domain) knowledge
- How to do that?
 - Endow connectionist systems with symbolic components?
 - Add connectionist learning to symbolic reasoners?
 - **...?**

Neuro-symbolic Al

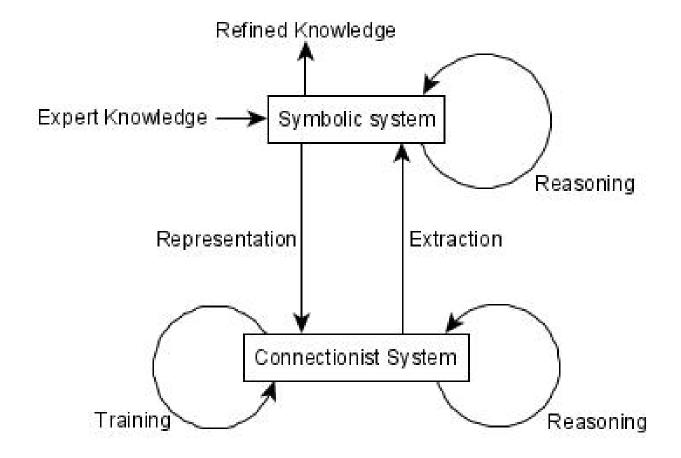
conference	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	total
ICML	0	0	0	0	0	1	3	2	5	6	17
NeurIPS	0	0	0	0	0	0	0	4	2	4	10
AAAI	0	0	0	0	0	1	0	1	1	1	4
IJCAI	1	0	0	0	0	0	2	2	0	2	7
ICLR	N/A	N/A	0	0	0	0	1	1	1	3	6
total	1	0	0	0	0	2	6	10	9	16	44

Analysis based on

- structured survey from 2005 [Bader and Hitzler, Dimensions of Neural-symbolic Integration – A Structured Survey]
- categories presented by Henry Kautz at AAAI 2020 [cf. Kautz, AI Magazine 43, 2022, 105-125]

How did themes, methods, emphases change?

Neuro-symbolic Learning Cycle



[Bader and Hitzler 2005]

Three "Old" Examples

McCulloch & Pitts, 1943

- McCulloch & Pitts 1943
 - Neurons with binary activation functions.
 - Modelling of propositional connectives.
 - Networks equivalent to finite automata.

Values 0 ("false") and 1 ("true") being propagated.

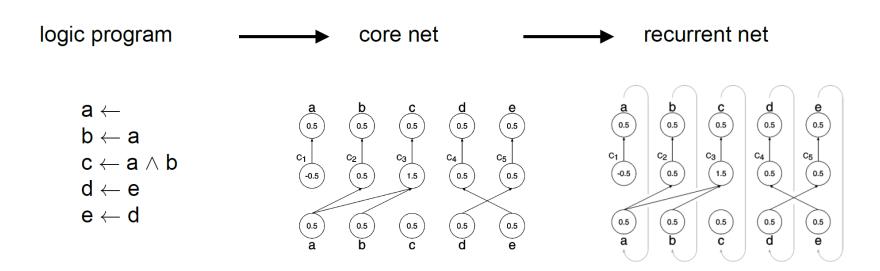
$$\begin{array}{c} 1 \\ \hline 1 \\ \hline \end{array} \begin{array}{c} 0.5 \\ \hline \end{array} \begin{array}{c} 1 \\ \hline \end{array} \begin{array}{c} \text{disjunction} \end{array}$$

Simultaneous update of all nodes in network.

$$\begin{array}{c}
1 \\
\hline
1
\end{array}$$
1.5) $\begin{array}{c}
1 \\
\end{array}$
conjunction

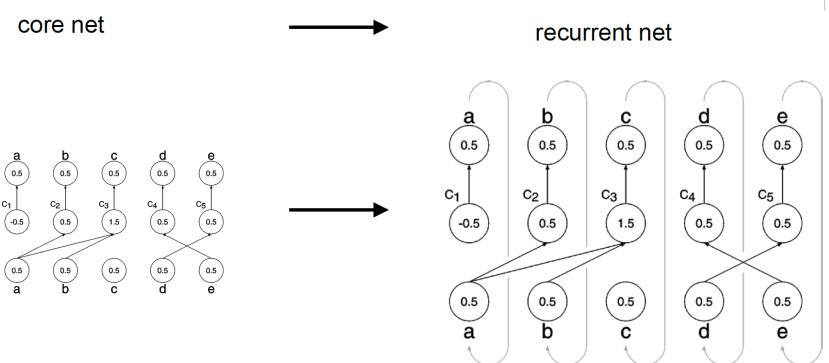
$$-1$$
 (-0.5) 1 negation

- Hölldobler & Kalinke 1994
 - Extends the approach by McCulloch & Pitts.
 - Representation of propositional logic programs and their semantics.
 - "Massively parallel reasoning."



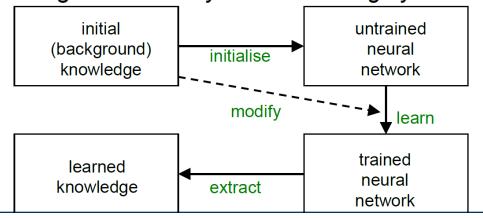
Logic program P core net 0.5 0.5 0.5 0.5 0.5 $a \leftarrow$ $b \leftarrow a$ C₁ C_2 Сз C₄ C_5 $c \leftarrow a \wedge b$ -0.5 0.5 1.5 $d \leftarrow e$ 0.5 0.5 $e \leftarrow d$ 0.5 0.5 0.5 0.5 0.5

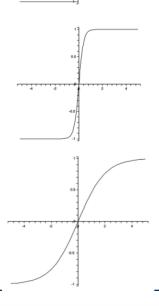
- Update "along implication".
- Corresponds to computing the semantic operator T_P.
- T_P represents meaning (semantics) of P through its fixed points.



- Repeated updates along layers corresponds to iterations of the semantic operator.
- Semantics of the program (= fixed point of the operator) can be computed in a parallel manner.

- Garcez & Zaverucha 1999
 Garcez, Broda & Gabbay 2001
- Development of a learning paradigm from the Core Method.
- Required: differentiable activation function.
 - Allows learning with standard methods.
 - Backpropagation algorithm.
- Establishing the neural-symbolic learning cycle.





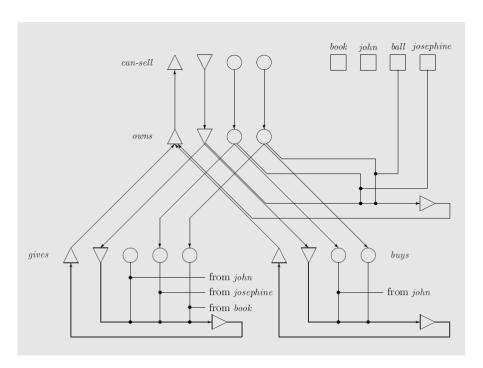
The catch

This is all propositional.

- There's only that much you can do with propositional logic. [For what you can do, see extensive research by Artur Garcez et al.]
- In particular, in terms of knowledge representation and reasoning, propositional logic doesn't really get you anything useful.

Variable Binding

SHRUTI



Shastri & Ajjanagadde 1993

Variable binding via time synchronization.

Reflexive (i.e. fast) reasoning possible.

Picture: Hölldobler, Introduction to Computational Logic, 2001

$$gives(X,Y,Z) \rightarrow owns(Y,Z)$$

$$\mathsf{buys}(\mathsf{X},\mathsf{Y}) \longrightarrow \mathsf{owns}(\mathsf{X},\mathsf{Y})$$

$$\mathsf{owns}(\mathsf{X},\mathsf{Y}) \quad \to \mathsf{can\text{-}sell}(\mathsf{X},\mathsf{Y})$$

gives(john,josephine,book)

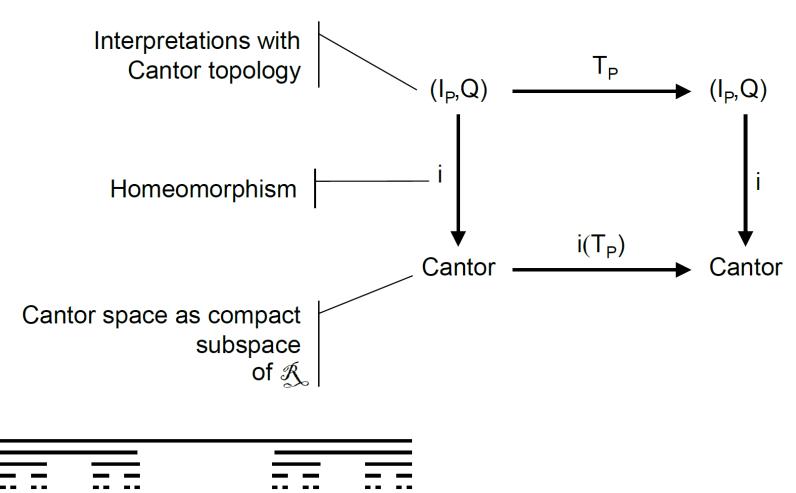
 $(\exists X)$ buys(john,X)

owns(josephine,ball)

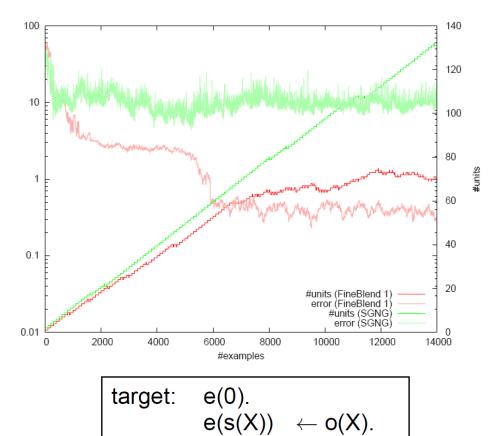
Problems:

- It's still essentially datalog.
 * It doesn't really learn.
- It has a globally bounded reasoning depth.

Logic in Real Space

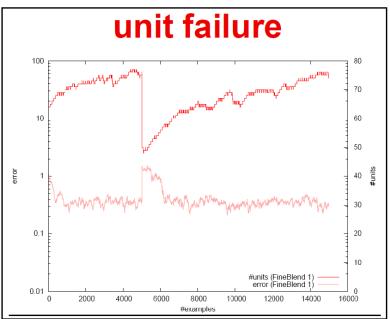


Logic in Real Space



 $o(X) \qquad \leftarrow \neg e(X)$ initial: $e(s(X)) \qquad \leftarrow \neg o(X)$ $e(X) \qquad \leftarrow e(X)$

Architecture is mix of radial basis function network and neural gas approach.

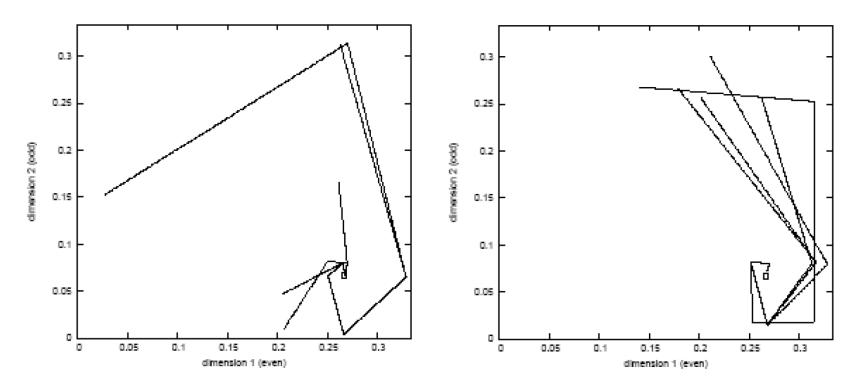


Bader, Hitzler, Hölldobler, Witzel, IJCAI-07

Logic in Real Space

We observe convergence to unique supported model of the program.

Bader, Hitzler, Hölldobler, Witzel, IJCAI-07



But it works only for toy size problems.

The theoretically required embedding into real numbers cannot scale.

Analysis

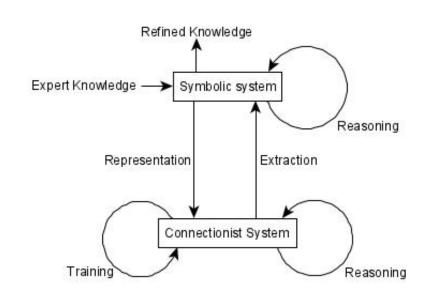
2005 Survey

	dimension	(a)	(b)	N/A
Interrelation	integrated (a) vs. hybrid (b)	43	0	0
	neuronal (a) vs. connectionist (b)	0	43	0
	local (a) vs. distributed (b)	2	42	0
	standard (a) vs. nonstandard (b)	43	0	0
Language	symbolic (a) vs. logical (b)	21	24	0
	propositional (a) vs. first-order (b)	3	22	18
Usage	extraction (a) vs. representation (b)	6	37	3
	learning (a) vs. reasoning (b)	19	29	0

Kautz 2020 Categories

category	number of papers
[symbolic Neuro symbolic]	13
[Symbolic[Neuro]]	9
$[Neuro \cup compile(Symbolic)]$	10
$[Neuro \rightarrow Symbolic]$	13
[Neuro[Symbolic]]	0

(6) We finally come to the approach to neuro-symbolic reasoning that I believe has the greatest potential to combine the strengths of logic-based and neural-based AI, namely the **Neuro[Symbolic]** architecture (Figure 15). The basic idea is to embed a symbolic reasoning engine inside a neural engine, with the goal of enabling superneuro and combinatorial reasoning. The architecture is based on Daniel Kahneman's theory of "thinking fast and



Deep Deductive Reasoners

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners. Applied Intelligence 51 (9), 6326-6348, 2021.

Pascal Hitzler, Frank van Harmelen A reasonable Semantic Web. Semantic Web 1 (1-2), 39-44, 2010.

Deep Deductive Reasoners

We trained deep learning systems to do deductive reasoning.

- Why is this interesting?
 - For dealing with noisy data (where symbolic reasoners do very poorly).
 - For speed, as symbolic algorithms are of very high complexity.
 - Out of principle because we want to learn about the capabilities of deep learning for complicated cognitive tasks.
 - To perhaps begin to understand how our (neural) brains can learn to do highly symbolic tasks like formal logical reasoning, or in more generality, mathematics.
 A fundamental quest in Cognitive Science.

Reasoning as Classification

- Any formula expressible over the same language is either
 - a logical consequence or
 - not a logical consequence.
- This can be understood as a classification problem for machine learning.
- It turns out to be a really hard machine learning problem.

Knowledge Materialization

- Given a set of logical formulas (a theory).
- Produce all logical consequences under certain constraints.
- Without the qualifier this is in general not possible as the set of all logical consequences is infinite.
- So we have to constrain to consequences of, e.g., a certain syntactic form. For relatively simple logics, this is often reasonably possible.

Published deep deductive reasoning work

paper	logic	transfer	generative	scale	performance
[12]	RDFS	yes	no	$\operatorname{moderate}$	high
[25]	RDFS	no	yes	low	high
[10]	\mathcal{EL}^+	no	yes	moderate	low
[20]	OWL RL	no*	no	low	high
[6]	FOL	no	yes	very low	high
(new)	RDFS	yes	yes	moderate	high?
(new)	EL+	yes	yes	moderate	high?

[12]: Ebrahimi, Sarker, Bianchi, Xie, Eberhart, Doran, Kim, Hitzler, AAAI-MAKE 2021

[25]: Makni, Hendler, SWJ 2019

[10]: Eberhart, Ebrahimi, Zhou, Shimizu, Hitzler, AAAI-MAKE 2020

[20]: Hohenecker, Lukasiewicz, JAIR 2020

[6]: Bianchi, Hitzler, AAAI-MAKE 2019

(new): Ebrahimi, Eberhart, Hitzler (preliminary report)

RDFS Reasoning using Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie, Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler, Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment. In: Proc. AAAI-MAKE 2021.

additional analysis by Sulogna Chowdhury, Aaron Eberhart and Brayden Pankaskie

RDF reasoning

 [Note: RDF is one of the simplest useful knowledge representation languages that is not propositional.]

Think knowledge graph.

Think node-edge-node triples such as

BarackObama rdf:type President

BarackObama husbandOf MichelleObama

President rdfs:subClassOf Human

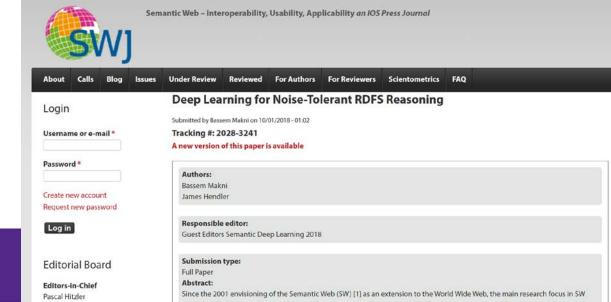
husbandOf rdfs:subPropertyOf spouseOf

 Then there is a (fixed, small) set of inference rules, such as rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)

RDF reasoning

- Essentially, RDF reasoning is Datalog reasoning restricted to:
- DaSe Lab

- Unary and binary predicates only.
- A fixed set of rules that are not facts.
- You can try the following:
 - Use a vector embedding for one RDF graph.
 - Create all logical consequences.
 - Throw n% of them away.
 - Use the rest to train a DL system.
 - Check how many
 of those you
 threw away can
 be recovered this
 way.



RDF reasoning

- The problem with the approach just described:
 - It works only with that graph.
- What you'd really like to do is:
 - Train a deep learning system so that you can present a new, unseen graph to it, and it can correctly derive the deductively inferred triples.

Note:

- You don't know the IRIs in the graph up front. The only overlap may or may not be the IRIs in the rdf/s namespace.
- You don't know up front how "deep" the reasoning needs to be.
- There is no lack of training data, it can be auto-generated.

Representation

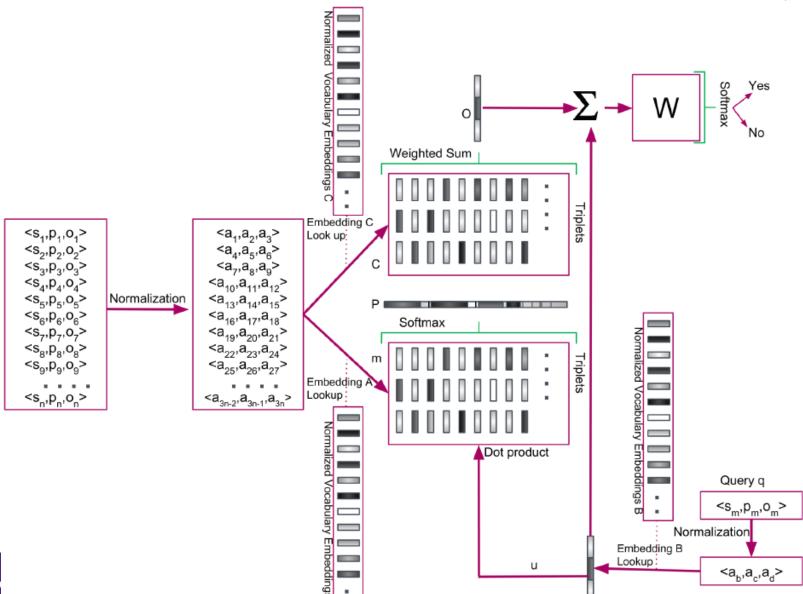
Goal is to be able to reason over unseen knowledge graphs.
 I.e. the out-of-vocabulary problem needs addressing.

- Normalization of vocabulary (i.e., it becomes shared vocabulary across all input knowledge graphs.
- One vocabulary item becomes a one-hot vector (dimension d, number of normalized vocabulary terms)
- One triple becomes a 3 x d matrix.
- The knowledge graph becomes an n x 3 x d tensor (n is the number of knowledge graph triples)
- Knowledge graph is stored in "memory"

Mechanics

- An attention mechanism retrieves memory slots useful for finding the correct answer to a query.
- These are combined with the query and run through a (learned) matrix to retrieve a new (processed) query.
- This is repeated (in our experiment with 10 "hops").
- The final out put is a yes/no answer to the query.

Memory Network based on MemN2N



Experiments: Performance

Test Dataset	#KG	Base						Inferred						Invalid
Test Dataset	πKO	#Facts	#Ent.	%Class	%Indv	%R.	%Axiom.	#Facts	#Ent.	%Class	%Indv	%R.	%Axiom.	#Facts
OWL-Centric	2464	996	832	14	19	3	0	494	832	14	0.01	1	20	462
Linked Data	20527	999	787	3	22	5	0	124	787	3	0.006	1	85	124
OWL-Centric Test Set	21	622	400	36	41	3	0	837	400	36	3	1	12	476
Synthetic Data	2	752	506	52	0	1	0	126356	506	52	0	1	0.07	700

Table 2: Statistics of various datasets used in experiments

Baseline: non-normalized embeddings, same architecture

Training Dataset	Test Dataset	V	alid Triples Cl	ass	Inv	valid Triples C	lass	Accuracy
Training Dataset	rest Dataset	Precision	Recall /Sensitivity	F-measure	Precision	Recall /Specificity	F-measure	Accuracy
OWL-Centric Dataset	Linked Data	93	98	96	98	93	95	96
OWL-Centric Dataset (90%)	OWL-Centric Dataset (10%)	88	91	89	90	88	89	90
OWL-Centric Dataset	OWL-Centric Test Set b	79	62	68	70	84	76	69
OWL-Centric Dataset	Synthetic Data	65	49	40	52	54	42	52
OWL-Centric Dataset	Linked Data a	54	98	70	91	16	27	86
OWL-Centric Dataset ^a	Linked Data a	62	72	67	67	56	61	91
OWL-Centric Dataset(90%) a	OWL-Centric Dataset(10%) a	79	72	75	74	81	77	80
OWL-Centric Dataset	OWL-Centric Test Set ab	58	68	62	62	50	54	58
OWL-Centric Dataset ^a	OWL-Centric Test Set ab	77	57	65	66	82	73	73
OWL-Centric Dataset	Synthetic Data ^a	70	51	40	47	52	38	51
OWL-Centric Dataset ^a	Synthetic Data ^a	67	23	25	52	80	62	50
		В	aseline					
OWL-Centric Dataset	Linked Data	73	98	83	94	46	61	43
OWL-Centric Dataset (90%)	OWL-Centric Dataset (10%)	84	83	84	84	84	84	82
OWL-Centric Dataset	OWL-Centric Test Set b	62	84	70	80	40	48	61
OWL-Centric Dataset	Synthetic Data	35	41	32	48	55	45	48

a More Tricky Nos & Balanced Dataset

Table 3: Experimental results of proposed model

^b Completely Different Domain.

Experiments: Reasoning Depth

Test Dataset		Hop ()		Hop 1			Hop 2			Hop 3			Hop 4			Hop 5)		Нор 6			Hop 7			Hop 8	3		Hop 9)]	Hop 1)
Test Dataset	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F	P	R	F
Linked Data ^a	0	0	0	80	99	88	89	97	93	77	98	86	-	-	-	-	-	-	-	-	-			-		-	-	-	-	-	-	-	-
Linked Data ^b	2	0	0	82	91	86	89	98	93	79	100	88	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OWL-Centric	19	5	9	31	75	42	78	80	78	48	47	44	4	34	6	-	-	-	-	-	-	-	-		,	-	-	-	-	-	-	-	-
Synthetic	32	46	33	31	87	38	66	55	44	25	45	32	29	46	33	26	46	33	25	46	33	25	46	33	24	43	31	25	43	31	22	36	28

LemonUby Ontology

Table 4: Experimental results over each reasoning hop

Dataset	Hop 1	Hop 2	Hop 3	Hop 4	Hop 5	Hop 6	Hop 7	Hop 8	Hop 9	Hop 10
OWL-Centric ^a	8%	67%	24%	0.01%	0%	0%	0%	0%	0%	0%
Linked Data ^b	31%	50%	19%	0%	0%	0%	0%	0%	0%	0%
Linked Data ^c	34%	46%	20%	0%	0%	0%	0%	0%	0%	0%
OWL-Centric ^d	5%	64%	30%	1%	0%	0%	0%	0%	0%	0%
Synthetic Data	0.03%	1.42%	1%	1.56%	3.09%	6.03%	11.46%	20.48%	31.25%	23.65%

^a Training Set

Table 5: Data distribution per knowledge graph over each reasoning hop

Training time: just over a full day

b Agrovoc Ontology

^c Completely Different Domain

b LemonUby Ontology

^c Agrovoc Ontology

^d Completely Different Domain

Generative RDFS Reasoning using Pointer Networks

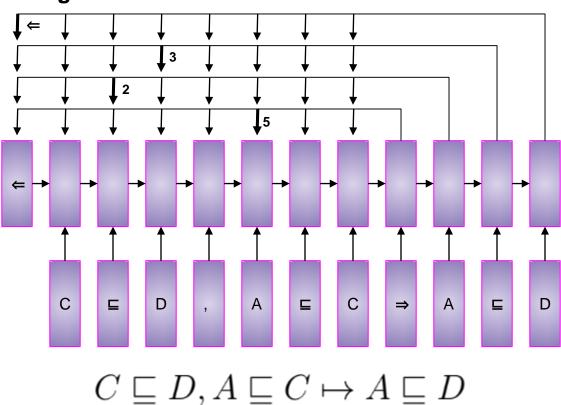
Monireh Ebrahimi, Aaron Eberhart, Pascal Hitzler
On the Capabilities of Pointer Networks for Deep Deductive Reasoning
https://arxiv.org/abs/2106.09225

Pointer Networks

- Pointer Networks 'point' to input elements!
- Ptr-Net approach specifically targets problems whose outputs are discrete and correspond to positions in the input.
- At each time step, the distribution of the attention is the answer!
- Application:
 - NP-hard Travelling Salesman Problem (TSP)
 - Delaunay Triangulation
 - Convex Hull
 - Text Summarization
 - Code completion
 - Dependency Parsing

Pointer Networks for Reasoning

To mimic human reasoning behaviour where one can learn to choose a set of symbols in different locations and copy these symbols to suitable locations to generate new logical consequences based on a set of predefined logical entailment rules



Results without transfer

Logic		Pointer Network	ks		Transformer					
	KG Size	SubWordText	Tokenizer	Normalized	Not-Norm	alized	LSTM			
		Bubwordiext	Tokemzer	Normanzed	SubWordText	Tokenizer				
RDF	3 - 735	87%	99%	5%	25%	4%	0.17%			

- On RDF, slightly outperforms [Hendler Makni SWJ 2019] approach.
- Our approach is a more straightforward application.
- Evaluation is on the same dataset.

Results with transfer

Table 6 Exact Match Accuracy Results for Transfer Learning/Representation: SubWord-Text Tokenization Encoding

Train	LUBM	Awards	University
LUBM	*	75%	78%
Awards	79%	*	77%
University	81%	82%	*

Table 7 Exact Match Accuracy Results for Transfer Learning/Representation: Whitespace Tokenization Encoding

Train	LUBM	Awards	University
LUBM	*	61%	47%
Awards	96%	*	84%
University	82%	88%	*

Completion Reasoning Emulation for the Description Logic EL+

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler, Completion Reasoning Emulation for the Description Logic EL+. In: Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug Lenat, Reinhard Stolle, Frank van Harmelen (eds.), Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25, 2020, Volume I.

EL+ is essentially OWL 2 EL

Table 2: \mathcal{EL}^+ Completion Rules

 $CX \sqsubseteq CY$

 $CX \sqcap CY \sqsubseteq CZ$

 $CX \sqsubseteq \exists RY.CZ$

 $\exists RX.CY \sqsubseteq CZ$

 $RX \sqsubseteq RY$

 $RX \circ RY \sqsubseteq RZ$

$$(1) \quad A \sqsubseteq C \qquad C \sqsubseteq D \qquad \qquad \models A \sqsubseteq D$$

$$(2) \quad A \sqsubseteq C_1 \qquad A \sqsubseteq C_2 \qquad C_1 \sqcap C_2 \sqsubseteq D \models A \sqsubseteq D$$

$$(3) \quad A \sqsubseteq C \qquad C \sqsubseteq \exists R.D \qquad \qquad \models A \sqsubseteq \exists R.D$$

$$(4) \quad A \sqsubseteq \exists R.B \qquad B \sqsubseteq C \qquad \exists R.C \sqsubseteq D \qquad \models A \sqsubseteq D$$

$$(5) \quad A \sqsubseteq \exists S.D \qquad S \sqsubseteq R \qquad \qquad \models A \sqsubseteq \exists R.D$$

$$(6) \quad A \sqsubseteq \exists R_1.C \quad C \sqsubseteq \exists R_2.D \quad R_1 \circ R_2 \sqsubseteq R \models A \sqsubseteq \exists R.D$$

Table 1: \mathcal{EL}^+ Semantics

Description	Expression	Semantics
Individual	a	$a \in \Delta^{\mathcal{I}}$
Тор	Т	$\Delta^{\mathcal{I}}$
Bottom		Ø
Concept	C	$C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
Role	R	$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
Conjunction	$C \sqcap D$	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
Existential Restriction	$\exists R.C$	$\{ a \mid \text{there is } b \in \Delta^{\mathcal{I}} \text{ such that } (a,b) \in R^{\mathcal{I}} \text{ and } b \in C^{\mathcal{I}} \}$
Concept Subsumption	$C \sqsubseteq D$	$C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
Role Subsumption	$R \sqsubseteq S$	$R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
Role Chain	$R_1 \circ \cdots \circ R_n \sqsubseteq R$	$R_1^{\mathcal{I}} \circ \dots \circ R_n^{\mathcal{I}} \subseteq R^{\mathcal{I}}$

Results

Table 7: Average Precision Recall and F1-score For each Distance Evaluation

	Atomic I	.evenshtein	Distance	Character I	.evenshtei	n Distance				
	Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score	
		Synthetic Data								
Piecewise Prediction	0.138663	0.142208	0.140412	0.138663	0.142208	0.140412	0.138646	0.141923	0.140264	
Deep Prediction	0.154398	0.156056	0.155222	0.154398	0.156056	0.155222	0.154258	0.155736	0.154993	
Flat Prediction	0.140410	0.142976	0.141681	0.140410	0.142976	0.141681	0.140375	0.142687	0.141521	
Random Prediction	0.010951	0.0200518	0.014166	0.006833	0.012401	0.008811	0.004352	0.007908	0.007908	
				SNO	OMED Da	ta				
Piecewise Prediction										
Deep Prediction	0.015983	0.0172811	0.016595	0.015983	0.017281	0.016595	0.015614	0.017281	0.016396	
Flat Prediction	0.014414	0.018300	0.016112	0.0144140	0.018300	0.016112	0.013495	0.018300	0.015525	
Random Prediction	0.002807	0.006803	0.003975	0.001433	0.003444	0.002023	0.001769	0.004281	0.002504	

Generative EL Reasoning using Pointer Networks

Monireh Ebrahimi, Aaron Eberhart, Pascal Hitzler
On the Capabilities of Pointer Networks for Deep Deductive Reasoning
https://arxiv.org/abs/2106.09225

Results with transfer

		Pointer Network	ks		Transformer		
Logic KG Size		SubWordText	Tokenizer	Normalized	Not-Norm	LSTM	
		Subword Text	Tokemzei	Normanzed	SubWordText	Tokenizer	
	40	73%	73%	8%	8%	0.4 %	0%
$_{\mathrm{ER}}$	50	68%	68%	11%	11%	0.3%	0%
	120	49%	49%	15%	NA	NA	0%

same architecture as before

Conclusions

Conclusions

- Bridging the neuro-symbolic gap is still a major quest.
- Research on Deep Deductive Reasoning is at the heart of neurosymbolic Artificial Intelligence
 - Research is needed to push the envelope with respect to core aspects such as
 - more complex logics
 - higher reasoning accuracy
 - better transfer
 - scalability

Thanks!

Pascal Hitzler, Md Kamruzzaman Sarker (eds.), Neuro-Symbolic Artificial Intelligence – The State of the Art. Frontiers in Artificial Intelligence and Applications Vol. 342, IOS Press, Amsterdam, 2022.

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners. Applied Intelligence 51 (9), 6326-6348, 2021.

Barbara Hammer and Pascal Hitzler (eds), Perspectives on Neural-Symbolic Integration. Springer, 2007

Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, Gerson Zaverucha, Neural-Symbolic Learning and Reasoning: A Survey and Interpretation. https://arxiv.org/abs/1711.03902 (2017)

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler Neuro-Symbolic Artificial Integration: Current Trends Al Communications 34 (3), 197-209, 2022.

Federico Bianchi, Pascal Hitzler, On the Capabilities of Logic Tensor Networks for Deductive Reasoning. In: Andreas Martin, Knut Hinkelmann, Aurona Gerber, Doug Lenat, Frank van Harmelen, Peter Clark (eds.), Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019) Stanford University, Palo Alto, California, USA, March 25-27, 2019, Stanford University, Palo Alto, California, USA, March 25-27, 2019. CEUR Workshop Proceedings 2350, CEUR-WS.org 2019.

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler, Completion Reasoning Emulation for the Description Logic EL+. In: Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug Lenat, Reinhard Stolle, Frank van Harmelen (eds.), Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25, 2020, Volume I.

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie, Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler, Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment. In: Proc. AAAI-MAKE 2021.

Bassem Makni, James Hendler, Deep learning for noise-tolerant RDFS reasoning. Semantic Web 10(5): 823-862 (2019)

Monireh Ebrahimi, Aaron Eberhart, Pascal Hitzler, On the Capabilities of Pointer Networks for Deep Deductive Reasoning. June 2021. https://arxiv.org/abs/2106.09225

Pascal Hitzler, Frank van Harmelen, A reasonable Semantic Web. Semantic Web 1 (1-2), 39-44, 2010.

Pascal Hitzler, Federico Bianchi, Monireh Ebrahimi, Md Kamruzzaman Sarker, Neural-Symbolic Integration and the Semantic Web. Semantic Web 11 (1), 2020, 3-11.

Federico Bianchi, Matteo Palmonari, Pascal Hitzler, Luciano Serafini, Complementing Logical Reasoning with Sub-symbolic Commonsense. In: Paul Fodor, Marco Montali, Diego Calvanese, Dumitru Roman, Rules and Reasoning - Third International Joint Conference, RuleML+RR 2019, Bolzano, Italy, September 16-19, 2019, Proceedings. Lecture Notes in Computer Science 11784, Springer 2019, pp. 161-170.

Sebastian Bader, Pascal Hitzler, Dimensions of neural-symbolic integration – a structured survey. In: S. Artemov, H. Barringer, A. S. d'Avila Garcez, L. C. Lamb and J. Woods (eds). We Will Show Them: Essays in Honour of Dov Gabbay, Volume 1. International Federation for Computational Logic, College Publications, 2005, pp. 167-194.

Pascal Hitzler, Semantic Web: A Review of the Field. Communications of the ACM 64 (2), 76-82, 2021.

Henry Kautz, The third Al summer: AAAI Robert S. Engelmore Memorial Lecture, Al Magazine 43, 2022, 105-125

Thanks!

