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British Prime Minister

tmay.co.uk

Theresa Mary May is a British politician
who has served as Prime Minister of the
LUnited Kingdom and Leader of the
Consenvative Party since July 2016, the
second woman to hold both positions.
Wikipedia

Born: October 1, 1956 (age 60),
Eastbourne, United Kingdom
Height: 5" 8"

Party: Conservative Party
Spouse: Philip May (m. 1280)

Education: St Hugh's College, Oxford
(1974-1977)

Previous offices: Home Secretary
(2010-2016), MORE ~
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StHugh's College is one of the
constituent colleges of the University of
Cheford. Itis located on a 14.5-acre site
an 5t Margaret's Road, to the north ofthe
city centre. Wikipedia

Address: St Margaret's Rd, Oxford QX2
GLE, UK

Principal: Elish Angiolini
Phone: +44 1365 274900
Founder: Elizabeth Wordswaorth
Founded: 1386

Hamed for: Hugh of Lincoln
Undergraduates: 432 (2011-2012)
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Hugh of Lincoln, also known as Hugh of
Awalon, was a French noble, Benedictine
and Carthusian monk, bishop of Lincoln
in the Kingdom of England, and Catholic
saint. Wikipedia

Born: 1140, Avalon, France

Died: Movember 16, 1200, London,
Lnited Kingdom

Feast: 16 Movember (R.C.C.); 17
Movember (Anglican)

Major shrine: Lincoln Cathedral
Attributes; a white swan

Patronage: sick children, sick people,
shoemakers and swans
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Schema.or ¢ ik
" hd = EducationalCrganization
= CallegadrUniversity

e Collaboratively launched in 2011 by Google, =
Microsoft, Yahoo, Yandex. + GommenCrganizsin
2011: 297 classes, 187 relations

2015: 638 classes, 965 relations

« Simple schema, request to web site providers to
annotate their content with schema.org markup.
Promise: They will make better searches based _
on this. s

e 2015: 31.3% of Web pages have schema.org L
markup, on average 26 assertions per page.

= Entertainment
= AdultEntert

Ramanathan V. Guha, Dan Brickley, Steve Macbeth:
Schema.org: Evolution of Structured Data on the
Web. ACM Queue 13(9): 10 (2015)
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Welcome to Wikidata 7

the free knowledge base with 29,012, 184 data items that anyone can edit

multilingua Introduction « Project Chat » Community Portal = Help

///
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i welcome! Ml Learn about data

Wikidata is a free and open knowledge base that can be
read and edited by both humans and machines.

Wikidata acts as central storage for the structured data
of its Wikimedia sister projects including Wikipedia,
Wikivoyage, Wikisource, and others.

Wikidata also provides support to many other sites and
services beyond just Wikimedia projects! The content of
Wikidata is available under a free licensed , exported
using standard formats, and can be interlinked to other
open data sets on the linked data web.

MNew to the wonderful world of data? Develop and improve
your data literacy through content designed to get you up
to speed and feeling comfortable with the fundamentals in
no time.




Linked Data “baSe Lab

A bit older but somewhat more expressive: Linked Data on the W@

Number of Datasets 2017-01-26 1,146

2014-08-30 570
2011-09-19 295
2010-09-22 203
2009-07-14 95
2008-09-18 45
2007-10-08 25
2007-05-01

IEIBEEIEEBIBII triples and counting?

LOD Laundromat




DL Extraction from ANNSs %
aSe Lab

 Explain input-output behavior of trained (deep) NNSs. @

e J|dea:

— Use background knowledge in the form of linked data
and ontologies to help explain.

— Link inputs and outputs to background knowledge.

— Use a symbolic learning system (e.g., DL-Learner) to
generate an explanatory theory.

« We’'re just starting on this, | report on very first experiments.
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DL Extraction from ANNSs

Connectionist System
Knowledge Base W— —
L
TBox (KB Schema) s ) :ﬂﬂh g
=l
0
Man = Human 1 Male - —— > | = E
Father = Man M JhasChild.Human < S
-
— —_—
ABox (Instances)
David : Father _ - .4
(David, Susan) : hasChild DL-Learner L .
1 Explanation
Vo Positive and negative
examples T
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DL-Learner

Approach similar to inductive logic programming, but using
Description Logics (the logic underlying OWL).

Positive examples: negative examples:
v LloH o HaHoooHB— « |aHBooHB
2 oL - 2 - e Mo B
. [ 3G o HHE— O I e | 8 12
i |Oallox]a Y L . N0l 0
s EHETHaT SI=I=10=T

Task: find a class description (logical formula) which separates
positive and negative examples.

WRIGHT STATE

August 2017 — IBM TJ Watson — Pascal Hitzler 8



DL-Learner %ase I.ab

Positive examples: negative examples: @
: - LaHEogHE
2 Eggge HE 2 e Ho -
. [ 3G o HHE— O I e | 8 12
L | o xla al TP . \ollo 0
.. [T a0 P o o | O
DL-Learner result: JdhasCar.(Closedmn Short)
In FOL.:

{z | Jy(hasCar(x,y) A Closed(y) A Short(y))}
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DL-Learner

DL-Learner uses

refinement operators _ - o WeCr
: ¢ L HeegHRN
to construct ever
better approximations = B~ -F— 2 [ H e Mo B
P = | gy as {F— . N\NoAlO 0
.. [0 HE=0] [ . Do HO
T
Train — covers all examples.
JhasCar. T

JhasCar.Closed — covers all positives, two negatives
JhasCar(Closed ' Short) — solution
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%dase Lab

Come from the MIT ADE20k dataset
http://groups.csail.mit.edu/vision/datasets/ADE20K/

They come with annotations of objects in the picture:

001
002
005
006
007
008
009
011
001
002
009

T OHHFHFHE R HEH HFHE
R PP OOOOOOODO
H O HFOHFOH T HHEHHE
©C O OO O O OO O O o o
T HHFHFHE R HH HFHE

(e L1
WRIGHT STATE
UNIVERSITY

sky # sky # """

road, route # road # """
sidewalk, pavement # sidewalk # "
burlding, edifice # building # """

truck, motortruck # truck # "

hovel, hut, hutch, shack, shanty # hut # "
pallet # pallet # ""
box # boxes # "'
door # door # ""
window # window # "
wheel # wheel # ™"
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http://groups.csail.mit.edu/vision/datasets/ADE20K/

Mapping to SUMO ‘§ba5e Lab

Simple approach: for each known object in image, create an
individual for the ontology which is in the appropriate SUMO
class:

contains roadl
contains windowl
contains doorl
contains wheell
contains sidewalk1
contains truckl
contains box1
contains buildingl

O |
WRGHTS TATE
UNIVERSITY
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 Suggested Merged Upper Ontology
http://www.adampease.org/OP/

 Approx. 25,000 common terms
covering a wide range of domains

 Centrally, arelatively naive class hierarchy.

 Objects in image annotations became individuals (constants),
which were then typed using SUMO classes.
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http://www.adampease.org/OP/

DL-Learner input Ctb
P aSe Lab
Positive:
Imgl: road, window, door, wheel, sidewalk, truck,

box, building
Img2: tree, road, window, timber, building, lumber

Img3: hand, sidewalk, clock, steps, door, face, building,
window, road

Negative:
iImg4. shelf, ceiling, floor
Img5: box, floor, wall, ceiling, product
Img6: ceiling, wall, shelf, floor, product

DL-Learner results include: Jcontains. Transitway

Jdcontains.LandArea

WRIGHT STATE
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Proof of Concept Experiment

Positive:

Jcontains. Transitway

Jcontains.LandArea
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First 10 DL-Learner responses 0&
P aSe Lab

dcontains. Window (1) Jecontains.LandTransitway  (6)
dJcontains. Transitway (2) dJcontains.LandArea (7)
dJecontains.SelfConnectedObject  (3) Jcontains.Building (8)
Jcontains.Roadway (4) Ycontains.—Floor (9)
dcontains.Road (5) Ycontains.—~Ceiling (10)
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Experiment 2 %aSe Lab

Positive (selection): Negative (selection):

TR L1 , Jdeontains.(DurableGood M —Forest Product)
WRIGHT STATE
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Experiment 3 ébaSe Lab

Positive: Negative:

P ]
- I |

Vcontains.(—Furniture M —IndustrialSupply)
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Experiment 4 aSe Lab

Positive (selection): Negative (selection):

——— 1
WRIGHT STATE
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Experiment 5 ‘%baSe Lab

Positive:

Jcontains. BodyOfWater

[ L1 A
WRIGHT STATE
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Next steps

%

« Utilize more sophisticated ontology.
o Utilize more sophisticated mappings.

 Explain hidden neurons.

e Tune DL-Learner better to the specific task.

WRIGHT STATE
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Explaining hidden neurons %ase Lab

Collaborators Derek Doran and Ning Xie (Web and Complex
Systems Lab)

They explore how to determine groups of hidden neurons which
often fire together and thus may indicate the “detection” of certain
features.

We plan to apply the above mentioned DL-Learner approach also to
these groups of hidden neurons, in order to determine which
features they detect.

WRIGHT STATE
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Thanks! %base Lab

Joint work with
Md Kamruzzaman Sarker, Derek Doran, Ning Xie, Mike Raymer

Il
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