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Some Background

Workshop Series on Neural-Symbolic Learning and Reasoning
Since 2005.
http://neural-symbolic.org/

Perspectives on Neural-Symbolic Integration
Barbara Hammer and Pascal Hitzler (eds)
Springer, 2007

Neural-Symbolic Learning and Reasoning: 
A Survey and Interpretation 
Tarek R. Besold, Artur d'Avila Garcez, Sebastian Bader, Howard Bowman, 
Pedro Domingos, Pascal Hitzler, Kai-Uwe Kuehnberger, Luis C. Lamb, 
Daniel Lowd, Priscila Machado Vieira Lima, Leo de Penning, Gadi Pinkas, 
Hoifung Poon, Gerson Zaverucha

https://arxiv.org/abs/1711.03902 (2017)

http://neural-symbolic.org/
https://arxiv.org/abs/1711.03902
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Neural-Symbolic?
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Neural

• Refers to computational abstractions of (natural) neural 
network systems.

• Prominently includes Artificial Neural Networks and Deep 
Learning as machine learning paradigms.

• More generally sometimes referred to as connectionist systems.

• Prominent applications come from the machine learning world.

• And of course, there is the current deep learning hype.
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Symbolic

• Refers to (computational) symbol manipulations of all kind.

• Graphs and trees, traversal, data structure operations.
• Knowledge representation in explicit symbolic form (data base, 

ontology, knowledge graph)
• Inductive and statistical inference.
• Formal logical (deductive or abductive) reasoning.

• Prominent applications all over computer science, including 
expert systems (and their modern versions), information 
systems, data management, added value of data annotation, etc.

• Semantic Web data is inherently symbolic.
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Neural-Symbolic

Computer Science perspective:

• Connectionist machine learning systems are
– very powerful for some machine learning problems
– robust to data noise
– very hard to understand or explain
– really poor at symbol manipulation
– unclear how to effectively use background (domain) knowledge

• Symbolic systems are
– Usually rather poor regarding machine learning problems
– Intolerant to data noise
– Relatively easy to understand and assess by a human
– Really good at symbol manipulation
– Designed to work with other (background) knowledge 
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Neural-Symbolic

Computer Science perspective:

• Let’s try to get the best of both worlds:
– very powerful machine learning paradigm
– robust to data noise
– easy to understand and assess by humans
– good at symbol manipulation
– work seamlessly with background (domain) knowledge

• How to do that?
– Endow connectionist systems with symbolic components?
– Add connectionist learning to symbolic reasoners?
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Neural-Symbolic

Natural starting points:

• Try to use Deep Learning to solve some inherently symbolic tasks, 
such as
– Data structure manipulation (list concatenation, graph 

restructuring)
– Deductive reasoning (e.g., RDF completion or OWL reasoning) 
– Arithmetic

• Use (connectionist) machine learning to acquire symbolic 
knowledge which is of high quality, e.g.
– High-quality ontologies
– High-quality populated knowledge graphs
– Knowledge bases fit for deductive reasoning
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Neural-Symbolic

Natural starting points:

• Use symbolic methods (from knowledge representation and 
reasoning in order to improve connectionist machine learning, e.g. 
by
– Developing deep learning methods which can systematically 

make use of background (domain) knowledge
– Explaining the decision making of deep learning systems by 

means of background (domain) knowledge.
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Neural-Symbolic

Cognitive Science perspective:

• Connectionist machine learning is based on an abstraction of 
(natural) neural systems.

• Symbolic systems are an abstraction of how we perceive (part of) 
our own thinking and reasoning.

• Hence it should be possible to bring these two abstractions 
together, in the sense that we can do symbol manipulation and 
learning through a physiologically feasible connectionist system.

• However, we currently really have no clue how to do this.
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Neural-Symbolic

Note:

• Deep Learning systems are a far cry from how natural neural 
networks work.

• There are things that our brain can do, and things that symbolic 
approaches can do, where we do not have the faintest idea how to 
solve them through deep learning (or any other connectionist 
learning approach). 

• The argument that we “just don’t have enough training data” 
speaks (understandably) to the current hype, but is a hope that is 
unfounded: While this may be the case in some cases, there is no 
rationale to overgeneralize. 
[Note: if we had “enough computational power,” we could also 
solve all reasonable-size NP-complete problems in an instant.]
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McCulloch & Pitts, 1943
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McCulloch & Pitts follow-on
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McCulloch & Pitts follow-on
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McCulloch & Pitts follow-on
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McCulloch & Pitts follow-on
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The catch

• This is all propositional.

• There’s only that much you can do with propositional logic.

• In particular, in terms of knowledge representation and 
reasoning, propositional logic doesn’t really get you anything 
useful.

• RDF is already much closer to datalog than to propositional 
logic.

• OWL is a fragment of first-order predicate logic.
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Propositional Fixation
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The propositional fixation

• McCarthy talked about the “propositional fixation” of artificial 
neural networks.

• Problems to solve in order to overcome propositional fixation:

– The variable binding problem.

– The computational depth problem.
[this is my term, I don’t know a better one]
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Propositional fixation

(define (merge l1 l2)
(if (null? l1) l2

(if (null? l2) l1
(cons (car l1) (cons (car l2) (merge (cdr l1) (cdr l2)))))))

l1 and l2 are variables. 
They are actually structured variables (lists). 
And you don’t know their lengths. They can be as long as you want.

How do you train a deep learning system to solve this?
• How do you represent the data?
• How do you deal with the unknown lengths?
• How do you deal with the unknown number of “computational 

steps” needed?



June 2018 – DL4KGS workshop @ ESWC 2018 – Pascal Hitzler 22

Propositional fixation

(define (merge l1 l2)
(if (null? l1) l2

(if (null? l2) l1
(cons (car l1) (cons (car l2) (merge (cdr l1) (cdr l2)))))))

If you restrict to specific lists, or to specific list entries, or to limited 
length lists, then you’re essentially propositional.

I.e. you do not solve the general problem.
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Propositional fixation

Problems: • It’s still essentially datalog.
• It doesn’t really learn.
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Propositional fixation
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Propositional fixation

Architecture is mix of radial basis
function network and neural gas
approach.
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Propositional fixation

But it works only for toy size problems.
The theoretically required embedding into real numbers cannot scale. 
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RDF reasoning

• Essentially, RDF reasoning is Datalog reasoning restricted to:
– Unary and binary predicates only.
– A fixed set of rules that are not facts.

• You can try the following:
– Use a vector embedding for one RDF graph.
– Create all logical consequences.
– Throw n% of them away.
– Use the rest to 

train a DL system.
– Check how many 

of those you 
threw away can 
be recovered this
way.

Semantic Web journal under “major revision”



June 2018 – DL4KGS workshop @ ESWC 2018 – Pascal Hitzler 28

RDF reasoning

• The problem with the approach just described:
– It works only with that graph.

• What you’d really like to do is:
– Train a deep learning system so that you can present a new, 

unseen graph to it, and it can correctly derive the deductively 
inferred triples. 

• Note: 
– You don’t know the IRIs in the graph up front. The only 

overlap may or may not be the IRIs in the rdf/s namespace.
– You don’t know up front how “deep” the reasoning needs to 

be.
– There is no lack of training data, it can be auto-generated.
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RDF reasoning

• We are currently looking at RDF completion with transfer to 
unseen RDF graphs.

• We are exploring to what extent we can apply End-to-End 
Memory Networks, which have been used in [Sukhbaatar, 
Sainbayar, Jason Weston, and Rob Fergus, NIPS 2015] for some 
simple NLP reasoning.

• So far it’s not going well, but we’re not giving up hope yet.

• [Note: RDF is one of the simplest useful knowledge 
representation languages beyond propositional logic.] 
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KG4DL?; DL4KG?
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SemWeb 4 DL

I believe standard Semantic Web solutions have already much to 
offer for deep learning:

• Classification and organization of DL work and tools. 
• Discovery of DL publications (which are often “grey”).
• Data curation and reuse for DL training.

• Background knowledge for explanation and analysis of trained 
DL systems.
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Explainable AI

• Explain behavior of trained (deep) NNs.

• Idea: 
– Use background knowledge in the form of linked data 

and ontologies to help explain.
– Link inputs and outputs to background knowledge.
– Use a symbolic learning system (e.g., DL-Learner) to 

generate an explanatory theory.

• We’re just starting on this, I report on very first experiments.
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Explainable AI

Workshop paper at NeSy’2017 with preliminary results.

Using SUMO Testing on ADE20k image dataset / scene recognition.
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Explainable AI

Positive (selection): Negative (selection):
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DL 4 SemWeb

Research into
• Applicability of DL methods to SemWeb problems.
• Modification of DL methods so that they fit SemWeb problems.

E.g.
• All the stuff you can do or cannot do with vector embeddings. 

[So far, they haven’t really helped us with ontology alignment.]
• Classification/categorization of various things.
• Knowledge graph completion (statistical inference, not logical 

deduction) – quite interesting since it seems to call for 
background knowledge.

• We’re looking, e.g., into combining DL and active learning for 
named entity recognition.
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Hypewatch

Yes it’s a hype. That’s fine. Just keep in mind that hypes go away.

The fundamental questions on integrating symbolic and neural 
approaches are deep, and will not be solved by the time the current 
hype is over.

It’s a good career choice to jump on the current train and look for 
the low-hanging fruits which can be plucked by adjusting the 
existing models. It’s very likely that the DL hype will still be strong 
enough in a few years. 

But no, I don’t think that deep learning brought us fundamentally 
closer to solving the General AI problem.
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Thanks!
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