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Semantic Web

• A research field about methods for:

Data and Information sharing, discovery, integration, and reuse.

Key paradigms:
• Representation of information via knowledge graphs in 

standardized formats (e.g., W3C’s RDF).
• Typing of the knowledge graphs together with a type logic a.k.a. 

ontology or schema, represented in standardized/sharable 
formats (e.g., W3C’s OWL)



May 2017 – Dagstuhl – Pascal Hitzler 3

Semantic Web

Two major examples of semantic web technologies at work:

• Google knowledge graph
You see a glimpse of it in the boxes to the right of your search 
results. 

• Schema.org
Joint effort by major search engine providers.
Schema/ontology for annotating Web page content, so that 
search engines can provide better results. 
In the meantime, schema.org annotations are ubiquitous on the 
Web.



May 2017 – Dagstuhl – Pascal Hitzler 4

Propositional rule extraction from trained neural networks under 
background knowledge

(work with Maryam Labaf)
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Neural and symbolic
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Extraction

In this case: extracting propositional rules.

General idea: 
• Input value 1 interpreted as “true”, value 0 as “false”
• Outputs interpreted as true or false according to a threshold
• I.e. network function maps binary vectors.

Garcez et al, 2001: By weight analysis (layer by layer) under 
differentiable activation functions. Possible in principle but intricate 
and, arguably, the resulting rule sets are usually rather difficult to 
understand.

Lehmann, Bader, Hitzler, 2010: Black-box approach (looking at 
inputs and outputs only).
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Lehmann, Bader, Hitzler, 2010

For every monotonic function

there is a unique reduced set of positive propositional rules which 
capture exactly the function f.

Reduced means: no redundancies, and as small as possible.

Problem: Rule sets can get large and messy, i.e. still very difficult to 
understand.
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Adding Background Knowledge

Can we lift the result just given to include 
background knowledge?

Given:
• A (reduced) propositional logic program P

(extracted from an ANN as above).
• Set I of prop. variables representing ANN inputs.
• Set O of prop. variables representing ANN outputs.
• A background knowledge base K (a propositional logic program).

We then seek a logic program P’ (simpler than P) 
s.t. for all subsets i in I and each o in O we have
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Adding Background Knowledge

It turns out that

• P’ is no longer unique in general 
(even under reduction).

• P’ may not even exist 
(unless I is restricted to the left-hand side of rules in K).

• But with suitable K you can get P’ which are simpler than P.
Typical case:

P: K:                          P’: 
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Adding Background Knowledge

P: K:                          

P’: 

Note that K essentially groups input variables. Once could think of r 
being a “more general concept” than either p1 and p2.

Of course, we have only discussed the propositional case so far, 
but in order to obtain strong explanations for the input-output 
behavior of ANNs we need to go beyond propositional.
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Comprehensibility!
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Description Logic extraction from trained neural networks under 
background knowledge

(work with Md Kamruzzaman Sarker, Derek Doran, Ning Xie, Mike 
Raymer)
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DL Extraction from ANNs

• Explain input-output behavior of trained (deep) NNs.

• Idea: 
– Use background knowledge in the form of linked data 

and ontologies to help explain.
– Link inputs and outputs to background knowledge.
– Use a symbolic learning system (e.g., DL-Learner) to 

generate an explanatory theory.

• We’re just starting on this, experiments (below) just came out.
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DL Extraction from ANNs

Possible data sources:
• Linked data / semantic web data

– I.e. structured data on the web, organized in so-called RDF 
graphs. 

• Cross-domain ontologies (e.g., SUMO, Proton)
• Wikidata
• schema.org

Essentially, all content already readily and publicly available in 
structured form. 

If further domain knowledge is needed: use state-of-the-art 
approaches for knowledge graph generation in order to obtain 
structured data from suitable text corpora.
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DL Extraction from ANNs
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DL-Learner

Approach similar to inductive logic programming, but using 
Description Logics (the logic underlying OWL).

Positive examples:                               negative examples:

Task: find a class description (logical formula) which separates 
positive and negative examples.
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DL-Learner

Positive examples:                               negative examples:

DL-Learner result:

In FOL: 
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Proof of Concept Experiment

Positive: Negative:
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Images

Come from the MIT ADE20k dataset
http://groups.csail.mit.edu/vision/datasets/ADE20K/
They come with annotations of objects in the picture:

001 # 0 # 0 # sky # sky # ""
002 # 0 # 0 # road, route # road # ""
005 # 0 # 0 # sidewalk, pavement # sidewalk # ""
006 # 0 # 0 # building, edifice # building # ""
007 # 0 # 0 # truck, motortruck # truck # ""
008 # 0 # 0 # hovel, hut, hutch, shack, shanty # hut # ""
009 # 0 # 0 # pallet # pallet # ""
011 # 0 # 0 # box # boxes # ""
001 # 1 # 0 # door # door # ""
002 # 1 # 0 # window # window # ""
009 # 1 # 0 # wheel # wheel # ""

http://groups.csail.mit.edu/vision/datasets/ADE20K/
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Mapping to SUMO

Simple approach: for each known object in image, create an 
individual for the ontology which is in the appropriate SUMO 
class:

contains road1
contains window1
contains door1
contains wheel1
contains sidewalk1
contains truck1
contains box1
contains building1



May 2017 – Dagstuhl – Pascal Hitzler 21

DL-Learner input

Positive:
img1: road, window, door, wheel, sidewalk, truck, 

box, building
img2: tree, road, window, timber, building, lumber
img3: hand, sidewalk, clock, steps, door, face, building,

window, road
Negative:

img4: shelf, ceiling, floor
img5: box, floor, wall, ceiling, product
img6: ceiling, wall, shelf, floor, product

DL-Learner results include: 
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Proof of Concept Experiment

Positive: Negative:
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Experiment 2

Positive (selection): Negative (selection):
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Experiment 3

Positive: Negative:
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Experiment 4

Positive (selection): Negative (selection):
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Experiment 5

Positive: Negative (selection):
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Next steps

• Utilize more sophisticated ontology.
• Utilize more sophisticated mappings.

• Explain hidden neurons.

• Tune DL-Learner better to the specific task.
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Explaining hidden neurons

Collaborators Derek Doran and Ning Xie (Web and Complex 
Systems Lab)

They explore how to determine groups of hidden neurons which 
often fire together and thus may indicate the “detection” of certain 
features.

We plan to apply the above mentioned DL-Learner approach also to 
these groups of hidden neurons, in order to determine which 
features they detect. 
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Thanks!
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