

# Neuro-Symbolic AI: Explainability and Deep Deductive Reasoning



#### **Pascal Hitzler**

Data Semantics Laboratory (DaSe Lab) Kansas State University

http://www.daselab.org



# **Neuro-symbolic Al**

Publications on neuro-symbolic AI in major conferences (research papers only):

| conference | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | total |
|------------|------|------|------|------|------|------|------|------|------|------|-------|
| ICML       | 0    | 0    | 0    | 0    | 0    | 1    | 3    | 2    | 5    | 6    | 17    |
| NeurIPS    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 4    | 2    | 4    | 10    |
| AAAI       | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 1    | 1    | 1    | 4     |
| IJCAI      | 1    | 0    | 0    | 0    | 0    | 0    | 2    | 2    | 0    | 2    | 7     |
| ICLR       | N/A  | N/A  | 0    | 0    | 0    | 0    | 1    | 1    | 1    | 3    | 6     |
| total      | 1    | 0    | 0    | 0    | 0    | 2    | 6    | 10   | 9    | 16   | 44    |

#### See

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler Neuro-Symbolic Artificial Integration: Current Trends AI Communications, to appear; <u>https://arxiv.org/abs/2105.05330</u> for more analysis.





# Neural

- Refers to computational abstractions of (natural) neural network systems.
- Prominently includes Artificial Neural Networks and Deep Learning as machine learning paradigms.
- More generally sometimes referred to as *connectionist systems*.

- Prominent applications come from the machine learning world.
- And of course, there is the current deep learning hype.





#### **Ulster University, February 2022**

- Refers to (computational) symbol manipulations of all kind.
- Graphs and trees, traversal, data structure operations.
- Knowledge representation in explicit symbolic form (data base, ontology, knowledge graph)
- Inductive and statistical inference.
- Formal logical (deductive or abductive) reasoning.
- Prominent applications all over computer science, including expert systems (and their modern versions), information systems, data management, added value of data annotation, etc.
- Semantic Web data is inherently symbolic.



# Symbolic



**Computer Science perspective:** 

- Let's try to get the best of both worlds:
  - very powerful machine learning paradigm
  - robust to data noise
  - easy to understand and assess by humans
  - good at symbol manipulation
  - work seamlessly with background (domain) knowledge

• How to do that?

Kansas State

IVERSI

- Endow connectionist systems with symbolic components?
- Add connectionist learning to symbolic reasoners?



# Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, since 2005. Joint with Artur d'Avila Garcez.

http://neural-symbolic.org/

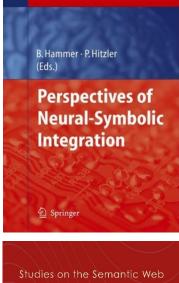
Barbara Hammer and Pascal Hitzler (eds), Perspectives of Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, Gerson Zaverucha https://arxiv.org/abs/1711.03902 (2017)

Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges. Studies on the Semantic Web Vol. 47, IOS Press, 2020.



Studies in Computational Intelligence 77



llaria Tiddi, Freddy Lécué and Pascal Hitzler (Eds.)

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges

# KANSAS STATE

# 2022 Book (just out!)

#### **Neuro-symbolic Artificial Intelligence: The State of the Art**

Pascal Hitzler and Md Kamruzzaman Sarker, editors Fontriers in AI and Applications Vol. 342, IOS Press, Amsterdam, 2022

https://www.iospress.com/catalog/books/neuro-symbolic-artificial-intelligence-the-state-of-the-art

| Preface: The 3rd AI wave i | is coming, | and it needs | a theory |
|----------------------------|------------|--------------|----------|
| Frank van Harmelen         |            |              |          |

Introduction

Pascal Hitzler and Md Kamruzzaman Sarker

| Chapter 1. Neural-Symbolic Learning and Reasoning: A Survey and Interpretation<br>Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, Howard Bowman,<br>Pedro Domingos, Pascal Hitzler, Kai-Uwe Kühnberger, Luis C. Lamb,<br>Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon<br>and Gerson Zaverucha | 1   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Chapter 2. Symbolic Reasoning in Latent Space: Classical Planning as an Example<br>Masataro Asai, Hiroshi Kajino, Alex Fukunaga and Christian Muise                                                                                                                                                                              | 52  |
| Chapter 3. Logic Meets Learning: From Aristotle to Neural Networks<br>Vaishak Belle                                                                                                                                                                                                                                              | 78  |
| Chapter 4. Graph Reasoning Networks and Applications<br><i>Qingxing Cao, Wentao Wan, Xiaodan Liang and Liang Lin</i>                                                                                                                                                                                                             | 103 |
| Chapter 5. Answering Natural-Language Questions with Neuro-Symbolic<br>Knowledge Bases<br>Haitian Sun, Pat Verga and William W. Cohen                                                                                                                                                                                            | 126 |
| Chapter 6. Tractable Boolean and Arithmetic Circuits<br>Adnan Darwiche                                                                                                                                                                                                                                                           | 146 |
| Chapter 7. Neuro-Symbolic AI = Neural + Logical + Probabilistic AI<br>Robin Manhaeve, Giuseppe Marra, Thomas Demeester,<br>Sebastijan Dumančić, Angelika Kimmig and Luc De Raedt                                                                                                                                                 | 173 |
| Chapter 8. A Constraint-Based Approach to Learning and Reasoning<br>Michelangelo Diligenti, Francesco Giannini, Marco Gori, Marco Maggini<br>and Giuseppe Marra                                                                                                                                                                  | 192 |

ix

52

v

|    | Chapter 9. Spike-Based Symbolic Computations on Bit Strings and Numbers<br>Ceca Kraišniković, Wolfgang Maass and Robert Legenstein                                                   | 214 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | Chapter 10. Explainable Neuro-Symbolic Hierarchical Reinforcement Learning<br>Daoming Lyu, Fangkai Yang, Hugh Kwon, Bo Liu, Wen Dong<br>and Levent Yilmaz                            | 235 |
|    | Chapter 11. Neuro-Symbolic Semantic Reasoning<br>Bassem Makni, Monireh Ebrahimi, Dagmar Gromann and Aaron Eberhart                                                                   | 253 |
|    | Chapter 12. Learning Reasoning Strategies in End-to-End Differentiable Proving<br>Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp,<br>Edward Grefenstette and Tim Rocktäschel | 280 |
|    | Chapter 13. Generalizable Neuro-Symbolic Systems for Commonsense Question<br>Answering<br>Alessandro Oltramari, Jonathan Francis, Filip Ilievski, Kaixin Ma<br>and Roshanak Mirzaee  | 294 |
|    | Chapter 14. Combining Probabilistic Logic and Deep Learning for<br>Self-Supervised Learning<br><i>Hoifung Poon, Hai Wang and Hunter Lang</i>                                         | 311 |
|    | Chapter 15. Human-Centered Concept Explanations for Neural Networks<br>Chih-Kuan Yeh, Been Kim and Pradeep Ravikumar                                                                 | 337 |
|    | Chapter 16. Abductive Learning<br>Zhi-Hua Zhou and Yu-Xuan Huang                                                                                                                     | 353 |
| rs | Chapter 17. Logic Tensor Networks: Theory and Applications<br>Luciano Serafini, Artur d'Avila Garcez, Samy Badreddine, Ivan Donadello,<br>Michael Spranger and Federico Bianchi      | 370 |

**NEURO-SYMBOLIC** ARTIFICIAL INTELLIGENCE: THE STATE **OF THE ART** 

Edited by Pascal Hitzler Md Kamruzzaman Sarke

IOS Pres



# **Deep Deductive Reasoners**

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners. Applied Intelligence 51 (9), 6326-6348, 2021.

Pascal Hitzler, Frank van Harmelen A reasonable Semantic Web. Semantic Web 1 (1-2), 39-44, 2010.



## **Deep Deductive Reasoners**

- We trained deep learning systems to do deductive reasoning.
- Why is this interesting?
  - For dealing with noisy data (where symbolic reasoners do very poorly).
  - For speed, as symbolic algorithms are of very high complexity.
  - Out of principle because we want to learn about the capabilities of deep learning for complicated cognitive tasks.
  - To perhaps begin to understand how our (neural) brains can learn to do highly symbolic tasks like formal logical reasoning, or in more generality, mathematics. A fundamental quest in Cognitive Science.





# **Reasoning as Classification**

- Given a set of logical formulas (a theory).
- Any formula expressible over the same language is either
  - a logical consequence or
  - not a logical consequence.
- This can be understood as a classification problem for machine learning.
- It turns out to be a really hard machine learning problem.





# **Knowledge Materialization**

- Given a set of logical formulas (a theory).
- Produce all logical consequences under certain constraints.
- Without the qualifier this is in general not possible as the set of all logical consequences is infinite.
- So we have to constrain to consequences of, e.g., a certain syntactic form. For relatively simple logics, this is often reasonably possible.





# Published deep deductive reasoning work

| logic            | $\operatorname{transfer}$                                        | generative                                             | scale                                                                  | performance                                                                                                  | DaSe Lab                                                                                                                            |
|------------------|------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| RDFS             | yes                                                              | no                                                     | moderate                                                               | high                                                                                                         |                                                                                                                                     |
| RDFS             | no                                                               | yes                                                    | low                                                                    | $\operatorname{high}$                                                                                        |                                                                                                                                     |
| $\mathcal{EL}^+$ | no                                                               | yes                                                    | moderate                                                               | low                                                                                                          |                                                                                                                                     |
| OWL RL           | no*                                                              | no                                                     | low                                                                    | $\operatorname{high}$                                                                                        |                                                                                                                                     |
| FOL              | no                                                               | yes                                                    | very low                                                               | $\operatorname{high}$                                                                                        |                                                                                                                                     |
| RDFS             | yes                                                              | yes                                                    | moderate                                                               | high                                                                                                         |                                                                                                                                     |
| EL+              | yes                                                              | yes                                                    | moderate                                                               | high                                                                                                         |                                                                                                                                     |
|                  | RDFS<br>RDFS<br>$\mathcal{EL}^+$<br>OWL RL<br>FOL<br><b>RDFS</b> | RDFSyesRDFSno $\mathcal{EL}^+$ noOWL RLno*FOLnoRDFSyes | RDFSyesnoRDFSnoyes $\mathcal{EL}^+$ noyesOWL RLno*noFOLnoyesRDFSyesyes | RDFSyesnomoderateRDFSnoyeslow $\mathcal{EL}^+$ noyesmoderateOWL RLno*nolowFOLnoyesvery lowRDFSyesyesmoderate | RDFSyesnomoderatehighRDFSnoyeslowhigh $\mathcal{EL}^+$ noyesmoderatelowOWL RLno*nolowhighFOLnoyesvery lowhighRDFSyesyesmoderatehigh |

[12]: Ebrahimi, Sarker, Bianchi, Xie, Eberhart, Doran, Kim, Hitzler, AAAI-MAKE 2021

- [25]: Makni, Hendler, SWJ 2019
- [10]: Eberhart, Ebrahimi, Zhou, Shimizu, Hitzler, AAAI-MAKE 2020
- [20]: Hohenecker, Lukasiewicz, JAIR 2020
- [6]: Bianchi, Hitzler, AAAI-MAKE 2019
- (new): Ebrahimi, Eberhart, Hitzler, June 2021

# KANSAS STATE



# **Knowledge Graphs and Ontologies**

Pascal Hitzler, Semantic Web: A Review of the Field. Communications of the ACM 64 (2), 76-82, 2021.



# **Knowledge Graphs and Ontologies (Schemas)**

Knowledge Graphs (and their schemas) are made to enable easier

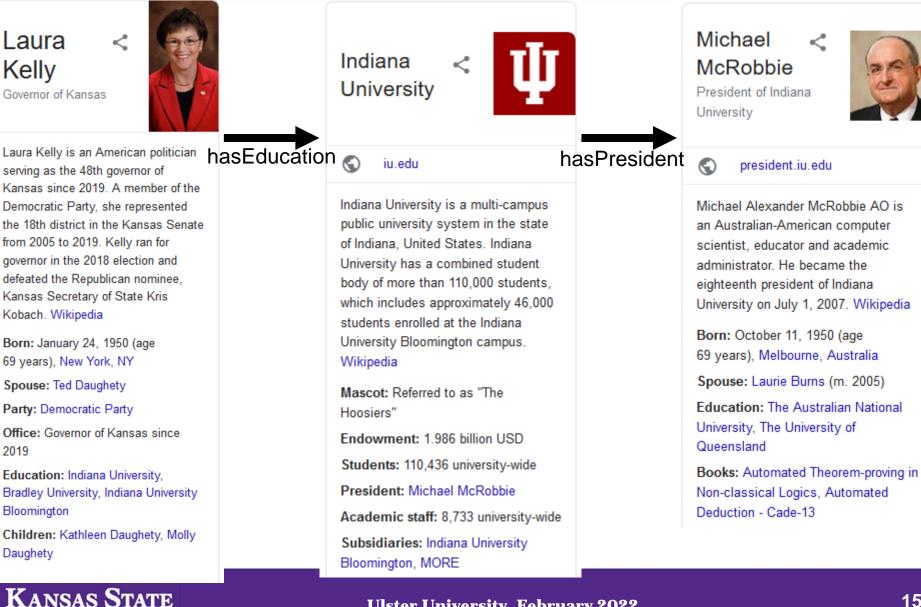
- data sharing
- data discovery
- data integration
- data reuse



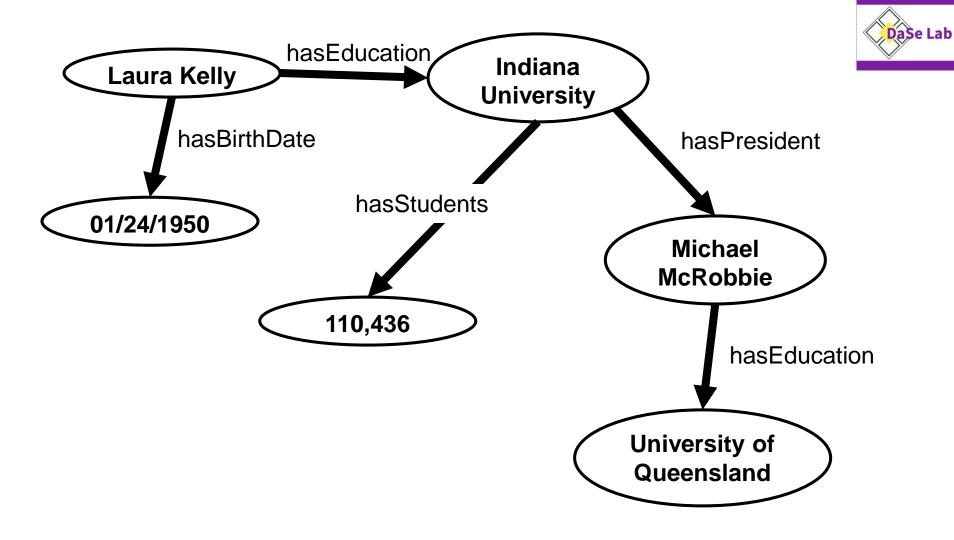
DaSe Lab

# Google Knowledge Graph

UNIVERSITY

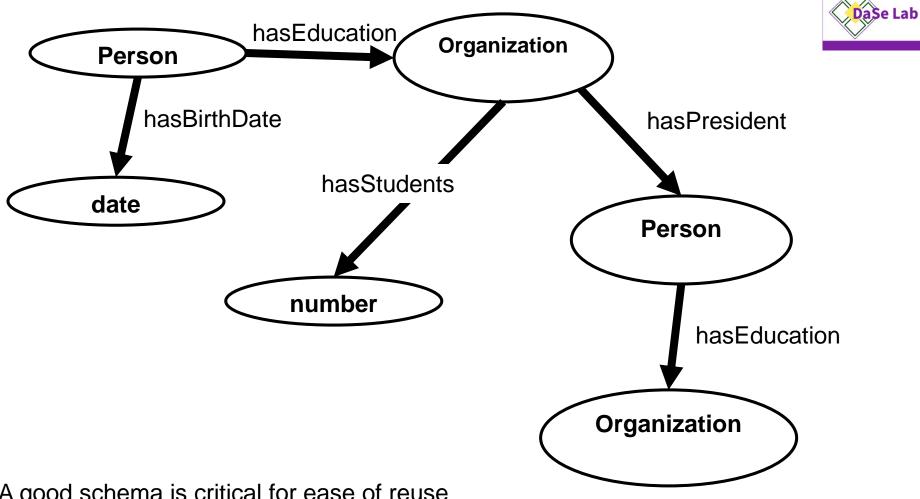


# **Knowledge Graphs**





# Schema (as diagram)





## **W3C Standards**

| RDF 1.1 Concepts and Abstract Syntax                                                                                       |    |
|----------------------------------------------------------------------------------------------------------------------------|----|
| W3C Recommendation 25 February 2014                                                                                        |    |
| This version:<br>http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/                                                    |    |
| Latest published version:                                                                                                  |    |
| http://www.w3.org/TR/rdf11-concepts/<br>Previous version:                                                                  |    |
| http://www.w3.org/TR/2014/PR-rdf11-concepts-20140109/<br>Previous Recommendation:                                          |    |
| http://www.w3.org/TR/rdf-concepts<br>Editors:                                                                              |    |
| Richard Cyganiak, DERI, NUI Galway<br>David Wood, 3 Round Stones                                                           |    |
| Richard Cyganiak, DERI, NUI Galway<br>David Wood, <u>3 Round Stones</u><br>Markus Lanthaler, Graz University of Technology | Pr |
| Del                                                                                                                        |    |

Both established 2004 as versions 1.0.

# KANSAS STATE

# '3C Recommendation



### OWL 2 Web Ontology Language Primer (Second Edition)

#### W3C Recommendation 11 December 2012

This version:

http://www.w3.org/TR/2012/REC-owl2-primer-20121211/

Latest version (series 2):

http://www.w3.org/TR/owl2-primer/

Latest Recommendation:

http://www.w3.org/TR/owl-primer

**Previous version:** 

http://www.w3.org/TR/2012/PER-owl2-primer-20121018/ Editors:

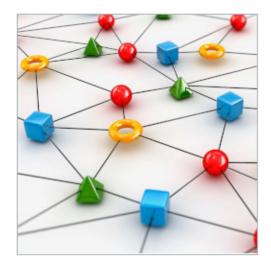
Pascal Hitzler, Wright State University Markus Krötzsch, University of Oxford Bijan Parsia, University of Manchester Peter F. Patel-Schneider, Nuance Communications Sebastian Rudolph, FZI Research Center for Information



# Industry-Scale Knowledge Graphs: Lessons and Challenges

By Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, Jamie Taylor Communications of the ACM, August 2019, Vol. 62 No. 8, Pages 36-43 10.1145/3331166 Comments

| VIEW AS: 🚊 📋 🏟 🔂 🔐 | SHARE: 🖂 | 🚭 의 🔟 |  |
|--------------------|----------|-------|--|
|--------------------|----------|-------|--|



Credit: Adempercem / Stutterstock

#### **^**

Knowledge graphs are critical to many enterprises today: They provide the structured data and factual knowledge that drive many products and make them more intelligent and "magical."

In general, a knowledge graph describes objects of interest and connections between them. For example, a knowledge graph may have nodes for a movie, the actors in this movie, the director, and so on. Each node may have properties such as an actor's name and age. There may be nodes for multiple movies involving a particular actor. The user can then traverse the knowledge graph to collect information on all the movies in which the actor appeared or, if applicable, directed.

Many practical implementations impose constraints on the links

in knowledge graphs by defining a *schema* or *ontology*. For example, a link from a movie to its director must connect an object of type Movie to an object of type Person. In some cases the links themselves might have their own properties: a link connecting an actor and a movie might have the name of the specific role the actor

#### SIGN IN for Full Access User Name Password » Forgot Password?

» Create an ACM Web Account

SIGN IN

#### ARTICLE CONTENTS: Introduction What's In a Graph? Design Decisions Challenges Ahead Other Key Challenges Conclusion References Authors

#### MORE NEWS & OPINIONS

MIT Robot Could Help People



Back to:

# **Deep Deductive Reasoners**

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners. Applied Intelligence 51 (9), 6326-6348, 2021.

Pascal Hitzler, Frank van Harmelen A reasonable Semantic Web. Semantic Web 1 (1-2), 39-44, 2010.



# Published deep deductive reasoning work

| paper | logic            | $\operatorname{transfer}$ | generative | scale    | performance           | DaSe Lab |
|-------|------------------|---------------------------|------------|----------|-----------------------|----------|
| [12]  | RDFS             | yes                       | no         | moderate | high                  |          |
| [25]  | RDFS             | no                        | yes        | low      | $\operatorname{high}$ |          |
| [10]  | $\mathcal{EL}^+$ | no                        | yes        | moderate | low                   |          |
| [20]  | OWL RL           | no*                       | no         | low      | high                  |          |
| [6]   | FOL              | no                        | yes        | very low | $\operatorname{high}$ |          |
| (new) | RDFS             | yes                       | yes        | moderate | high                  |          |
| (new) | EL+              | yes                       | yes        | moderate | high                  |          |

[12]: Ebrahimi, Sarker, Bianchi, Xie, Eberhart, Doran, Kim, Hitzler, AAAI-MAKE 2021

- [25]: Makni, Hendler, SWJ 2019
- [10]: Eberhart, Ebrahimi, Zhou, Shimizu, Hitzler, AAAI-MAKE 2020
- [20]: Hohenecker, Lukasiewicz, JAIR 2020
- [6]: Bianchi, Hitzler, AAAI-MAKE 2019
- (new): Ebrahimi, Eberhart, Hitzler, June 2021

# KANSAS STATE



# **RDFS Reasoning using Memory Networks**

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie, Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler, Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment. In: Proc. AAAI-MAKE 2021.

additional analysis by Sulogna Chowdhury, Aaron Eberhart and Brayden Pankaskie



# **RDF** reasoning

- [Note: RDF is one of the simplest useful knowledge representation languages that is not propositional.]
- Think knowledge graph.
  - Think node-edge-node triples such asBarackObama rdf:typePresidentBarackObama husbandOfMichelleObamaPresidentrdfs:subClassOfhusbandOfrdfs:subPropertyOf
- Then there is a (fixed, small) set of inference rules, such as rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)



•



# **RDF** reasoning

- Essentially, RDF reasoning is Datalog reasoning restricted to:
  - Unary and binary predicates only.
  - A fixed set of rules that are not facts.
- You can try the following:
  - Use a vector embedding for one RDF graph.
  - Create all logical consequences.
  - Throw n% of them away.
  - Use the rest to train a DL system.
  - Check how many of those you threw away can be recovered this way.

KANSAS STATE

UNIVERSITY

Issues Under Review Reviewed For Authors For Reviewers Scientometrics FAQ About Blog Deep Learning for Noise-Tolerant RDFS Reasoning Login Submitted by Bassem Makni on 10/01/2018 - 01:02 Tracking #: 2028-3241 Username or e-mail\* A new version of this paper is available Password \* Authors: **Bassem Makni** Create new account James Hendler Request new password Responsible editor: Log in Guest Editors Semantic Deep Learning 2018 Submission type: **Editorial Board Full Paper** Abstract: Editors-in-Chief Since the 2001 envisioning of the Semantic Web (SW) [1] as an extension to the World Wide Web, the main research focus in SW Pascal Hitzler

Semantic Web - Interoperability, Usability, Applicability an IOS Press Journal



# **RDF** reasoning

- The problem with the approach just described:
  - It works only with that graph.
- What you'd really like to do is:
  - Train a deep learning system so that you can present a new, unseen graph to it, and it can correctly derive the deductively inferred triples.

DaSe Lab

• Note:

KANSAS STATE

IVERSI

- You don't know the IRIs in the graph up front. The only overlap may or may not be the IRIs in the rdf/s namespace.
- You don't know up front how "deep" the reasoning needs to be.
- There is no lack of training data, it can be auto-generated.

# Representation

- Goal is to be able to reason over unseen knowledge graphs. I.e. the out-of-vocabulary problem needs addressing.
- Normalization of vocabulary (i.e., it becomes shared vocabulary across all input knowledge graphs.
- One vocabulary item becomes a one-hot vector (dimension d, number of normalized vocabulary terms)
- One triple becomes a 3 x d matrix.
- The knowledge graph becomes an n x 3 x d tensor (n is the number of knowledge graph triples)
- Knowledge graph is stored in "memory"





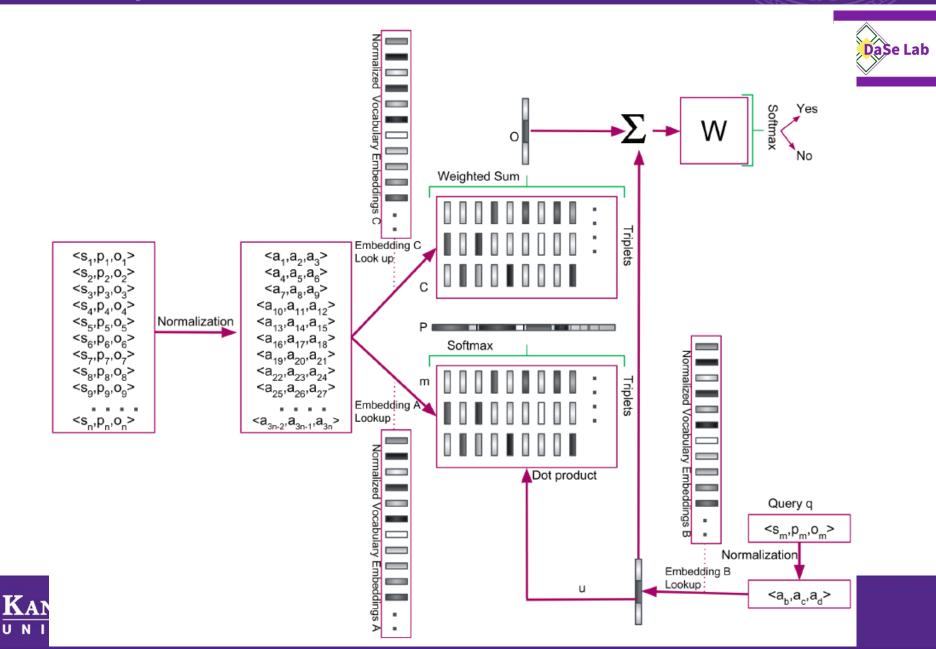
# **Mechanics**

- An attention mechanism retrieves memory slots useful for finding the correct answer to a query.
- These are combined with the query and run through a (learned) matrix to retrieve a new (processed) query.
- This is repeated (in our experiment with 10 "hops").
- The final out put is a yes/no answer to the query.





# **Memory Network based on MemN2N**



# **Experiments: Performance**

| Test Dataset         | #KG   |        |       | В      | ase   |              |         |        | Inferred |        |       |     |         |        |  |  |
|----------------------|-------|--------|-------|--------|-------|--------------|---------|--------|----------|--------|-------|-----|---------|--------|--|--|
| Test Dataset         | #RO   | #Facts | #Ent. | %Class | %Indv | % <b>R</b> . | %Axiom. | #Facts | #Ent.    | %Class | %Indv | %R. | %Axiom. | #Facts |  |  |
| OWL-Centric          | 2464  | 996    | 832   | 14     | 19    | 3            | 0       | 494    | 832      | 14     | 0.01  | 1   | 20      | 462    |  |  |
| Linked Data          | 20527 | 999    | 787   | 3      | 22    | 5            | 0       | 124    | 787      | 3      | 0.006 | 1   | 85      | 124    |  |  |
| OWL-Centric Test Set | 21    | 622    | 400   | 36     | 41    | 3            | 0       | 837    | 400      | 36     | 3     | 1   | 12      | 476    |  |  |
| Synthetic Data       | 2     | 752    | 506   | 52     | 0     | 1            | 0       | 126356 | 506      | 52     | 0     | 1   | 0.07    | 700    |  |  |

Table 2: Statistics of various datasets used in experiments

#### Baseline: non-normalized embeddings, same architecture

| Training Dataset           | Test Dataset                | V         | /alid Triples Cla | ass       | Inv       | Accuracy     |           |          |
|----------------------------|-----------------------------|-----------|-------------------|-----------|-----------|--------------|-----------|----------|
| Training Dataset           | Test Dataset                | Precision | Recall            | F-measure | Precision | Recall       | F-measure | Accuracy |
|                            | ()                          |           | /Sensitivity      |           |           | /Specificity |           | <u> </u> |
| OWL-Centric Dataset        | Linked Data                 | 93        | 98                | 96        | 98        | 93           | 95        | 96       |
| OWL-Centric Dataset (90%)  | OWL-Centric Dataset (10%)   | 88        | 91                | 89        | 90        | 88           | 89        | 90       |
| OWL-Centric Dataset        | OWL-Centric Test Set b      | 79        | 62                | 68        | 70        | 84           | 76        | 69       |
| OWL-Centric Dataset        | Synthetic Data              | 65        | 49                | 40        | 52        | 54           | 42        | 52       |
| OWL-Centric Dataset        | Linked Data <sup>a</sup>    | 54        | 98                | 70        | 91        | 16           | 27        | 86       |
| OWL-Centric Dataset a      | Linked Data <sup>a</sup>    | 62        | 72                | 67        | 67        | 56           | 61        | 91       |
| OWL-Centric Dataset(90%) a | OWL-Centric Dataset(10%) a  | 79        | 72                | 75        | 74        | 81           | 77        | 80       |
| OWL-Centric Dataset        | OWL-Centric Test Set ab     | 58        | 68                | 62        | 62        | 50           | 54        | 58       |
| OWL-Centric Dataset a      | OWL-Centric Test Set ab     | 77        | 57                | 65        | 66        | 82           | 73        | 73       |
| OWL-Centric Dataset        | Synthetic Data a            | 70        | 51                | 40        | 47        | 52           | 38        | 51       |
| OWL-Centric Dataset a      | Synthetic Data <sup>a</sup> | 67        | 23                | 25        | 52        | 80           | 62        | 50       |
|                            |                             |           | aseline           |           |           |              |           |          |
| OWL-Centric Dataset        | Linked Data                 | 73        | 98                | 83        | 94        | 46           | 61        | 43       |
| OWL-Centric Dataset (90%)  | OWL-Centric Dataset (10%)   | 84        | 83                | 84        | 84        | 84           | 84        | 82       |
| OWL-Centric Dataset        | OWL-Centric Test Set b      | 62        | 84                | 70        | 80        | 40           | 48        | 61       |
| OWL-Centric Dataset        | Synthetic Data              | 35        | 41                | 32        | 48        | 55           | 45        | 48       |
|                            |                             |           |                   |           |           |              |           |          |

<sup>a</sup> More Tricky Nos & Balanced Dataset

<sup>b</sup> Completely Different Domain.

Table 3: Experimental results of proposed model

## **Experiments: Reasoning Depth**



|                          |    |       |      |      |       |      |    |       |    |       |       |      |      |       |      |    |       |      |    |       |      |    |       |      |    |       |    |    |       |    | 1 1 | ×      |    |
|--------------------------|----|-------|------|------|-------|------|----|-------|----|-------|-------|------|------|-------|------|----|-------|------|----|-------|------|----|-------|------|----|-------|----|----|-------|----|-----|--------|----|
| Test Dataset             |    | Hop 0 |      |      | Hop 1 |      |    | Hop 2 |    |       | Hop 3 |      |      | Hop 4 |      |    | Hop 5 | )    |    | Hop 6 | 5    |    | Hop 7 |      |    | Hop 8 | 3  |    | Hop 9 | )  |     | Hop 1( | 0  |
| Test Dataset             | Р  | R     | F    | Р    | R     | F    | Р  | R     | F  | Р     | R     | F    | Р    | R     | F    | Р  | R     | F    | Р  | R     | F    | Р  | R     | F    | Р  | R     | F  | Р  | R     | F  | Р   | R      | F  |
| Linked Data <sup>a</sup> | 0  | 0     | 0    | 80   | 99    | 88   | 89 | 97    | 93 | $\pi$ | 98    | 86   | -    | -     | -    | -  | -     | -    | -  | -     | -    | -  | -     | -    | -  | -     | -  | -  | -     | -  | -   | -      | -  |
| Linked Data <sup>b</sup> | 2  | 0     | 0    | 82   | 91    | 86   | 89 | 98    | 93 | 79    | 100   | 88   | -    | -     | -    | -  | -     | -    | -  | -     | -    | -  | -     | -    | -  | -     | -  | -  | -     | -  | -   | -      | -  |
| OWL-Centric °            | 19 | 5     | 9    | 31   | 75    | 42   | 78 | 80    | 78 | 48    | 47    | 44   | 4    | 34    | 6    | -  | -     | -    | -  | -     | -    | -  | -     | -    | -  | -     | -  | -  | -     | -  | -   | -      | -  |
| Synthetic                | 32 | 46    | - 33 | - 31 | 87    | - 38 | 66 | - 55  | 44 | 25    | 45    | - 32 | - 29 | 46    | - 33 | 26 | 46    | - 33 | 25 | 46    | - 33 | 25 | 46    | - 33 | 24 | 43    | 31 | 25 | 43    | 31 | 22  | - 36   | 28 |

<sup>a</sup> LemonUby Ontology

<sup>b</sup> A grovoc Ontology

<sup>c</sup> Completely Different Domain

|  | Table 4: | Experimental | results over | each reasonii | ng hop |
|--|----------|--------------|--------------|---------------|--------|
|--|----------|--------------|--------------|---------------|--------|

| Dataset                  | Hop 1 | Hop 2 | Hop 3 | Hop 4 | Hop 5 | Hop 6 | Hop 7  | Hop 8  | Hop 9  | Hop 10 |
|--------------------------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|
| OWL-Centric <sup>a</sup> | 8%    | 67%   | 24%   | 0.01% | 0%    | 0%    | 0%     | 0%     | 0%     | 0%     |
| Linked Data <sup>b</sup> | 31%   | 50%   | 19%   | 0%    | 0%    | 0%    | 0%     | 0%     | 0%     | 0%     |
| Linked Data <sup>c</sup> | 34%   | 46%   | 20%   | 0%    | 0%    | 0%    | 0%     | 0%     | 0%     | 0%     |
| OWL-Centric <sup>d</sup> | 5%    | 64%   | 30%   | 1%    | 0%    | 0%    | 0%     | 0%     | 0%     | 0%     |
| Synthetic Data           | 0.03% | 1.42% | 1%    | 1.56% | 3.09% | 6.03% | 11.46% | 20.48% | 31.25% | 23.65% |

<sup>a</sup> Training Set

<sup>b</sup> LemonUby Ontology

<sup>c</sup> Agrovoc Ontology

<sup>d</sup> Completely Different Domain

Table 5: Data distribution per knowledge graph over each reasoning hop

Training time: just over a full day





# Generative RDFS Reasoning using Pointer Networks

Monireh Ebrahimi, Aaron Eberhart, Pascal Hitzler On the Capabilities of Pointer Networks for Deep Deductive Reasoning https://arxiv.org/abs/2106.09225



# **Pointer Networks**

• Pointer Networks 'point' to input elements!

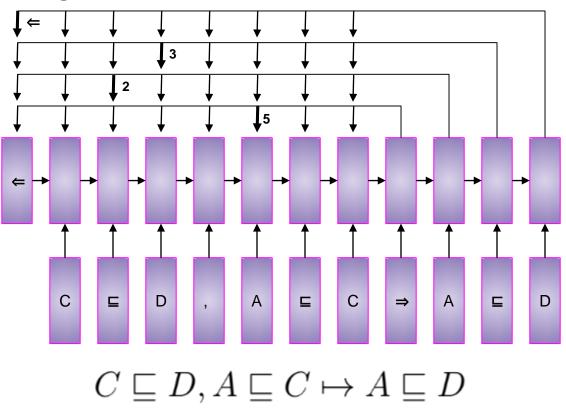


- Ptr-Net approach specifically targets problems whose outputs are discrete and correspond to positions in the input.
- At each time step, the distribution of the attention is the answer!
- Application:
  - NP-hard Travelling Salesman Problem (TSP)
  - Delaunay Triangulation
  - Convex Hull
  - Text Summarization
  - Code completion
  - Dependency Parsing



# **Pointer Networks for Reasoning**

 To mimic human reasoning behaviour where one can learn to choose a set of symbols in different locations and copy these symbols to suitable locations to generate new logical consequences based on a set of predefined logical entailment rules









| Logic KG Size |             | Pointer Network | ks         |             | LSTM      |    |       |
|---------------|-------------|-----------------|------------|-------------|-----------|----|-------|
|               | SubWordText | Tokenizer       | Normalized | Not-Norm    |           |    |       |
|               |             |                 |            | SubWordText | Tokenizer |    |       |
| RDF           | 3 - 735     | 87%             | 99%        | 5%          | 25%       | 4% | 0.17% |

- On RDF, slightly outperforms [Hendler Makni SWJ 2019] approach.
- Our approach is a more straightforward application.
- Evaluation is on the same dataset.





Table 6 Exact Match Accuracy Results for Transfer Learning/Representation: SubWord-Text Tokenization Encoding

| Test       | LUBM | Awards | University |
|------------|------|--------|------------|
| LUBM       | *    | 75%    | 78%        |
| Awards     | 79%  | *      | 77%        |
| University | 81%  | 82%    | *          |

 Table 7 Exact Match Accuracy Results for Transfer Learning/ Representation: Whitespace

 Tokenization Encoding

| Train      | LUBM | Awards | University |
|------------|------|--------|------------|
| LUBM       | *    | 61%    | 47%        |
| Awards     | 96%  | *      | 84%        |
| University | 82%  | 88%    | *          |





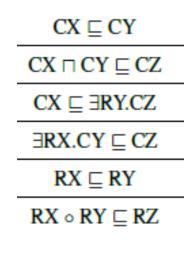
# Completion Reasoning Emulation for the Description Logic EL+

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler, Completion Reasoning Emulation for the Description Logic EL+. In: Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug Lenat, Reinhard Stolle, Frank van Harmelen (eds.), Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25, 2020, Volume I.



### EL+ is essentially OWL 2 EL

Table 2: EL<sup>+</sup> Completion Rules



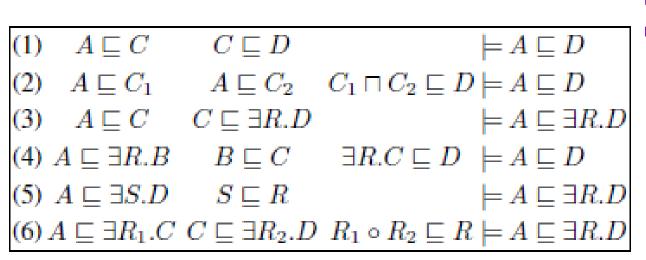


Table 1:  $\mathcal{EL}^+$  Semantics

| Description             | Expression                                 | Semantics                                                                                                                                   |
|-------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Individual              | a                                          | $a \in \Delta^{\mathcal{I}}$                                                                                                                |
| Тор                     | Т                                          | $\Delta^{\mathcal{I}}$                                                                                                                      |
| Bottom                  | $\perp$                                    | Ø                                                                                                                                           |
| Concept                 | C                                          | $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$                                                                                            |
| Role                    | R                                          | $R^{\mathcal{I}} \subseteq \overline{\Delta^{\mathcal{I}}} \times \Delta^{\mathcal{I}}$                                                     |
| Conjunction             | $C \sqcap D$                               | $C^{\mathcal{I}} \cap D^{\mathcal{I}}$                                                                                                      |
| Existential Restriction | $\exists R.C$                              | $\{ a \mid \text{there is } b \in \Delta^{\mathcal{I}} \text{ such that } (a, b) \in R^{\mathcal{I}} \text{ and } b \in C^{\mathcal{I}} \}$ |
| Concept Subsumption     | $C \sqsubseteq D$                          | $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$                                                                                                 |
| Role Subsumption        | $R \sqsubseteq S$                          | $R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$                                                                                                 |
| Role Chain              | $R_1 \circ \cdots \circ R_n \sqsubseteq R$ | $R_1^{\mathcal{I}} \circ \dots \circ R_n^{\mathcal{I}} \subseteq R^{\mathcal{I}}$                                                           |

with o signifying standard binary composition



#### Table 7: Average Precision Recall and F1-score For each Distance Evaluation

|                      | Atomic Levenshtein Distance |                |          | Character I | .evenshteii | n Distance | Predicate Distance |          |          |  |
|----------------------|-----------------------------|----------------|----------|-------------|-------------|------------|--------------------|----------|----------|--|
|                      | Precision                   | Recall         | F1-score | Precision   | Recall      | F1-score   | Precision          | Recall   | F1-score |  |
|                      |                             | Synthetic Data |          |             |             |            |                    |          |          |  |
| Piecewise Prediction | 0.138663                    | 0.142208       | 0.140412 | 0.138663    | 0.142208    | 0.140412   | 0.138646           | 0.141923 | 0.140264 |  |
| Deep Prediction      | 0.154398                    | 0.156056       | 0.155222 | 0.154398    | 0.156056    | 0.155222   | 0.154258           | 0.155736 | 0.154993 |  |
| Flat Prediction      | 0.140410                    | 0.142976       | 0.141681 | 0.140410    | 0.142976    | 0.141681   | 0.140375           | 0.142687 | 0.141521 |  |
| Random Prediction    | 0.010951                    | 0.0200518      | 0.014166 | 0.006833    | 0.012401    | 0.008811   | 0.004352           | 0.007908 | 0.007908 |  |
|                      |                             | SNOMED Data    |          |             |             |            |                    |          |          |  |
| Piecewise Prediction | 0.010530                    | 0.013554       | 0.011845 | 0.010530    | 0.013554    | 0.011845   | 0.010521           | 0.013554 | 0.011839 |  |
| Deep Prediction      | 0.015983                    | 0.0172811      | 0.016595 | 0.015983    | 0.017281    | 0.016595   | 0.015614           | 0.017281 | 0.016396 |  |
| Flat Prediction      | 0.014414                    | 0.018300       | 0.016112 | 0.0144140   | 0.018300    | 0.016112   | 0.013495           | 0.018300 | 0.015525 |  |
| Random Prediction    | 0.002807                    | 0.006803       | 0.003975 | 0.001433    | 0.003444    | 0.002023   | 0.001769           | 0.004281 | 0.002504 |  |





# Generative EL Reasoning using Pointer Networks

Monireh Ebrahimi, Aaron Eberhart, Pascal Hitzler On the Capabilities of Pointer Networks for Deep Deductive Reasoning https://arxiv.org/abs/2106.09225





|               |              | Pointer Network | ks         |             |           |       |    |
|---------------|--------------|-----------------|------------|-------------|-----------|-------|----|
| Logic KG Size | SubWordText  | Tokenizer       | Normalized | Not-Norm    | LSTM      |       |    |
|               | Bubword lext | TOKEIIIZEI      | Normanzed  | SubWordText | Tokenizer |       |    |
|               |              |                 |            |             |           |       |    |
|               | 40           | 73%             | 73%        | 8%          | 8%        | 0.4 % | 0% |
| ER            | 50           | 68%             | 68%        | 11%         | 11%       | 0.3%  | 0% |
|               | 120          | 49%             | 49%        | 15%         | NA        | NA    | 0% |

• same architecture as before





# Explaining Deep Learning via Symbolic Background Knowledge

Md. Kamruzzaman Sarker, Ning Xie, Derek Doran, Michael Raymer, Pascal Hitzler, Explaining Trained Neural Networks with Semantic Web Technologies: First Steps. In: Tarek R. Besold, Artur S. d'Avila Garcez, Isaac Noble (eds.), Proceedings of the Twelfth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2017, London, UK, July 17-18, 2017. CEUR Workshop Proceedings 2003, CEUR-WS.org 2017

Md Kamruzzaman Sarker, Pascal Hitzler, Efficient Concept Induction for Description Logics. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 – February 1, 2019. AAAI Press 2019, pp. 3036-3043.

Md Kamruzzaman Sarker, Joshua Schwartz, Pascal Hitzler, Lu Zhou, Srikanth Nadella, Brandon Minnery, Ion Juvina, Michael L. Raymer, William R. Aue, Wikipedia Knowledge Graph for Explainable AI. In: Boris Villazón-Terrazas, Fernando Ortiz-Rodríguez, Sanju M. Tiwari, Shishir K. Shandilya (eds.), Knowledge Graphs and Semantic Web. Second Iberoamerican Conference and First Indo-American Conference, KGSWC 2020, Mérida, Mexico, November 26-27, 2020, Proceedings. Communications in Computer and Information Science, vol. 1232, Springer, Heidelberg, 2020, pp. 72-87.



### **Explainable Al**

• Explain behavior of trained (deep) NNs.

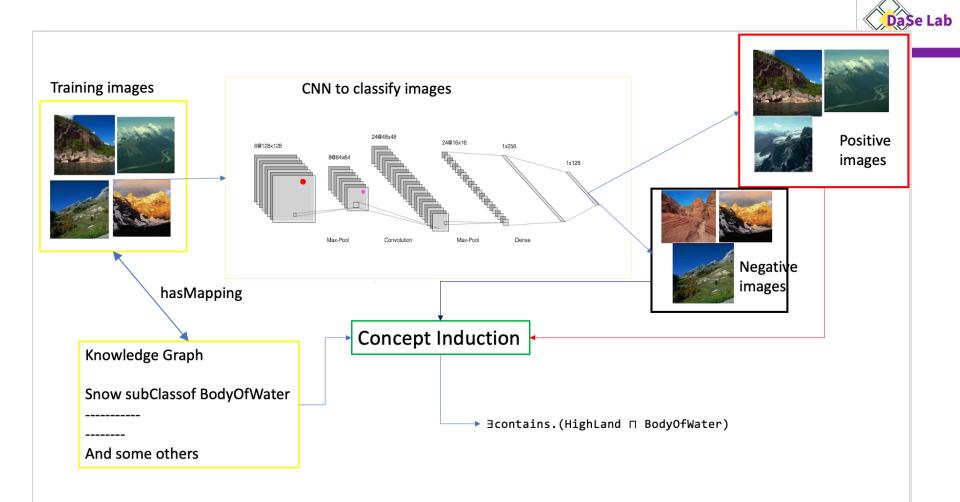


- Idea:
  - Use background knowledge in the form of linked data and ontologies to help explain.
  - Link inputs and outputs to background knowledge.
  - Use a symbolic learning system to generate an explanatory theory.

• We have key components for this now, but it's still early stages.



#### Concept





## **DL-Learner** [Lehmann, Hitzler]

Approach similar to inductive logic programming, but using Description Logics (the logic underlying OWL).

**Positive examples:** 

negative examples:

- ▖<mark>▐ਰᢪᡰᠮᡱᡱᡰᡛᡖᡱ</mark>
- ᠈ᢩᢩ᠐᠋ᢩ᠆ᢣᢩᠴ᠆ᢩ᠘ᢩ᠘ᢩ᠘
- ᠈᠂┎╤┰╌ᢩᢩᢙ᠆ᡶᢩᢩ᠐᠊ᡰ᠊ᡛᢆ᠆ᡱ
- ·└⊑┟╦┰┻╝┶┵┺╋╧
- ▖ᢩᢩᢩᡋ᠆ᢩᡄᢩᡜ᠆ᢩᢩ᠘ᢩ᠘

₄ୣୢ୲୰ଽ୳ୣ⊒୳ୖୖୣୖୖୖୖୖ

₅ <u>Looho</u>h<mark>o</mark>h

Task: find a class description (logical formula) which separates positive and negative examples.

2.





#### **DL-Learner**

**Positive examples:** 

- ▖▐ਰ▋Ҥ▝╧╹Ӊᡛᢖᡀᢆᡖ᠋ᡋᡰ
- ᠈ᢩᡂ᠆ᢣᢩᠳ᠆ᢩ᠘ᢩ᠘᠊ᢩᡛ
- ᠈᠂┎╤┰╌ᢩᢩᢙ᠆ᡶᢩᢩ᠐᠊ᡰ᠊ᡛᢩᢪ᠊ᡱ
- ·└⊑┟╱╗╁┻╝╲╅╱╶╠╧╜
- ᠈ᢩᢩᢩᡋ᠆ᢩ<del>ᡄᢩ</del>ᢩᠴ᠆ᢩᡰᢩᢩᢩᢩᢣ᠆ᢩᡛ

negative examples:



- ᠈᠂ᢅᡎ᠁ᢖ᠆ᢩ᠘ᢩ᠘ᢣᡶᢩ᠐ᢖ᠆ᡗᡛ᠆ᡱ
- ᠈᠂ᡁ᠘᠆ᡄ᠋ᡜ᠆ᡛᡛ᠋ᢩ᠆ᡱ

- ᠈᠂ᡁᡔ᠊ᡁᢩᡄᢣᢉᢆᢟᡦ᠋ᢆᡗ᠆ᢣᡁᡔ᠆᠍ᡛ᠆ᡱ
- ». لووبروبل<mark>و</mark>ٹ

DL-Learner result: ∃hasCar.(Closed □ Short)

In FOL:

$$\{x \mid \exists y(\operatorname{hasCar}(x, y) \land \operatorname{Closed}(y) \land \operatorname{Short}(y))\}\$$



#### **Scalability Issues with DL-Learner**

- For large-scale experiments, DL-Learner took 2 hours or more for one run.
- We knew we needed at least thousands of runs.
- So we needed a more scalable solution.
- The provably correct algorithms have very high complexity.
- Hence we had to develop a heuristic which trades (some) correctness for speed.
- It is also currently restricted to using a class hierarchy as underlying knowledge base.



#### **ECII** algorithm and system



 We thus implemented our own system, ECII (Efficient Concept Induction from Instances) which trades some correctness for speed. [Sarker, Hitzler, AAAI-19]

| Experiment Name   | Number of      | Runtime (sec)      |                        |                        |                      |                       |       | racy $(\alpha_3)$    | Accuracy $\alpha_2$    |                        |                      |                       |
|-------------------|----------------|--------------------|------------------------|------------------------|----------------------|-----------------------|-------|----------------------|------------------------|------------------------|----------------------|-----------------------|
| Experiment Ivanie | Logical Axioms | DLa                | DL FIC(1) <sup>b</sup> | DL FIC(2) <sup>c</sup> | ECII DF <sup>d</sup> | ECII KCT <sup>e</sup> | DLa   | ECII DF <sup>d</sup> | DL FIC(1) <sup>b</sup> | DL FIC(2) <sup>c</sup> | ECII DF <sup>d</sup> | ECII KCT <sup>e</sup> |
| Yinyang_examples  | 157            | 0.065              | 0.0131                 | 0.019                  | 0.089                | 0.143                 | 1.000 | 0.610                | 1.000                  | 1.000                  | 0.799                | 1.000                 |
| Trains            | 273            | 0.01               | 0.020                  | 0.047                  | 0.05                 | 0.095                 | 1.000 | 1.000                | 1.000                  | 1.000                  | 1.000                | 1.000                 |
| Forte             | 341            | 2.5                | 1.169                  | 6.145                  | 0.95                 | 0.331                 | 0.965 | 0.642                | 0.875                  | 0.875                  | 0.733                | 1.000                 |
| Poker             | 1,368          | 0.066              | 0.714                  | 0.817                  | 1                    | 0.281                 | 1.000 | 1.000                | 0.981                  | 0.984                  | 1.000                | 1.000                 |
| Moral Reasoner    | 4,666          | 0.1                | 3.106                  | 4.154                  | 5.47                 | 6.873                 | 1.000 | 0.785                | 1.000                  | 1.000                  | 1.000                | 1.000                 |
| ADE20k I          | 4,714          | 577.3 <sup>t</sup> | 4.268                  | 31.887                 | 1.966                | 23.775                | 0.926 | 0.416                | 0.263                  | 0.814                  | 0.744                | 1.000                 |
| ADE20k II         | 7,300          | 983.4 <sup>t</sup> | 16.187                 | 307.65                 | 20.8                 | 293.44                | 1.000 | 0.673                | 0.413                  | 0.413                  | 0.846                | 0.900                 |
| ADE20k III        | 12,193         | 4,500 <sup>g</sup> | 13.202                 | 263.217                | 51                   | 238.8                 | 0.375 | 0.937                | 0.375                  | 0.375                  | 0.930                | 0.937                 |
| ADE20k IV         | 47,468         | 4,500 <sup>g</sup> | 93.658                 | 523.673                | 116                  | 423.349               | 0.375 | NA                   | 0.608                  | 0.608                  | 0.660                | 0.608                 |
|                   |                |                    |                        |                        |                      |                       |       |                      |                        |                        |                      |                       |

a DL : DL-Learner

<sup>b</sup> DL FIC (1) : DL-Learner fast instance check with runtime capped at execution time of ECII DF

° DL FIC (2): DL-Learner fast instance check with runtime capped at execution time of ECII KCT

d ECII DF : ECII default parameters

e ECII KCT : ECII keep common types and other default parameters

f Runtimes for DL-Learner were capped at 600 seconds.

<sup>8</sup> Runtimes for DL-Learner were capped at 4,500 seconds.



#### **ECII vs. DL-Learner**



IV

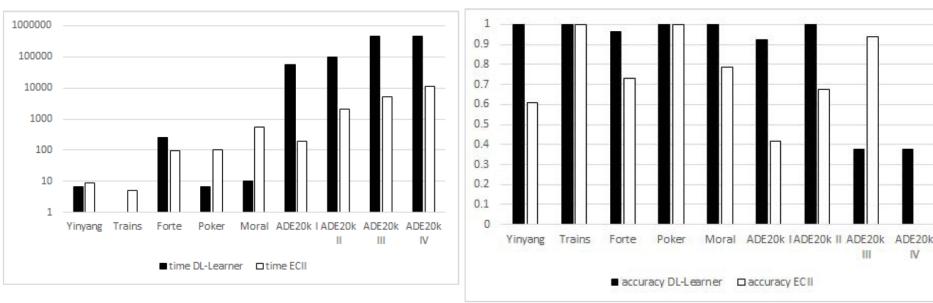


Figure 1: Runtime comparison between DL-Learner and ECII. The vertical scale is logarithmic in hundredths of seconds, and note that DL-Learner runtime has been capped at 4.500 seconds for ADE20k III and IV. For ADE20k I it was capped at each run at 600 seconds.

Figure 2: Accuracy  $(\alpha_3)$  comparison between DL-Learner and ECII. For ADE20k IV it was not possible to compute an accuracy score within 3 hours for ECII as the input ontology was too large.

#### KANSAS STATE UNIVERSITY

### **Proof of Concept Experiment**





**Negative:** 







#### Images



#### Come from the MIT ADE20k dataset <u>http://groups.csail.mit.edu/vision/datasets/ADE20K/</u> They come with annotations of objects in the picture:

001 # 0 # 0 # sky # sky # ""
002 # 0 # 0 # road, route # road # ""
005 # 0 # 0 # sidewalk, pavement # sidewalk # ""
006 # 0 # 0 # building, edifice # building # ""
007 # 0 # 0 # truck, motortruck # truck # ""
008 # 0 # 0 # hovel, hut, hutch, shack, shanty # hut # ""
009 # 0 # 0 # pallet # pallet # ""
001 # 1 # 0 # door # door # ""
002 # 1 # 0 # window # window # ""



## KANSAS STATE

### Mapping to SUMO

Simple approach: for each known object in image, create an individual for the ontology which is in the appropriate SUMO class:

contains road1 contains window1 contains door1 contains wheel1 contains sidewalk1 contains truck1 contains box1 contains building1







#### **SUMO**

- Suggested Merged Upper Ontology
   <u>http://www.adampease.org/OP/</u>
- Approx. 25,000 common terms covering a wide range of domains
- Centrally, a relatively naïve class hierarchy.
- Objects in image annotations became individuals (constants), which were then typed using SUMO classes.





#### **Positive:**



- img1: road, window, door, wheel, sidewalk, truck, box, building
- img2: tree, road, window, timber, building, lumber
- img3: hand, sidewalk, clock, steps, door, face, building, window, road

**Negative:** 

- img4: shelf, ceiling, floor
- img5: box, floor, wall, ceiling, product
- img6: ceiling, wall, shelf, floor, product

**DL-Learner results include:** 

∃contains.Transitway ∃contains.LandArea



### **Proof of Concept Experiment**



**Negative:** 







U



Econtains. Transitway Ulster Univers Acontains.LandArea

#### **Experiment 2**

#### **Positive (selection):**





#### $\exists contains. Sentient Agent$

#### Negative (selection):









#### **Experiment 5**

DaSe Lab

#### Positive:



#### **Negative (selection):**









#### $\exists contains.BodyOfWater$





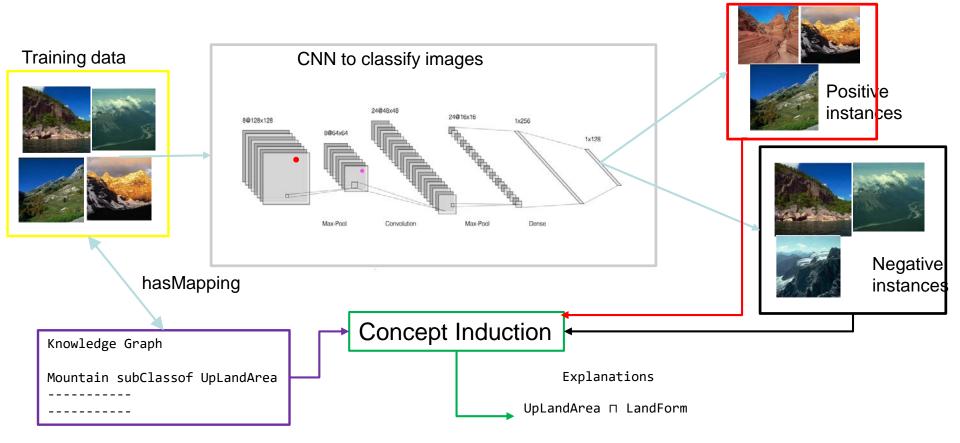
### Idea Recap

- Generate explanation of the whole model
- Global explanation

**KANSAS STATE** 

UNIVERSITY





### From SUMO to Wikipedia Concept Hierarchy

- Wikipedia CH (curated) produces better coverage score
- Reason behind this is the large number of concepts it has.
  - approx. 2M concepts

KANSAS STATE

NIVERSITY

| Experiment name                         | #Images | #Positive images | Wikipedia |          | SUMO      |          |  |
|-----------------------------------------|---------|------------------|-----------|----------|-----------|----------|--|
|                                         |         |                  | #Solution | Coverage | #Solution | Coverage |  |
| Market vs.<br>WorkRoom and<br>wareHouse | 96      | 37               | 286       | .72      | 240       | .72      |  |
| Mountain vs. Market<br>and workRoom     | 181     | 85               | 195       | .61      | 190       | .53      |  |
| OutdoorWarehouse<br>vs. IndoorWarehouse | 55      | 3                | 128       | .94      | 102       | .89      |  |
| Warehouse vs.<br>Workroom               | 59      | 55               | 268       | .56      | 84        | .24      |  |
| Workroom vs.<br>Warehouse               | 59      | 4                | 128       | .93      | 93        | .84      |  |



### **Work in Progress**

- Value of Explanations (end-to-end) to
  - humans
  - detect bias
  - improve deep learning accuracy
  - background knowledge challenges
- Explaining hidden neuron activation patterns
  - scalability challenges
  - background knowledge challenges







## Conclusions



## Conclusions

- Bridging the neuro-symbolic gap is still a major quest.
- Research on Deep Deductive Reasoning is at the heart of neurosymbolic Artificial Intelligence
  - Research is needed to push the envelope with respect to core aspects such as
  - more complex logics
  - higher reasoning accuracy
  - better transfer
  - scalability

KANSAS STATE

NIVERSITY

- Knowledge Graphs bear the promise for explainable AI, with explanations from background knowledge.
  - but this is still very much work in progress.





# Thanks!



Pascal Hitzler, Md Kamruzzaman Sarker (eds.), Neuro-Symbolic Artificial Intelligence – The State of the Art. Frontiers in Artificial Intelligence and Applications Vol. 342, IOS Press, Amsterdam, 2022.

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners. Applied Intelligence 51 (9), 6326-6348, 2021.

Barbara Hammer and Pascal Hitzler (eds), Perspectives on Neural-Symbolic Integration. Springer, 2007

Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, Gerson Zaverucha, Neural-Symbolic Learning and Reasoning: A Survey and Interpretation. https://arxiv.org/abs/1711.03902 (2017)

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler Neuro-Symbolic Artificial Integration: Current Trends AI Communications, to appear.





DaSe Lab

Federico Bianchi, Pascal Hitzler, On the Capabilities of Logic Tensor Networks for Deductive Reasoning. In: Andreas Martin, Knut Hinkelmann, Aurona Gerber, Doug Lenat, Frank van Harmelen, Peter Clark (eds.), Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019) Stanford University, Palo Alto, California, USA, March 25-27, 2019, Stanford University, Palo Alto, California, USA, March 25-27, 2019. CEUR Workshop Proceedings 2350, CEUR-WS.org 2019.

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler, Completion Reasoning Emulation for the Description Logic EL+. In: Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug Lenat, Reinhard Stolle, Frank van Harmelen (eds.), Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25, 2020, Volume I.



Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie, Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler, Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment. In: Proc. AAAI-MAKE 2021.

Bassem Makni, James Hendler, Deep learning for noise-tolerant RDFS reasoning. Semantic Web 10(5): 823-862 (2019)

Monireh Ebrahimi, Aaron Eberhart, Pascal Hitzler, On the Capabilities of Pointer Networks for Deep Deductive Reasoning. June 2021. https://arxiv.org/abs/2106.09225

Pascal Hitzler, Frank van Harmelen, A reasonable Semantic Web. Semantic Web 1 (1-2), 39-44, 2010.

Pascal Hitzler, Federico Bianchi, Monireh Ebrahimi, Md Kamruzzaman Sarker, Neural-Symbolic Integration and the Semantic Web. Semantic Web 11 (1), 2020, 3-11.





DaSe Lab

Federico Bianchi, Matteo Palmonari, Pascal Hitzler, Luciano Serafini, Complementing Logical Reasoning with Sub-symbolic Commonsense. In: Paul Fodor, Marco Montali, Diego Calvanese, Dumitru Roman, Rules and Reasoning - Third International Joint Conference, RuleML+RR 2019, Bolzano, Italy, September 16-19, 2019, Proceedings. Lecture Notes in Computer Science 11784, Springer 2019, pp. 161-170.

Sebastian Bader, Pascal Hitzler, Dimensions of neural-symbolic integration – a structured survey. In: S. Artemov, H. Barringer, A. S. d'Avila Garcez, L. C. Lamb and J. Woods (eds). We Will Show Them: Essays in Honour of Dov Gabbay, Volume 1. International Federation for Computational Logic, College Publications, 2005, pp. 167-194.

Pascal Hitzler, Semantic Web: A Review of the Field. Communications of the ACM 64 (2), 76-82, 2021.





# Thanks!

