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Neuro-symbolic AI
Publications on neuro-symbolic AI in major conferences 
(research papers only):

See
Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler
Neuro-Symbolic Artificial Integration: Current Trends
AI Communications, to appear; https://arxiv.org/abs/2105.05330
for more analysis.
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Neuro-Symbolic

Computer Science perspective:

• Let’s try to get the best of both worlds:
– very powerful machine learning paradigm
– robust to data noise
– easy to understand and assess by humans
– good at symbol manipulation
– work seamlessly with background (domain) knowledge

• How to do that?
– Endow connectionist systems with symbolic components?
– Add connectionist learning to symbolic reasoners?
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Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, since 2005.
Joint with Artur d’Avila Garcez.
http://neural-symbolic.org/

Barbara Hammer and Pascal Hitzler (eds), Perspectives of 
Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation 
Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, 
Howard Bowman, Pedro Domingos, Pascal Hitzler, 
Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, 
Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, 
Hoifung Poon, Gerson Zaverucha
https://arxiv.org/abs/1711.03902 (2017)

Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs 
for eXplainable Artificial Intelligence: Foundations, Applications and 
Challenges. Studies on the Semantic Web Vol. 47, IOS Press, 2020. 

http://neural-symbolic.org/
https://arxiv.org/abs/1711.03902
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Knowledge Graphs and Ontologies

Pascal Hitzler, Semantic Web: A Review of the Field. 
Communications of the ACM 64 (2), 76-82, 2021.
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Knowledge Graphs and Ontologies (Schemas)

Knowledge Graphs (and their schemas) are made 
to enable easier

• data sharing
• data discovery
• data integration
• data reuse
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Google Knowledge Graph
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hasEducation hasPresident
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Knowledge Graphs
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Schema (as diagram)
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A good schema is critical for ease of reuse
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W3C Standards
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Both established 2004 
as versions 1.0.
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Explaining Deep Learning via Symbolic 
Background Knowledge

Md. Kamruzzaman Sarker, Ning Xie, Derek Doran, Michael Raymer, Pascal Hitzler, Explaining Trained Neural Networks with 
Semantic Web Technologies: First Steps. In: Tarek R. Besold, Artur S. d'Avila Garcez, Isaac Noble (eds.), Proceedings of the 
Twelfth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2017, London, UK, July 17-18, 2017. CEUR 
Workshop Proceedings 2003, CEUR-WS.org 2017

Md Kamruzzaman Sarker, Pascal Hitzler, Efficient Concept Induction for Description Logics. In: The Thirty-Third AAAI Conference 
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The 
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 –
February 1, 2019. AAAI Press 2019 , pp. 3036-3043.

Md Kamruzzaman Sarker, Joshua Schwartz, Pascal Hitzler, Lu Zhou, Srikanth Nadella, Brandon Minnery, Ion Juvina, Michael 
L. Raymer, William R. Aue, Wikipedia Knowledge Graph for Explainable AI. In: Boris Villazón-Terrazas, Fernando Ortiz-Rodríguez, 
Sanju M. Tiwari, Shishir K. Shandilya (eds.), Knowledge Graphs and Semantic Web. Second Iberoamerican Conference and First 
Indo-American Conference, KGSWC 2020, Mérida, Mexico, November 26-27, 2020, Proceedings. Communications in Computer 
and Information Science, vol. 1232, Springer, Heidelberg, 2020, pp. 72-87.
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Explainable AI

• Explain behavior of trained (deep) NNs.

• Idea: 
– Use background knowledge in the form of linked data 

and ontologies to help explain.
– Link inputs and outputs to background knowledge.
– Use a symbolic learning system to generate an explanatory 

theory.

• We have key components for this now, but it’s still early stages.
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Concept
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DL-Learner [Lehmann, Hitzler]

Approach similar to inductive logic programming, but using 
Description Logics (the logic underlying OWL).

Positive examples:                               negative examples:

Task: find a class description (logical formula) which separates 
positive and negative examples.
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DL-Learner

Positive examples:                               negative examples:

DL-Learner result:

In FOL: 
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DL-Learner

DL-Learner uses
refinement operators
to construct ever 
better approximations 
of a solution.
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Scalability Issues with DL-Learner

• For large-scale experiments, DL-Learner took 2 hours or more 
for one run.

• We knew we needed at least thousands of runs.

• So we needed a more scalable solution.
• The provably correct algorithms have very high complexity.

• Hence we had to develop a heuristic which trades (some) 
correctness for speed.

• It is also currently restricted to using a class hierarchy as 
underlying knowledge base.
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ECII algorithm and system

• We thus implemented our own system, ECII (Efficient Concept 
Induction from Instances) which trades some correctness for 
speed. [Sarker, Hitzler, AAAI-19]
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ECII vs. DL-Learner



Colloquium, University of Bamberg, December 2021

Reasons for Improvement

• DL-Learner loops the following steps:
1. Generate several (refined) candidate solutions.
2. Test candidate solutions by calling a reasoner.
3. Keep only the best solution(s). 

• This results in many reasoner calls, which are expensive.

• ECII optimizes by introducing several (approximate) 
simplifications:
– Partially materialize reasoning up-front: only one reasoner

call required.
– Allow only solutions of a restricted form/syntax.
– Compose solution from pieces which are independently 

verified against the materialized data.
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Proof of Concept Experiment

Positive: Negative:
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Images

Come from the MIT ADE20k dataset
http://groups.csail.mit.edu/vision/datasets/ADE20K/
They come with annotations of objects in the picture:

001 # 0 # 0 # sky # sky # ""
002 # 0 # 0 # road, route # road # ""
005 # 0 # 0 # sidewalk, pavement # sidewalk # ""
006 # 0 # 0 # building, edifice # building # ""
007 # 0 # 0 # truck, motortruck # truck # ""
008 # 0 # 0 # hovel, hut, hutch, shack, shanty # hut # ""
009 # 0 # 0 # pallet # pallet # ""
011 # 0 # 0 # box # boxes # ""
001 # 1 # 0 # door # door # ""
002 # 1 # 0 # window # window # ""
009 # 1 # 0 # wheel # wheel # ""

http://groups.csail.mit.edu/vision/datasets/ADE20K/
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Mapping to SUMO

Simple approach: for each known object in image, create an 
individual for the ontology which is in the appropriate SUMO 
class:

contains road1
contains window1
contains door1
contains wheel1
contains sidewalk1
contains truck1
contains box1
contains building1
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SUMO

• Suggested Merged Upper Ontology
http://www.adampease.org/OP/

• Approx. 25,000 common terms 
covering a wide range of domains

• Centrally, a relatively naïve class hierarchy.

• Objects in image annotations became individuals (constants), 
which were then typed using SUMO classes.

http://www.adampease.org/OP/
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DL-Learner input

Positive:
img1: road, window, door, wheel, sidewalk, truck, 

box, building
img2: tree, road, window, timber, building, lumber
img3: hand, sidewalk, clock, steps, door, face, building,

window, road
Negative:

img4: shelf, ceiling, floor
img5: box, floor, wall, ceiling, product
img6: ceiling, wall, shelf, floor, product

DL-Learner results include: 
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Proof of Concept Experiment

Positive: Negative:
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First 10 DL-Learner responses
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Experiment 2

Positive (selection): Negative (selection):
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Experiment 3

Positive: Negative:
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Experiment 4

Positive (selection): Negative (selection):
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Experiment 5

Positive: Negative (selection):
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Negative 
instances

Positive 
instances

Concept InductionKnowledge Graph

Mountain subClassof UpLandArea
-----------
-----------

CNN to classify imagesTraining data

hasMapping

 Generate explanation of the whole model
 Global explanation

UpLandArea ⊓ LandForm

Explanations

Idea Recap
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Motivation : Knowledge Graph in Explainable AI (XAI)

Generalization use the subclass relation
 Should not contain cyclic information
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Wikipedia KG (WKG) : Breaking Cycle

Lost Significant Information
• 50% of the subclass relation
• 50% of the class assertion
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Mapping with Knowledge Graph

Test images. Workroom as positive examples 
p1, p2, p3 on the left, Warehouse as negative 
examples n1, n2, n3 on the right (from top). 

Model:
Resnet-50

Data: 
image p1: machinery, wall, desk, shelf, 
pigeonhole, box, projector, computer, screen, 
monitor, book

image p2: ….
image p3: ….

image n1: lumber, sky, road, sidewalk, building, 
box, window, hutch

image n2: …..
image n3: …..

Mapping:
P1 imageContains machinery 
machinery subClassof DurableGood
……
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Evaluation : Knowledge Graph in XAI

Workroom Explanations
SUMO
• ∃contains.(DurableGood ⊓ ¬ForestProduct)  

• ∃contains.(DurableGood ⊓ ¬Lumber) 

• ∃contains.Entity 

Wikipedia
• ∃contains.(Wrenches ⊓ Tools ⊓ ¬Lumber)  

• ∃contains.(Mechanicaltools ⊓ ¬Lumber)   

• ∃contains.(Mechanicaltools ⊓ ¬Sky)  

Market Explanations
SUMO

• ∃contains.SentientAgent 
Wikipedia

• ∃contains.(Structure ⊓ Life )

Mountain Explanations
SUMO
• ∃contains.BodyOfWater 
Wikipedia
• contains.((Life ⊓ Branches_of_botany) ⊓(Nature))

Test images. Workroom as positive examples 
p1, p2, p3 on the left, Warehouse as negative 
examples n1, n2, n3 on the right (from top). 
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• No numerical comparison method so far.
• Proposed to use the coverage score of ILP system to 

compare explanation.

Evaluation : Knowledge Graph in XAI
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Evaluation : Knowledge Graph in XAI

• Wikipedia Knowledge graph producing better coverage score.
• Reason behind this is the large number of concepts it has.
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Contribution & Future Work

• Contribution
– Indication that concept induction may be helpful for XAI
– Scalable but approximate and limited concept induction system 

ECII
– Wikipedia Category Hierarchy ready to use

• Future Work
– Human evaluation (in progress)
– Explore other background knowledge; non-image settings.
– Use explanations to improve deep learning
– Explain hidden layer activation patterns
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Thanks!



Colloquium, University of Bamberg, December 2021

References

Barbara Hammer and Pascal Hitzler (eds), Perspectives on Neural-
Symbolic Integration. Springer, 2007

Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, Howard 
Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis 
C. Lamb, Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, 
Gadi Pinkas, Hoifung Poon, Gerson Zaverucha, Neural-Symbolic 
Learning and Reasoning: A Survey and Interpretation. 
https://arxiv.org/abs/1711.03902 (2017)

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler, 
Neuro-Symbolic Artificial Integration: Current Trends. AI 
Communications, to appear.



Colloquium, University of Bamberg, December 2021

References
Pascal Hitzler, Frank van Harmelen, A reasonable Semantic Web. 
Semantic Web 1 (1-2), 39-44, 2010.

Pascal Hitzler, Federico Bianchi, Monireh Ebrahimi, Md 
Kamruzzaman Sarker, Neural-Symbolic Integration and the 
Semantic Web. Semantic Web 11 (1), 2020, 3-11.

Sebastian Bader, Pascal Hitzler, Dimensions of neural-symbolic 
integration – a structured survey. In: S. Artemov, H. Barringer, A. S. 
d'Avila Garcez, L. C. Lamb and J. Woods (eds). We Will Show Them: 
Essays in Honour of Dov Gabbay, Volume 1. International 
Federation for Computational Logic, College Publications, 2005, pp. 
167-194. 

Pascal Hitzler, Semantic Web: A Review of the Field. 
Communications of the ACM 64 (2), 76-82, 2021.



Colloquium, University of Bamberg, December 2021

References
Md. Kamruzzaman Sarker, Ning Xie, Derek Doran, Michael Raymer, Pascal 
Hitzler, Explaining Trained Neural Networks with Semantic Web Technologies: 
First Steps. In: Tarek R. Besold, Artur S. d'Avila Garcez, Isaac Noble (eds.), 
Proceedings of the  Twelfth International Workshop on Neural-Symbolic 
Learning and Reasoning, NeSy 2017, London, UK, July 17-18, 2017. CEUR 
Workshop Proceedings 2003, CEUR-WS.org 2017
Md Kamruzzaman Sarker, Pascal Hitzler, Efficient Concept Induction for 
Description Logics. In: The Thirty-Third AAAI Conference on Artificial 
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial 
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational 
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 
27 – February 1, 2019. AAAI Press 2019 , pp. 3036-3043.
Md Kamruzzaman Sarker, Joshua Schwartz, Pascal Hitzler, Lu Zhou, Srikanth 
Nadella, Brandon Minnery, Ion Juvina, Michael L. Raymer, William R. Aue, 
Wikipedia Knowledge Graph for Explainable AI. In: Boris Villazón-Terrazas, 
Fernando Ortiz-Rodríguez, Sanju M. Tiwari, Shishir K. Shandilya (eds.), 
Knowledge Graphs and Semantic Web. Second Iberoamerican Conference and 
First Indo-American Conference, KGSWC 2020, Mérida, Mexico, November 26-
27, 2020, Proceedings. Communications in Computer and Information Science, 
vol. 1232, Springer, Heidelberg, 2020, pp. 72-87.

45



Colloquium, University of Bamberg, December 2021

Thanks!
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