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Neuro-symbolic AI
Publications on neuro-symbolic AI in major conferences 
(research papers only):

See
Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, Pascal Hitzler
Neuro-Symbolic Artificial Integration: Current Trends
https://arxiv.org/abs/2105.05330 (under review)
for more analysis.
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Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, since 2005.
Joint with Artur d’Avila Garcez.
http://neural-symbolic.org/

Barbara Hammer and Pascal Hitzler (eds), Perspectives of 
Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation 
Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, 
Howard Bowman, Pedro Domingos, Pascal Hitzler, 
Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, 
Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, 
Hoifung Poon, Gerson Zaverucha
https://arxiv.org/abs/1711.03902 (2017)

Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs 
for eXplainable Artificial Intelligence: Foundations, Applications and 
Challenges. Studies on the Semantic Web Vol. 47, IOS Press, 2020. 

http://neural-symbolic.org/
https://arxiv.org/abs/1711.03902
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Deep Deductive Reasoners

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, 
Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners. 
Applied Intelligence, 2021, to appear.

Pascal Hitzler, Frank van Harmelen
A reasonable Semantic Web.
Semantic Web 1 (1-2), 39-44, 2010.
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Deep Deductive Reasoners

• We trained deep learning systems to do deductive reasoning.

• Why is this interesting? 
– For dealing with noisy data (where symbolic reasoners do 

very poorly).
– For speed, as symbolic algorithms are of very high 

complexity.
– Out of principle because we want to learn about the 

capabilities of deep learning for complicated cognitive tasks.

– To perhaps begin to understand how our (neural) brains can 
learn to do highly symbolic tasks like formal logical 
reasoning, or in more generality, mathematics.
A fundamental quest in Cognitive Science.
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Reasoning as Classification

• Given a set of logical formulas (a theory).

• Any formula expressible over the same language is either 
– a logical consequence or
– not a logical consequence.

• This can be understood as a classification problem for machine 
learning.

• It turns out to be a really hard machine learning problem.
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Knowledge Materialization

• Given a set of logical formulas (a theory).

• Produce all logical consequences under certain constraints.

• Without the qualifier this is in general not possible as the set of 
all logical consequences is infinite.

• So we have to constrain to consequences of, e.g., a certain 
syntactic form. For relatively simple logics, this is often 
reasonably possible.
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Published deep deductive reasoning work

[12]: Ebrahimi, Sarker, Bianchi, Xie, Eberhart, Doran, Kim, Hitzler, 
AAAI-MAKE 2021

[25]: Makni, Hendler, SWJ 2019
[10]: Eberhart, Ebrahimi, Zhou, Shimizu, Hitzler, AAAI-MAKE 2020
[20]: Hohenecker, Lukasiewicz, JAIR 2020
[6]: Bianchi, Hitzler, AAAI-MAKE 2019
(new): Ebrahimi, Eberhart, Hitzler, June 2021
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(new)        RDFS            yes                yes low                         high
(new)           EL+            yes                yes low                         high
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Deep Reasoners Overview

1. RDFS via Memory Networks (classification) [12].
2. RDFS via Pointer Networks (generative) (new).
3. EL+ via LSTMs (generative) [10].
4. EL+ via Pointer networks (new).
5. LTNs for first-order predicate logic [6].

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, 
Towards Bridging the Neuro-Symbolic Gap: Deep Deductive 
Reasoners. Applied Intelligence, 2021, to appear. [covers 6,10,12]
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RDFS Reasoning using Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie, 
Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler, 
Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment. 
In: Proc. AAAI-MAKE 2021.

additional analysis by Sulogna Chowdhury, Aaron Eberhart 
and Brayden Pankaskie
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RDF reasoning

• Essentially, RDF reasoning is Datalog reasoning restricted to:
– Unary and binary predicates only.
– A fixed set of rules that are not facts.

• You can try the following:
– Use a vector embedding for one RDF graph.
– Create all logical consequences.
– Throw n% of them away.
– Use the rest to 

train a DL system.
– Check how many 

of those you 
threw away can 
be recovered this
way.



2nd Data Intelligence and Knowledge Service Conf., Nanjing, China, July 2021

RDF reasoning

• The problem with the approach just described:
– It works only with that graph.

• What you’d really like to do is:
– Train a deep learning system so that you can present a new, 

unseen graph to it, and it can correctly derive the deductively 
inferred triples. 

• Note: 
– You don’t know the IRIs in the graph up front. The only 

overlap may or may not be the IRIs in the rdf/s namespace.
– You don’t know up front how “deep” the reasoning needs to 

be.
– There is no lack of training data, it can be auto-generated.
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RDF reasoning

• [Note: RDF is one of the simplest useful knowledge 
representation languages that is not propositional.]

• Think knowledge graph. 
• Think node-edge-node triples such as 

BarackObama rdf:type President
BarackObama husbandOf MichelleObama
President rdfs:subClassOf Human
husbandOf rdfs:subPropertyOf spouseOf

• Then there is a (fixed, small) set of inference rules, such as
rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)
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Representation

• Goal is to be able to reason over unseen knowledge graphs.
I.e. the out-of-vocabulary problem needs addressing.

• Normalization of vocabulary (i.e., it becomes shared 
vocabulary across all input knowledge graphs.

• One vocabulary item becomes a one-hot vector 
(dimension d, number of normalized vocabulary terms)

• One triple becomes a 3 x d matrix.
• The knowledge graph becomes an n x 3 x d tensor

(n is the number of knowledge graph triples)

• Knowledge graph is stored in “memory”
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Mechanics

• An attention mechanism retrieves memory slots useful for 
finding the correct answer to a query.

• These are combined with the query and run through a (learned) 
matrix to retrieve a new (processed) query.

• This is repeated (in our experiment with 10 “hops”).
• The final out put is a yes/no answer to the query.
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Memory Network based on MemN2N
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Experiments: Performance

Baseline: non-normalized embeddings, same architecture
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Experiments: Reasoning Depth

Training time: just over a full day
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Generative RDFS Reasoning 
using Pointer Networks

Monireh Ebrahimi,  Aaron Eberhart, Pascal Hitzler
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● Pointer Networks ‘point’ to input elements!

● Ptr-Net approach specifically targets problems whose outputs are 
discrete and correspond to positions in the input.

● At each time step, the distribution of the attention is the answer!

● Application:
– NP-hard Travelling Salesman Problem (TSP)
– Delaunay Triangulation
– Convex Hull
– Text Summarization
– Code completion
– Dependency Parsing

Pointer Networks
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Pointer Networks for Reasoning

C ⊑ D , A ⊑ C ⇒ A ⊑ D

⇐

5

2

3

⇐

• To mimic human reasoning behaviour where one can learn to choose 
a set of symbols in different locations and copy these symbols to 
suitable locations to generate new logical consequences based on a set of 
predefined logical entailment rules
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Results without transfer

● On RDF, slightly outperforms [Hendler Makni SWJ 2019] approach.
● Our approach is a more straightforward application. 
● Evaluation is on the same dataset.
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Results with transfer
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Completion Reasoning Emulation for the 
Description Logic EL+

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler, 
Completion Reasoning Emulation for the Description Logic EL+. 
In: Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug 
Lenat, Reinhard Stolle, Frank van Harmelen (eds.), Proceedings of the 
AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge 
Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25, 
2020, Volume I. 
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EL+ is essentially OWL 2 EL
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Support
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Architecture
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Architecture
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Architecture
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Encoding

31



2nd Data Intelligence and Knowledge Service Conf., Nanjing, China, July 2021

Results
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Noisy data
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Noisy data
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Generative EL Reasoning 
using Pointer Networks

Monireh Ebrahimi,  Aaron Eberhart, Pascal Hitzler
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Results with transfer
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• same architecture as before
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The Deductive Capability of 
Logic Tensor Networks

Federico Bianchi, Pascal Hitzler, On the Capabilities of Logic Tensor Networks for 
Deductive Reasoning. In: Andreas Martin et al. (eds.), Proceedings of the 
AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge 
Engineering (AAAI-MAKE 2019) Stanford University, Palo Alto, California, USA, 
March 25-27, 2019, Stanford University, Palo Alto, California, USA, March 25-27, 
2019. CEUR Workshop Proceedings 2350, CEUR-WS.org 2019.
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Logic Tensor Networks

Based on Neural Tensor Networks.
Logic Tensor Networks are due to Serafini and Garcez (2016).
They have been used for image analysis under background 
knowledge.

Their capabilities for deductive reasoning have not been 
sufficiently explored.

Underlying logic: First-order predicate, fuzzyfied. 
Every language primitive becomes a vector/matrix/tensor.
Terms/Atoms/Formulas are embedded as corresponding 
tensor/matrix/vector multiplications over the primitives. 
Embeddings of primitives are learned s.t. the truth values of all 
formulas in the given theory are maximized.
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A-priori Limitations

• Not clear how to adapt this such that you can transfer to 
unseen input theories.

• Scalability is an issue.

• While apparently designed for deductive reasoning, the 
inventors hardly report on this issue.
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Transitive closure

parentheses: only newly entailed part of KB
MAE: mean absolute error; 
Matthews: Matthews coefficient (for unbalanced classes) 
top: top performing model, layer size and embeddings: 20, mean 
aggregator
Bottom: one of the worst performing models.
Multi-hop inferences difficult.
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More take-aways from experiments

• Error decreases with
increasing satisfiability.

• Adding redundant formulas 
to the input KB decreases
error. 
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More take-aways from experiments

• Higher arity of predicates significantly increases learning 
time.
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More take-aways from experiments

• Model seems to often end up in local minima. This may be 
addressable using known approaches.

• LTNs seem to predict many false positives, while they are better 
regarding true negatives. This may be just because of the test 
knowledge bases we used, but needs to be looked at.

• Overfitting is a problem, but it doesn’t seem straightforward to 
address this for LTNs. [e.g. cross-validation may need 
completeness information, which may bias the network]

• Increasing layers and embedding size makes optimizing 
parameters much more difficult.

• Hence, there’s a path for more investigations, we’re only starting 
to understand this.
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Conclusions
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Conclusions

• Bridging the neuro-symbolic gap is still a major quest.

• Research on Deep Deductive Reasoning is at the heart of neuro-
symbolic Artificial Intelligence

• Research is needed to push the envelope with respect to core 
aspects such as
– more complex logics
– higher reasoning accuracy
– better transfer
– scalability
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Thanks!
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