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Schema.org

• Collaboratively launched in 2011 by Google, 
Microsoft, Yahoo, Yandex. 
2011: 297 classes, 187 relations
2015: 638 classes, 965 relations

• Simple schema, request to web site providers to
annotate their content with schema.org markup.
Promise: They will make better searches based
on this.

• 2015: 31.3% of Web pages have schema.org 
markup, on average 26 assertions per page.

Ramanathan V. Guha, Dan Brickley, Steve Macbeth:
Schema.org: Evolution of Structured Data on the 
Web. ACM Queue 13(9): 10 (2015)
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Linked Data

A bit older but somewhat more expressive: Linked Data on the Web

Number of Datasets 2017-01-26 1,146
2014-08-30 570
2011-09-19 295 
2010-09-22 203 
2009-07-14 95 
2008-09-18 45 
2007-10-08 25 
2007-05-01 12
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DL Extraction from ANNs

• Explain input-output behavior of trained (deep) NNs.

• Idea: 
– Use background knowledge in the form of linked data 

and ontologies to help explain.
– Link inputs and outputs to background knowledge.
– Use a symbolic learning system (e.g., DL-Learner) to 

generate an explanatory theory.

• We’re just starting on this, I report on very first experiments.
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DL Extraction from ANNs
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DL-Learner

Approach similar to inductive logic programming, but using 
Description Logics (the logic underlying OWL).

Positive examples:                               negative examples:

Task: find a class description (logical formula) which separates 
positive and negative examples.
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DL-Learner

Positive examples:                               negative examples:

DL-Learner result:

In FOL: 
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DL-Learner

DL-Learner uses
refinement operators
to construct ever 
better approximations 
of a solution.
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Proof of Concept Experiment

Positive: Negative:
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Images

Come from the MIT ADE20k dataset
http://groups.csail.mit.edu/vision/datasets/ADE20K/
They come with annotations of objects in the picture:

001 # 0 # 0 # sky # sky # ""
002 # 0 # 0 # road, route # road # ""
005 # 0 # 0 # sidewalk, pavement # sidewalk # ""
006 # 0 # 0 # building, edifice # building # ""
007 # 0 # 0 # truck, motortruck # truck # ""
008 # 0 # 0 # hovel, hut, hutch, shack, shanty # hut # ""
009 # 0 # 0 # pallet # pallet # ""
011 # 0 # 0 # box # boxes # ""
001 # 1 # 0 # door # door # ""
002 # 1 # 0 # window # window # ""
009 # 1 # 0 # wheel # wheel # ""

http://groups.csail.mit.edu/vision/datasets/ADE20K/
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Mapping to SUMO

Simple approach: for each known object in image, create an 
individual for the ontology which is in the appropriate SUMO 
class:

contains road1
contains window1
contains door1
contains wheel1
contains sidewalk1
contains truck1
contains box1
contains building1
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SUMO

• Suggested Merged Upper Ontology
http://www.adampease.org/OP/

• Approx. 25,000 common terms 
covering a wide range of domains

• Centrally, a relatively naïve class hierarchy.

• Objects in image annotations became individuals (constants), 
which were then typed using SUMO classes.

http://www.adampease.org/OP/
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DL-Learner input

Positive:
img1: road, window, door, wheel, sidewalk, truck, 

box, building
img2: tree, road, window, timber, building, lumber
img3: hand, sidewalk, clock, steps, door, face, building,

window, road
Negative:

img4: shelf, ceiling, floor
img5: box, floor, wall, ceiling, product
img6: ceiling, wall, shelf, floor, product

DL-Learner results include: 
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Proof of Concept Experiment

Positive: Negative:
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First 10 DL-Learner responses
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Experiment 2

Positive (selection): Negative (selection):
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Experiment 3

Positive: Negative:
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Experiment 4

Positive (selection): Negative (selection):
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Experiment 5

Positive: Negative (selection):
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Next steps

• Utilize more sophisticated ontology.
• Utilize more sophisticated mappings.

• Explain hidden neurons.

• Tune DL-Learner better to the specific task.
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Explaining hidden neurons

Collaborators Derek Doran and Ning Xie (Web and Complex 
Systems Lab)

They explore how to determine groups of hidden neurons which 
often fire together and thus may indicate the “detection” of certain 
features.

We plan to apply the above mentioned DL-Learner approach also to 
these groups of hidden neurons, in order to determine which 
features they detect. 
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Thanks!

Joint work with 
Md Kamruzzaman Sarker, Derek Doran, Ning Xie, Mike Raymer
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