
Chapter 10

Ontology Design Patterns for Linked Data
Publishing

Adila Krisnadhi, Data Semantics Laboratory, Wright State University, Dayton,
OH, USA; and Faculty of Computer Science, Universitas Indonesia

Nazifa Karima, Data Semantics Laboratory, Wright State University, Dayton,
OH, USA

Pascal Hitzler, Data Semantics Laboratory, Wright State University, Dayton,
OH, USA

Reihaneh Amini, Data Semantics Laboratory, Wright State University, Dayton,
OH, USA

Víctor Rodríguez-Doncel, Ontology Engineering Group, Universidad Politéc-
nica de Madrid, Spain

Krzysztof Janowicz, STKO Laboratory, University of California, Santa Bar-
bara, CA, USA

10.1. Introduction

In Chapter 1 [17], we have given a worked example on how to develop a modular
ontology using ontology design patterns. In the following, we will work through an
example process how to use such an ontology for publishing Linked Data. Supple-
mentary material, such as additional examples, OWL, and RDF files, are available
at http://dase.cs.wright.edu/content/pattern-driven-linked-data-publishing-primer.

Linked Data – or Linked Open Data if the reference is to Linked Data that is
openly available in the sense of liberal re-use licenses [25] – refers to the publishing
of data on the Web following a few very straightforward principles [7], foremost
among them the use of the Resource Description Framework (RDF).1 Linked
Data has seen very signficant uptake since its inception in 2006.2 In 2014, over

1https://www.w3.org/RDF/
2http://lod-cloud.net/

http://dase.cs.wright.edu/content/pattern-driven-linked-data-publishing-primer
https://www.w3.org/RDF/
http://lod-cloud.net/

1,000 linked datasets were counted [28], a more than threefold increase over 2011.
Also, the LOD Laundromat [4, 24] website3 currently reports over 650,000 RDF
documents totaling over 38,600,000,000 triples.

The benefits of Linked Data are rather obvious and well publicized [12]: sim-
ply having large amounts of data on various subjects available in structured form
using a standardized format like RDF makes it easier to find, ingest, reuse this
data by third parties for all kinds of purposes. Some prominent examples include
the performance improvements to the IBM Watson system due to ingesting the
DBpedia linked dataset [10], and the use of Linked Data at the nytimes.com por-
tal4 and the bbc.com portal. The latter started with the deployment of the BBC
Dynamic Semantic Publishing for the 2010 World Cup content [23], which was
reused for the London 2012 Olympics content [3], and later on extended to the
whole range of content that may be of interest to the BBC [2].

However, reuse of Linked Data has not taken off at large scale yet, and some
of the reasons for this can be traced back to the often significant effort needed in
finding, understanding and assessing such datasets, and in curating them to make
them fit for the task at hand [26]. In our experience, some5 of the significant cost
factors arise out of the neglect of quality metadata aspects, such as the failure to
provide an ontology underlying the data graph structure; graph structure (and
underlying ontology) not being modeled according to best practices as they arise,
e.g., out of ontology design patterns work; large, monolithic graphs and ontologies
which are very hard to inspect and understand by humans; and so forth [15, 26].

Consequently, we advocate that linked data publishing should be done in
accordance with a high-quality ontology to convey, explain, and enrich the bare
linked data graph. In the sequel, we assume that such an ontology has already
been developed based on ontology design pattern principles. This ontology pro-
vides us with definition of vocabulary terms that will be used to annotate the data
and essentially act as the schema for the data. To make things more concrete, we
shall describe the thought processes and an example workflow leading to the pub-
lishing of a linked dataset with vocabulary obtained from such an ontology. For
the example workflow, we shall build on the ontology developed and described in
Chapter 1 [17], make several adjustments to it and tie some loose ends to make it
more suitable for linked data publishing. Afterwards, we will illustrate the steps
one needs to take in setting up an appropriate infrastructure to publish linked
data based on the ontology so that the data is published according to the Linked
Data principles [7].

10.2. Vocabulary Preparation

Our starting point is Fig. 1.9 of Chapter 1 [17], which refers to several external
patterns. We now need to make precise decisions how to resolve these external
references, i.e., whether to indeed import some external model, or to use a stub,
or use a simplified solution for the time being. In addition, we modify the axioms

3http://lodlaundromat.org/ – retrieved 24 February 2016
4As reported by Evan Sandhaus in his keynote talk at the 9th International Semantic Web

Conference (ISWC 2010) in Shanghai, China, November 2010.
5But certainly not all, see e.g. [30].

http://lodlaundromat.org/

from Fig. 1.12 and 1.13 in accordance to the modeling decision we are about to
make below. In making these changes, however, we generally remain truthful to
the original model.

• We retain the use of stubs for Chess Tournament, Chess Opening, and
Chess Game Result as indicated. That is, we shall have possibly blank
nodes, which are simply typed as indicated. For the Chess Opening stub,
we remove hasName property and consider the ECO code sufficient for our
purpose.
• We use a similar stub for Agent and Place i.e. attaching a string as name
using the hasName property.
• We omit axioms involving the startsAtTime and endsAtTime property of

Agent Role.
• We remove Event because it was used for design, and there seems no added
value in producing the additional triples for instantiating it at this stage.
• With Event removed, the inherited information regarding Place is attached
to ChessGame directly, and additionally, in place of TemporalExtent, we also
attach xsd:dateTime6 to ChessGame. This is of course an oversimplification
because several games may be on the same day, and the order may matter.
However, in practice simplifications are sometimes needed to go forward;
we acknowledge that this particular simplification may complicate the in-
tegration with more fine-grained data, and may preclude some uses that
rely on a more fine-grained modeling. PGN files, which will be the data
source we will currently only look at, provide the location and dates for
chess games.
• Similarly, we attach xsd:dateTime through atTime and Place through at-

Place to ChessTournament, which was originally also modeled as event.
• We remove the more general scoped domain and range restrictions for
subEventOf property (with Event as both domain and range of this prop-
erty). The axioms that express domain and range restrictions for this
property where the domain and range pairs are ChessGame and ChessTour-
nament, as well as HalfMove and ChessGame will be retained.
• We remove HalfMoveAnnotation for the time being, mainly because repub-
lishing of comments from PGN files may be difficult in terms of copyright;
the move sequence itself is unproblematic, see [29].
• We remove originatesFrom for the time being, because we will look only at
PGN files as sources for data at this stage.

The resulting graph is depicted in Fig. 10.1, while the modified set of axioms can
be found in Fig. 10.2.

10.3. Views and Shortcuts

An expressive schema such as the one in Fig. 10.1 is extremely helpful to retain the
benefits of high-quality ontology modeling for linked data publishing [8], including
ease of understanding of the graph structure; ease of schema and thus graph

6The prefix xsd stands for http://www.w3.org/2001/XMLSchema#

Figure 10.1. Chess Ontology modified from Fig. 1.9 of Chapter 1 [17].

extension without violating past modeling or requiring major modifications to
past modeling; ease of reuse because the graph structure is easy to understand
and modify; ease of integration with other data since the schema – and thus the
RDF graph structure – lends itself more easily to such integration; ease of reuse of
part of the RDF graph, since the schema – and thus the RDF graph – is already
modularized.

However, the expressive schema also comes with a number of drawbacks: the
graph structures are more complicated, and thus it takes more time and effort to
cast data into it, they are more difficult to understand, and for those intending
to re-use the data, they have to deal with a much more complicated schema
than their specific use case requires. Furthermore, the resulting RDF graphs will
usually be much larger than they would be if a much simpler schema were used.

Of course, the advantages of a complex schema are the disadvantages of a
simple schema and vice versa. This raises the question about the best choice in
any given situation, or the question about how to find a good compromise.

However, as we will argue and show below, we can also instead reap the best
of both worlds, by moving to a dual schema, consisting of both a complex and
one (or several) compatible simplified versions. In this case, users can choose
the perspective which fits them, and even switch seamlessly between them if this
is desired. We will also see below that the overhead resulting from such a dual
schema is reasonable.

The idea is as follows: Once a complex schema like the one depicted in

AgentRole v (=1 performedBy.Agent) u ∀performedBy.Agent (10.1)
∃performedBy.Agent v AgentRole (10.2)

> v ∀pAR.AgentRole (10.3)
ChessGame v ∃atPlace.Place u ∀atPlace.Place (10.4)

ChessGame v ∃atTime.xsd:dateTime u ∀atTime.xsd:dateTime (10.5)
ChessGame v ∃pAR.BlackPlayerRole u ∃pAR.WhitePlayerRole (10.6)

∃subEventOf.ChessTournament t ∃hasOpening.ChessOpening v ChessGame (10.7)
∃hasResult.ChessGameResult t ∃hasReport.ChessGameReport v ChessGame (10.8)
ChessGame v ∀subEventOf.ChessTournament u ∀hasOpening.ChessOpening (10.9)
ChessGame v ∀hasResult.ChessGameResult u ∀hasReport.ChessGameReport (10.10)

BlackPlayerRole tWhitePlayerRole v AgentRole u (=1 pAR−.ChessGame) (10.11)
ChessGame v (=1 hasFirstHalfMove.HalfMove) u (=1 hasLastHalfMove.HalfMove) (10.12)

ChessGame v (=1 hasLastHalfMove.HalfMove) (10.13)

hasHalfMove v subEventOf− (10.14)
hasFirstHalfMove v hasHalfMove (10.15)
hasLastHalfMove v hasHalfMove (10.16)

HalfMove v Event u ∃pAR.ActingPlayerRole u (=1 hasHalfMove−.ChessGame) (10.17)

ActingPlayerRole v AgentRole u (=1 pAR−.HalfMove) (10.18)
HalfMove v (≤1 nextHalfMove.HalfMove) u ¬∃nextHalfMove.Self (10.19)
∃subEventOf.ChessGame t ∃nextHalfMove.HalfMove v HalfMove (10.20)

∃hasSANRecord.xsd:string v HalfMove (10.21)
HalfMove v ∀subEventOf.ChessGame u ∀nextHalfMove.HalfMove (10.22)

HalfMove v ∀hasSANRecord.xsd:string (10.23)
ChessTournament v ∃atPlace.Place u ∀atPlace.Place (10.24)

ChessTournament v ∃atTime.xsd:dateTime u ∀atTime.xsd:dateTime (10.25)
ChessTournament t Place t Agent v ∀hasName.xsd:string (10.26)

∃hasECOCode.xsd:string v ChessOpening (10.27)
ChessOpening v ∀hasECOCode.xsd:string (10.28)

∃encodedAsSAN.xsd:string v ChessGameResult (10.29)
ChessGameResult v ∀encodedAsSAN.xsd:string (10.30)

ChessGameReport v ∃pAR.AuthorRole (10.31)

AuthorRole v AgentRole u (=1 pAR−.ChessGameReport) (10.32)
∃hasPGNFile.xsd:anyURI v ChessGameReport (10.33)
ChessGameReport v ∀hasPGNFile.xsd:anyURI (10.34)

DisjointClasses(AgentRole,Agent,ChessGame,ChessTournament,HalfMove,Place,

ChessOpening,ChessGameResult,ChessGameReport)
(10.35)

DisjointClasses(BlackPlayerRole,WhitePlayerRole,ActingPlayerRole,AuthorRole) (10.36)

Figure 10.2. Chess Game axioms after simplifying Fig. 1.12 and 1.13 according to Section 10.2;
pAR stands for providesAgentRole.

Figure 10.3. Example for a shortcut.

Fig. 10.1 has been developed, a simplified view can be established by way of so-
called shortcuts through the graph [16]. Compilation of data from the complex
schema to the simplified view is straightforward using rules, as we will see below.

We first give a small example before providing a complete simplified view
for our chess ontology. Consider Fig. 10.3, which shows the part of the ontology
connecting ChessGame to a player’s name; the player could be the white or the
black player. The dotted red arrow in this graph indicates two shortcuts, which
we name hasWhitePlayer, for the WhitePlayerRole, and hasBlackPlayer for the
BlackPlayerRole.

Given a populated ontology, we can then materialize the two shortcuts, by
firing the following rules – pAR is used as abbreviation for providesAgentRole.

ChessGame(x) ∧ pAR(x, y) ∧WhitePlayerRole(y) ∧ performedBy(y, z)
∧ Agent(z) ∧ hasName(z, s)→ hasWhitePlayer(x, s)

ChessGame(x) ∧ pAR(x, y) ∧ BlackPlayerRole(y) ∧ performedBy(y, z)
∧ Agent(z) ∧ hasName(z, s)→ hasBlackPlayer(x, s)

These rules – like most rules in fact [18] – can also be expressed in description
logics, and thus can often also be expressed in OWL DL [20]. We just give an
example for the first rule and refer the interested reader to [18, 20] for further
details on how to do this transformation. The main idea is that we associate each
class name in the rule with a property that is not previously occurring in the
ontology. In the case of the first rule above, we associate ChessGame with R1,
WhitePlayerRole with R2, and Agent with R3 where all R1, R2, and R3 are freshly
introduced. The rule then becomes the following set of axioms and the properties
R1, R2, and R3 are called the rolifications of ChessGame, WhitePlayerRole, and

Agent, respectively [18].

ChessGame v ∃R1.Self

WhitePlayerRole v ∃R2.Self

Agent v ∃R3.Self

R1 ◦ pAR ◦R2 ◦ performedBy ◦R3 ◦ hasName v hasWhitePlayer

In this particular case, though, the property chain in the last of these axioms
cannot be converted into OWL DL, since hasName is a datatype property. This
limitation of OWL was discussed in [19].

Mapping in the other direction, from the simplified view to the complex
schema, is not as straightforward. First of all, even expressing the bare logical
bones of this transformation in a knowledge representation language used in web
ontologies is tricky, see the discussion in [19]. Furthermore, the transformation
necessitates either generating blank nodes or, if the newly introduced nodes need
to be named, minting new identifiers. In the aforementioned rules, the new nodes
correspond to the variable y and z. Even more complicated is the fac that co-
reference resolution may need to be performed on some of these new nodes, e.g., on
the instances of Agent, since they may identify some entity occurring elsewhere in
the dataset. That this direction is non-trivial indicates again that there is added
value – more semantics – in the expressive schema.

The transformation can obviously be done using software specially written
for this purpose, typically by making use of RDF APIs, some of which are listed
at the end of Section 10.6.1.1. Alternatively, one could express the blank node
generation and URI minting inline within a SPARQL query [11] with the help
of a few SPARQL built-in functions and some naming convention. This way
of expressing the transformation using SPARQL shall be briefly explained in
Section 10.6.2

The complete set of shortcuts for our ontology are indicated by dotted ar-
rows in Fig. 10.4. The corresponding rules are given in Fig. 10.5. The complete
simplified view is depicted in Fig. 10.6. We are now ready to get down to a more
concrete implementation work to publish linked data based on the Chess ontology
pattern.

10.4. URI Minting

In Linked Data context, each term in linked datasets and ontologies are called
resources. To conform with the Linked Data principles [7], we need to make all
such resources Web-dereferenceable by assigning a Uniform Resource Identifier
(URI) to each of them. Some resources may have been defined externally in
another linked dataset, which is not under our control. For them, a URI is
typically already provided and we just need to use it. For the rest, however, we
need to mint appropriate URIs by following the design principles below [14].

1. Every resource, aside from literal values, should be assigned a HTPP URI
as its identifier.7

7One can use the plain HTTP URI, i.e., with http: prefix, or HTTPS, i.e., with https:

Figure 10.4. Shortcuts indicated by dotted arrows.

ChessGame(x) ∧ pAR(x, y) ∧WhitePlayerRole(y) ∧ performedBy(y, z)

∧ Agent(z) ∧ hasName(z, s)→ hasWhitePlayer(x, s)

ChessGame(x) ∧ pAR(x, y) ∧ BlackPlayerRole(y) ∧ performedBy(y, z)

∧ Agent(z) ∧ hasName(z, s)→ hasBlackPlayer(x, s)

ChessGame(x) ∧ hasResult(x, y) ∧ ChessGameResult(y) ∧ encodedAsSAN(y, s)

→ hasResultSAN(x, s)

ChessGame(x) ∧ hasOpening(x, y) ∧ ChessOpening(y) ∧ hasECOCode(y, s)

→ hasOpeningECO(x, s)

ChessGame(x) ∧ subEventOf(x, y) ∧ ChessTournament(y) ∧ hasName(y, s)

→ atChessTournament(x, s)

ChessGame(x) ∧ subEventOf(x, y) ∧ ChessTournament(y) ∧ atPlace(y, z)

∧ Place(z) ∧ hasName(z, s)→ atPlaceNamed(x, s)

ChessGameReport(x) ∧ pAR(x, y) ∧ AuthorRole(y) ∧ performedBy(y, z)

∧ Agent(z) ∧ hasName(z, s)→ hasAuthor(x, s)

HalfMove(x) ∧ pAR(x, y) ∧ ActingPlayerRole(y) ∧ performedBy(y, z)

∧ Agent(z) ∧ hasName(z, s)→ playedBy(x, s)

Figure 10.5. Shortcut rules leading to our simplified view.

Figure 10.6. Simplified view of the ontology.

2. Data publishers should provide a machine-readable presentation for each
URI they maintain in order to enable the URI to be looked up and derefer-
enced.

3. URIs should be persistent. In the literature, this usually means that they
should not contain anything that will likely change such as session tokens or
other state information. More generally, however, the persistence of URIs
may go beyond that. That is, if a URI should live beyond the lifetime
of the underlying infrastructure or the organization who maintains it. In
short, once a URI is minted and published online, then it should ideally live
forever.

4. URIs should be assumed to be opaque: agents and Web clients accessing
a URI should not parse or read into the URI to infer anything about the
referenced resource.

Note that URIs in Linked Data are used to identify not just Web documents,
but also non-document resources, including real-world objects or even abstract
entities. When designing a URI naming scheme, it is thus important to account
for the distinction between a thing and the Web document about that thing.

prefix. The latter supposedly indicates that communication to the URI is done with encryp-
tion and authentication. Although there is a clear consensus of the need for a secure web
for everyone, which motivated projects such as HTTPS Everywhere (https://www.eff.org/
Https-everywhere) and Let’s Encrypt (https://letsencrypt.org/), there is a debate as to
whether a wholesale move to the HTTPS protocol is the best solution in the long run [5].

https://www.eff.org/Https-everywhere
https://www.eff.org/Https-everywhere
https://letsencrypt.org/

For example, consider the website of DaSeLab at Wright State University whose
structure may look like this:

• http://dase.cs.wright.edu/ – the homepage of DaSeLab;
• http://dase.cs.wright.edu/people/adila-krisnadhi – the homepage
of Adila Krisnadhi in DaSeLab;
• http://dase.cs.wright.edu/people/pascal-hitzler – the homepage
of Pascal Hitzler in DaSeLab.

Here, all three URIs reside in the same URI namespace, which is the DaSe-
Lab namespace given by the URI: http://dase.cs.wright.edu/. Moreover,
the latter two URIs above reside in a sub-namespace of the DaSeLab namespace
given by http://dase.cs.wright.edu/people/. Namespaces here are simply
a means to ensure the global uniqueness of identifiers. More precisely, within
the http://dase.cs.wright.edu/people/ namespace, the Web resource iden-
tified by http://dase.cs.wright.edu/people/adila-krisnadhi uniquely cor-
responds to the homepage of Adila Krisnadhi. Furthermore, on the Web, the
URI http://dase.cs.wright.edu/people/ uniquely correspond to a particu-
lar part of the DaSeLab namespace. As a result, one could expect that the URI
http://dase.cs.wright.edu/people/adila-krisnadhi can be resolved only to
a unique resource, which is the homepage of Adila Krisnadhi in DaSeLab, and
not something else.

Now, we wish to use URIs also to identify DaSeLab and the two people:
Adila Krisnadhi and Pascal Hitzler as objects. Since the URIs above have been
used to identify the homepages of the DaSeLab, and the two people, one should
not use them as URIs to identify the three entities as objects, i.e., different URIs
need to be used. This is to avoid the confusion when using the URIs as part
of the statements (concretely, RDF triples) in the linked dataset or ontologies:
if we use, for example, http://dase.cs.wright.edu/people/adila-krisnadhi
as the URI for the person Adila Krisnadhi, then the RDF triple

<http://dase.cs.wright.edu/people/adila-krisnadhi> foaf:givenName "Adila".

would actually be read as “the homepage of Adila Krisnadhi has a given name
Adila”.

10.4.1. Hash URIs and 303 URIs

There are two URI schemes commonly used by Semantic Web applications for
identifying non-document resources [27]. They are hash URIs and 303 URIs.
Both schemes allow the server to serve both a machine-readable and a human-
readable presentations of the same resource, depending on the client’s request.

Hash URIs are URIs that contain a fragment, a special part of the URI
preceded by a hash symbol (‘#’). When a hash URI is retrieved from the server,
HTTP protocol specified that the client application has to strip off the fragment
part prior to sending the request to the server. In other words, such an URI, which
includes the hash, cannot be retrieved directly, and thus does not necessarily
identify a Web document. Therefore, we can use it to identify non-document

resources without raising confusion. For example, we could use the following
URIs to identify DaSeLab (the organization), Adila Krisnadhi (the person), and
Pascal Hitzler (the person), respectively:

• http://dase.cs.wright.edu/about#daselab
• http://dase.cs.wright.edu/about#adila-krisnadhi
• http://dase.cs.wright.edu/about#pascal-hitzler

When a client requests http://dase.cs.wright.edu/about#adila-krisnadhi,
it strips off the fragment and only requests http://dase.cs.wright.edu/about
from the server. Without content negotation, the server can respond by return-
ing a machine-readable RDF document containing triples describing the three re-
sources above. Meanwhile, with content negotation, it could send back a machine-
readable RDF document or a human-readable HTML document, depending on
the client’s request. In this case, the client can indicate the preference in the
Accept header by specifying, e.g., application/rdf+xml if the former is pre-
ferred, or text/html if the latter is preferred instead.

An alternative solution is to employ a special HTTP status code, 303 See
Other, hence the URIs are called 303 URIs. On the surface, there is no apparent
distinction on 303 URIs except that they typically contain no fragment part. In
this scheme, the URIs may look as follows8 where we use the URI namespace
http://dase.cs.wright.edu/id/:

• http://dase.cs.wright.edu/id/daselab – DaSeLab, the organization
• http://dase.cs.wright.edu/id/adila-krisnadhi – Adila Krisnadhi, the

person
• http://dase.cs.wright.edu/id/pascal-hitzler – Pascal Hitzler, the
person

The intuition is that according to the Web architecture, it is not appropriate
to return a 200 status code9 when the above URIs are requested by a client because
the URIs actually possess no suitable presentation. Nonetheless, it is always more
useful to provide more information about the requested resource, which is also
in accordance with Linked Data principles. Here, the server should respond with
a 303 status code, which indicates a redirection, and the response also includes
Location header providing the location of the Web document containing infor-
mation about the requested resource. Content negotiation can then be used to
decide whether to serve a machine-readbale RDF document or a human-readable
HTML.

For example, when http://dase.cs.wright.edu/id/adila-krisnadhi is
requested by a client, the server returns a 303 code and redirects the request
to the address given by the Location header. Here, we have two slightly dif-
ferent variants. In the first one, the server would redirect to a generic docu-
ment, say http://dase.cs.wright.edu/doc/adila-krisnadhi, and then per-
form the content negotiation. If an RDF document is requested, it then returns an
RDF document, say http://dase.cs.wright.edu/doc/adila-krisnadhi.rdf,

8Note that there is nothing special with the occurrence of id as part of the path in the URIs
– one could use data, foo, or any other string to specify the path component of the URIs.

9OK status; meaning that the request has succeeded and the requested resource is returned.

while if an HTML document is requested, then it returns an HTML one, say
http://dase.cs.wright.edu/doc/adila-krisnadhi.html. In the second vari-
ant, the server would perform content negotiation immediately. If the machine-
readable RDF content is requested, then the server redirects to an RDF docu-
ment, say http://dase.cs.wright.edu/data/adila-krisnadhi. Meanwhile, if
HTML content is requested, then the server redirects to an HTML document, say
http://dase.cs.wright.edu/people/adila-krisnadhi.

10.4.2. URI Naming Scheme

The next aspect that needs to be considered is the URI naming scheme. This
aspect is, however, less clear than the URI scheme. Several organizations and
communities have provided their own recommendations, conventions, and guide-
lines, which differ from each other. This is of course not surprising given that in
the end, every URI is maintained by a particular party that is also responsible to
provide an infrastructure that ensures the URI can be dereferenced.

For example, W3C uses a URI naming scheme of the form, among others,
http://www.w3.org/YYYY/MM/ssss where YYYY and MM are decimal digits
representing the year and month of URI allocation, and ssss is a short string [6].10
The UK government uses http://{domain}/id/{concept}/{reference} as a
naming scheme for URIs representing identifiers of entities in the UK government
data [9], e.g., http://education.data.gov.uk/id/school/78 is an identifier of
some school in the UK. More examples of the different URI formats as well as
their design rules and managements across several government agencies and stan-
dardization bodies can be found in a survey by Archer, et al. [1], while a general
style guidelines that takes into account multilingual web can be consulted from a
paper by Montiel-Ponsoda, et al. [22]. In such design rules and guidelines, one can
also usually find recommendations such as preference of short URIs over longer
ones, which case policy should be chosen (e.g., all lower case letters, CamelCase,
etc.), how to deal with word separator if a URI is formed from several words,
when using code value is appropriate, how versioning can be handled, etc. Before
we proceed though, we need to choose appropriate namespaces for our identifiers.

If the data as well as ontologies being published are produced and maintained
by a particular organization, one could use that organization’s URI namespaces
for the data and elements of the schema. This is usually a good choice assum-
ing that the organization is not temporary in nature, and there is a clear policy
that ensures the persistence of the URIs in case there is change in the underlying
infrastructure. Unfortunately, this is in the end impossible to guarantee: orga-
nizations may cease to exist, and infrastructure and policies may change. Thus,
relying on an organization’s URI namespace may prove tricky in the long run.

To help extending the lifetime of URIs beyond the lifetime of the maintaining
organizations, the Linked Data community has been using community-supported
online services that provide permanent re-direction for Web applications. Such
services facilitate data publishers to reserve a URI that is independent of the

10Quoted directly from the document: “ssss is a short string not causing confusion, alarm, or
embarrassment.”

actual address of the server that performs the dereferencing. When a user re-
quests such a URI, the service will redirect the request to the actual location of
the information on the Web. If this actual location changes, due to organiza-
tional, policy, or infrastructure changes, the URI maintainer can simply modify
the redirection in the service to point to the new location. The URI itself is not
changed, and hence, does not affect any user applications depending on the URI.
Such services have been historicaly called Persistent Uniform Resource Locators
(PURL) services,11 and more recently, there is an ongoing community effort to
provide a more unified form of such a service, called w3id,12 through the W3C
Permanent Identifier Community Group.13

For our example workflow here, we wish to distinguish two general categories
of identifiers. The first category consists of ontology elements, i.e., classes, prop-
erties, and named individuals defined by the ontology. The second comprises non-
literal resources in the data that are not vocabulary terms from the ontology. For
both categories, we take the liberty of claiming https://w3id.org/rdfchess/
as the top-level namespace.14 For ontology elements, we assign a sub-namespace
given by the ontology names. For non-literal resources that are not a vocab-
ulary term, we reserve https://w3id.org/rdfchess/id/ sub-namespace. Fur-
thermore, following some of the guidelines from Montiel-Ponsoda, et al. [22], we
decide on the following naming scheme.

• We use meaningful local names for ontology elements, and opaque names
for data instances. For the latter, we use randomly generated strings as
part of the identifiers.
• We employ CamelCase for class and property names from the ontology and
lower case alphanumeric letters for named individuals from the ontology
and non-literal in the RDF datasets. For the latter, underscore character
(’_’) is used as the token separator.
• We also employ lower case alphanumeric letters for naming the ontology
where the dash character (’-’) is used as the token separator if needed.
• We employ hash URIs for the ontology elements and 303 URIs for instances
in the data.
• As much as possible, we provide human-readable labels for each resource
in the ontology and linked datasets using rdfs:label property.
• We ignore versioning issues of the ontology elements to simplify the discus-
sion.

The resulting URI patterns are provided below.

• The pattern https://w3id.org/rdfchess/id/ssss is used for non-literal
resources in the linked datasets that are not a vocabulary term. Here,
ssss is a random, unambiguous string. For example, we could use the

11A community site at http://www.purlz.org/ listed several PURL services, including the
oldest one called purl.org, which is hosted at OCLC and has been used for more than 15 years
by the community.

12https://w3id.org; unlike most of other PURL services, this one operates in HTTPS-only
mode.

13https://www.w3.org/community/perma-id/
14Of course, this namespace needs to be actually reserved, i.e., by actually performing all the

steps specified in https://w3id.org

http://www.purlz.org/
https://w3id.org
https://www.w3.org/community/perma-id/
https://w3id.org

URI https://w3id.org/rdfchess/id/gam19e02 to represent an instance
of the class ChessGame; the string gam19e02 is generated such that within
the https://w3id.org/rdfchess/id/ namespace, it unambigously refers
to this particular instance of ChessGame.
• The pattern https://w3id.org/rdfchess/ontology-name is used for the

name of ontologies. For example, the URI of the complex version of our
dual schema could be https://w3id.org/rdfchess/chessonto.
• The pattern https://w3id.org/rdfchess/ontology-name#ClassName is
employed for class names defined in the ontology named ontology-name.
For example, the ChessGame class in the ontology named above could have
the URI: https://w3id.org/rdfchess/chessonto#ChessGame
• https://w3id.org/rdfchess/ontology-name#propertyName is used for
property names defined in the ontology named ontology-name. For ex-
ample, https://w3id.org/rdfchess/chessonto#hasHalfMove could be
used for the hasHalfMove.
• https://w3id.org/rdfchess/ontology-name#named_individual is the
URI pattern for named individuals defined in the ontology ontology-name.
E.g., https://w3id.org/rdfchess/chessonto#grandmaster could be used
to refer to the grandmaster title of chess players. Note that, although
named individuals in the ontology are logically treated in the same way
as instances of a class in the linked dataset that populates the ontology,15
they use a different URI pattern. The reason is that named individuals
are directly declared in the ontology, usually because they represent some
controlled vocabulary in the domain; they are not viewed as data.

10.5. Publishing the Schema

After specifying the URI patterns, the next step is to prepare the OWL file(s)
that contain all the axioms in the ontology. Since we are using dual schema, we
essentially have two slightly different ontologies corresponding to Fig. 10.1 and
10.6, which can be merged into one according to Figure 10.4. So, our approach
is to prepare the following OWL files. These OWL files can be created manually
using any ontology editor, such as Protégé16 or NeOn Toolkit.17 Alternatively,
one can also generate the OWL files programmatically using libraries such as
OWL API.18 For our example workflow, we shall use Protégé to create the OWL
files. Please consult the RDF and OWL Primer in the appendix of this book [21]
as well as the appropriate documentation of the ontology editor of choice for more
information on how to write OWL axioms into the OWL files.

• chessonto.owl
This OWL file captures the ontology according to Fig. 10.1, which forms the
complex version of the dual schema. The corresponding axioms are given by
Fig. 10.2. As ontology URI, we assign https://w3id.org/rdfchess/chessonto.

15In the description logic lingua, they are all ABox individuals.
16http://protege.stanford.edu/
17http://neon-toolkit.org/
18http://owlcs.github.io/owlapi/

http://protege.stanford.edu/
http://neon-toolkit.org/
http://owlcs.github.io/owlapi/

The URIs for class names, property names, and named individuals in this
OWL file are defined according to the patterns in the previous section.
• chessonto-view.owl
This OWL file captures the ontology according to Fig. 10.6, expressing
a simplified version of the dual schema. As ontology URI, we assign
https://w3id.org/rdfchess/chessonto-view. Note that since this on-
tology defines the shortcuts involving classes and properties which are al-
ready in chessonto.owl, it does not introduce new URIs for those classes
and properties, and instead, simply reuses the URIs already defined in
chessonto.owl. For newly introduced properties such as hasWhitePlayer,
hasBlackPlayer, etc., this ontology declares URIs for them according to
the pattern in the previous section. Observe that all of the newly intro-
duced properties in chessonto-view.owl are datatype properties. Hence,
none of the rules in Fig. 10.5 can be expressed as OWL axioms. In-
stead, we can write them as DL-Safe SWRL rules [13], which are sup-
ported at least by OWL API and Protégé.19 For example, the first rule
in Fig. 10.5 can be expressed as the following SWRL rule where the prefix
chon: refers to <https://w3id.org/rdfchess/chessonto#> and chonv:
refers to <https://w3id.org/rdfchess/chessonto-view#>:

chon:ChessGame(?x) ^ chon:providesAgentRole(?x,?y)
^ chon:WhitePlayerRole(?y) ^ chon:performedBy(?y,?z)
^ chon:Agent(?z) -> chonv:hasWhitePlayer(?x,?z)

• chessonto-full.owl
This OWL file captures the ontology according to Fig. 10.4. We assign
https://w3id.org/rdfchess/chessonto-full as the ontology URI. This
ontology does not define any class, property, or named individual. Instead,
it simply imports the previous two OWL files.

The first OWL file is intended for users who wish to populate the Chess ontology
before the shortcuts were created. The second is intended for users who prefer
to populate the ’shortcut’ version. Meanwhile, the third eases users who wish to
access the whole dual schema.

After the OWL files are created, we need to publish them on the Web. This
publishing step is not strictly needed for generating the linked datasets. Never-
theless, it is necessary if we wish to comply to the Linked Data principles. In
particular, we need to ensure that the URIs of the ontologies as well as classes,
properties, and individuals in the OWL files to be Web dereferenceable. Since
we are using hash URIs, it suffices if the content negotiation module of the
Web server20 on which we host the OWL files is correctly configured so that
whenever an ontology URI is requested, the correct OWL file is served, e.g.,
if https://w3id.org/rdfchess/chessonto is requested, then the server should
serve chessonto.owl to the client. In this setting, whenever a class/proper-
ty/individual name is requested, HTTP protocol would automatically strip off

19See https://github.com/protegeproject/swrlapi/wiki/SWRLLanguageFAQ
20For example, see http://httpd.apache.org/docs/current/content-negotiation.html for

more information on how to configure content negotiation on the popular Apache web server.

https://github.com/protegeproject/swrlapi/wiki/SWRLLanguageFAQ
http://httpd.apache.org/docs/current/content-negotiation.html

[Event "WCh 2013"]
[Site "Chennai IND"]
[Date "2013.11.09"]
[Round "1"]
[White "Carlsen, Magnus"]
[Black "Anand, Viswanathan"]
[Result "1/2-1/2"]
[WhiteTitle "GM"]
[BlackTitle "GM"]
[WhiteElo "2870"]
[BlackElo "2775"]
[ECO "A07"]
[Opening "Reti"]
[Variation "King’s Indian attack"]
[WhiteFideId "1503014"]
[BlackFideId "5000017"]
[EventDate "2013.11.09"]

1. Nf3 d5 2. g3 g6 3. Bg2 Bg7 4. d4 c6 5. O-O Nf6 6. b3 O-O 7. Bb2 Bf5 8. c4
Nbd7 9. Nc3 dxc4 10. bxc4 Nb6 11. c5 Nc4 12. Bc1 Nd5 13. Qb3 Na5 14. Qa3 Nc4 15.
Qb3 Na5 16. Qa3 Nc4 1/2-1/2

Figure 10.7. Example of PGN file for conversion to RDF triples. The file is obtained from
http://www.pgnmentor.com/events/WorldChamp2013.pgn and we assume the author of the file
is PGN Mentor

the fragment part that represents the class name and simply request the corre-
sponding ontology to the server. If one wishes to have a nicer, human-readable
presentation, one could set it up by manually creating an HTML page representing
the ontology, or install a wrapper such as LODE21 into the content negotiation.

10.6. Publishing the Linked Datasets on the Web

After the vocabulary/schema is ready, we can now populate it by generating the
linked datasets. For our Chess example, we generate triples that correspond to
the PGN files. Consider Fig. 10.7, which is another example of a PGN file (cf.
Fig. 1.1 from Chapter 1). We shall convert data in this PGN file into a set
of RDF triples. Since we two slightly different ontologies as part of the dual
schema, we can proceed from either way. We shall describe how we can di-
rectly populate chessonto.owl (i.e., according to Fig. 10.1). Directly populating
chessonto-view.owl (i.e., according to Fig. 10.6) is analogous. We shall also ex-
plain how we can actually populate chessonto-view.owl using the RDF triples
that populates chessonto.owl, and vice versa.

21http://www.essepuntato.it/lode

http://www.pgnmentor.com/events/WorldChamp2013.pgn
http://www.essepuntato.it/lode

10.6.1. Populating A Dual Schema: From the Complex Version to a
Simplified Version

Recall that chessonto.owl represents the complex version of our dual schema,
while chessonto-view.owl represents its simplified version. Our first approach
to publish a linked dataset is by first populating chessonto.owl directly, and
afterwards, populating chessonto-view.owl by making use the result of pop-
ulating chessonto.owl. An alternative approach is in the opposite direction,
which we shall explain in Section 10.6.2.

10.6.1.1. Populating chessonto.owl directly

Guided by the PGN specification22, we can see that the content of the PGN file
contains several pieces of information. We go through them one by one below and
identify which ontology elements from Fig. 10.1 can be populated. We assume
that the base prefix to be https://w3id.org/rdfchess/id/, while xsd refers to
http://www.w3.org/2001/XMLSchema#.

• First of all, we create an instance of ChessGame, say :gam19e02.
• The name of the event in which the chess game was played is “WCh 2013”.
So we create an instance for ChessTournament, say :tou23as5, and as-
sign for hasName property the literal value "WCh 2013"^^xsd:string. We
connect :gam19e02 to :tou23as5 via subEventOf property.
• The site of the event is the city of Chennai, India, which is also the site
of the game. We create an instance representing Chennai for the class
Place, say :pla537es8, and assigns "Chennai"^^xsd:string as the value
of hasName. We then attach it to the instance of :gam19e02 and :tou23as5
via atPlace property.
• The starting date of the chess game is November 10, 2013. Thus, we attach
"2013-11-09T00:00:00"^^xsd:dateTime, a literal of type xsd:dateTime
to :gam19e02 via atTime property. The starting date of the event is also
November 9, 2013, so we attach "2013-11-09T00:00:00"^^xsd:dateTime
to :tou23as5 via atTime property. Note of course that this is a simplifica-
tion since the event obviously has an end date, though not specified in the
PGN file.
• The round of the game in the context of the chess competition is the 1st
round. We ignore this information since no classes or property corresponds
to it.
• The name of the white player is “Carlsen, Magnus”. Here, we create an
instance of WhitePlayerRole, say :rol88y76c, and attach it to :gamd19e02
via providesAgentRole property. We then create an instance of Agent, say
:ag422yt6, attach it to :rol88y76c via performedBy property, and give
"Carlsen, Magnus"^^xsd:string as the literal value for hasName prop-
erty. We ignore the title of the white player, which is grandmaster (“GM”).
• The name of the black player is “Anand, Viswanathan”, so we use the literal
value "Anand, Viswanathan"^^xsd:string for hasName.

22http://www.thechessdrum.net/PGN_Reference.txt

http://www.thechessdrum.net/PGN_Reference.txt

• The result of the game is “1/2-1/2” (i.e., a draw). We create an instance
of ChessGameResult, say :res23tu77h, and then attach the literal value
"1/2-1/2"^^xsd:string for encodedAsSAN property.
• The ELO rating of both the white and black players at the time of the
game are 2870 and 2775, respectively. We ignore this information since it
does not correspond to any classes or properties.
• The ECO code of the opening of the game is B18. So, we create an instance
of ChessGameResult, say :ope662vn2, and then attach the literal value
"A07"^^xsd:string for hasECOCode property.
• The file contain a numbered sequence of moves where each move consists
of two half moves (except possibly the last one) with the white player’s half
move preceding the black player’s half move. So, for each pair of half moves,
we create an instance of HalfMove, attach an appropriate literal value rep-
resenting the SAN encoding of the half move, and then attach that instance
of HalfMove to :gam19e02 using subEventOf and hasHalfMove (respecting
the direction of the property as specified in Fig. 10.1). Instances repre-
senting two consecutive half moves should be connected via nextHalfMove
property. The hasFirstHalfMove and hasLastHalfMove are used as appropri-
ate to attach the first and last half moves to :gam19e02. Finally, for each
instance of HalfMove we created, we attach a fresh instance of ActingPlay-
erRole via providesAgentRole property, and then we connect it to either the
instance of Agent representing the white chess player (Magnus Carlsen) or
the instance of Agent representing the black player (Viswanathan Anand).
Both of these instances of Agent have been created earlier.
• We also create an instance of ChessGameReport, add an instance of Au-
thorRole and the corresponding instance of Agent representing PGN Men-
tor, and use http://www.pgnmentor.com/events/WorldChamp1984.pgn
as the URI of the PGN file.

The above steps result in a set of overall 257 RDF triples given in Fig. 10.8,
10.9, 10.10, and 10.11. As the reader can see, the triples use properties and classes
from chessonto.owl.

Naturally, writing them all by hand would be rather tedious. The mapping
between tags in the PGN file and the vocabulary terms in the ontology also has
to be set manually. Fortunately, there are already a number of programming
libraries and APIs that can help us in generating and manipulating RDF triples,
e.g., Apache Jena API (Java),23 RDF4J (Java; formerly known as Sesame),24
Redland (C),25 rdflib (Python),26 etc.

10.6.1.2. Storing RDF triples

The triples just generated can be stored as a file dump. The most recent ver-
sion of RDF, i.e., RDF 1.1, specified several standard serialization formats:27

23https://jena.apache.org/
24http://rdf4j.org/
25http://librdf.org/
26https://github.com/RDFLib/rdflib/
27The older RDF 1.0 only has RDF/XML as the standard serialization format.

http://www.pgnmentor.com/events/WorldChamp1984.pgn
https://jena.apache.org/
http://rdf4j.org/
http://librdf.org/
https://github.com/RDFLib/rdflib/

@prefix : <https://w3id.org/rdfchess/id/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix chon: <https://w3id.org/rdfchess/chessonto#> .

:gam19e02 rdf:type chon:ChessGame ;
chon:subEventOf :tou23as5 ;
chon:atPlace :pla537es8 ;
chon:atTime "2013-11-09T00:00:00"^^xsd:dateTime ;
chon:providesAgentRole :rol88y76c, :rol92z01m ;
chon:hasResult :res23tu77h ;
chon:hasOpening :ope662vn2 .

:tou23as5 rdf:type chon:ChessTournament ;
chon:hasName "WCh 2013"^^xsd:string ;
chon:atPlace :pla537es8 ;
chon:atTime "2013-11-09T00:00:00"^^xsd:dateTime .

:pla537es8 rdf:type chon:Place ;
chon:hasName "Chennai"^^xsd:string .

:rol88y76c rdf:type chon:WhitePlayerRole ; chon:performedBy :ag422yt6 .

:ag422yt6 rdf:type chon:Agent ;
chon:hasName "Carlsen, Magnus"^^xsd:string .

:rol92z01m rdf:type chon:BlackPlayerRole ; chon:performedBy :ag79yy12 .

:ag79yy12 rdf:type chon:Agent ;
chon:hasName "Anand, Viswanathan"^^xsd:string .

:res23tu77h rdf:type chon:ChessGameResult ;
chon:encodedAsSAN "1/2-1/2"^^xsd:string .

:ope662vn2 rdf:type chon:ChessOpening ;
chon:hasECOCode "A07"^^xsd:string .

:cgr448uy6 rdf:type chon:ChessGameReport ;
chon:providesAgentRole :rol08jj2a ;
chon:hasPGNFile <http://www.pgnmentor.com/events/WorldChamp2013.pgn> .

:rol08jj2a rdf:type chon:AuthorRole ;
chon:performedBy :ag66bn89 .

:ag66bn89 rdf:type chon:Agent ;
chon:hasName "PGN Mentor"^^xsd:string

Figure 10.8. RDF Triples (in Turtle syntax) populating the ontology in Fig. 10.1 — continued
in Fig. 10.9

:gam19e02 chon:hasFirstHalfMove :hmgam19e021a ;
chon:hasLastHalfMove :hmgam19e0216b ;
chon:hasHalfMove

:hmgam19e021a, :hmgam19e021b, :hmgam19e022a, :hmgam19e022b,
:hmgam19e023a, :hmgam19e023b, :hmgam19e024a, :hmgam19e024b,
:hmgam19e025a, :hmgam19e025b, :hmgam19e026a, :hmgam19e026b,
:hmgam19e027a, :hmgam19e027b, :hmgam19e028a, :hmgam19e028b,
:hmgam19e029a, :hmgam19e029b, :hmgam19e0210a, :hmgam19e0210b,
:hmgam19e0211a, :hmgam19e0211b, :hmgam19e0212a, :hmgam19e0212b,
:hmgam19e0213a, :hmgam19e0213b, :hmgam19e0214a, :hmgam19e0214b,
:hmgam19e0215a, :hmgam19e0215b, :hmgam19e0216a, :hmgam19e0216b .

:hmgam19e021a rdf:type chon:HalfMove ; chon:hasSANRecord "Nf3"^^xsd:string ;
chon:providesAgentRole :rolhg19e9021a ; chon:nextHalfMove :hmgam19e021b .

:rolhg19e9021a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e021b rdf:type chon:HalfMove ; chon:hasSANRecord "d5"^^xsd:string ;
chon:providesAgentRole :rolhg19e9021b ; chon:nextHalfMove :hmgam19e022a .

:rolhg19e9021a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e022a rdf:type chon:HalfMove ; chon:hasSANRecord "g3"^^xsd:string ;
chon:providesAgentRole :rolhg19e9022a ; chon:nextHalfMove :hmgam19e022b .

:rolhg19e9022a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e022b rdf:type chon:HalfMove ; chon:hasSANRecord "g6"^^xsd:string ;
chon:providesAgentRole :rolhg19e9022b ; chon:nextHalfMove :hmgam19e023a .

:rolhg19e9022b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e023a rdf:type chon:HalfMove ; chon:hasSANRecord "Bg2"^^xsd:string ;
chon:providesAgentRole :rolhg19e9023a ; chon:nextHalfMove :hmgam19e023b .

:rolhg19e9023a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e023b rdf:type chon:HalfMove ; chon:hasSANRecord "Bg7"^^xsd:string ;
chon:providesAgentRole :rolhg19e9023b ; chon:nextHalfMove :hmgam19e024a .

:rolhg19e9023b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e024a rdf:type chon:HalfMove ; chon:hasSANRecord "d4"^^xsd:string ;
chon:providesAgentRole :rolhg19e9024a ; chon:nextHalfMove :hmgam19e024b .

:rolhg19e9024a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e024b rdf:type chon:HalfMove ; chon:hasSANRecord "c6"^^xsd:string ;
chon:providesAgentRole :rolhg19e9024b ; chon:nextHalfMove :hmgam19e025a .

:rolhg19e9024b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e025a rdf:type chon:HalfMove ; chon:hasSANRecord "O-O"^^xsd:string ;
chon:providesAgentRole :rolhg19e9025a ; chon:nextHalfMove :hmgam19e025b .

:rolhg19e9025a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

Figure 10.9. (continued from Fig. 10.8) RDF Triples (in Turtle syntax) populating the ontol-
ogy in Fig. 10.1 – continued in Fig. 10.10

:hmgam19e025b rdf:type chon:HalfMove ; chon:hasSANRecord "Nf6"^^xsd:string ;
chon:providesAgentRole :rolhg19e9025b ; chon:nextHalfMove :hmgam19e026a .

:rolhg19e9025b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e026a rdf:type chon:HalfMove ; chon:hasSANRecord "b3"^^xsd:string ;
chon:providesAgentRole :rolhg19e9026a ; chon:nextHalfMove :hmgam19e026b .

:rolhg19e9026a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e026b rdf:type chon:HalfMove ; chon:hasSANRecord "O-O"^^xsd:string ;
chon:providesAgentRole :rolhg19e9026b ; chon:nextHalfMove :hmgam19e027a .

:rolhg19e9026b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e027a rdf:type chon:HalfMove ; chon:hasSANRecord "Bb2"^^xsd:string ;
chon:providesAgentRole :rolhg19e9027a ; chon:nextHalfMove :hmgam19e027b .

:rolhg19e9027a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e027b rdf:type chon:HalfMove ; chon:hasSANRecord "Bf5"^^xsd:string ;
chon:providesAgentRole :rolhg19e9027b ; chon:nextHalfMove :hmgam19e028a .

:rolhg19e9027b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e028a rdf:type chon:HalfMove ; chon:hasSANRecord "c4"^^xsd:string ;
chon:providesAgentRole :rolhg19e9028a ; chon:nextHalfMove :hmgam19e028b .

:rolhg19e9028a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e028b rdf:type chon:HalfMove ; chon:hasSANRecord "Nbd7"^^xsd:string ;
chon:providesAgentRole :rolhg19e9028b ; chon:nextHalfMove :hmgam19e029a .

:rolhg19e9028b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e029a rdf:type chon:HalfMove ; chon:hasSANRecord "Nc3"^^xsd:string ;
chon:providesAgentRole :rolhg19e9029a ; chon:nextHalfMove :hmgam19e029b .

:rolhg19e9029a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e029b rdf:type chon:HalfMove ; chon:hasSANRecord "dxc4"^^xsd:string ;
chon:providesAgentRole :rolhg19e9029b ; chon:nextHalfMove :hmgam19e0210a .

:rolhg19e9029b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e0210a rdf:type chon:HalfMove ; chon:hasSANRecord "bxc4"^^xsd:string ;
chon:providesAgentRole :rolhg19e90210a ; chon:nextHalfMove :hmgam19e0210b .

:rolhg19e90210a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e0210b rdf:type chon:HalfMove ; chon:hasSANRecord "Nb6"^^xsd:string ;
chon:providesAgentRole :rolhg19e90210b ; chon:nextHalfMove :hmgam19e0211a .

:rolhg19e90210b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e0211a rdf:type chon:HalfMove ; chon:hasSANRecord "c5"^^xsd:string ;
chon:providesAgentRole :rolhg19e90211a ; chon:nextHalfMove :hmgam19e0211b .

:rolhg19e90211a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

Figure 10.10. (continued from Fig. 10.9) RDF Triples (in Turtle syntax) populating the on-
tology in Fig. 10.1 – continued to Fig. 10.11

:hmgam19e0211b rdf:type chon:HalfMove ; chon:hasSANRecord "Nc4"^^xsd:string ;
chon:providesAgentRole :rolhg19e90211b ; chon:nextHalfMove :hmgam19e0212a .

:rolhg19e90211b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e0212a rdf:type chon:HalfMove ; chon:hasSANRecord "Bc1"^^xsd:string ;
chon:providesAgentRole :rolhg19e90212a ; chon:nextHalfMove :hmgam19e0212b .

:rolhg19e90212a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e0212b rdf:type chon:HalfMove ; chon:hasSANRecord "Nd5"^^xsd:string ;
chon:providesAgentRole :rolhg19e90212b ; chon:nextHalfMove :hmgam19e0213a .

:rolhg19e90212b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e0213a rdf:type chon:HalfMove ; chon:hasSANRecord "Qb3"^^xsd:string ;
chon:providesAgentRole :rolhg19e90213a ; chon:nextHalfMove :hmgam19e0213b .

:rolhg19e90213a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e0213b rdf:type chon:HalfMove ; chon:hasSANRecord "Na5"^^xsd:string ;
chon:providesAgentRole :rolhg19e90213b ; chon:nextHalfMove :hmgam19e0214a .

:rolhg19e90213b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e0214a rdf:type chon:HalfMove ; chon:hasSANRecord "Qa3"^^xsd:string ;
chon:providesAgentRole :rolhg19e90214a ; chon:nextHalfMove :hmgam19e0214b .

:rolhg19e90214a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e0214b rdf:type chon:HalfMove ; chon:hasSANRecord "Nc4"^^xsd:string ;
chon:providesAgentRole :rolhg19e90214b ; chon:nextHalfMove :hmgam19e0215a .

:rolhg19e90214b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e0215a rdf:type chon:HalfMove ; chon:hasSANRecord "Qb3"^^xsd:string ;
chon:providesAgentRole :rolhg19e90215a ; chon:nextHalfMove :hmgam19e0215b .

:rolhg19e90215a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e0215b rdf:type chon:HalfMove ; chon:hasSANRecord "Na5"^^xsd:string ;
chon:providesAgentRole :rolhg19e90215b ; chon:nextHalfMove :hmgam19e0216a .

:rolhg19e90215b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

:hmgam19e0216a rdf:type chon:HalfMove ; chon:hasSANRecord "Qa3"^^xsd:string ;
chon:providesAgentRole :rolhg19e90216a ; chon:nextHalfMove :hmgam19e0216b .

:rolhg19e90216a rdf:type chon:ActingPlayerRole ; chon:performedBy :ag422yt6 .

:hmgam19e0216b rdf:type chon:HalfMove ; chon:hasSANRecord "Nc4"^^xsd:string ;
chon:providesAgentRole :rolhg19e90216b .

:rolhg19e90216b rdf:type chon:ActingPlayerRole ; chon:performedBy :ag79yy12 .

Figure 10.11. (continued from Fig. 10.10) RDF Triples (in Turtle syntax) populating the
ontology in Fig. 10.1

RDF/XML, N-triples, Turtle (which we used in this chapter), RDFa, JSON-LD,
TriG, and N-Quads. Most APIs for manipulating RDF would one to read and
write those serializations formats. This would be sufficient if we just want to do
some offline processing, do not need to pose custom queries to the data, and the
number of triples is not too large that it is feasible to load them all in memory. In
many other situations, we have to store the RDF triples in a triple store. One can
choose any triple store product, both the open source as well as proprietary ones.
Examples of triple stores as well as storage solutions that support storing RDF
data include OpenLink Virtuoso,28 TDB from Apache Jena,29 RDF4J (formerly
known as Sesame), Stardog,30 Redland, GraphDB,31 BrightStarDB,32 Strabon,33
Blazegraph34, Dydra,35, Mulgara,36, CubicWeb,37 AllegroGraph,38, MarkLogic,39
etc. These storage solutions support data retrieval using some query languages.
Most of them support SPARQL and the others support other variants of graph
querying language. Some additionally allows one to set up a SPARQL endpoint
that is directly accessible from the Web typically via some kind of API, such as
REST API.

10.6.1.3. Populating chessonto-view.owl using the populated chessonto.owl

Now that we have generated RDF triples to populate chessonto.owl, we can use
them to populate chessonto-view.owl. The idea is to make use of the shortcuts
we defined in Fig. 10.5. Note that chessonto-view.owl already contains a set
of DL-safe SWRL rules expressing the shortcuts. Thus, one approach is to em-
ploy a SWRL or Datalog reasoner, e.g., Drools40 or RDFox41 to materialize the
conclusions of each of those rules over the combination of the RDF triples and
chessonto-view.owl as the underlying knowledge base, i.e., declaring all URIs
in the RDF triples that are neither a class nor a property to be an OWL named
individual. The materialization will result in a set of generated triples, which can
then be added back to the original set of RDF triples.

Another approach is to either use any RDF API to search for the triples
matching the body of the rules and then generate triples corresponding to the
head of the rules. For example, the first rule in that figure is:

ChessGame(x) ∧ pAR(x, y) ∧WhitePlayerRole(y) ∧ performedBy(y, z)
∧ Agent(z) ∧ hasName(z, s)→ hasWhitePlayer(x, s)

28http://virtuoso.openlinksw.com/
29https://jena.apache.org/documentation/tdb/
30http://stardog.com/
31http://graphdb.ontotext.com/
32http://brightstardb.com/
33http://www.strabon.di.uoa.gr/
34https://www.blazegraph.com/
35http://dydra.com/
36http://www.mulgara.org/
37https://www.cubicweb.org/
38http://franz.com/agraph/allegrograph/
39http://www.marklogic.com/
40http://www.drools.org/
41http://www.cs.ox.ac.uk/isg/tools/RDFox/

http://virtuoso.openlinksw.com/
https://jena.apache.org/documentation/tdb/
http://stardog.com/
http://graphdb.ontotext.com/
http://brightstardb.com/
http://www.strabon.di.uoa.gr/
https://www.blazegraph.com/
http://dydra.com/
http://www.mulgara.org/
https://www.cubicweb.org/
http://franz.com/agraph/allegrograph/
http://www.marklogic.com/
http://www.drools.org/
http://www.cs.ox.ac.uk/isg/tools/RDFox/

?x rdf:type chon:ChessGame ;
chon:providesAgentRole ?y .

?y rdf:type chon:WhitePlayerRole ;
chon:performedBy ?z .

?z rdf:type chon:Agent ;
chon:hasName ?s .

Figure 10.12. Triple patterns for the body of the first rule from Fig. 10.5. The prefix chon:
refers to <https://w3id.org/rdfchess/chessonto#>

CONSTRUCT {
?x chonv:hasWhitePlayer ?s

} WHERE {
?x rdf:type chon:ChessGame ;

chon:providesAgentRole ?y .
?y rdf:type chon:WhitePlayerRole ;

chon:performedBy ?z .
?z rdf:type chon:Agent ;

chon:hasName ?s .
}

Figure 10.13. SPARQL CONSTRUCT query for the first rule from Fig. 10.5. The
prefix chon: and chonv: refer to <https://w3id.org/rdfchess/chessonto#> and
<https://w3id.org/rdfchess/chessonto-view#>, respectively.

The body of this rules can be generally read as a set of triple patterns. That is,
it corresponds to the set of triple patterns given in Fig. 10.12.

One could also run SPARQL CONSTRUCT queries, which can be created
for each rule, on the RDF triples, assuming that they are stored in a triple store.
For example, the above rule can be expressed in the query given in Fig. 10.13.
Running this query will yield a set of triples that can be added back to the original
set of RDF triples, which now also populates chessonto-view.owl.

10.6.2. Alternative approach: Populating Dual Schema from a
Simplified Version to the Complex Version

This approach may be appealing for some data providers because we start by
populating chessonto-view.owl, which represents a simpler version of the dual
schema. To populate chessonto-view.owl directly, the steps are essentially the
same as the ones we took to directly populate chessonto.owl as described in
Section 10.6.1.1. The only notable difference is that we do not need to generate a
URI for WhitePlayerRole, providesAgentRole, Agent, etc. Be mindful that some of
the classes and properties in chessonto-view.owl have the same URIs as those
in chessonto.owl.

The more interesting part of this approach is the subsequent step where we
can populate chessonto.owl based on the populated chessonto-view.owl. This

CONSTRUCT {
?x rdf:type chon:ChessGame ;

chon:providesAgentRole
[rdf:type chon:WhitePlayerRole ;

chon:performedBy
[rdf:type chon:Agent ;

chon:hasName ?s]
] .

} WHERE {
?x chonv:hasWhitePlayer ?s .

}

Figure 10.14. A SPARQL CONSTRUCT query expressing the reverse direc-
tion of the first rule from Fig. 10.5 where blank nodes are generated. The pre-
fix chon: and chonv: refer to <https://w3id.org/rdfchess/chessonto#> and
<https://w3id.org/rdfchess/chessonto-view#>, respectively.

time, however, we cannot use the SWRL rules in chessonto-view.owl, at least
directly, because the process corresponds to the backward direction of the rules.
That is, the triples we have correspond to the head of the rules and we have to
generate new triples that correspond to the body of the rules. Therefore, SWRL
reasoners cannot help us here. Fortunately, we can still approach it via RDF
APIs and SPARQL CONSTRUCT queries. For example, based on the rule:

ChessGame(x) ∧ pAR(x, y) ∧WhitePlayerRole(y) ∧ performedBy(y, z)
∧ Agent(z) ∧ hasName(z, s)→ hasWhitePlayer(x, s)

we can write a SPARQL CONSTRUCT query in Fig. 10.14 that intuitively runs
in the opposite direction of the rule. Running this on the triples populates a part
of chessonto-view.owl. Such a query can generally be created for each rule in
Fig.. 10.5.

Observe that we generate blank nodes for WhitePlayerRole and Agent. If we
wish to generate actual URIs, we need to hard-code parts of the URI namespaces
for the instances of WhitePlayerRole and Agent and employ a number of SPARQL
built-in functions. Generally, this also requires the help of some naming conven-
tion to ensure the unambiguity of the generated URIs within the same namespace.
An example of the SPARQL query is given in Fig. 10.15.

After we generate the triples, we still have to do some post-processing, because
according to chessonto.owl as also depicted in Fig. 10.1, the agent that acts as
the white player (resp. black player) of a chess game should be the same as the
agent that acts as the acting player of the half move of a white player (resp. black
player) in the chess game.

For example, using the example of the chess game discussed in this chapter
(as given by Fig. 10.7) and the SPARQL CONSTRUCT queries that generate
blank nodes (the query in Fig. 10.14 and another similar query that is based on
last rule in Fig. 10.5), we would have generated the triples in Fig. 10.16 where
:gm123 is the URI representing the instance of ChessGame that corresponds to

CONSTRUCT {
?x rdf:type chon:ChessGame ;

chon:providesAgentRole ?roleuri .
?roleuri rdf:type chon:WhitePlayerRole ;

chon:performedBy ?agenturi .
?agenturi rdf:type chon:Agent ;

chon:hasName ?s .
} WHERE {

?x chonv:hasWhitePlayer ?s .
BIND (STRUUID() AS ?roleid)
BIND (STRUUID() AS ?agentid)
BIND (URI(CONCAT("https://w3id.org/rdfchess/id/", "rol", ?roleid))

AS ?roleuri)
BIND (URI(CONCAT("https://w3id.org/rdfchess/id/", "ag", ?agentid))

AS ?agenturi)
}

Figure 10.15. A SPARQL CONSTRUCT query expressing the reverse direction of
the first rule from Fig. 10.5 that generates actual URIs, instead of blank nodes.
The prefix chon: and chonv: refer to <https://w3id.org/rdfchess/chessonto#> and
<https://w3id.org/rdfchess/chessonto-view#>, respectively. We use, as a part of naming
convention, the string “rol” and “ag” as the initial part of the name of instances of AgentRole
and Agent, respectively.

the discussed chess game and :move1 is the URI representing the instance of
HalfMove that corresponds to the first half move of the chess game, while _:x,
_:x1, _:y, _:y1 are all blank nodes. There, the blank nodes _:x and _:y must
correspond to the same instance of Agent. Thus, we need to replace _:x with _:y
or vice versa.

An analogous post-processing also needs to be done if we employ the SPARQL
CONSTRUCT queries that generate actual URIs.

10.6.3. Redundancy in the Data and Linking with Other RDF Data

We now obtained a linked dataset that populate the dual schema. One problem
that may still happen is redundancy inside the data, especially if the RDF triples
are programmatically generated from the PGN files. This redundancy is mainly
caused by the fact that two different PGN files may contain the same information
that is expressed using different string values. One obvious example is the name
of chess players. PGN Specification does not specify a fixed format for a chess
player’s name. One PGN file may contain “Carlsen, Magnus”, while another
may contain “Magnus Carlsen”, and both refer to the same chess player Magnus
Carlsen. If we can find two URIs that should correspond to the same entity, we
can assert a link (i.e., as a triple) between these two entities using owl:sameAs
predicate or weaker predicates such as the ones from the SKOS vocabulary.42

The above problem also extends to a more general problems of linking with
42http://www.w3.org/2004/02/skos/core

http://www.w3.org/2004/02/skos/core

:gm123 rdf:type chon:ChessGame ;
chon:providesAgentRole _:x1 .

_:x1 rdf:type chon:WhitePlayerRole ;
chon:performedBy _:x .

_:x rdf:type chon:Agent ;
chon:hasName "Carlsen, Magnus"^^xsd:string .

:gm123 chon:hasHalfMove :move1 .
:move1 chon:providesAgentRole _:y1 .
_:y1 rdf:type chon:ActingPlayerRole ;

chon:performedBy _:y .
_:y rdf:type chon:Agent ;

chon:hasName "Carlsen, Magnus"^^xsd:string .

Figure 10.16. Example RDF triples that need post-processing: _:x and _:y must correspond
to the same instance of Agent.

other linked datasets in the Linked Open Data Cloud.43 The latter is important
to make our linked dataset truly in the five-star category [7]. As an example,
we shall augment our dataset with links to some other linked dataset in the
LOD Cloud. The simplest one to pick is DBpedia dataset, which is based on
Wikipedia infoboxes. If we inspect our dataset, we can intuitively guess that
a few pieces of information correspond to real world entities that may appear
in Wikipedia. In particular, we may be able to find information about chess
players, the chess tournaments, and location of the chess tournaments in DBpedia
since those information are likely to be available in Wikipedia. With regards to
the RDF triples we generated in this chapter, we find the following URIs from
DBpedia datasets:

• http://dbpedia.org/resource/Magnus_Carlsen representing the chess
player Magnus Carlsen;
• http://dbpedia.org/resource/Viswanathan_Anand representing the
chess player Viswanathan Anand;
• http://dbpedia.org/resource/World_Chess_Championship_2013 repre-
senting the World Chess Championship 2013;
• http://dbpedia.org/resource/Chennai representing the city of Chen-
nai, India.

Hence, we can enrich our dataset by adding triples given in Fig. 10.17 to the ones
we already obtained in Fig. 10.8, 10.9, 10.10, and 10.11.

One could easily see that finding links to other linked datasets as exemplified
above can also be understood as detecting whether two URIs refer to the same
entity. In our example above, we are quite fortunate since we are able to find the
corresponding URIs in DBpedia manually. If we want to do this to every set of
triples we generated from the PGN files, then we need to do it programmatically,
and the general computational problem corresponds to the so-called coreference
resolution, which is beyond the scope of this chapter. Nevertheless, this section

43http://lod-cloud.net/

http://dbpedia.org/resource/Magnus_Carlsen
http://dbpedia.org/resource/Viswanathan_Anand
http://dbpedia.org/resource/World_Chess_Championship_2013
http://dbpedia.org/resource/Chennai
http://lod-cloud.net/

:ag422yt6 owl:sameAs <http://dbpedia.org/resource/Magnus_Carlsen> .
:ag79yy12 owl:sameAs <http://dbpedia.org/resource/Viswanathan_Anand> .
:tou23as5 owl:sameAs <http://dbpedia.org/resource/World_Chess_Championship_2013>
:pla537es8 owl:sameAs <http://dbpedia.org/resource/Chennai>

Figure 10.17. Links to DBpedia data using owl:sameAs where the prefix owl: refers to
<http://www.w3.org/2002/07/owl#>. If owl:sameAs is felt too strong, one can use other linking
vocabulary such as the one from SKOS.

demonstrates the advantage of Linked Data for combining and integrating our
chess dataset with other existing datasets.

10.6.4. Serving the Data on the Web

We can publish the triples we just generated as a downloadable file (RDF dumps)
and putting it somewhere accessible by everyone on the Web. We assume that
the ontologies as well as the vocabulary terms are all Web-dereferenceable. So,
we just need to ensure that other URIs appearing in any of the RDF triple, which
is of the form https://w3id.org/rdfchess/id/ssss, are Web-dereferenceable.
This can be achieved by setting up an appropriate content negotiation so that
whenever such URIs are requested, the RDF dump is returned. This is certainly
a very crude way to serve the data, though arguably already satisfies the Linked
Data principles.

A nicer way, albeit putting more burden on the data provider, is to set up a
Linked Data infrastructure that host the RDF triples. The backend of such an
infrastructure is typically a triple store that we already touched upon in one of the
earlier section, although other types of database are also possible. The triple store
is accessible from one or more endpoints that accept queries from users, usually
expressed in SPARQL. On top of a SPARQL endpoint, one can then set up a
front-end that, with appropriate Web server configuration, can handle content
negotiation nicely. In addition, such a front-end allows one to either perform
a follow-your-nose browsing of the data or formulate custom queries directly on
the data. More fancy front-ends also provides visualization functionalities. One
can certainly develop such a front-end in-house, but there are examples of front-
end products that one can also use or adapt, e.g., Linked Media Framework,44
D2RQ,45 Pubby,46 OpenLink Virtuoso’s front-end,47 PublishMyData,48 Linked
Data Fragments,49 Exhibit,50 etc.

44https://bitbucket.org/srfgkmt/lmf/
45http://d2rq.org/; intended to provide access to relational databases as virtual RDF graphs
46http://wifo5-03.informatik.uni-mannheim.de/pubby/
47http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

VirtDeployingLinkedDataGuide_UsingVirtuoso
48http://www.swirrl.com/
49http://linkeddatafragments.org/
50http://www.simile-widgets.org/exhibit3/

https://bitbucket.org/srfgkmt/lmf/
http://d2rq.org/
http://wifo5-03.informatik.uni-mannheim.de/pubby/
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtDeployingLinkedDataGuide_UsingVirtuoso
http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtDeployingLinkedDataGuide_UsingVirtuoso
http://www.swirrl.com/
http://linkeddatafragments.org/
http://www.simile-widgets.org/exhibit3/

10.7. Conclusion

This chapter presented a rather high-level description on the steps that one needs
to take to publish Linked Data that is based on Ontology Design Patterns. Some
technical pointers also have been provided. Obviously, we do not cover more spe-
cific technical details, which can normally be obtained from the documentation
of the Linked Data infrastructure products that we refered to earlier. A rather
prominent issue that we do not address concerns the possible redundancy of infor-
mation particularly if we wish to generate one large linked dataset that cover not
just one particular PGN file, but rather, a large collection of ones, e.g., the whole
collection of PGN files from PGN Mentor. The way we generated RDF triples
as discussed in this chapter assumes that for each PGN file, we generate a new
URI for the chess tournament, the chess players (as instances of Agent), location
of the tournament (as instance of Place), the author of the game description (as
instance of Agent), and the chess opening that has its own ECO code. It is rather
easy to see that those entities may occur across different PGN files, e.g., there
may be more than one PGN files in which Magnus Carlsen appears as either the
white or black player.

To address this redundancy, we can modify the procedure of generating RDF
triples so that we do not look at one PGN file as an isolated data source, but look
at one collection of PGN files as a whole. When generating the triples, we then
need to reuse URIs for a particular entity (players, tournaments, places, etc.) if
we encountered one that we have seen in the collection before. Alternatively, we
can still consider each PGN file by itself, and after we finish processing all PGN
files, we perform a post-processing step where we search for URIs that represent
the exact same entity, and then add an owl:sameAs triple for each pair of such
URIs. Both alternatives, however, boil down to coreference resolution problem,
which generally may not be trivial, and thus, is beyond the scope of this chapter.

Acknowledgements. This work was partially supported by the National Science
Foundation under award 1440202 EarthCube Building Blocks: Collaborative Pro-
posal: GeoLink – Leveraging Semantics and Linked Data for Data Sharing and
Discovery in the Geosciences, by the EC under the International Research Staff
Exchange Scheme (IRSES) of the EU Marie Curie Actions, project SemData –
Semantic Data Management, and by the Spanish Ministry of Economy and Com-
petitiveness (project TIN2013-46238-C4-2-R).

Bibliography

[1] P. Archer, N. Loutas, S. Goedertier, and S. Kourtidis. Study on persistent
URIs with identification of best practices and recommendations on the topic
for the Member States and the European Commission, June 24, 2013. Avail-
able at http://philarcher.org/diary/2013/uripersistence/.

[2] O. Bartlett. Linked Data: Connecting together the BBC’s online content.
BBC Internet Blog, February 13, 2013. Available at http://www.bbc.co.
uk/blogs/internet/entries/af6b613e-6935-3165-93ca-9319e1887858.

http://philarcher.org/diary/2013/uripersistence/
http://www.bbc.co.uk/blogs/internet/entries/af6b613e-6935-3165-93ca-9319e1887858
http://www.bbc.co.uk/blogs/internet/entries/af6b613e-6935-3165-93ca-9319e1887858

[3] O. Bartlett. Olympic Data services and the interactive video player. BBC
Internet Blog, July 31, 2012. Available at http://www.bbc.co.uk/blogs/
internet/entries/92c2ec84-6ec0-33f2-9dc7-0f915d28ff52.

[4] W. Beek, L. Rietveld, H. R. Bazoobandi, J. Wielemaker, and S. Schlobach.
LOD laundromat: A uniform way of publishing other people’s dirty data. In
P. Mika, T. Tudorache, A. Bernstein, C. Welty, C. A. Knoblock, D. Vran-
decic, P. T. Groth, N. F. Noy, K. Janowicz, and C. A. Goble, editors, The
Semantic Web – ISWC 2014 – 13th International Semantic Web Conference,
Riva del Garda, Italy, October 19-23, 2014. Proceedings, Part I, volume 8796
of Lecture Notes in Computer Science, pages 213–228. Springer, 2014.

[5] T. Berners-Lee. Web security - "HTTPS Everywhere" harmful. Avail-
able at https://www.w3.org/DesignIssues/Security-NotTheS.html, 15
February 2012.

[6] T. Berners-Lee. URIs for W3C Namespaces. W3C Technical Report Publi-
cation Policies, 25 April 2006. Available at https://www.w3.org/2005/07/
13-nsuri.

[7] T. Berners-Lee. Linked data. Available at https://www.w3.org/
DesignIssues/LinkedData.html, 27 July 2006.

[8] E. Blomqvist, P. Hitzler, K. Janowicz, A. Krisnadhi, T. Narock, and
M. Solanki. Considerations regarding ontology design patterns. Semantic
Web, 7(1):1–7, 2015.

[9] P. Davidson. Designing URI sets for the UK Public Sector: A re-
port from the Public Sector Information Domain of the CTO Council’s
cross-government enterprise architecture. Interim paper version 1.0,
Chief Technology Officer Council, October 2009. Available at https:
//www.gov.uk/government/uploads/system/uploads/attachment_data/
file/60975/designing-URI-sets-uk-public-sector.pdf; Last accessed:
May 12, 2016.

[10] D. A. Ferrucci, E. W. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyan-
pur, A. Lally, J. W. Murdock, E. Nyberg, J. M. Prager, N. Schlaefer, and
C. A. Welty. Building Watson: An overview of the DeepQA project. AI
Magazine, 31(3):59–79, 2010.

[11] S. Harris and A. Seaborne, editors. SPARQL 1.1 Query Language. W3C
Recommendation, 21 March 2013. Available at https://www.w3.org/TR/
sparql11-query/.

[12] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data
Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Pub-
lishers, 2011.

[13] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. W3C Member Submission, 21 May 2004. Available from http:
//www.w3.org/Submission/SWRL/.

[14] B. Hyland, G. Atemezing, and B. Villazón-Terrazas, editors. Best Practices
for Publishing Linked Data. W3C Working Group Note, 09 January 2014.
Available at https://www.w3.org/TR/ld-bp/.

[15] K. Janowicz, P. Hitzler, B. Adams, D. Kolas, and C. Vardeman. Five stars
of linked data vocabulary use. Semantic Web, 5(3):173–176, 2014.

http://www.bbc.co.uk/blogs/internet/entries/92c2ec84-6ec0-33f2-9dc7-0f915d28ff52
http://www.bbc.co.uk/blogs/internet/entries/92c2ec84-6ec0-33f2-9dc7-0f915d28ff52
https://www.w3.org/DesignIssues/Security-NotTheS.html
https://www.w3.org/2005/07/13-nsuri
https://www.w3.org/2005/07/13-nsuri
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/60975/designing-URI-sets-uk-public-sector.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/60975/designing-URI-sets-uk-public-sector.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/60975/designing-URI-sets-uk-public-sector.pdf
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
https://www.w3.org/TR/ld-bp/

[16] A. Krisnadhi. Ontology Pattern-Based Data Integration. PhD thesis, Wright
State University, 2015.

[17] A. Krisnadhi and P. Hitzler. Modeling with Ontology Design Patterns: Chess
games as a worked example. In A. Gangemi, P. Hitzler, K. Janowicz, A. Kris-
nadhi, and V. Presutti, editors, Ontology Engineering with Ontology Design
Patterns: Foundations and Applications, Studies on the Semantic Web. IOS
Press, 2016. In this volume.

[18] A. Krisnadhi, F. Maier, and P. Hitzler. OWL and Rules. In A. Polleres
et al., editors, Reasoning Web. Semantic Technologies for the Web of Data
– 7th International Summer School 2011, Tutorial Lectures, volume 6848 of
Lecture Notes in Computer Science, pages 382–415. Springer, Heidelberg,
2011.

[19] A. A. Krisnadhi, P. Hitzler, and K. Janowicz. On the capabilities and limi-
tations of OWL regarding typecasting and ontology design pattern views. In
V. A. M. Tamma, M. Dragoni, R. Gonçalves, and A. Lawrynowicz, editors,
Ontology Engineering - 12th International Experiences and Directions Work-
shop on OWL, OWLED 2015, co-located with ISWC 2015, Bethlehem, PA,
USA, October 9-10, 2015, Revised Selected Papers, volume 9557 of Lecture
Notes in Computer Science, pages 105–116. Springer, 2015.

[20] M. Krötzsch, F. Maier, A. A. Krisnadhi, and P. Hitzler. A better uncle for
OWL: Nominal schemas for integrating rules and ontologies. In S. Sadagopan,
K. Ramamritham, A. Kumar, M. Ravindra, E. Bertino, and R. Kumar, ed-
itors, Proceedings of the 20th International World Wide Web Conference,
WWW2011, Hyderabad, India, March/April 2011, pages 645–654. ACM,
New York, 2011.

[21] F. Maier. A primer on RDF and OWL. In A. Gangemi, P. Hitzler, K. Janow-
icz, A. Krisnadhi, and V. Presutti, editors, Ontology Engineering with Ontol-
ogy Design Patterns: Foundations and Applications, Studies on the Semantic
Web. IOS Press, 2016. In this volume.

[22] E. Montiel-Ponsoda, D. Vila-Suero, B. Villazón-Terrazas, G. Dunsire, E. E.
Rodriguez, and A. Gómez-Pérez. Style guidelines for naming and labeling
ontologies in the multilingual web. In T. Baker, D. I. Hillmann, and A. Isaac,
editors, Proceedings of the 2011 International Conference on Dublin Core and
Metadata Applications, DC 2011, The Hague, The Netherlands, September
21-23, 2011, pages 105–115. Dublin Core Metadata Initiative, 2011.

[23] J. Rayfield. BBC World Cup 2010 dynamic semantic publishing. BBC
Internet Blog, July 12, 2010. http://www.bbc.co.uk/blogs/bbcinternet/
2010/07/bbc_world_cup_2010_dynamic_sem.html.

[24] L. Rietveld, W. Beek, R. Hoekstra, and S. Schlobach. Meta-data for a lot of
LOD. Semantic Web, 2016. Conditionally accepted for publication.

[25] V. Rodríguez-Doncel, A. Gómez-Pérez, and N. Mihindukulasooriya. Rights
declaration in linked data. In O. Hartig, J. Sequeda, A. Hogan, and T. Mat-
sutsuka, editors, Proceedings of the Fourth International Workshop on Con-
suming Linked Data, COLD 2013, Sydney, Australia, October 22, 2013, vol-
ume 1034 of CEUR Workshop Proceedings. CEUR-WS.org, 2013.

[26] V. Rodríguez-Doncel, A. A. Krisnadhi, P. Hitzler, M. Cheatham, N. Karima,
and R. Amini. Pattern-based linked data publication: The linked chess

http://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html
http://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html

dataset case. In O. Hartig, J. Sequeda, and A. Hogan, editors, Proceedings
of the 6th International Workshop on Consuming Linked Data co-located
with 14th International Semantic Web Conference (ISWC 2105), Bethlehem,
Pennsylvania, US, October 12th, 2015., volume 1426 of CEUR Workshop
Proceedings. CEUR-WS.org, 2015.

[27] L. Sauermann and R. Cyganiak, editors. Cool URIs for the Semantic Web.
W3C Interest Group Note, 03 December 2008. Available at https://www.
w3.org/TR/cooluris/.

[28] M. Schmachtenberg, C. Bizer, and H. Paulheim. State of the LOD cloud
2014. http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/, 30
August 2014.

[29] E. Winter. Copyright on chess games. http://www.chesshistory.com/
winter/extra/copyright.html, 1987.

[30] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and S. Auer.
Quality assessment for linked data: A survey. Semantic Web, 7(1):63–93,
2016.

https://www.w3.org/TR/cooluris/
https://www.w3.org/TR/cooluris/
http://www.chesshistory.com/winter/extra/copyright.html
http://www.chesshistory.com/winter/extra/copyright.html

