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Neural

 Refers to computational abstractions of (natural) neural ELab
network systems.

 Prominently includes Artificial Neural Networks and Deep
Learning as machine learning paradigms.

« More generally sometimes referred to as connectionist systems.

* Prominent applications come from the machine learning world.

« And of course, there is the current deep learning hype.
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Symbolic

» Refers to (computational) symbol manipulations of all kind. mb

« Graphs and trees, traversal, data structure operations.

« Knowledge representation in explicit symbolic form (data base,
ontology, knowledge graph)

* Inductive and statistical inference.
 Formal logical (deductive or abductive) reasoning.

 Prominent applications all over computer science, including
expert systems (and their modern versions), information
systems, data management, added value of data annotation, etc.

« Semantic Web data is inherently symbolic.
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Neuro-Symbolic
Computer Science perspective: eLab

 Connectionist machine learning systems are

very powerful for some machine learning problems

robust to data noise

very hard to understand or explain

really poor at symbol manipulation

unclear how to effectively use background (domain) knowledge

« Symbolic systems are

Usually rather poor regarding machine learning problems
Intolerant to data noise

Relatively easy to analyse and understand

Really good at symbol manipulation

Designed to work with other (background) knowledge
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Neuro-Symbolic
Computer Science perspective: eLab

« Let'stryto getthe best of both worlds:
— very powerful machine learning paradigm
— robust to data noise
— easy to understand and assess by humans
— good at symbol manipulation
— work seamlessly with background (domain) knowledge

« How to do that?
— Endow connectionist systems with symbolic components?
— Add connectionist learning to symbolic reasoners?
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Note: e Lab

Deep Learning systems are a far cry from how natural neural
networks work.

There are things that our brain can do, and things that symbolic
approaches can do, where we do not have the faintest idea how to
solve them through deep learning (or any other connectionist
learning approach).

The argument that we “just don’t have enough training data”
speaks (understandably) to the current hype, but is a hope that is
unfounded: While this may be the case in some cases, there is no
rationale to overgeneralize.

[Note: if we had “enough computational power,” we could also
solve all reasonable-size NP-complete problems in an instant.]
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Neuro-symbolic Al

Publications on neuro-symbolic Al in major conferences eLab
(research papers only):

conference | 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 | total
ICML 0 0 0 0 0 1 3 2 5 6 17
NeurIPS 0 0 0 0 0 0 0 4 2 4 10
AAAI 0 0 0 0 0 1 0 1 1 1 4
IJCALI 1 0 0 0 0 0 2 2 0 2 7
ICLR N/A  N/A 0 0 0 0 1 1 1 3 6
total 1 0 0 0 0 2 6 10 9 16 44
See

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler
Neuro-Symbolic Artificial Integration: Current Trends

Al Communications, to appear; https://arxiv.org/abs/2105.05330
for more analysis.
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https://arxiv.org/abs/2105.05330

Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, since 2005. ELab

Joint with Artur d’Avila Garcez.
http://neural-symbolic.orqg/

Barbara Hammer and Pascal Hitzler (eds), Perspectives of
Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation

Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader,
Howard Bowman, Pedro Domingos, Pascal Hitzler,

Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd,

Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas,
Hoifung Poon, Gerson Zaverucha

https://arxiv.org/abs/1711.03902 (2017)

llaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs
for eXplainable Artificial Intelligence: Foundations, Applications and
Challenges. Studies on the Semantic Web Vol. 47, I0S Press, 2020.
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Deep Deductive Reasoners

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler,
Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners.
Applied Intelligence 51 (9), 6326-6348, 2021.

Pascal Hitzler, Frank van Harmelen
A reasonable Semantic Web.
Semantic Web 1 (1-2), 39-44, 2010.
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Deep Deductive Reasoners

« We trained deep learning systems to do deductive reasoning. mb

 Why is this interesting?

— For dealing with noisy data (where symbolic reasoners do
very poorly).

— For speed, as symbolic algorithms are of very high
complexity.

— Out of principle because we want to learn about the
capabilities of deep learning for complicated cognitive tasks.

— To perhaps begin to understand how our (neural) brains can
learn to do highly symbolic tasks like formal logical
reasoning, or in more generality, mathematics.

A fundamental quest in Cognitive Science.
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Reasoning as Classification

« Given a set of logical formulas (a theory). ELab
« Any formula expressible over the same language is either
— alogical consequence or

— not a logical consequence.

 This can be understood as a classification problem for machine
learning.

|t turns out to be areally hard machine learning problem.
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Knowledge Materialization

« Given aset of logical formulas (a theory). “ab

 Produce all logical consequences under certain constraints.

 Without the qualifier this is in general not possible as the set of
all logical consequences is infinite.

« So we have to constrain to consequences of, e.g., a certain
syntactic form. For relatively simple logics, this is often
reasonably possible.
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Published deep deductive reasoning work

b
paper logic transfer | generative scale performance [} ek
[12] RDFS yes no moderate high /2
[25] RDFS no yes low high
[10] ELT yes yes moderate low
[20] | OWL RL no no low high
6] FOL no yes very low high
(new) RDFS yes yes moderate high
(new) EL+ yes yes moderate high

[12]: Ebrahimi, Sarker, Bianchi, Xie, Eberhart, Doran, Kim, Hitzler,
AAAI-MAKE 2021

25]: Makni, Hendler, SWJ 2019
10]: Eberhart, Ebrahimi, Zhou, Shimizu, Hitzler, AAAI-MAKE 2020
20]: Hohenecker, Lukasiewicz, JAIR 2020

6]: Bianchi, Hitzler, AAAI-MAKE 2019

(new): Ebrahimi, Eberhart, Hitzler, June 2021
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Knowledge Graphs and Ontologies

Pascal Hitzler, Semantic Web: A Review of the Field.
Communications of the ACM 64 (2), 76-82, 2021.
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Knowledge Graphs and Ontologies (Schemas)

Knowledge Graphs (and their schemas) are made “ab
to enable easier

« data sharing

e datadiscovery
e dataintegration
« datareuse
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Google Knowledge Graph

Laura <
Kelly

Governor of Kansas

Laura Kelly is an American palitician haSEducation

senving as the 48th governor of
Kansas since 2019, A member of the
Democratic Party, she represented
the 18th district in the Kansas Senate
from 2005 to 2019, Kelly ran for
governor in the 2018 election and
defeated the Republican nominee,
Kansas Secretary of State Kris
Kobach. Wikipedia

Born: January 24, 1350 (age
69 years), Mew York, NY
Spouse: Ted Daughety
Party: Democratic Party

Office: Governor of Kansas since
2019

Education: Indiana University,
Bradley University, Indiana University
Bloomington

Children: Kathleen Daughety, Mally
Daughety

KANSAS STATE
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Indiana <
University

@ iu_edu

Indiana University is a multi-campus
public university system in the state
of Indiana, United States. Indiana
University has a combined student
body of more than 110,000 students,
which includes approximately 46,000
students enrolled at the Indiana
University Bloomington campus.
Wikipedia

Mascot: Referred to as "The
Hoosiers”

Endowment: 1.986 billion USD
Students: 110,436 university-wide
President: Michael McRobbie
Academic staff: 8,733 university-wide

Subsidiaries: Indiana University
Bloomington, MORE

hasPresident

Michael <
McRobbie

President of Indiana

-

University

&)  presidentiuedu

Michael Alexander McRobbie AQ is
an Australian-American computer
scientist, educator and academic
administrator. He became the
eighteenth president of Indiana
University on July 1, 2007. Wikipedia

Born: October 11, 1950 (age
69 years), Melbourne, Australia

Spouse: Laurie Burns (m. 2005)

Education: The Australian Mational

University, The University of
CQueensland

Books: Automated Theorem-proving in
Mon-classical Logics, Automated
Deduction - Cade-13
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Knowledge Graphs
hasEducation _ e Lab
(Laura Kelly In_dlang [
University

hasBirthDate

hasPresident

Michael
McRobbie

hasEducation

61/24/195D ?ents
110436

University of
Queensland
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Schema (as diagram)
_ e Lab
(Person hasEducatlon

hasBirthDate

hasPresident

( ate > hasStudents
Cn um ber>

hasEducation

Organization

A good schema is critical for ease of reuse

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
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This is not a good Knowledge Graph!

C hasEducation ndi
Laura Kelly U:iv'e"’:';ﬁy

hasBirthDate

hasPresident

Michael
McRobbie

hasEducation

61/24/195D ?ents
110436

University of
Queensland
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W3C Standards

RDF 1.1 Concepts and Abstract Syntax
: aSe Lab
W3C Recommendation 25 February 2014
This version:
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
Latest published version:
http://www.w3.org/TR/rdf11-concepts/
Previous version:
http://www.w3.org/TR/2014/PR-rdf11-concepts-20140109/
Previous Recommendation:
http://www.w3.org/TR/rdf-concepts
Editors:
Richard Cyganiak, DERI, NUI Galway

David Wood, 3 Round Stones
Markus Lanthaler, Graz University of Technology

W3C Recommendation

OWL 2 Web Ontology Language
Primer (Second Edition)

W3C Recommendation 11 December 2012

This version:
http://www.w3.orqg/TR/2012/REC-owl2-primer-20121211/
Latest version (series 2):
http://www.w3.org/TR/owl2-primer/
Latest Recommendation:
http://www.w3.org/TR/owl-primer
Previous version:
http://www.w3.org/TR/2012/PER-owl2-primer-20121018/
Editors:
Pascal Hitzler, Wright State University
Markus Krétzsch, University of Oxford
KANSAS STATE Bijan Parsia, University of Manchester
SRLAINLID WI L4215 Peter F. Patel-Schneider, Nuance Communications
L LR LR L Sebastian Rudolph, FZI Research Center for Information

Both established 2004
as versions 1.0.

W3C Recommendation
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Enowledge graphs are critical to many enterprises today: They
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Deep Deductive Reasoners

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler,
Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners.
Applied Intelligence 51 (9), 6326-6348, 2021.

Pascal Hitzler, Frank van Harmelen
A reasonable Semantic Web.
Semantic Web 1 (1-2), 39-44, 2010.
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Published deep deductive reasoning work

b
paper logic transfer | generative scale performance [} ek
[12] RDFS yes no moderate high /2
[25] RDFS no yes low high
[10] ELT yes yes moderate low
[20] | OWL RL no no low high
6] FOL no yes very low high
(new) RDFS yes yes moderate high
(new) EL+ yes yes moderate high

[12]: Ebrahimi, Sarker, Bianchi, Xie, Eberhart, Doran, Kim, Hitzler,
AAAI-MAKE 2021

25]: Makni, Hendler, SWJ 2019
10]: Eberhart, Ebrahimi, Zhou, Shimizu, Hitzler, AAAI-MAKE 2020
20]: Hohenecker, Lukasiewicz, JAIR 2020

6]: Bianchi, Hitzler, AAAI-MAKE 2019

(new): Ebrahimi, Eberhart, Hitzler, June 2021
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Deep Reasoners Overview

RDFS via Memory Networks (classification) [12]. eLab
RDFS via Pointer Networks (generative) (new).

EL+ via LSTMs (generative) [10].

EL+ via Pointer networks (new).

LTNSs for first-order predicate logic [6].

AR A

« Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal
Hitzler, Towards Bridging the Neuro-Symbolic Gap: Deep
Deductive Reasoners. Applied Intelligence 51 (9), 6326-6348,
2021.

[covers 6,10,12]

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
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RDFS Reasoning using Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie,
Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler,

Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment.
In: Proc. AAAI-MAKE 2021.

additional analysis by Sulogna Chowdhury, Aaron Eberhart
and Brayden Pankaskie
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RDF reasoning

« Essentially, RDF reasoning is Datalog reasoning restricted to eLab

— Unary and binary predicates only.

— A fixed set of rules that are not facts.
 You can try the following:
Use a vector embedding for one RDF graph.

KANSAS STATE

UNIVERSITY

Create all logical consequences.

Throw n% of them away.

Use the rest to

train a DL system. i

““:“- C5
Check how many szV_]

of those you

threw away can o

be recovered this =

way. SR :
_

Editorial Board

Editors-in-Chief
Pascal Hitzler

ticWeb - | perability, Usability, Applicability an IOS Press Journal

About Calls Blog Issues UnderReview Reviewed ForAuthors ForReviewers Scientometrics FAQ

Deep Learning for Noise-Tolerant RDFS Reasoning

Submitted by Bassem Makni on 10/01/2018 - 0102
Tracking #: 2028-3241

A new version of this paper is available

Authors:
Bassem Makni
James Hendler

Responsible editor:
Guest Editors Semantic Deep Learning 2018

Submission type:
Full Paper
Abstract:

Since the 2001 envisioning of the Semantic Web (3W] [1] a5 an extension to the World Wide Web, the main research focus in
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RDF reasoning

« The problem with the approach just described: ELab
— It works only with that graph.

« What you'd really like to do is:

— Train a deep learning system so that you can present a new,
unseen graph to it, and it can correctly derive the deductively
inferred triples.

e Note:

— You don’t know the IRIs in the graph up front. The only
overlap may or may not be the IRIs in the rdf/s namespace.

— You don’t know up front how “deep” the reasoning needs to
be.

— There is no lack of training data, it can be auto-generated.

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
UNIVERSITY




RDF reasoning

» [Note: RDF is one of the simplest useful knowledge “ab
representation languages that is not propositional.]

« Think knowledge graph.
« Think node-edge-node triples such as

BarackObama rdf:type President
BarackObama husbandOf MichelleObama
President rdfs:subClassOf Human

husbandOf rdfs:subPropertyOf  spouseOf

« Then thereis a (fixed, small) set of inference rules, such as
rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
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Representation

« Goal is to be able to reason over unseen knowledge graphs. ELab
l.e. the out-of-vocabulary problem needs addressing.

 Normalization of vocabulary (i.e., it becomes shared
vocabulary across all input knowledge graphs.

« Onevocabulary item becomes a one-hot vector
(dimension d, number of normalized vocabulary terms)

* Onetriple becomes a 3 x d matrix.

« The knowledge graph becomes an n x 3 x d tensor
(n is the number of knowledge graph triples)

« Knowledge graph is stored in “memory”

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
UNIVERSITY




Mechanics

 An attention mechanism retrieves memory slots useful for ELab
finding the correct answer to a query.

« These are combined with the query and run through a (learned)
matrix to retrieve a new (processed) query.

 This is repeated (in our experiment with 10 “hops”).
 The final out put is a yes/no answer to the query.

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
UNIVERSITY
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Experiments: Performance

?

Base Inferred Invalid
Test Dataset RO - opaes T #Em0 [ %Css | %lndv [ %R | %Axiom. | #Facs | #EaL | %Class | %Indv | %R | %Axiom | #Facts
OWL-Centric 2d6d 1 99 832 14 19 3 ] 494 832 4 0.01 I 20 462 i
Linked Data 20527 | 999 181 3 22 J ] 124 87 3 0.006 1 83 124
OWL-Centric Test 5et | 21 622 400 36 41 3 0 837 400 36 3 1 12 476
Synthetic Dala 2 152 s06 52 0 1 0 126356 506 52 0 1 0.07 700
Table 2: Statistics of various datasets used in experiments
Baseline: non-normalized embeddings, same architecture
Training Datasct Test Dataset Valid TrlErle& Class Invalid Trl!:l]-f:}; Class Accuracy
Precision Recall F-measure | Precision Recall F-measure
’ {Sensitivity : {Specificity :
OWL-Centric Dataset Linked [ata K] U5 Ui Us U3 Y3 Ui
OWL-Centric Dataset (90%) | OWL-Centric Dataset (10%) | 88 01 89 20 88 89 9%
OWL-Centric Dataset OWL-Centric Test Set ® 79 62 68 70 84 16 69
OWL-Centric Dataset Synthetic Data 65 49 40 32 34 42 52
OWL-Centric Dataset Linked Data * KE | o8 10 o1 16 27 B6
OWL-Centric Dataset * Linked Data * 62 72 67 67 36 61 01
OWL-Centric Dataset(90%) *| OWL-Centric Dataset(10%) *| 79 72 75 74 g1 77 80
OWL-Centric Dataset OWL-Centric Test Set 7 38 68 62 62 30 M 38
OWL-Centric Dataset ® OWL-Centric Test Set 2° 77 57 65 66 82 73 73
OWL-Centric Dataset Synthetic Data * 70 51 40 47 52 38 51
OWL-Centric Dataset ® Synthetic Data ® &7 3 25 52 &0 62 50
Baseline
OWL-Centric Dataset Linked Data 73 o8 B3 PE] 46 61 43
OWL-Centric Dataset (909%) | OWL-Centric Dataset (10%) | 84 83 B4 84 84 B 82
OWL-Centric Dataset OWL-Centric Test Set 62 84 70 80 40 48 1
OWL-Centric Dataset Synthetic Data 35 41 32 48 35 45 45

® More Tricky Mos & Balanced Dataset
® Completely Different Domain.

Table 3: Experimental results of proposed model



Experiments: Reasoning Depth

Test Dataset o H-;}:u{p 0 - Hop 1 Hop 2 Hop3 Hop 4 Hop 3 Hop 6 Hop T HopE Hop 9 Hop 10
Tinked Data® | 0 | 0 | 0 | &0 | 99 | &5 | &9 | 97 | 9% | 17 | 94 Bh
Linked Data® | 2 D [0 [8 [ o1& |89 [98 9379|100 &8
]
3

OWLCenine™[ 19 [ 3 [ 7AETAEEE TR [HE[H [H[S [THE]6 T- - - - - - - - - - - - - - - - - -
Synthebc I EEIENEEA R sl e [de [ S 1 [ 5 [ [ 332414530 54302236 ]2

* LemonUby Ontology
A grovoe Oniology
£ Compleiely Dhifferent Domaim

Table 4: Experimental results over each reasoning hop

Dataset Hopl | Hop2 | Hop3 | Hop4 | Hop5 | Hop6 | Hop7 Hop 8 Hop 9 Hop 10
OWL-Centric* | 8% 67% 24% 0.01% | 0% 0% 0% 0% 0% 0%
Linked Data” 31% 50% 19%% 0% 0% 0% 0% 0% 0% 0%
Linked Data® 34% 46% 20% 0% 0% 0% 0% 0% 0% 0%
OWL-Centric® | 5% 64% 30% 1% 0% 0% 0% 0% 0% 0%
Synthetic Data | 0.03% | 1.42% | 1% 1.56% | 3.09% | 6.03% | 11.46% | 20.48% | 31.25% | 23.65%

* Training Set

h LemonUby Ontology

“ Agrovoc Ontology

4 Completely Different Domain

Table 5: Data distribution per knowledge graph over each reasoning hop

Training time: just over a full day

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
UNIVERSITY
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Generative RDFS Reasoning
using Pointer Networks

Monireh Ebrahimi, Aaron Eberhart, Pascal Hitzler
On the Capabilities of Pointer Networks for Deep Deductive Reasoning
https://arxiv.org/abs/2106.09225

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
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Pointer Networks

e Pointer Networks ‘point’ to input elements! “ab

e Ptr-Net approach specifically targets problems whose outputs are
discrete and correspond to positions in the input.

e At each time step, the distribution of the attention is the answer!

e Application:
— NP-hard Travelling Salesman Problem (TSP)
— Delaunay Triangulation
— Convex Hull
— Text Summarization
— Code completion
— Dependency Parsing

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
UNIVERSITY




Pointer Networks for Reasoning

« To mimic human reasoning behaviour where one can learn to choose “ab
a set of symbols in different locations and copy these symbols to

suitable locations to generate new logical consequences based on a set of
predefined logical entailment rules

b1 1
bl
llilelll
TP

APPEEEFP

CCD,ACCw— ACD

KANSAS STATE

BIAS Summer School, Bristol, UK, September 2021
UNIVERSITY




Results without transfer

e Lab
Pointer Networks Transformer

Logic | KG Size . ) . - : Not-Normalized LSTM
SubWordText | Tokemzer Normahzed SubWordText | Tokemizer

RDF | 3-735 87% 09% 5% 25% A% 0.17%

e On RDF, slightly outperforms [Hendler Makni SWJ 2019] approach.
e Our approach is a more straightforward application.
e Evaluation is on the same dataset.

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
UNIVERSITY




Results with transfer

Table 6 Exact Match Accuracy Results for Transfer Learning/Representation: SubWord-

Text Tokenization Encoding

—,

T Test 1 L UBM | Awards University
Tramn ——

LUBM * 5% 8%
Awards 79% * TT%
University 81% 82% *

Bise ab

Table 7 Exact Match Accuracy Results for Transfer Learning/ Representation: Whitespace
Tokenization Encoding

KANSAS STATE

UNIVERSITY

—~—_  Test

Train LUBM | Awards | University
rain —

LUBM * 61% 47%
Awards 96 % * 84%
University 82% 88% *

BIAS Summer School, Bristol, UK, September 2021
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Completion Reasoning Emulation for the
Description Logic EL+

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler,
Completion Reasoning Emulation for the Description Logic EL+.

In: Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug
Lenat, Reinhard Stolle, Frank van Harmelen (eds.), Proceedings of the

AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge

Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25,
2020, Volume I.
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EL+ Is essentially OWL 2 EL

KAN
UNII

] -
Table 2: ££7 Completion Rules :
CXCCY
|
CXNCYCCZ (1) ACC CCD — AC D
CX C 3RY.CZ (2) AL, ACC; CiNnC:CDEACD
JRX.CY C CZ (3) ACC CCIJdR.D = ACdR.D
RX CRY 4 ACJRB BCC dJRCCD EACD
RX o RY C RZ (5) AC 35D SCR —ACdR.D
ACdR . C CC3dR,.D Rie R CR=EACIR.D
Table 1: ££7 Semantics
Description Expression Semantics
Individual a ac Al
Top T AT
Bottom 1 @
Concept C ct c At
Role R RT C AT x AT
Conjunction cnp cInp*
Existential Restriction dR.C { a|there is b € AT such that (a,b) € RT and b e CT }
Concept Subsumption CCD cTcpr
Role Subsumption RC S RT C 5T
Role Chain Rio---oR,CR RIo.--oRICRT 40

with o signifying standard binary composition
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New Fact | Rule | Support
Step 1 CICC3 | (1) (C1CcC2C2C(C3
ClICC4 | 4) |[CICCICIC3RICIARI.CZCEC4
CICARIC3 | (3) |C1CC2C2C 3RI1.C3
CICIRIC1 | (3 |CICIRILCILRICERZ
CICJR4.C4 | (6) | C1CJRIL.CIRlI «cR3CER4,CI C 3R3.C4
Step 2 CICGCS | (2) |CAnC4CC5CICC2CZEC3CICC2CICEARICIARIC2ZECA

KANSAS STATE
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. e A. Train 1 to match reasoner step support data
ArChIteCture B. Test 1 and save result

Completion Step 1 C. Train 2 using correct answers from reasoner
tompletion Step £ D. Test 2 using saved data from 1

Completion Step n
mpletion Step 1 mpletion Step Completion Step n
A l

L

‘ LSTM Cell I—»{ LSTM Cell }—» " —»‘ LSTM Cell ] 2
A h
Supports Step 1 Supports Step 2 @

Supports Step Supports Step 2 Supports Step n
A h L

Figure 2: Piecewise Architecture
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Architecture

Completion Step 1 [

Completion Step 2

Camjictmn Step n

-
Eompletion Step 1 Cumpletmn Step z @‘@
k,
[ LSTM Cell LSTM Cell }—. *)[ LSTM Cell l
A

A

@@ P S

A A

[ LSTM Cell H LSTM Cell }—) 4>{ LSTM Cell ]

\

KB Vector Copy 1 KB Vector Copy 2 KB Vector Copy n

KB Vector

Figure 3: Deep Architecture
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Architecture

A

&

Completion Step 1
Completion Step 2

Completion Step n

Completion Step 1 @ @
@ p P pletion Step

A A A

‘ LSTM Cell }—)[ L5TM Cell —_— ‘)I LSTM Cell ‘
A ] A

r

KB Vector Copy 1 @rto 2 @r:a n

A A A

KB Vector
—~

Figure 4: Flat Architecture
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KB statement Vectorization
CXCCY 5 0.0, £ X 00]
CXMCYCCZ — [, X Z 00]
CXC3RY.CZ — Joo, &, =X Z
RX.CYCCZ — [Z, X £ 00
RX CRY —  [0.0,=%, =X 0.0]
RXeRYCRZ — [=X, =X =£ 0.0]

¢ = Number of Possible Concept Names
r = Number of Possible Role Names

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
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Results

Table 7: Average Precision Recall and F1-score For each Distance Evaluation

Cpseran

Atomic Levenshtein Distance

Character Levenshtein Distance

Predicate Distance

Prcc1.~;mn| Recall |P]—scmr+:

Pn:msmn| Kecall |I-']—scnn:

PI'-I'_‘['lEi.I{}]'Il Recall |I-']—scnrr:

Synthetic Data

Piecewise Prediction |(. 138663 | 0.142208 (0.140412( 0.138663 |0.142208)|0.140412 {0.138646(0.141923(0.140264
Deep Prediction 0154398 0.156056 (0.155222( 0.1534398 |0.156056| 0.155222 (0. 154258 (0. 1535736 (0. 154993
Flat Prediction 0.140410] 0.142976 (0.141681( 0.140410 10.142976| 0.141681 [0.140375(0.142687 | 0.141521
Random Prediction [0.010951 |0.0200518(0.014166( 0.006833 |0.012401 | 0.008811 [0.004352|0.007908 | 0.007908
SNOMED Data
Piecewise Prediction |(0.010530] 0.013554 [0.011845( 0.010530 |0.013554 | 0.011845 [0.010521 {0.013554|0.011839
Deep Prediction 0013983 |0.0172811 [ 0.016395( 0.015983 (0017281 0.016395 [0.015614 (0.017281 [0.016396
Flat Prediction 0.014414] 0.018300 (0.016112{0.0144140)0.018300| 0.016112 {0.013495 [ 0.018300|0.015525
Random Prediction |0.002807 | 0.006803 [0.003975( 0.001433 |0.003444) 0.002023 [0.001769(0.004281 [ 0.002504
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Noisy data

Averages For Levenshtein Distance
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Figure 8: Character Levenshtein Distance Precision, Recall, and F1-score
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Noisy data
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Generative EL Reasoning
using Pointer Networks

Monireh Ebrahimi, Aaron Eberhart, Pascal Hitzler
On the Capabilities of Pointer Networks for Deep Deductive Reasoning
https://arxiv.org/abs/2106.09225
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https://arxiv.org/abs/2106.09225

Results with transfer

Cpseran

Pointer Networks Transformer

Logic | KG Size Not-Normalized LSTM
SubWordText | Tokenizer

SubWord Text Tokenizer Normalized

40 3% 73% 8% 8% 0.4 % 0%
ER 50 6870 685 11% 11% 0.3% 0%
120 49% 49% 15% NA NA 0%

e same architecture as before

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
UNIVERSITY




Copseran

The Deductive Capability of
Logic Tensor Networks

Federico Bianchi, Pascal Hitzler, On the Capabilities of Logic Tensor Networks for
Deductive Reasoning. In: Andreas Martin et al. (eds.), Proceedings of the

AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge
Engineering (AAAI-MAKE 2019) Stanford University, Palo Alto, California, USA,
March 25-27, 2019, Stanford University, Palo Alto, California, USA, March 25-27,
2019. CEUR Workshop Proceedings 2350, CEUR-WS.org 20109.
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Logic Tensor Networks

Based on Neural Tensor Networks. eLab

Logic Tensor Networks are due to Serafini and Garcez (2016).
They have been used for image analysis under background
knowledge.

Their capabilities for deductive reasoning have not been
sufficiently explored.

Underlying logic: First-order predicate, fuzzyfied.
Every language primitive becomes a vector/matrix/tensor.

Terms/Atoms/Formulas are embedded as corresponding
tensor/matrix/vector multiplications over the primitives.

Embeddings of primitives are learned s.t. the truth values of all
formulas in the given theory are maximized.

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
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A-priori Limitations

Copseran

 Not clear how to adapt this such that you can transfer to
unseen input theories.

o Scalability is an issue.

 While apparently designed for deductive reasoning, the
iInventors hardly report on this issue.

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
UNIVERSITY




Transitive closure

e Va.b,ce A : (.S'H.b(a_, b) A -S'H.b(b,_ C)) — Sub(a, r:) eLab

e Va € A: —subla,a)
e Va.b: subla,b) — —sub(b.a)

Satisfiability MAE Matthews F1 Precision  Recall

0.99 0.12(0.12) | 0.58 (0.45) | 0.64 (0.51) | 0.60 (0.47) | 0.68 (0.55)
0.56 0.51(0.52) | 0.09 (0.06) | 0.27(0.20) | 0.20 (0.11) | 0.95(0.93)
Random 0.50 (0.50) | 0.00 (0.00) | 0.22(0.17) | 0.14(0.10) | 0.50 (0.50)

parentheses: only newly entailed part of KB

MAE: mean absolute error;

Matthews: Matthews coefficient (for unbalanced classes)

top: top performing model, layer size and embeddings: 20, mean
aggregator

Bottom: one of the worst performing models.
Multi-hop inferences difficult.

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
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More take-aways from experiments

e Error decreases with
increasing satisfiability.

=]
]

Mean Absohile Erar
=}
-]

=]
]

0.56 0.57 0.58 0.63 0.85 0.67 o7 0.81 0.85 0.89
Salisfiabilily

' Figure 3: Average MAE for the ancestors tasks on rounded
’ Addmg redundant formulas level of satisfiability. MAE decreases with the increase of
to the input KB decreases satisfiability.

error.

Tvpe MAE Matthews F1 Precision Recall
Six Axioms 0.16 (0.17) | 0.73 (0.61) | 0.77 (0.62) | 0.64 (0.47) | 0.96 (0.92)
Eight Axioms | 0.14(0.14) | 0.83(0.69) | 0.85(0.72) | 0.80 (0.66) | 0.89 (0.79)

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
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More take-aways from experiments

Cpseran

o Higher arity of predicates significantly increases learning

time.

a7 3.9 £2 L8 5.1

@
1

5.1 5.3 i} 6.1 6.5

Number of predicatea (arnity 1)
[ (%] -
a ra

5]
=]

12 20
humber of constants

Figure 5: Computational times in sec-

onds for predicates of arity one and con-
stants
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Figure 6: Computational times in sec-
onds for predicates of arity two and con-
stants
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i
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g 3000
]
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# 1500
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Figure 7: Computational times in sec-
onds for predicates of arity three and
constants
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More take-aways from experiments

Copseran

« Model seems to often end up in local minima. This may be
addressable using known approaches.

* LTNs seem to predict many false positives, while they are better
regarding true negatives. This may be just because of the test
knowledge bases we used, but needs to be looked at.

« Opverfitting is a problem, but it doesn’t seem straightforward to
address this for LTNs. [e.g. cross-validation may need
completeness information, which may bias the network]

* Increasing layers and embedding size makes optimizing
parameters much more difficult.

« Hence, there’'s a path for more investigations, we're only starting
to understand this.

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021
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Conclusions
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Conclusions

Cpseran

 Bridging the neuro-symbolic gap is still a major quest.

« Research on Deep Deductive Reasoning is at the heart of neuro-
symbolic Artificial Intelligence

« Research is needed to push the envelope with respect to core
aspects such as

— more complex logics

— higher reasoning accuracy
— Dbetter transfer

— scalability

KANSAS STATE BIAS Summer School, Bristol, UK, September 2021

UNIVERSITY
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Thanks!
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