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Ontology Modeling 
–

User Interfaces
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The Protégé ROWLTab

(work with Md Kamruzzaman Sarker, David Carral, Adila Krisnadhi)
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Modeling OWL with Rules

Problem: directly modeling in OWL (in any syntax, including DL 
syntax) is error-prone and cumbersome.

It appears that rules are much simpler to use for expressing 
schema information.

Hence, we developed a Protégé plug-in which affords the modeling 
of OWL using rules (to the extent to which rules can be converted 
into OWL).

Non-convertible rules are stored as SWRL-Rules (with a warning to 
the user).
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ROWL Protégé plug-in

http://dase.cs.wright.edu/content/rowl
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User Evaluation

• Subjects: 12 graduate students from Wright State University 
with some basic knowledge of OWL and at least minimal 
exposure to Protégé.

• Participants were given 12 natural language sentences to model 
in Protégé, half with the standard interface, half with ROWL.
– Easy sentences: atomic subclass inclusions 
– Medium sentences: Required some role restrictions.
– Hard sentences: Required rolifications. 
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User Evaluation
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Time used

Hypothesis: 

On medium and hard sentences, participants would be able to 
model quicker with the ROWLTab than without it.

Paired t-test: 
easy: p = 0.002 < 0.01
medium: p = 0.020 < 0.05
hard: p = 0.020 < 0.05
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Correctness

Hypothesis: 

On medium and hard sentences, participants would provide more 
correct answers with the ROWLTab than without it.

Paired t-test: 
easy: p = 1.0000 > 0.05
medium: p = 0.180   > 0.05
hard: p = 0.0001 < 0.01
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Clicks

Hypothesis: 

None (this was for information only)

Paired t-test: 
easy: p = 0.092 > 0.05
medium: p = 0.030 < 0.05         (significant time difference)   
hard: p = 0.173 > 0.05         (significant time and 

correctness difference)
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• The hypotheses for time and for correctness (hard questions) 
were confirmed. For correctness (medium questions) the 
hypothesis was rejected.

It appears that medium modeling problems (with some role 
restrictions) can be done correctly with the standard Protégé 
interface by this type of user, although more time is needed than 
when using ROWLTab.

It appears that hard problems (requiring rolification) cannot really 
be solved using the standard Protégé interface, and the 
unsuccessful solution attempts in addition require more time.

Assessment
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The Protégé OWLAx plug-in

(work with Md Kamruzzaman Sarker and Adila Krisnadhi)
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Our modeling workflow

Our standard modeling workflow:
1. Define scope
2. Make and refine schema diagram using analog media
3. Use Protégé to create OWL file

See: Adila Krisnadhi, Pascal Hitzler, Modeling With Ontology Design Patterns: Chess Games As 
a Worked Example. In: Pascal Hitzler, Aldo Gangemi, Krzysztof Janowicz, Adila Krisnadhi, 
Valentina Presutti (eds.), Ontology Engineering with Ontology Design Patterns: Foundations and 
Applications. Studies on the Semantic Web Vol. 25, IOS Press/AKA Verlagpp. 3-22.

It turns out that an elaborate (“complete”) axiomatization means 
adding the same types of axioms over and over again.

We wanted to have an interface that supports our workflow and 
simplifies repetitive tasks.
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Axioms – Systematically 
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OWLAx Protégé plug-in

In: Proc. ISWC 2016 poster & demos
http://dase.cs.wright.edu/content/ontology-axiomatization-support
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Good axioms

Specificity matters: Problems with domain/range.

Recommendations often heard (but are problematic):
• Indicate domain and range for your properties.
• Reuse as many existing vocabularies as you can.

But there are problems with this:
Ontology 1:   Ontology 2:

domain(foaf:name) = Human         domain(foaf:name) = Organization

Logical consequence after merge: Human ≡ Organization

Human xsd:stringfoaf:name
Organization xsd:stringfoaf:name
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Recommendations

• Make rich axiomatizations
• Avoid re-use of external vocabularies

(rather provide an additional file with mappings for those who 
want to use it)

• Avoid naïve domain and range axioms.

Alternative to naïve domain/range: scoped domain and range.

scoped range
scoped domain

both rules can be expressed in OWL.

A Bp
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LaTeX conversion  to Description Logic Syntax

(work with Cogan Shimizu and Matthew Horridge)
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LaTeX conversion

• The OWL API has had a LaTeX renderer for DL syntax for 
quite some time, however it had significant problems:
– Most OWL files did result in uncompilable LaTeX code.
– Some bugs or incorrectly rendered axioms.
– Poor vertical alignment.
– Many lines too long, even beyond the page margin.

• We wanted to improve this to obtain a practically useful tool.
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LaTeX conversion

• We impoved the OWL API LaTeX renderer.
• The code changes are part of the 5.0.6 release.
• We used a heuristics for linebreaks.
• We make use of namespaces now to obtain more readable 

axioms.
• We sometimes deviate from strict DL syntax to make axioms 

more readable, and use expressions borrowed from the 
functional style syntax instead, e.g. for mutual disjointness of 
classes.

• We tested with all 117 syntactically correct and downloadable 
ontology design patterns from www.ontologydesignpatterns.org
and all of them now typeset without any problems. None of them 
did typeset without error previously.

• We also provide a GUI and a CLI interface. 

http://www.ontologydesignpatterns.org/
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LaTeX conversion

Breaking news:

We ran an initial experiment about understandability of axioms. Our 
early scanning of the data indicates that both DL-syntax and a 
semi-rule-type of first-order logic syntax are more easily 
understandable than the Manchester syntax.

Detailed analysis forthcoming.
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Chess Example
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LaTeX conversion
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Schema diagrams
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Neural-Symbolic Integration: 
Explaining neural networks

using background knowledge
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Propositional rule extraction from trained neural networks under 
background knowledge

(work with Maryam Labaf)
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Neural-symbolic learning cycle

initial
(background)
knowledge

untrained
neural

network

trained
neural

network
learned

knowledge

initialise

extract

learnmodify

The four main problems of Neural-symbolic Integration.



April 2017 – TU Dresden – Pascal Hitzler 28

Extraction

In this case: extracting propositional rules.

General idea: 
• Input value 1 interpreted as “true”, value 0 as “false”
• Outputs interpreted as true or false according to a threshold
• I.e. network function maps binary vectors.

Garcez et al, 2001: By weight analysis (layer by layer) under 
differentiable activation functions. Possible in principle but intricate 
and, arguably, the resulting rule sets are usually rather difficult to 
understand.

Lehmann, Bader, Hitzler, 2010: Black-box approach (looking at 
inputs and outputs only).
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Lehmann, Bader, Hitzler, 2010

For every monotonic function

there is a unique reduced set of positive propositional rules which 
capture exactly the function f.

Reduced means: no redundancies, and as small as possible.

Problem: Rule sets can get large and messy, i.e. still very difficult to 
understand.
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Adding Background Knowledge

Can we lift the result just given to include 
background knowledge?

Given:
• A (reduced) propositional logic program P

(extracted from an ANN as above).
• Set I of prop. variables representing ANN inputs.
• Set O of prop. variables representing ANN outputs.
• A background knowledge base K (a propositional logic program).

We then seek a logic program P’ (simpler than P) 
s.t. for all subsets i in I and each o in O we have
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Adding Background Knowledge

It turns out that

• P’ is no longer unique in general 
(even under reduction).

• P’ may not even exist 
(unless I is restricted to the left-hand side of rules in K).

• But with suitable K you can get P’ which are simpler than P.
Typical case:

P: K:                          P’: 
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Adding Background Knowledge

P: K:                          

P’: 

Note that K essentially groups input variables. Once could think of r 
being a “more general concept” than either p1 and p2.

Of course, we have only discussed the propositional case so far, 
but in order to obtain strong explanations for the input-output 
behavior of ANNs we need to go beyond propositional.



April 2017 – TU Dresden – Pascal Hitzler 33

Description Logic extraction from trained neural networks under 
background knowledge

(work with Md Kamruzzaman Sarker, Derek Doran, Ning Xie, Mike 
Raymer)
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DL Extraction from ANNs

• Explain input-output behavior of trained (deep) NNs.

• Idea: 
– Use background knowledge in the form of linked data 

and ontologies to help explain.
– Link inputs and outputs to background knowledge.
– Use a symbolic learning system (e.g., DL-Learner) to 

generate an explanatory theory.

We got funding for this work through an Ohio Federal Research 
Network, for 1-2 years initially (to find out whether it works). 
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DL Extraction from ANNs

Possible data sources:
• Linked data / semantic web data

– I.e. structured data on the web, organized in so-called RDF 
graphs. 

• Cross-domain ontologies (e.g., SUMO, Proton)
• Wikidata
• schema.org

Essentially, all content already readily and publicly available in 
structured form. 

If further domain knowledge is needed: use state-of-the-art 
approaches for knowledge graph generation in order to obtain 
structured data from suitable text corpora.
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DL Extraction from ANNs
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Proof of concept

• Two class problem
– Food (positive) and Non Food (negative)

• Concepts in background ontology:
– Food, Market and Swimming Pool

• Object property
– imageContains

• Positive instances: 3 food individuals and 1 market individual

• Explanation for food concept:
– Food or (Market and (imageContains some (not (Water))))
– Food or (Market and (imageContains some (not (Swimming_Pool))))
– Food or (Market and (imageContains some (not (Person)))) 
– Food or (Market and (imageContains some (not (Market)))) 
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Experiment on MIT ADE20K 
Dataset

• Two class problem
– OutdoorMuseum – Positive concept
– Non OutdoorMuseum – Negative concept

• Concepts in background ontology :
– SUMO hierarchical ontology + concept names starting with 

letter M in ADE20K training data 

• Positive instances: all individuals from OutdooorMuseum
concept and 1 individual from language concept (as noise)

• Negative instances: all other individuals in the knowledge base. 
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MIT ADE20K Results

• Explanation for OutdoorMuseum:
– (not (TheaterProfession)) and (not (Object)) 
– (not (MilitaryGeneral)) and (not (Object)) 
– (not (Mile)) and (not (Object)) 
– (not (Meter)) and (not (Object))

• N.B: Current explanation is not up to the mark.
• Possible reasons?: 

– Mappings from network inputs to background knowledge are 
probably overly simplistic?

– Background knowledge not expressive enough? 

• Main Difficulties: Need to map input features of neural network 
to semantically meaningful background knowledge entities. 
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Explaining hidden neurons

Collaborators Derek Doran and Ning Xie (Web and Complex 
Systems Lab)

They explore how to determine groups of hidden neurons which 
often fire together and thus may indicate the “detection” of certain 
features.

We plan to apply the above mentioned DL-Learner approach also to 
these groups of hidden neurons, in order to determine which 
features they detect. 
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Thanks!
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