

Neural-Symbolic Integration and Ontologies

Pascal Hitzler

Data Semantics Laboratory (DaSe Lab) Kansas State University

http://www.daselab.org

Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning, since 2005. Joint with Artur d'Avila Garcez.

http://neural-symbolic.org/

Barbara Hammer and Pascal Hitzler (eds), Perspectives of Neural-Symbolic Integration, Springer, 2007

Neural-Symbolic Learning and Reasoning: A Survey and Interpretation Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, Gerson Zaverucha https://arxiv.org/abs/1711.03902 (2017)

Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges. Studies on the Semantic Web Vol. 47, IOS Press, 2020.

llaria Tiddi, Freddy Lécué and Pascal Hitzler (Eds.)

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges

KANSAS STATE

Neural-Symbolic Integration and the Semantic Web

Pascal Hitzler, Federico Bianchi, Monireh Ebrahimi, Md Kamruzzaman Sarker, Neural-Symbolic Integration and the Semantic Web. Semantic Web 11 (1), 2020, 3-11.

Part I: Deep Deductive Reasoners Part 2: Explainable AI using Knowledge Graphs

Deep Deductive Reasoners

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners. Applied Intelligence, 2021, to appear.

Pascal Hitzler, Frank van Harmelen A reasonable Semantic Web. Semantic Web 1 (1-2), 39-44, 2010.

Deep Deductive Reasoners

- We trained deep learning systems to do deductive reasoning.
- Why is this interesting?
 - For dealing with noisy data (where symbolic reasoners do very poorly).
 - For speed, as symbolic algorithms are of very high complexity.
 - Out of principle because we want to learn about the capabilities of deep learning for complicated cognitive tasks.
 - To perhaps begin to understand how our (neural) brains can learn to do highly symbolic tasks like formal logical reasoning, or in more generality, mathematics. A fundamental quest in Cognitive Science.

Reasoning as Classification

- Given a set of logical formulas (a theory).
- Any formula expressible over the same language is either
 - a logical consequence or
 - not a logical consequence.
- This can be understood as a classification problem for machine learning.
- It turns out to be a really hard machine learning problem.

Knowledge Materialization

- Given a set of logical formulas (a theory).
- Produce all logical consequences under certain constraints.
- Without the qualifier this is in general not possible as the set of all logical consequences is infinite.
- So we have to constrain to consequences of, e.g., a certain syntactic form. For relatively simple logics, this is often reasonably possible.

Deep Reasoners Overview

- 1. RDFS via Memory Networks (classification).
- 2. RDFS via Pointer Networks (generative).
- 3. OWL EL via LSTMs (generative)
- 4. LTNs for first-order predicate logic

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, Towards Bridging the Neuro-Symbolic Gap: Deep Deductive Reasoners. Applied Intelligence, 2021, to appear.

RDFS Reasoning using Memory Networks

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie, Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler, Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment. In: Proc. AAAI-MAKE 2021.

additional analysis by Sulogna Chowdhury, Aaron Eberhart and Brayden Pankaskie

RDF reasoning

- [Note: RDF is one of the simplest useful knowledge representation languages that is not propositional.]
- Think knowledge graph.
 - Think node-edge-node triples such asBarackObama rdf:typePresidentBarackObama husbandOfMichelleObamaPresidentrdfs:subClassOfhusbandOfrdfs:subPropertyOf
- Then there is a (fixed, small) set of inference rules, such as rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)

•

Representation

- Goal is to be able to reason over unseen knowledge graphs.
 I.e. the out-of-vocabulary problem needs addressing.
- Normalization of vocabulary (i.e., it becomes shared vocabulary across all input knowledge graphs.
- One vocabulary item becomes a one-hot vector (dimension d, number of normalized vocabulary terms)
- One triple becomes a 3 x d matrix.
- The knowledge graph becomes an n x 3 x d tensor (n is the number of knowledge graph triples)
- Knowledge graph is stored in "memory"

Mechanics

- An attention mechanism retrieves memory slots useful for finding the correct answer to a query.
- These are combined with the query and run through a (learned) matrix to retrieve a new (processed) query.
- This is repeated (in our experiment with 10 "hops").
- The final out put is a yes/no answer to the query.

Memory Network based on MemN2N

Experiments: Performance

[p	969					Info	rrad		1	Invalid
Test Dataset	#KG	HUnster	#Det	D Class	dSC	0/ D	01 A	di Canada	#12t	IIIIC	areu Al Indu	07 D	07 A	filvanu #Easta
		#Pacts	#Ent.	%Class	%INOV	%K.	%AX10III.	#Pacts	#Ent.	%Class	%Indv	%K.	%AX10M.	#Pacts
OWL-Centric	2464	996	832	14	19	3	0	494	832	14	0.01	1	20	462
Linked Data	20527	999	787	3	22	5	0	124	787	3	0.006	1	85	124
OWL-Centric Test Set	21	622	400	36	41	3	0	837	400	36	3	1	12	476
Synthetic Data	2	752	506	52	0	1	0	126356	506	52	0	1	0.07	700

Table 2: Statistics of various datasets used in experiments

Baseline: non-normalized embeddings, same architecture

Training Dataset	Test Dataset	V	alid Triples Cl	ass	Inv	alid Triples C	lass	Accuracy
Training Dataset	Test Dataset	Precision	Recall /Sensitivity	F-measure	Precision	Recall /Specificity	F-measure	Accuracy
OWL Centric Dataset	Linked Data	03	08	06	08	03	05	96
OWL-Centric Dataset	OWL Cantria Dataset (100)	95	90	90	90	95	95	90
OwL-Centric Dataset (90%)	OwL-Centric Dataset (10%)	66	91	89	90	88	89	90
OWL-Centric Dataset	OWL-Centric Test Set ^b	79	62	68	70	84	76	69
OWL-Centric Dataset	Synthetic Data	65	49	40	52	54	42	52
OWL-Centric Dataset	Linked Data ^a	54	98	70	91	16	27	86
OWL-Centric Dataset a	Linked Data ^a	62	72	67	67	56	61	91
OWL-Centric Dataset(90%) a	OWL-Centric Dataset(10%) a	79	72	75	74	81	77	80
OWL-Centric Dataset	OWL-Centric Test Set ab	58	68	62	62	50	54	58
OWL-Centric Dataset a	OWL-Centric Test Set ab	77	57	65	66	82	73	73
OWL-Centric Dataset	Synthetic Data ^a	70	51	40	47	52	38	51
OWL-Centric Dataset a	Synthetic Data ^a	67	23	25	52	80	62	50
		B	aseline					
OWL-Centric Dataset	Linked Data	73	98	83	94	46	61	43
OWL-Centric Dataset (90%)	OWL-Centric Dataset (10%)	84	83	84	84	84	84	82
OWL-Centric Dataset	OWL-Centric Test Set b	62	84	70	80	40	48	61
OWL-Centric Dataset	Synthetic Data	35	41	32	48	55	45	48

^a More Tricky Nos & Balanced Dataset

^b Completely Different Domain.

Table 3: Experimental results of proposed model

Experiments: Reasoning Depth

																															· · //	20	
Test Dataset		Hop ()		Hop 1			Hop 2			Hop 3			Hop 4			Hop 5)		Hop 6	i i	1	Hop 7			Hop 8	1		Hop 9			lop 1)
Test Dataset	Р	R	F	Р	R	F	Р	R	F	Р	R	F	Р	R	F	Р	R	F	р	R	F	Р	R	F	Р	R	F	Р	R	F	Р	R	F
Linked Data ^a	0	0	0	80	99	88	89	97	93	π	98	86	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-
Linked Data ^b	2	0	0	82	91	86	89	98	93	79	100	88	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
OWL-Centric "	19	5	9	31	75	42	78	80	78	48	47	44	4	34	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Synthetic	32	46	33	31	87	38	66	-55	44	25	45	32	- 29	46	33	26	46	33	25	46	33	25	46	33	24	43	31	25	43	31	22	36	28

^a LemonUby Ontology

^b Agrovoc Ontology

^c Completely Different Domain

Table 4: E	Experimental	results	over	each	reasoning	hop
------------	--------------	---------	------	------	-----------	-----

Dataset	Hop 1	Hop 2	Hop 3	Hop 4	Hop 5	Hop 6	Hop 7	Hop 8	Hop 9	Hop 10
OWL-Centric ^a	8%	67%	24%	0.01%	0%	0%	0%	0%	0%	0%
Linked Data ^b	31%	50%	19%	0%	0%	0%	0%	0%	0%	0%
Linked Data ^c	34%	46%	20%	0%	0%	0%	0%	0%	0%	0%
OWL-Centric ^d	5%	64%	30%	1%	0%	0%	0%	0%	0%	0%
Synthetic Data	0.03%	1.42%	1%	1.56%	3.09%	6.03%	11.46%	20.48%	31.25%	23.65%

^a Training Set

^b LemonUby Ontology

^c Agrovoc Ontology

^d Completely Different Domain

Table 5: Data distribution per knowledge graph over each reasoning hop

Training time: just over a full day

Generative RDFS Reasoning using Pointer Networks

Monireh Ebrahimi, breaking results

• Pointer Networks 'point' to input elements!

- Ptr-Net approach specifically targets problems whose outputs are discrete and correspond to positions in the input.
- At each time step, the distribution of the attention is the answer!
- Application:
 - NP-hard Travelling Salesman Problem (TSP)
 - Delaunay Triangulation
 - Convex Hull
 - Text Summarization
 - Code completion
 - Dependency Parsing

Pointer Networks for Reasoning

 To mimic human reasoning behaviour where one can learn to choose a set of symbols in different locations and copy these symbols to suitable locations to generate new logical consequences based on a set of predefined logical entailment rules

		Pointer Network	ks
Logic	KG Size	SubWordText	Tokenizer
RDF	3 - 735	87%	99%
	40	73%	73%
\mathbf{ER}	50	68%	68%
	120	49%	49%

- On RDF, slightly outperforms [Hendler Makni SWJ 2019] approach.
- Our approach is a more straightforward application.
- Evaluation is on the same dataset.

Completion Reasoning Emulation for the Description Logic EL+

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler, Completion Reasoning Emulation for the Description Logic EL+. In: Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug Lenat, Reinhard Stolle, Frank van Harmelen (eds.), Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25, 2020, Volume I.

EL+ is essentially OWL 2 EL

Table 1: \mathcal{EL}^+ Semantics

Description	Expression	Semantics
Individual	a	$a \in \Delta^{\mathcal{I}}$
Тор	Т	$\Delta^{\mathcal{I}}$
Bottom	\perp	Ø
Concept	C	$C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
Role	R	$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}}$
Conjunction	$C \sqcap D$	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
Existential Restriction	$\exists R.C$	$\{ a \mid \text{there is } b \in \Delta^{\mathcal{I}} \text{ such that } (a, b) \in R^{\mathcal{I}} \text{ and } b \in C^{\mathcal{I}} \}$
Concept Subsumption	$C \sqsubseteq D$	$C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
Role Subsumption	$R \sqsubseteq S$	$R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
Role Chain	$R_1 \circ \cdots \circ R_n \sqsubseteq R$	$R_1^{\mathcal{I}} \circ \dots \circ R_n^{\mathcal{I}} \subseteq R^{\mathcal{I}}$

with o signifying standard binary composition

	New Fact	Rule	Support
Step 1	$C1 \sqsubseteq C3$	(1)	$C1 \sqsubseteq C2, C2 \sqsubseteq C3$
	C1 ⊑ C4	(4)	$C1 \sqsubseteq C2, C1 \sqsubseteq \exists R1. C1, \exists R1. C2 \sqsubseteq C4$
	$C1 \sqsubseteq \exists R1.C3$	(3)	$C1 \sqsubseteq C2, C2 \sqsubseteq \exists R1.C3$
	$C1 \sqsubseteq \exists R2.C1$	(5)	$C1 \sqsubseteq \exists R1.C1, R1 \sqsubseteq R2$
	$C1 \sqsubseteq \exists R4.C4$	(6)	$C1 \sqsubseteq \exists R1.C1, R1 \circ R3 \sqsubseteq R4, C1 \sqsubseteq \exists R3.C4$
Step 2	$C1 \sqsubseteq C5$	(2)	$C3 \sqcap C4 \sqsubseteq C5, C1 \sqsubseteq C2, C2 \sqsubseteq C3, C1 \sqsubseteq C2, C1 \sqsubseteq \exists R1. C1, \exists R1. C2 \sqsubseteq C4$

Architecture

Figure 2: Piecewise Architecture

Architecture

Figure 3: Deep Architecture

Architecture

Figure 4: Flat Architecture

Encoding

KB statement		Vectorization
$CX \sqsubseteq CY$	\rightarrow	$\left[0.0, \frac{X}{c}, \frac{Y}{c}, 0.0 \right]$
$\mathbf{CX}\sqcap\mathbf{CY}\sqsubseteq\mathbf{CZ}$	\rightarrow	$\left[\frac{X}{c}, \frac{Y}{c}, \frac{Z}{c}, 0.0\right]$
$CX \sqsubseteq \exists RY.CZ$	\rightarrow	$[0.0, \frac{X}{c}, \frac{-Y}{r}, \frac{Z}{c}]$
$\exists RX.CY \sqsubseteq CZ$	\rightarrow	$\left[\frac{-X}{r}, \frac{Y}{c}, \frac{Z}{c}, 0.0\right]$
$\mathbf{R}\mathbf{X} \sqsubseteq \mathbf{R}\mathbf{Y}$	\rightarrow	$\left[0.0, \frac{-X}{r}, \frac{-Y}{r}, 0.0\right]$
$RX \circ RY \sqsubseteq RZ$	\rightarrow	$\left[\frac{-X}{r}, \frac{-Y}{r}, \frac{-Z}{r}, 0.0\right]$

c = Number of Possible Concept Names r = Number of Possible Role Names

Table 7: Average Precision Recall and F1-score For each Distance Evaluation

	Atomic I	.evenshtein	Distance	Character I	.evenshtei	n Distance	Predicate Distance					
	Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score			
		Synthetic Data										
Piecewise Prediction	0.138663	0.142208	0.140412	0.138663	0.142208	0.140412	0.138646	0.141923	0.140264			
Deep Prediction	0.154398	0.156056	0.155222	0.154398	0.156056	0.155222	0.154258	0.155736	0.154993			
Flat Prediction	0.140410	0.142976	0.141681	0.140410	0.142976	0.141681	0.140375	0.142687	0.141521			
Random Prediction	0.010951	0.0200518	0.014166	0.006833	0.012401	0.008811	0.004352	0.007908	0.007908			
				SN	OMED Da	ta						
Piecewise Prediction	0.010530	0.013554	0.011845	0.010530	0.013554	0.011845	0.010521	0.013554	0.011839			
Deep Prediction	0.015983	0.0172811	0.016595	0.015983	0.017281	0.016595	0.015614	0.017281	0.016396			
Flat Prediction	0.014414	0.018300	0.016112	0.0144140	0.018300	0.016112	0.013495	0.018300	0.015525			
Random Prediction	0.002807	0.006803	0.003975	0.001433	0.003444	0.002023	0.001769	0.004281	0.002504			

Averages For Levenshtein Distance

(a) Synthetic Data Piecewise Architecture

Averages For Levenshtein Distance

(b) Synthetic Data Deep Architecture

Averages for Levenshtein Distances

(c) Synthetic Data Flat Architecture

(d) SNOMED Data Piecewise Architecture

(e) SNOMED Data Deep Architecture

(f) SNOMED Data Flat Architecture

Figure 8: Character Levenshtein Distance Precision, Recall, and F1-score

Noisy data

Probability of Corruption in KB

hitecture

(b) Synthetic Data Deep Architecture

The Deductive Capability of Logic Tensor Networks

Federico Bianchi, Pascal Hitzler, On the Capabilities of Logic Tensor Networks for Deductive Reasoning. In: Andreas Martin et al. (eds.), Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019) Stanford University, Palo Alto, California, USA, March 25-27, 2019, Stanford University, Palo Alto, California, USA, March 25-27, 2019. CEUR Workshop Proceedings 2350, CEUR-WS.org 2019.

Based on Neural Tensor Networks.

Logic Tensor Networks are due to Serafini and Garcez (2016). They have been used for image analysis under background knowledge.

Their capabilities for deductive reasoning have not been sufficiently explored.

Underlying logic: First-order predicate, fuzzyfied. Every language primitive becomes a vector/matrix/tensor. Terms/Atoms/Formulas are embedded as corresponding tensor/matrix/vector multiplications over the primitives. Embeddings of primitives are learned s.t. the truth values of all formulas in the given theory are maximized.

KANSAS STATE

- Not clear how to adapt this such that you can transfer to unseen input theories.
- Scalability is an issue.
- While apparently designed for deductive reasoning, the inventors hardly report on this issue.

Transitive closure

- $\bullet ~~ \forall a,b,c \in A: (sub(a,b) \wedge sub(b,c)) \rightarrow sub(a,c)$
- $\forall a \in A : \neg sub(a, a)$
- $\bullet \ \forall a,b: sub(a,b) \rightarrow \neg sub(b,a)$

Satisfiability	MAE	Matthews	F1	Precision	Recall
0.99	0.12 (0.12)	0.58 (0.45)	0.64 (0.51)	0.60 (0.47)	0.68 (0.55)
0.56	0.51 (0.52)	0.09 (0.06)	0.27 (0.20)	0.20 (0.11)	0.95 (0.93)
Random	0.50 (0.50)	0.00 (0.00)	0.22 (0.17)	0.14 (0.10)	0.50 (0.50)

parentheses: only newly entailed part of KB

MAE: mean absolute error;

Matthews: Matthews coefficient (for unbalanced classes)

top: top performing model, layer size and embeddings: 20, mean aggregator

Bottom: one of the worst performing models.

Multi-hop inferences difficult.

KANSAS STATE

More take-aways from experiments

Higher arity of predicates significantly increases learning time.

Figure 5: Computational times in seconds for predicates of arity one and constants Figure 6: Computational times in seconds for predicates of arity two and constants Figure 7: Computational times in seconds for predicates of arity three and constants

Part I: Deep Deductive Reasoners Part 2: Explainable AI using Knowledge Graphs

Explaining Deep Learning via Symbolic Background Knowledge

Md. Kamruzzaman Sarker, Ning Xie, Derek Doran, Michael Raymer, Pascal Hitzler, Explaining Trained Neural Networks with Semantic Web Technologies: First Steps. In: Tarek R. Besold, Artur S. d'Avila Garcez, Isaac Noble (eds.), Proceedings of the Twelfth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2017, London, UK, July 17-18, 2017. CEUR Workshop Proceedings 2003, CEUR-WS.org 2017

Md Kamruzzaman Sarker, Pascal Hitzler, Efficient Concept Induction for Description Logics. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 – February 1, 2019. AAAI Press 2019, pp. 3036-3043.

Md Kamruzzaman Sarker, Joshua Schwartz, Pascal Hitzler, Lu Zhou, Srikanth Nadella, Brandon Minnery, Ion Juvina, Michael L. Raymer, William R. Aue, Wikipedia Knowledge Graph for Explainable AI. In: Boris Villazón-Terrazas, Fernando Ortiz-Rodríguez, Sanju M. Tiwari, Shishir K. Shandilya (eds.), Knowledge Graphs and Semantic Web. Second Iberoamerican Conference and First Indo-American Conference, KGSWC 2020, Mérida, Mexico, November 26-27, 2020, Proceedings. Communications in Computer and Information Science, vol. 1232, Springer, Heidelberg, 2020, pp. 72-87.

Explainable Al

• Explain behavior of trained (deep) NNs.

- Idea:
 - Use background knowledge in the form of linked data and ontologies to help explain.
 - Link inputs and outputs to background knowledge.
 - Use a symbolic learning system to generate an explanatory theory.

• We have key components for this now, but it's still early stages.

Concept

Concept Induction

Positive examples:

- ▖▐ਰᢪҤᡱᡱᡰᢡᡖᡀ
- ᠈ᢩᡂ᠆ᢣᢩᠳ᠆ᢩᢩ᠘ᢩ᠘ᢩᡛ᠆ᡱ
- ᠈᠂┎᠊ᢩᡔ᠋᠆ᢩᢙ᠆ᡶᢩᢩᢩᢩᢩᢩ᠘᠊᠋
- ·└⊑┟╱╗╁┻╝╲╅╱╶╠╧╝
- ᠈ᢩᢩᢩᡋ᠆ᢩᡄᢩ᠆ᢩᡰᢩᢩᢣ᠆ᢩᡛ

negative examples:

- ᠈᠂ᢅᡁ᠋᠁ᢅᠧ᠘ᢩ᠘᠘ᢩ᠘᠘
- ᠈᠂ᡁ᠘᠆ᢆᢏ══ᡗ᠆ᡛᢆᢩᡛ᠆ᡱ
- · \\$∕-\⊑⊦\Ţ╤╤╤┝-\\$∕-₽<mark>₽</mark>–ੈ
- ₅ <mark>└़॒॒॒⊢∖</mark>॒

DL-Learner result: ∃hasCar.(Closed □ Short)

In FOL:

$$\{x \mid \exists y(\operatorname{hasCar}(x, y) \land \operatorname{Closed}(y) \land \operatorname{Short}(y))\}\$$

ECII algorithm and system

 For scalability, we implemented our own system, ECII (Efficient Concept Induction from Instances) which trades some correctness for speed. [Sarker, Hitzler, AAAI-19]

Experiment Name	Number of			Runtime (see	:)		Accu	racy (α_3)	Accuracy α_2				
Experiment Name	Logical Axioms	DLa	DL FIC(1) ^b	DL FIC(2) ^c	ECII DF ^d	ECII KCT ^e	DLa	ECII DF ^d	DL FIC(1) ^b	DL FIC(2) ^c	ECII DF ^d	ECII KCT ^e	
Yinyang_examples	157	0.065	0.0131	0.019	0.089	0.143	1.000	0.610	1.000	1.000	0.799	1.000	
Trains	273	0.01	0.020	0.047	0.05	0.095	1.000	1.000	1.000	1.000	1.000	1.000	
Forte	341	2.5	1.169	6.145	0.95	0.331	0.965	0.642	0.875	0.875	0.733	1.000	
Poker	1,368	0.066	0.714	0.817	1	0.281	1.000	1.000	0.981	0.984	1.000	1.000	
Moral Reasoner	4,666	0.1	3.106	4.154	5.47	6.873	1.000	0.785	1.000	1.000	1.000	1.000	
ADE20k I	4,714	577.3 ¹	4.268	31.887	1.966	23.775	0.926	0.416	0.263	0.814	0.744	1.000	
ADE20k II	7,300	983.4 ^t	16.187	307.65	20.8	293.44	1.000	0.673	0.413	0.413	0.846	0.900	
ADE20k III	12,193	4,500 ^g	13.202	263.217	51	238.8	0.375	0.937	0.375	0.375	0.930	0.937	
ADE20k IV	47,468	4,500 ^g	93.658	523.673	116	423.349	0.375	NA	0.608	0.608	0.660	0.608	

a DL : DL-Learner

^b DL FIC (1) : DL-Learner fast instance check with runtime capped at execution time of ECII DF

^c DL FIC (2): DL-Learner fast instance check with runtime capped at execution time of ECII KCT

d ECII DF : ECII default parameters

e ECII KCT : ECII keep common types and other default parameters

f Runtimes for DL-Learner were capped at 600 seconds.

^g Runtimes for DL-Learner were capped at 4,500 seconds.

ECII vs. DL-Learner

Figure 1: Runtime comparison between DL-Learner and ECII. The vertical scale is logarithmic in hundredths of seconds, and note that DL-Learner runtime has been capped at 4,500 seconds for ADE20k III and IV. For ADE20k I it was capped at each run at 600 seconds.

Figure 2: Accuracy (α_3) comparison between DL-Learner and ECII. For ADE20k IV it was not possible to compute an accuracy score within 3 hours for ECII as the input ontology was too large.

However, ECII can only deal with class hierarchies as background knowledge.

Proof of Concept Experiment

Come from the MIT ADE20k dataset <u>http://groups.csail.mit.edu/vision/datasets/ADE20K/</u> They come with annotations of objects in the picture.

We mapped these to SUMO as background knowledge.

- Suggested Merged Upper Ontology
- Approx. 25,000 common terms covering a wide range of domains

KANSAS STATE

Positive:

- img1: road, window, door, wheel, sidewalk, truck, box, building
- img2: tree, road, window, timber, building, lumber
- img3: hand, sidewalk, clock, steps, door, face, building, window, road

Negative:

- img4: shelf, ceiling, floor
- img5: box, floor, wall, ceiling, product
- img6: ceiling, wall, shelf, floor, product

DL-Learner results include:

∃contains.Transitway ∃contains.LandArea

Proof of Concept Experiment

Negative:

Econtains.Transitway

U

Experiment 5

DaSe Lab

Positive:

Negative (selection):

$\exists contains.BodyOfWater$

Wikipedia KG (WKG) : Breaking Cycle

Lost Significant Information

- 50% of the subclass relation
- 50% of the class assertion

Number of entities/facts	SUMO	DBpedia	Wikipedia cyclic	Wikipedia noncyclic
Concepts	4558	1183	1,901,708	$1,\!860,\!342$
Individuals	86,475	1	$6,\!145,\!050$	6,079,748
Object property	778	1144	2	2
Data property	0	1769	0	0
Axioms	$175,\!208$	7228	$71,\!344,\!252$	39,905,216
Class assertion axioms	167381	1	57,335,031	27,991,282
Subclass axioms	5330	769	$5,\!962,\!463$	3,973,845

KANSAS STATE

Evaluation : Knowledge Graph in XAI

Workroom Explanations

SUMO

- ∃contains.(DurableGood □ ¬ForestProduct) •
- ∃contains.(DurableGood □ ¬Lumber) •
- ∃contains.Entity

Wikipedia

- ∃contains.(Wrenches □ Tools □ ¬Lumber) •
- ∃contains.(Mechanicaltools □ ¬Lumber)
- ∃contains.(Mechanicaltools □ ¬Sky) •

Test images. **Workroom** as positive examples p₁, p₂, p₃ on the left, **Warehouse** as negative examples n_1 , n_2 , n_3 on the right (from top).

Market Explanations

SUMO

- ∃contains.SentientAgent Wikipedia
- ∃contains.(Structure □ Life)

Mountain Explanations

- SUMO
- ∃contains.BodyOfWater

Wikipedia

contains.((Life \sqcap Branches of botany) \sqcap (Nature))

Evaluation : Knowledge Graph in XAI

- Wikipedia Knowledge graph producing better coverage score.
 - Reason behind this is the large number of concepts it has.

Experiment name	#Images	#Positive images	Wikipedia		SUMO	
			#Solution	Coverage	#Solution	Coverage
Market vs. WorkRoom and wareHouse	96	37	286	.72	240	.72
Mountain vs. Market and workRoom	181	85	195	.61	190	.53
OutdoorWarehouse vs. IndoorWarehouse	55	3	128	.94	102	.89
Warehouse vs. Workroom	59	55	268	.56	84	.24
Workroom vs. Warehouse	59	4	128	.93	93	.84

- Use approach to identify meaning of hidden neurons.
- Use approach to improve deep learning systems.
- Applications to understand "data differences".
 E.g., false-positives vs. true-positives.

Conclusions

• Bridging the neural-symbolic gap is still a major quest.

• But there are tons of opportunities.

Thanks!

Monireh Ebrahimi, Aaron Eberhart, Federico Bianchi, Pascal Hitzler, **Towards Bridging the Neuro-Symbolic Gap: Deep Deductive** Reasoners. Applied Intelligence, 2021, to appear.

Barbara Hammer and Pascal Hitzler (eds), Perspectives on Neural-Symbolic Integration. Springer, 2007

Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, Howard Bowman, Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb, Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, Hoifung Poon, Gerson Zaverucha, Neural-Symbolic Learning and Reasoning: A Survey and Interpretation. https://arxiv.org/abs/1711.03902 (2017)

DaSe Lab

Federico Bianchi, Pascal Hitzler, On the Capabilities of Logic Tensor Networks for Deductive Reasoning. In: Andreas Martin, Knut Hinkelmann, Aurona Gerber, Doug Lenat, Frank van Harmelen, Peter Clark (eds.), Proceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019) Stanford University, Palo Alto, California, USA, March 25-27, 2019, Stanford University, Palo Alto, California, USA, March 25-27, 2019. CEUR Workshop Proceedings 2350, CEUR-WS.org 2019.

Aaron Eberhart, Monireh Ebrahimi, Lu Zhou, Cogan Shimizu, Pascal Hitzler, Completion Reasoning Emulation for the Description Logic EL+. In: Andreas Martin, Knut Hinkelmann, Hans-Georg Fill, Aurona Gerber, Doug Lenat, Reinhard Stolle, Frank van Harmelen (eds.), Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice, AAAI-MAKE 2020, Palo Alto, CA, USA, March 23-25, 2020, Volume I.

Monireh Ebrahimi, Md Kamruzzaman Sarker, Federico Bianchi, Ning Xie, Aaron Eberhart, Derek Doran, Hyeongsik Kim, Pascal Hitzler, Neuro-Symbolic Deductive Reasoning for Cross-Knowledge Graph Entailment. In: Proc. AAAI-MAKE 2021.

Bassem Makni, James Hendler, Deep learning for noise-tolerant RDFS reasoning. Semantic Web 10(5): 823-862 (2019)

Md. Kamruzzaman Sarker, Ning Xie, Derek Doran, Michael Raymer, Pascal Hitzler, Explaining Trained Neural Networks with Semantic Web Technologies: First Steps. In: Tarek R. Besold, Artur S. d'Avila Garcez, Isaac Noble (eds.), Proceedings of the Twelfth International Workshop on Neural-Symbolic Learning and Reasoning, NeSy 2017, London, UK, July 17-18, 2017. CEUR Workshop Proceedings 2003, CEUR-WS.org 2017

DaSe Lab

Federico Bianchi, Matteo Palmonari, Pascal Hitzler, Luciano Serafini, Complementing Logical Reasoning with Sub-symbolic Commonsense. In: Paul Fodor, Marco Montali, Diego Calvanese, Dumitru Roman, Rules and Reasoning - Third International Joint Conference, RuleML+RR 2019, Bolzano, Italy, September 16-19, 2019, Proceedings. Lecture Notes in Computer Science 11784, Springer 2019, pp. 161-170.

Sebastian Bader, Pascal Hitzler, Dimensions of neural-symbolic integration – a structured survey. In: S. Artemov, H. Barringer, A. S. d'Avila Garcez, L. C. Lamb and J. Woods (eds). We Will Show Them: Essays in Honour of Dov Gabbay, Volume 1. International Federation for Computational Logic, College Publications, 2005, pp. 167-194.

Ilaria Tiddi, Freddy Lecue, Pascal Hitzler (eds.), Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges. Studies on the Semantic Web Vol. 47, IOS Press/AKA Verlag, 2020.

Pascal Hitzler, Frank van Harmelen, A reasonable Semantic Web. Semantic Web 1 (1-2), 39-44, 2010.

Md Kamruzzaman Sarker, Joshua Schwartz, Pascal Hitzler, Lu Zhou, Srikanth Nadella, Brandon Minnery, Ion Juvina, Michael L. Raymer, William R. Aue, Wikipedia Knowledge Graph for Explainable AI. In: Boris Villazón-Terrazas, Fernando Ortiz-Rodríguez, Sanju M. Tiwari, Shishir K. Shandilya (eds.), Knowledge Graphs and Semantic Web. Second Iberoamerican Conference and First Indo-American Conference, KGSWC 2020, Mérida, Mexico, November 26-27, 2020, Proceedings. Communications in Computer and Information Science, vol. 1232, Springer, Heidelberg, 2020, pp. 72-87.

Md Kamruzzaman Sarker, Pascal Hitzler, Efficient Concept Induction for Description Logics. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI Press 2019, pp. 3036-3043.

Pascal Hitzler, Federico Bianchi, Monireh Ebrahimi, Md Kamruzzaman Sarker, Neural-Symbolic Integration and the Semantic Web. Semantic Web 11 (1), 2020, 3-11.

Thanks!

