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Neuro-symbolic AI
Publications on neuro-symbolic AI in major conferences 
(research papers only):

See
Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler
Neuro-Symbolic Artificial Integration: Current Trends
AI Communications, to appear; https://arxiv.org/abs/2105.05330
for more analysis.
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Neural

• Refers to computational abstractions of (natural) neural 
network systems.

• Prominently includes Artificial Neural Networks and Deep 
Learning as machine learning paradigms.

• More generally sometimes referred to as connectionist systems.

• Prominent applications come from the machine learning world.

• And of course, there is the current deep learning hype.
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Symbolic

• Refers to (computational) symbol manipulations of all kind.

• Graphs and trees, traversal, data structure operations.
• Knowledge representation in explicit symbolic form (data base, 

ontology, knowledge graph)
• Inductive and statistical inference.
• Formal logical (deductive or abductive) reasoning.

• Prominent applications all over computer science, including 
expert systems (and their modern versions), information 
systems, data management, added value of data annotation, etc.

• Semantic Web data is inherently symbolic.
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Neuro-Symbolic

Computer Science perspective:

• Connectionist machine learning systems are
– very powerful for some machine learning problems
– robust to data noise
– very hard to understand or explain
– really poor at symbol manipulation
– unclear how to effectively use background (domain) knowledge

• Symbolic systems are
– Usually rather poor regarding machine learning problems
– Intolerant to data noise
– Relatively easy to analyse and understand
– Really good at symbol manipulation
– Designed to work with other (background) knowledge 
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Neuro-Symbolic

Computer Science perspective:

• Let’s try to get the best of both worlds:
– very powerful machine learning paradigm
– robust to data noise
– easy to understand and assess by humans
– good at symbol manipulation
– work seamlessly with background (domain) knowledge

• How to do that?
– Endow connectionist systems with symbolic components?
– Add connectionist learning to symbolic reasoners?
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Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, since 2005.
Joint with Artur d’Avila Garcez.
http://neural-symbolic.org/

Barbara Hammer and Pascal Hitzler (eds), Perspectives of 
Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation 
Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, 
Howard Bowman, Pedro Domingos, Pascal Hitzler, 
Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, 
Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, 
Hoifung Poon, Gerson Zaverucha
https://arxiv.org/abs/1711.03902 (2017)

Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs 
for eXplainable Artificial Intelligence: Foundations, Applications and 
Challenges. Studies on the Semantic Web Vol. 47, IOS Press, 2020. 

http://neural-symbolic.org/
https://arxiv.org/abs/1711.03902
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Deep Deductive Reasoners

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, 
Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners. 
Applied Intelligence 51 (9), 6326-6348, 2021.

Pascal Hitzler, Frank van Harmelen
A reasonable Semantic Web.
Semantic Web 1 (1-2), 39-44, 2010.
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Deep Deductive Reasoners

• We trained deep learning systems to do deductive reasoning.

• Why is this interesting? 
– For dealing with noisy data (where symbolic reasoners do 

very poorly).
– For speed, as symbolic algorithms are of very high 

complexity.
– Out of principle because we want to learn about the 

capabilities of deep learning for complicated cognitive tasks.

– To perhaps begin to understand how our (neural) brains can 
learn to do highly symbolic tasks like formal logical 
reasoning, or in more generality, mathematics.
A fundamental quest in Cognitive Science.
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Reasoning as Classification

• Given a set of logical formulas (a theory).

• Any formula expressible over the same language is either 
– a logical consequence or
– not a logical consequence.

• This can be understood as a classification problem for machine 
learning.

• It turns out to be a really hard machine learning problem.
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Knowledge Materialization

• Given a set of logical formulas (a theory).

• Produce all logical consequences under certain constraints.

• Without the qualifier this is in general not possible as the set of 
all logical consequences is infinite.

• So we have to constrain to consequences of, e.g., a certain 
syntactic form. For relatively simple logics, this is often 
reasonably possible.
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Published deep deductive reasoning work

[12]: Ebrahimi, Sarker, Bianchi, Xie, Eberhart, Doran, Kim, Hitzler, 
AAAI-MAKE 2021

[25]: Makni, Hendler, SWJ 2019
[10]: Eberhart, Ebrahimi, Zhou, Shimizu, Hitzler, AAAI-MAKE 2020
[20]: Hohenecker, Lukasiewicz, JAIR 2020
[6]: Bianchi, Hitzler, AAAI-MAKE 2019
(new): Ebrahimi, Eberhart, Hitzler, June 2021
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(new)        RDFS            yes                yes moderate                   high
(new)           EL+            yes                yes moderate                   high
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Knowledge Graphs and Ontologies

Pascal Hitzler, Semantic Web: A Review of the Field. 
Communications of the ACM 64 (2), 76-82, 2021.
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Knowledge Graphs and Ontologies (Schemas)

Knowledge Graphs (and their schemas) are made 
to enable easier

• data sharing
• data discovery
• data integration
• data reuse
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Google Knowledge Graph
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hasEducation hasPresident
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Knowledge Graphs
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Schema (as diagram)
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Person Organization
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Organization

date
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hasStudents

hasPresident

hasEducation

A good schema is critical for ease of reuse
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W3C Standards
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Both established 2004 
as versions 1.0.
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Deep Deductive Reasoners

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, 
Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners. 
Applied Intelligence 51 (9), 6326-6348, 2021.

Pascal Hitzler, Frank van Harmelen
A reasonable Semantic Web.
Semantic Web 1 (1-2), 39-44, 2010.

Back to:
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Published deep deductive reasoning work

[12]: Ebrahimi, Sarker, Bianchi, Xie, Eberhart, Doran, Kim, Hitzler, 
AAAI-MAKE 2021

[25]: Makni, Hendler, SWJ 2019
[10]: Eberhart, Ebrahimi, Zhou, Shimizu, Hitzler, AAAI-MAKE 2020
[20]: Hohenecker, Lukasiewicz, JAIR 2020
[6]: Bianchi, Hitzler, AAAI-MAKE 2019
(new): Ebrahimi, Eberhart, Hitzler, June 2021
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(new)        RDFS            yes                yes moderate                   high
(new)           EL+            yes                yes moderate                   high
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RDFS Reasoning using Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie, 
Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler, 
Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment. 
In: Proc. AAAI-MAKE 2021.

additional analysis by Sulogna Chowdhury, Aaron Eberhart 
and Brayden Pankaskie
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RDF reasoning

• [Note: RDF is one of the simplest useful knowledge 
representation languages that is not propositional.]

• Think knowledge graph. 
• Think node-edge-node triples such as 

BarackObama rdf:type President
BarackObama husbandOf MichelleObama
President rdfs:subClassOf Human
husbandOf rdfs:subPropertyOf spouseOf

• Then there is a (fixed, small) set of inference rules, such as
rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)
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RDF reasoning

• Essentially, RDF reasoning is Datalog reasoning restricted to:
– Unary and binary predicates only.
– A fixed set of rules that are not facts.

• You can try the following:
– Use a vector embedding for one RDF graph.
– Create all logical consequences.
– Throw n% of them away.
– Use the rest to 

train a DL system.
– Check how many 

of those you 
threw away can 
be recovered this
way.
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RDF reasoning

• The problem with the approach just described:
– It works only with that graph.

• What you’d really like to do is:
– Train a deep learning system so that you can present a new, 

unseen graph to it, and it can correctly derive the deductively 
inferred triples. 

• Note: 
– You don’t know the IRIs in the graph up front. The only 

overlap may or may not be the IRIs in the rdf/s namespace.
– You don’t know up front how “deep” the reasoning needs to 

be.
– There is no lack of training data, it can be auto-generated.
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Representation

• Goal is to be able to reason over unseen knowledge graphs.
I.e. the out-of-vocabulary problem needs addressing.

• Normalization of vocabulary (i.e., it becomes shared 
vocabulary across all input knowledge graphs.

• One vocabulary item becomes a one-hot vector 
(dimension d, number of normalized vocabulary terms)

• One triple becomes a 3 x d matrix.
• The knowledge graph becomes an n x 3 x d tensor

(n is the number of knowledge graph triples)

• Knowledge graph is stored in “memory”
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Mechanics

• An attention mechanism retrieves memory slots useful for 
finding the correct answer to a query.

• These are combined with the query and run through a (learned) 
matrix to retrieve a new (processed) query.

• This is repeated (in our experiment with 10 “hops”).
• The final out put is a yes/no answer to the query.
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Memory Network based on MemN2N
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Experiments: Performance

Baseline: non-normalized embeddings, same architecture
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Generative RDFS Reasoning 
using Pointer Networks

Monireh Ebrahimi,  Aaron Eberhart, Pascal Hitzler
On the Capabilities of Pointer Networks for Deep Deductive Reasoning
https://arxiv.org/abs/2106.09225

https://arxiv.org/abs/2106.09225
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● Pointer Networks ‘point’ to input elements!

● Ptr-Net approach specifically targets problems whose outputs are 
discrete and correspond to positions in the input.

● At each time step, the distribution of the attention is the answer!

● Application:
– NP-hard Travelling Salesman Problem (TSP)
– Delaunay Triangulation
– Convex Hull
– Text Summarization
– Code completion
– Dependency Parsing

Pointer Networks
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Pointer Networks for Reasoning

C ⊑ D , A ⊑ C ⇒ A ⊑ D

⇐

5

2

3

⇐

• To mimic human reasoning behaviour where one can learn to choose 
a set of symbols in different locations and copy these symbols to 
suitable locations to generate new logical consequences based on a set of 
predefined logical entailment rules
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Results without transfer

● On RDF, slightly outperforms [Hendler Makni SWJ 2019] approach.
● Our approach is a more straightforward application. 
● Evaluation is on the same dataset.
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Results with transfer



Explainable Graph-Based ML @ AKBC, October 2021

Completion Reasoning Emulation for the 
Description Logic EL+

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler, 
Completion Reasoning Emulation for the Description Logic EL+. 
In: Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug 
Lenat, Reinhard Stolle, Frank van Harmelen (eds.), Proceedings of the 
AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge 
Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25, 
2020, Volume I. 
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EL+ is essentially OWL 2 EL
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Results
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Generative EL Reasoning 
using Pointer Networks

Monireh Ebrahimi,  Aaron Eberhart, Pascal Hitzler
On the Capabilities of Pointer Networks for Deep Deductive Reasoning
https://arxiv.org/abs/2106.09225

https://arxiv.org/abs/2106.09225
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Results with transfer
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• same architecture as before
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Explaining Deep Learning via Symbolic 
Background Knowledge

Md. Kamruzzaman Sarker, Ning Xie, Derek Doran, Michael Raymer, Pascal Hitzler, Explaining Trained Neural Networks with 
Semantic Web Technologies: First Steps. In: Tarek R. Besold, Artur S. d'Avila Garcez, Isaac Noble (eds.), Proceedings of the 
Twelfth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2017, London, UK, July 17-18, 2017. CEUR 
Workshop Proceedings 2003, CEUR-WS.org 2017

Md Kamruzzaman Sarker, Pascal Hitzler, Efficient Concept Induction for Description Logics. In: The Thirty-Third AAAI Conference 
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The 
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 –
February 1, 2019. AAAI Press 2019 , pp. 3036-3043.

Md Kamruzzaman Sarker, Joshua Schwartz, Pascal Hitzler, Lu Zhou, Srikanth Nadella, Brandon Minnery, Ion Juvina, Michael 
L. Raymer, William R. Aue, Wikipedia Knowledge Graph for Explainable AI. In: Boris Villazón-Terrazas, Fernando Ortiz-Rodríguez, 
Sanju M. Tiwari, Shishir K. Shandilya (eds.), Knowledge Graphs and Semantic Web. Second Iberoamerican Conference and First 
Indo-American Conference, KGSWC 2020, Mérida, Mexico, November 26-27, 2020, Proceedings. Communications in Computer 
and Information Science, vol. 1232, Springer, Heidelberg, 2020, pp. 72-87.
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Explainable AI

• Explain behavior of trained (deep) NNs.

• Idea: 
– Use background knowledge in the form of linked data 

and ontologies to help explain.
– Link inputs and outputs to background knowledge.
– Use a symbolic learning system to generate an explanatory 

theory.

• We have key components for this now, but it’s still early stages.
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Concept
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DL-Learner [Lehmann, Hitzler]

Approach similar to inductive logic programming, but using 
Description Logics (the logic underlying OWL).

Positive examples:                               negative examples:

Task: find a class description (logical formula) which separates 
positive and negative examples.
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DL-Learner

Positive examples:                               negative examples:

DL-Learner result:

In FOL: 
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ECII algorithm and system

• We thus implemented our own system, ECII (Efficient Concept 
Induction from Instances) which trades some correctness for 
speed. [Sarker, Hitzler, AAAI-19]
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ECII vs. DL-Learner
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Proof of Concept Experiment

Positive: Negative:
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Images

Come from the MIT ADE20k dataset
http://groups.csail.mit.edu/vision/datasets/ADE20K/
They come with annotations of objects in the picture:

001 # 0 # 0 # sky # sky # ""
002 # 0 # 0 # road, route # road # ""
005 # 0 # 0 # sidewalk, pavement # sidewalk # ""
006 # 0 # 0 # building, edifice # building # ""
007 # 0 # 0 # truck, motortruck # truck # ""
008 # 0 # 0 # hovel, hut, hutch, shack, shanty # hut # ""
009 # 0 # 0 # pallet # pallet # ""
011 # 0 # 0 # box # boxes # ""
001 # 1 # 0 # door # door # ""
002 # 1 # 0 # window # window # ""
009 # 1 # 0 # wheel # wheel # ""

http://groups.csail.mit.edu/vision/datasets/ADE20K/
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Mapping to SUMO

Simple approach: for each known object in image, create an 
individual for the ontology which is in the appropriate SUMO 
class:

contains road1
contains window1
contains door1
contains wheel1
contains sidewalk1
contains truck1
contains box1
contains building1
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SUMO

• Suggested Merged Upper Ontology
http://www.adampease.org/OP/

• Approx. 25,000 common terms 
covering a wide range of domains

• Centrally, a relatively naïve class hierarchy.

• Objects in image annotations became individuals (constants), 
which were then typed using SUMO classes.

http://www.adampease.org/OP/
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DL-Learner input

Positive:
img1: road, window, door, wheel, sidewalk, truck, 

box, building
img2: tree, road, window, timber, building, lumber
img3: hand, sidewalk, clock, steps, door, face, building,

window, road
Negative:

img4: shelf, ceiling, floor
img5: box, floor, wall, ceiling, product
img6: ceiling, wall, shelf, floor, product

DL-Learner results include: 
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Proof of Concept Experiment

Positive: Negative:
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Experiment 5

Positive: Negative (selection):
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Wikipedia KG (WKG) : Breaking Cycle

Lost Significant Information
• 50% of the subclass relation
• 50% of the class assertion



Explainable Graph-Based ML @ AKBC, October 2021

Mapping with Knowledge Graph

Test images. Workroom as positive examples 
p1, p2, p3 on the left, Warehouse as negative 
examples n1, n2, n3 on the right (from top). 

Model:
Resnet-50

Data: 
image p1: machinery, wall, desk, shelf, 
pigeonhole, box, projector, computer, screen, 
monitor, book

image p2: ….
image p3: ….

image n1: lumber, sky, road, sidewalk, building, 
box, window, hutch

image n2: …..
image n3: …..

Mapping:
P1 imageContains machinery 
machinery subClassof DurableGood
……
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Evaluation : Knowledge Graph in XAI

Workroom Explanations
SUMO
• ∃contains.(DurableGood ⊓ ¬ForestProduct)  

• ∃contains.(DurableGood ⊓ ¬Lumber) 

• ∃contains.Entity 

Wikipedia
• ∃contains.(Wrenches ⊓ Tools ⊓ ¬Lumber)  

• ∃contains.(Mechanicaltools ⊓ ¬Lumber)   

• ∃contains.(Mechanicaltools ⊓ ¬Sky)  

Market Explanations
SUMO

• ∃contains.SentientAgent 
Wikipedia

• ∃contains.(Structure ⊓ Life )

Mountain Explanations
SUMO
• ∃contains.BodyOfWater 
Wikipedia
• contains.((Life ⊓ Branches_of_botany) ⊓(Nature))

Test images. Workroom as positive examples 
p1, p2, p3 on the left, Warehouse as negative 
examples n1, n2, n3 on the right (from top). 



Explainable Graph-Based ML @ AKBC, October 2021

Evaluation : Knowledge Graph in XAI

• Wikipedia Knowledge graph producing better coverage score.
• Reason behind this is the large number of concepts it has.
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Conclusions
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Conclusions

• Bridging the neuro-symbolic gap is still a major quest.
• Research on Deep Deductive Reasoning is at the heart of neuro-

symbolic Artificial Intelligence
– Research is needed to push the envelope with respect to core 

aspects such as
• more complex logics
• higher reasoning accuracy
• better transfer
• scalability

• Knowledge Graphs can explain system behavior by means of 
background knowledge.
– Key challenges include

• knowledge graph selection
• scalability
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Thanks!
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Thanks!
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