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Some Data

« From Germany, dual citizen. PhD in Ireland (in Mathematics)

 Wright State University since 2009.
Assistant Professor 2009-2012
Associate Professor 2012-2015
(Full) Professor since 2015
Endowed NCR Distinguished Professor since 2016

 Over 400 publications
 Over 9,000 Google Scholar citations

 Previous graduate students and postdocs now at (selection):

TU Dresden, Germany Universitas Indonesia

UG Athens, GA Southeast University China

IIT Delhi, India U Bonn, Germany

UN Lisboa, Portugal UN Headquarters New York
Amazon GE Global Research

Nuance etc.
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Teaching Highlights %ase |_ab

 Redesigned discrete math sequence for computer scientists
with focus on underprepared students, and increased their
retention rate from 6% to 24%.

« Most of my classes have an additional distance learning section.
| am teaching most of my classes as flipped classrooms.

* |received specific funding from my host institution for my
teaching innovations.
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Textbook: Syntax & Semantics %ase Lab

Pascal Hitzler, Markus Krdtzsch,
Sebastian Rudolph SN ey
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Choice Magazine Outstanding Academic
. ) ) | Hascal Hitzler
Title 2010 (one out of seven in Information | Markus Krétzsch
& Computer SCience) @ Sebastian I-unr]—::lph
e 1R

e s

="

http://www.semantic-web-book.org
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Semantic Web journal

EiCs: Pascal Hitzler
Krzysztof Janowicz

e Funded 2010

« 2018 Impact factor of 2.224, top (with 0.6
distance) of all journals with “Web” in
the title

« We very much welcome contributions at
the “rim” of traditional Semantic Web i) R
research —e.g., work which is strongly
Inspired by a different field.

* Non-standard (open & transparent)
review process.

http://www.semantic-web-journal.net/
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Knowledge Graphs

¢
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Theresa May <

British Prime Minister

tmay.co.uk

Theresa Mary May is a British politician
who has served as Prime Minister ofthe
LUnited Kingdom and Leader ofthe
Consenvative Party since July 2016, the
second woman to hold both positions.
Wikipedia

Born: October 1, 1956 (age 60),
Eastbourne, United Kingdom
Height: 5" 8"

Party: Conservative Party
Spouse: Philip May (m. 1880)

Education: S5t Hugh's College, Oxford
(1974-1977)

Previous offices: Home Secretary
(2010-2016), MORE ~
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Oxford. Itis located on a 14.5-acre site
an St Margaret's Road, to the north ofthe
city centre. Wikipedia

Address: St Margaret's Rd, Oxford OX2
GLE, UK

Principal: Elish Angiolini
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Founder: Elizabeth Wordswarth
Founded: 1226
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Hugh of Lincoln, also known as Hugh of
Avalon, was a French noble, Benedictine
and Carthusian monk, bishop of Lincoln
in the Kingdom of England, and Catholic
saint. Wikipedia

Borm; 1140, Avalon, France

Died: Movember 16, 1200, London,
Inited Kingdom

Feast: 16 Movember (R.C.C.); 17
Movember (Anglican)

Major shrine: Lincoln Cathedral
Attributes: a white swan

Patronage: sick children, sick people,
shoemakers and swans
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National Science & Tech Council %ase Lab

Open Knowledge Network

https://Iwww.nitrd.qgov/nitrdgroups/index.php?title=Open Knowledge Network

Report, November 2018:

Conclusion

Artificial intelligence, machine learning, natural language technologies, and robotics are all driving
innovation in information systems. Developing the knowledge bases, graphs, and networks that lie at
the heart of these systems is expensive and tends to be domain specific, and the largest currently are
focused on consumer products (e.g., for web search, advertising placement, and question answering).
An open and broad community effort to develop a national-scale data infrastructure—an Open
Knowledge Metwork—would distribute the development expense, be accessible to a broad group of
stakeholders, and be domain-agnostic. This infrastructure has the potential to drive innovation across
medicine, science, engineering, and finance, and achieve a new round of explosive scientific and
economic growth not seen since the adoption of the Internet.
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The current hype %aSe Lab

 Often, a hype is created because something new has been
established.

* Inthis case, the hype is often over before the technology has
really matured to the level of application development.

« The current knowledge graph hype is different. Because there
was already a pre-maturity hype 15 years ago, under a different
name ...
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PN o I
Schema.or ¢ ..
" hd = EducationalCrganization
= CollegadrUniversity

« Collaboratively launched in 2011 by Google, | B
Microsoft, Yahoo, Yandex. - oGz
2011: 297 classes, 187 relations

2015: 638 classes, 965 relations

« Simple schema, request to web site providers to
annotate their content with schema.org markup.
Promise: They will make better searches based _
on this. =

« 2015: 31.3% of Web pages have schema.org s
markup, on average 26 assertions per page.

=  Entertainment
= AdultEntert

Ramanathan V. Guha, Dan Brickley, Steve Macbeth:
Schema.org: Evolution of Structured Data on the
Web. ACM Queue 13(9): 10 (2015)
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‘IIHI‘I“ Main Page Discussion

WIKIDATA

Main page
Community partal
Project chat
Create a new item
Recent changes
Random item
Query Senvice
Mearby

Help

Donate

Print/export

Create a book
Download as POF
Printable version

In other projects

Wikimedia Commons
MediaWViki
Meta-Wiki
Wikispecies
Wikibooks
Wikinews
Wikipedia
Wikiquote
Wikizource
Wikiversity
Wikivoyage
Wiktionary

Tools

What links here
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Read View source View history |Search Wikidata (o]

collaborative

Welcome to Wikidata 7

the free knowledge base with 29,012, 184 data items that anyone can edit

multilingua Introduction « Project Chat » Community Portal = Help

///

vy AN

i welcome! Ml Learn about data

Wikidata is a free and open knowledge base that can be
read and edited by both humans and machines.

Wikidata acts as central storage for the structured data
of its Wikimedia sister projects including Wikipedia,
Wikivoyage, Wikisource, and others.

Wikidata also provides support to many other sites and
services beyond just Wikimedia projects! The content of
Wikidata is available under a free licensed , exported
using standard formats, and can be interlinked to other
open data sets on the linked data web.

MNew to the wonderful world of data? Develop and improve
your data literacy through content designed to get you up
to speed and feeling comfortable with the fundamentals in
no time.




Linked Data “baSe Lab

A bit older but somewhat more expressive: Linked Data on the Web

Number of Datasets 2017-01-26 1,146
In the connected 2014-08-30 570
“LOD Cloud” 2011-09-19 295

2010-09-22 203
2009-07-14 95
2008-09-18 45
2007-10-08 25
2007-05-01

IEIBEEIEEBIBII triples and counting?

LOD Laundromat
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Linked Data: Volume %ase Lab

Geoindexed Linked Data — courtesy of Krzysztof Janowicz, 2012
http://stko.geog.ucsb.edu/location_linked data




A bit of history

Before the current hype (stimulated by Google),
knowledge graphs

« have been a core artefact of study and deployment since 2007,
as part of the maturing “Semantic Web Technologies” field.

 have been based on maturing methods and tools around the use
of ontologies in the Semantic Web field, since at least 2001.

e have even older roots in

— Artificial Intelligence, in particular related to knowledge
representation and logical (deductive) reasoning

— the study of terminologies (and ontologies) pre-dating the
Semantic Web (and Computer Science) era
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What makes a good knowledge graph?
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Principles

Goal: Easy sharing, discovery, integration, reuse
Key aspects of knowledge graphs:

e Syntax

« Semantics
 Graph structure
« Tools

Standards for syntax and semantics have been in place since at
least 2004, developed by the World Wide Web Consortium (W3C).

January 2019 — Kansas State University — Pascal Hitzler 17



Graph Structure %aSQ Lab

« A schemafor aknowledge graph is actually also a knowledge
graph, just using more abstract terms, like

— Classes (or types) of things
(like, Person, or Material, or Role)

— Possible relationships between things
(like, persons may have daughters)

— Complex relationship assertions
(like, every cube has 6 sides which are squares).

A quality schema (or ontology) serves as an intermediary
between data/graph structure and human conceptualization.

A gquality schema simplifies understanding and reuseability of
the knowledge graph.
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Ontology and Knowledge Graph %
9y ge brap aSe Lab
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Schema as a knowledge graph ﬁ aSe Lab
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M | ‘tb
odular Ontology Architecture aSe Lab

 Ontology Design Pattern: A reusable ontology-piece
constituting a high-quality, highly reuseable model for a
commonly recurring notion.
E.g., “Trajectory”, “Activity”, “Role (of an Agent)”, etc.

 Use of well-constructed patterns minimizes risk of “naive”
modeling mistakes, thus increases reusability and repurposing
of the ontology.

 Such ontologies are naturally made up of conceptual “modules”
—these make understanding and maintenance of the ontology
considerably easier.
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Schema as a knowledge graph ﬁ aSe Lab
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Research Direction %ase |_ab

 High-Quality Ontology Engineering process well understood
by some experts.

o But thisis “soft” knowledge. Some missing pieces:
— Systematic exploration and evaluation of the methodology

— Providing a powerful tool landscape supporting the
methodology — plus evaluations of their effectiveness.

— Writing it up in tutorials and textbooks, and disseminate.

« Our methods development was supported primarily through two
NSF GEO projects. Currently, it is supported through a $1.8M
AFOSR project on cognitive agents.

 Goal: Practical methods and tools for high-quality knowledge
graph schema development.
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Promise

« Data Management (DM) is central for cost-effective / efficient
data-intensive solutions, for many application areas and
scenarios.

« DM easily takes 80% of the time when data analytics is done.

« Knowledge Graphs are quickly becoming a central DM tool in
industry and academia.

« Our methods target lowering the cost of Data Management with
Knowledge Graphs.

 |can contribute to large methods- or application-oriented
projects which have Data Management components.

« Thereis also high potential for a company spin-off.
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Studies on the Semantic Web Studies on the Semantic Web

Karl Hammar, Pascal Hitzler, Adila Krisnadhi,
Agnieszka tawrynowicz, Andrea Giovanni Nuzzolese,
Monika Solanki (Editors)

Ontology Engineering with
Ontology Design Patterns
Advances in Ontology Design

Foundations and Applications
and Patterns

Pascal Hitzler, Aldo Gangemi,
Krzysztof Janowicz, Adila Krisnadhi,
Valentina Presutti (Eds.)

I0S
,!9555 published 2016 AKA Press published 2017 i\




Other Aspects

Other Aspects of Knowledge Graph management we are (or have
recently been) investigating:

« Data/schema merging and integration
« Formal logic as schema representation language
 Deductive (logical) reasoning as KG engineering tool

o Efficient algorithms for deductive reasoning, including cloud-
based

« KG compression
 Other aspects of KG quality
« Benchmark generation for different KG tools

January 2019 — Kansas State University — Pascal Hitzler 27



Target funding agencies %ase Lab

« NSF for core new methods projects

* Intelligence/Defense for application-oriented projects with data
management component, where effort can be used to improve
and evaluate existing methods and tools. E.g. DARPA
“Knowledge-directed Artificial Intelligence Reasoning Over
Schemas (KAIROS)” — proposer’s day is today (Jan 9, 2018).

 NIH similar, but haven’t tapped into this yet.

 Potential sources also on application domains such as smart
cities, data privacy and security, library science, human
performance improvements, etc. E.g. we're part of a $1.8M
Mellon Foundation project on the history of the slave trade.

| keep watching the Open Knowledge Network initiative.
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Deep Learning
and Knowledge Graphs

— selected efforts in Neural-Symbolic Integration

¢
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Some Background %aSe Lab

Workshop Series on Neural-Symbolic Learning and Reasoning
Since 2005.
http://neural-symbolic.org/

Studies in Computational Intelligence 77

Perspectives on Neural-Symbolic Integration
. B. Hammer - P. Hitzler
Barbara Hammer and Pascal Hitzler (eds) (Eds)

Springer, 2007 .
Perspectives of

Neural-Symbolic
A Survey and Interpretation Integration

Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, Howard Bowman,
Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb,
Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas,
Hoifung Poon, Gerson Zaverucha

Neural-Symbolic Learning and Reasoning:

https://arxiv.org/abs/1711.03902 (2017)

&) Springer
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Neural-Symbolic %aSe Lab

Computer Science perspective:

 Connectionist machine learning systems are
— very powerful for some machine learning problems
— robust to data noise
— very hard to understand or explain
— really poor at symbol manipulation
— unclear how to effectively use background (domain) knowledge
« Symbolic systems are
— Usually rather poor regarding machine learning problems
— Intolerant to data noise
— Relatively easy to analyse and understand
— Really good at symbol manipulation
Designed to work with other (background) knowledge
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Neural-Symbolic %aSe Lab

Computer Science perspective:

« Let'stryto getthe best of both worlds:
— very powerful machine learning paradigm
— robust to data noise
— easy to understand and assess by humans
— good at symbol manipulation
— work seamlessly with background (domain) knowledge

« How to do that?
— Endow connectionist systems with symbolic components?
— Add connectionist learning to symbolic reasoners?

January 2019 — Kansas State University — Pascal Hitzler 32



The Interface Issue %ase Lab

« Symbolic knowledge comes as logical theories (sets of
formulas over alogic)

« Subsymbolic systems process tuples of real/float numbers
(vectors, matrices, tensors)

e How do you interface?

e How do you map between the symbolic world and the
subsymbolic world?

Some key problems that need to be overcome:

 Logic is full of highly structured objects, how to represent them
In Real Space?

« How to represent variable bindings in a distributed setting?

« Therequired length of logical deduction chain is not known up
front.

January 2019 — Kansas State University — Pascal Hitzler 33



RDFS Deductive Reasoning via Deep
Memory Networks

¢
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RDF reasoning %ase Lab

 [Note: RDF is one of the simplest useful knowledge
representation languages beyond propositional logic.]

« Think knowledge graph.
« Think node-edge-node triples such as

BarackObama rdf:type President
BarackObama husbandOf MichelleObama
President rdfs:subClassOf Human

husbandOf rdfs:subPropertyOf  spouseOf

« Then thereis a (fixed, small) set of inference rules, such as
rdf:type(x,y) AND rdfs:subClassOf(y,z)THEN rdf:type(x,z)
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Representation

« Goalisto be ableto reason over unseen knowledge graphs.
l.e. the out-of-vocabulary problem needs addressing.

 Normalization of vocabulary (i.e., it becomes shared
vocabulary across all input knowledge graphs.

« Onevocabulary item becomes a one-hot vector
(dimension d, number of normalized vocabulary terms)

* Onetriple becomes a 3 x d matrix.

« The knowledge graph becomes an n x 3 x d tensor.
(n is the number of knowledge graph triples)

« Knowledge graph is stored in “memory.”
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Mechanics

e An attention mechanism retrieves momory slots useful for
finding the correct answer to a query.

« These are combined with the query and run through a (learned)
matrix to retrieve a new (processed) query.

 This is repeated (in our experiment with 10 “hops”).
 The final out put is a yes/no answer to the query.
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Experiments: Performance

. . Hase Inferred Invalid
Test Dataset RO - opaes T #Em0 [ %Css | %lndv [ %R | %Axiom. | #Facs | #EaL | %Class | %Indv | %R | %Axiom | #Facts
OWL-Centric 2464 006 R37 14 19 3 ] 494 832 El .01 1 20 Ly
Linked Data 20577 | 909 TRT 3 27 5 ] 174 TET 3 D.0e 1 B 124
OWL-Centric Test Set | 21 622 400 36 41 3 0 837 400 36 3 1 12 476
Synthetic Data 2 152 506 52 0 i ] 126356 506 52 ] 1 0.07 TO0
Table 2: Statistics of various datasets used in experiments
Baseline: non-normalized embeddings, same architecture
Training Dataset Test Dataset Walid Triples Class Invalid Triples Class Accuracy
i Precision REW"- F-measure | Precision RE'T‘E}“- F-measure )
’ {Sensitivity ' ' {Specificity :
OWL-Centric Dataset Linked Data U3 Us U Ua 43 U5 U6
OWL-Centric Dataset (905) | OWL-Centric Dataset (10%) | 88 o1 B9 o0 Ba 59 )
OWL-Centric Dataset OWL-Centric Test Set P 79 &2 68 70 e 16 69
OWL-Centric Dataset Synthetic Data 65 49 40 32 34 42 52
OWL-Centric Dataset Linked Data * 54 04 70 01 16 27 836
OWL-Centric Dataset ® Linked Data * 62 T2 67 &7 56 61 01
OWL-Centric Dataset(90%) | OWL-Centric Dataset{ 105 ) *( 79 T2 T3 74 B1 T 80
OWL-Centric Dataset OWL-Centric Test Set 2P 58 68 62 62 50 54 58
OWL-Centric Dataset ® OWL-Centric Test Set 2P 17 57 65 66 B2 13 73
OWL-Centric Dataset Synthetic Data * 70 51 40 47 52 38 51
OWL-Centric Dataset ® Synthetic Data ® 67 3 25 52 &0 62 50
Baseline
OWL-Centric Dataset Linked Data 13 ] 83 04 46 61 43
OWL-Centric Dataset (909 ) | OWL-Centric Dataset (10%) | 84 83 B4 84 e B 82
OWL-Centric Dataset OWL-Centric Test Set ® 62 84 70 80 40 48 &l
OWL-Centric Dataset Synthetic Data 35 41 32 48 35 45 48

® More Tricky Mos & Balanced Dataset
® Completely Different Domain.

Table 3: Experimental results of proposed model



Experiments: Reasoning Depth %ase Lab

Hop O Hop 1 Hop 2 Hop 3 Hop 4 Hop 3 Hop 6 Hop T HopE Hop 9 Hop 10
I PFTRETFIFITETF [FTE F FPTRETE FTRTF FTETF IFTETF[FTEJF [FTETF [FTETE
INENEIEEE R EEERES e - - - - - - - - - - - - - - - - - - - -
0O | &2 [01 | 36 | 89 |98 93 |79 | 100 | 88
l._:l ] ]
T

Test Datset 1
Linked [ata® 1] {
Linked Data® 2 0
OWL-Cenine™[ 19 [ 3
Synthetic 2] 4

* LemonUby Ontology
" Agrovoc Oniology
£ Compleiely Dhifferent Domaim

I O B T T B D B O e R T

Table 4: Experimental results over each reasoning hop

Dataset Hopl | Hop2 | Hop3 | Hop4 | Hop5 | Hop6 | Hop7 Hop 8 Hop 9 Hop 10
OWL-Centric* | 8% 67% 24% 0.01% | 0% 0% 0% 0% 0% 0%
Linked Data” 31% 50% 19%% 0% 0% 0% 0% 0% 0% 0%
Linked Data® 34% 46% 20% 0% 0% 0% 0% 0% 0% 0%
OWL-Centric® | 5% 64% 30% 1% 0% 0% 0% 0% 0% 0%
Synthetic Data | 0.03% | 1.42% | 1% 1.56% | 3.09% | 6.03% | 11.46% | 20.48% | 31.25% | 23.65%

* Training Set

" LemonUby Ontology

“ Agrovoc Ontology

4 Completely Different Domain

Table 5: Data distribution per knowledge graph over each reasoning hop

Training time: just over a full day
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Next steps

« More complex logics (we're optimistic that methods carry over at
least to some proper description logics).

 Applications to commonsense (natural language) reasoning.
* Investigating reasoning robustness and efficiency.

« We have confirmed industry interest already.
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Explaining Deep Learning via Symbolic
Background Knowledge

¢
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Explainable Al

 Explain behavior of trained (deep) NNs.

e J|dea;

— Use background knowledge in the form of linked data
and ontologies to help explain.

— Link inputs and outputs to background knowledge.

— Use a symbolic learning system (e.g., DL-Learner) to
generate an explanatory theory.

 We’'re just starting on this, | report on first experiments.
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Explainable Al

Knowledge Base

TBox (KB Schema)
Man = Human N Male

Father = Man M JhasChild.Human

(uonesiyisse)d)
indino yJomisp

ABox (Instances)
David : Father

B —
-—
_
ff—
-—

(David, Susan) : hasChild DL-Learner| --~
1~ Explanation
— Positive and negative
examples T
Using SUMO Testing on ADE20k image dataset / scene recognition.

Workshop paper at NeSy’2017 with preliminary results.

January 2019 — Kansas State University — Pascal Hitzler 44



Positive:

e L

] e e
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N

%dase Lab

http://groups.csail.mit.edu/vision/datasets/ADE20K/

Come from the MIT ADE20k dataset

They come with annotations of objects in the picture:

001 # O # 0 # sky # sky # "

002 # 0 # 0 # road, route # road # """

005 # 0 # 0 # sidewalk, pavement # sidewalk # """
006 # O # 0 # buirlding, edifice # building # ""
007 # 0 # 0 # truck, motortruck # truck # "

008 # 0 # 0 # hovel, hut, hutch, shack, shanty # hut # """
009 # 0 # 0 # pallet # pallet # ""

011 # O # O # box # boxes # "

001 # 1 # 0 # door # door # "'

002 # 1 # 0 # window # window # """

009 # 1 # 0 # wheel # wheel # """
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http://groups.csail.mit.edu/vision/datasets/ADE20K/

Mapping to SUMO ‘§ba5e Lab

Simple approach: for each known object in image, create an
individual for the ontology which is in the appropriate SUMO
class:

contains roadl
contains window1
contains doorl
contains wheell
contains sidewalk1
contains truckl
contains box1
contains buildingl
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 Suggested Merged Upper Ontology
http://www.adampease.org/OP/

e Approx. 25,000 common terms
covering awide range of domains

 Centrally, arelatively naive class hierarchy.

 Objects in image annotations became individuals (constants),
which were then typed using SUMO classes.

January 2019 — Kansas State University — Pascal Hitzler 48


http://www.adampease.org/OP/

DL-Learner input %ase Lab

Positive:

imgl: road, window, door, wheel, sidewalk, truck,
box, building

Img2:. tree, road, window, timber, building, lumber

Img3: hand, sidewalk, clock, steps, door, face, building,
window, road

Negative:
iImg4: shelf, ceiling, floor
Img5: Dbox, floor, wall, ceiling, product
Img6: ceiling, wall, shelf, floor, product

DL-Learner results include: Jcontains. Transitway

Jdcontains.LandArea
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Proof of Concept Experiment

aSe Lab

Positive: Negative:

Jcontains. Transitway

Jcontains.LandArea

D19 — Kansas State University — Pascal Hitzler




N

Experiment 2 %aSe Lab

Positive (selection): Negative (selection):

decontains.(DurableGood M —Forest Product)
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Experiment 4 aSe Lab

Positive (selection): Negative (selection):

Jcontains.Sentient Agent

January 2019 — Kansas State University — Pascal Hitzler 52



®»

Experiment 5 %aSe Lab

Positive: B Negative (selection):

T

Jcontains. BodyOfWater
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DL-Learner efficiency problem %ase Lab

e DL-Learner was too slow —we needed several hours for each
computation, and couldn’t explore and/or scale up.

« We thus implemented our own system, ECII (Efficient Concept
Induction from Instances) which trades some correctness for
speed. [Sarker, Hitzler, AAAI-19, to appear]

Experiment Name Mumber of Funtime (s&c) Accuracy (os) ACCUTACY o

B i Logical Axioms DLE | DL FEICCDP| DL FICZFE | ECINDEY| BECHKCT| DL® | ECIIDF| DL FICOHP DL FIC2)F | ECIDF?| ECH KCT®

Yimyang_examples 157 0.065 0.013] 0.019 0.089 0.143 KLY 0610 KT [ 0799 KLLY

Trains Z73 0.01 0.020 0.047 0.05 0.055 KLY [ [T [T [N TN

Forie 341 25 [.169 6145 0.95 0.33] 0.965 0642 0.875 (0.875 0733 1 .(HK]

Pokear 1,368 0.066 0.714 0.817 I 0.28] .00 1000 0981 0,984 1.000 1.0

Moral Reasoner 4 666 0.1 3.106 4.154 547 6.873 KLY 0785 [NIICH) [KIICT) 1. (WD | .(HK]

ADE20k 1 4,714 sy 4.268 31.887 1.266 23775 0.926 0416 0,263 0814 0.744 1.0

ADE20k 11 7.300 PEETEL 16.187 307 .65 0.8 293, 44 K] 0673 0413 0413 0846 0,900

ADEIDE TIT 17 193 4 500 13.203 2R3ITT 51 T3R8 037 0937 0375 0375 0.5930 0937

ADEZOE IV 47 468 45008 93.658 523673 116 423349 | D375 MNA 0,608 0,608 0,660 0.608

*DL DL-lLearner

b DL FIC (1) : DL-Learner fast instance check with runtime capped at execution time of ECII DF

® DL FIC (2} : DL-Leamer fast instance check with runtime capped at execution time of ECII KCT
4 ECI DF : ECIT default Pirameaters

= ECII KCT : ECII keep common types and other default parameiers

T Runtimes for DL-Leamer were capped at 600 seconds.

£ Runtimes for [DL-Leamer were capped at £.500 seconds.

SC
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ECII vs. DL-Learner

1000

100

1ol

Moral ADE20k | ADE20k ADE20k ADE20k

Yinyang Trains Forte Poker

Etime DL-Learner Otime EC

Figure I: Runtime comparison between DL-Learner and
ECII. The vertical scale 1s logarithmic in hundredths of sec-
onds, and note that DL-Learner runtime has been capped at
4.500 seconds for ADE20k III and IV. For ADE20k I it was

capped at each run at 600 seconds.
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L
s -
05
0.1
b Yinyang Trains  Forte Poker Maoral ADE20k IADE20k | ADE20k ADE20k
W accuracy DL-Learner O accuracy EC

Figure 2: Accuracy (as) comparison between DL-Learner
and ECII. For ADE20k IV it was not possible to compute an
accuracy score within 3 hours for ECII as the input ontology
was too large.
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We’'re just now starting to run full-scale experiments with ECIl in
the described setting.

(The main PhD student on this topic just departed on an
Internship to Intel.)
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Uniqueness of approach %ase Lab

« To the best of our knowledge, nobody else is pursuing
explainable deep learning though background knowledge.

e To the best of our knowledge, nobody funded under the DARPA
XAl program is pursuing explainable deep learning through
background knowledge.
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Other Aspects

Other Aspects of Deep Learning we are investigating include:

 Deep Learning methods for data integration
 Deep Learning for text analysis

 Deep Learning algorithms to support KG engineering tools (e.g.,
graph completion)

 Explaining other statistical approaches (not only deep learning)
by transferring our methods.
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Target funding agencies %ase Lab

NSF for core new methods projects

* Intelligence/Defense for application-oriented projects regarding
the use of explainable deep learning.

 NIH similar, but haven’t tapped into this yet. We just started a
collaboration with IBM TJ Watson on applying our method to
drug-drug-interaction and are in talks with Bosch to receive
direct industry funding.

 Potential sources also on any current or emerging application
domain of deep learning, including security, social media
analysis, intelligence analysis, etc.
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Summary

« My work has many facets.
« My work is in synch with several current trends, including
— Knowledge Graphs
— Deep Learning
— Big Data
— Data Science

« Covering methods/foundations and applications; and the
transfer between them.

 Broad options for obtaining research funding.

 Easier because of already significant visibility and standing.
Since | became a US citizen (summer 2017) | also made
significant inroads for defense funding, in particular establishing
a network of contacts.
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Thanks!
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