
Title: Web Ontology Language (OWL)
Authors: Kunal Sengupta1, Pascal Hitzler1

Affil./Addr.: Wright State University, Kno.e.sis Center
377 Joshi Research Center, 3640 Colonel Glenn Highway, Dayton, OH 45435,
U.S.A
Phone: (937)775-5217
E-mail: kunal@knoesis.org, pascal.hitzler@wright.edu

Web Ontology Language (OWL)

Glossary

KR: Knowledge representation.
Ontology: A set of facts and axioms using a KR language.
OWL: Web Ontology Language.
Inference: Derived knowledge from an ontology.
Expressivity: The level of detail to which data can be modeled.

Definition

Web Ontology Language (OWL) is a core world wide web consortium [W3C] standard Knowledge
representation language for the Semantic Web. The term Knowledge representation in general refers
to the method of modeling the knowledge about the real world entities and relations. OWL is a highly
expressive, flexible and efficient knowledge representation language, that can be used to model back-
ground knowledge about domains e.g. Health care, Social Network, Automobiles. OWL is derived from
a well known family of logics called Description Logics (DLs) [Baader, 2007], and therefore, offers a
well-defined semantics to the language. A key advantage of using OWL and other logic based modeling
languages is that these languages support many reasoning services. Reasoning is a method of process-
ing background (explicit) knowledge and infer implicit information. E.g. consider the statements, every
Father is a Male and Alex is a Father, then an OWL reasoner can reason with this knowledge and infer
that Alex is a Male. OWL semantics supports the open world assumption (OWA), that follows the
notion that knowledge about the world at any point of time is incomplete, in other words things that
are not known to be true are not necessarily false. OWA is suitable for applications on the world wide
web setting where the information is ever increasing. The current version of OWL called OWL 2, be-
came a W3C standard in 2009, it is more expressive than its predecessor OWL 1 (2004). [Motik, 2009]
provides more information about the differences between OWL 1 and OWL 2 versions. The following
section presents an overview of the OWL 2 syntax.

OWL 2 overview

This section provides an insight to the reader about the OWL 2 syntax and to some extent covers the
various constructs available in OWL 2. This by no means is an exhaustive coverage of OWL syntax
and we advise the reader to look at [Motik, 2009, Hitzler, 2009] to obtain further details. It should
be noted that there are many syntaxes available for OWL 2 and tools that translate from one syntax
to another. RDF/XML is the most common and recommended syntax for OWL 2 documents, which
will be used througout this article to demonstrate some of the constructs.



2

Basic constructs

The most fundamental element of an OWL 2 ontology is an IRI (Internationl resource identifier),
each real world entity is represented by an IRI. Most often IRIs are quiet long, RDF/XML syntax
(and other syntaxes) provides a method to abbreviate the IRIs in the beginning of the document such
that the abbreviation can be used to represent the entities in the rest of the document for convenient
authoring and ease of readability. Classes, properties (or roles), individuals and datatypes are the
basic building blocks of OWL 2. Classes represent the conceptual entities in a domain, e.g. Author,
Paper, Contributor, etc. Instances of classes are called individuals e.g. Mark is an Individual that
belongs to the class Author. Properties are binary relations, there are two kinds of OWL 2 properties
- OWLDataProperty, that represents relationships between (individual, datatype) pairs e.g. hasName,
hasTitle, and OWLObjectProperty, that represents relationships between (individual, individual) pairs
e.g. hasAuthor is a relationship between instances of Paper and instances of Author. Below are some
examples of basic constructs in OWL 2.

< owl : Class rdf : about = ”Author”/ > (1)

< owl : Class rdf : about = ”Paper”/ > (2)

< owl : ObjectProperty rdf : about = ”hasAuthor”/ > (3)

< owl : DatatypeProperty rdf : about = ”hasName”/ > (4)

< Author rdf : about = ”Bob”/ > (5)

< rdf : Descrition rdf : about = ”Bob” >
< rdf : type rdf : resource = ”Author”/ >

< /rdf : Description” >
(6)

Axioms (1) and (2) state that Author and Paper are concepts represented by OWL 2 Class.
Whereas, axiom (3) and (4) state that hasAuthor is an object property and hasName is a data property.
Axiom (5) and (6) are two different ways to assert that the individual Bob is an instance of class Author.
Note that in RDF/XML serailization there are several ways to write an axiom, in this document we
will choose the shortest possible form.

Class relations and constructors

For many domains taxonmy is an essential modeling requirement. A taxonomical hierarchy can be
generated by modeling simple relations between classes using subclass, equivalent class, disjoint class
axioms, and between properties using sub property, equivalent property and disjoint property axioms.
These constructs help in modeling statements like (1) every Author is a Contributor (i.e Author

is subclass of Contributer), (2) every Author is a Writer and vice versa (i.e Author and Writer

are equivalent classes), and (3) an Author is not a Subscriber and vice versa (i.e. Author and
Subscriber are disjoint classes). Some predefined classes are offered in OWL 2 which are useful to
define hierarchies. < owl : Thing > is defined as the topmost class, i.e. all classes are subclasses of
this class. Its complementary class < owl : Nothing > is the bottom class, i.e. it is the subclass of all
classes. Likewise, top and bottom properties are defined for both object and data properties.

OWL 2 constucts are not limited to defining taxonomies, constructs known as complex class
expressions that are very useful to expressively describe classes in terms of a combination of other
classes having certain properties. Following are the basic OWL 2 complex class constructors, C, D,
and E should be read as class names:

• <owl : intersectionOf> (conjunction) - Used to define a class C that is the intersection of
two other classes D and E. Semantically, members of class C are members of both the classes
D and E.

• <owl : unionOf> (disjunction) - Used to define a class C in terms of two other classes D and
E such that, it contains all the members that belong to either class D or class E or both.

• <owl : complementOf> (negation) - Used to define a class C in terms of another class D such
that, members of class C are not the members of class D.



3

Even more complex class expressions can be formulated by using the Property Restrictions in
conjunction with the above constructors. As the name suggests these restrictions are used to impose
constraints on the property that a class may have. Property restrictions are useful in expressing
statements of the form ”every Paper should have atleast one Author”. OWL 2 provides the following
property restrictions:

• <owl : allValuesFrom>

• <owl : someValuesFrom>

• <owl : maxQualifiedCardinality>

• <owl : minQualifiedCardinality>

• <owl : qualifiedCardinality>

The example below is used to demonstrate the usage of <owl : someValuesFrom> property
restriction. In this example, a paper is defined to be a subclass of an anonymous class which is defined
using property restriction (enclosed between <owl : Restriction> and </owl : Restriction>). It
is the OWL 2 syntax representation of the sentence ”every paper should have atleast one author”.
Other property restictions can be used using similar syntax.

< owl : Class rdf : about = ”Paper” >
< rdfs : subClassOf >
< owl : Restriction >
< owl : onProperty rdf : resource = ”hasAuthor”/ >
< owl : someValuesFrom rdf : resource = ”Author”/ >

< /owl : Restriction >
< rdfs : subClassOf >

< /owl : Class >

(7)

Property relations and characteristics

Properties play an important role in OWL ontologies, OWL 2 vocabulary consists of several terms
which can be used to describe relationships between properties. Properties can also be related to
one another using the terms <rdfs : subPropertyOf>, <rdfs : equivalentProperty>, <rdf :

inverseOf>. Semantically, if property p1 is subproperty of p2, then all pairs for which p1 holds,
p2 also holds. If p1 is equivalent to p2 then p1 is subproperty of p2 and p2 is subproperty of p1. If
property p1 is inverse of property p2 then if p1 holds for a pair (x, y) of individuals then p2 holds for
(y, x). In OWL roles constructors like conjunction, disjunction and negation are not available, however,
OWL 2 provides a construct called property chains (or role chains) which is often useful in modeling
complex properties. Using property chains we can model statements of the form ”if an individual x
has father as individual y and y has brother as individual z, then x has uncle as individual z.

Properties in OWL can be declared to have some characteristics like domain, range, transitive,
reflexive, assymetric and irreflexive.

Reasoning in OWL

As mentioned before, OWL 2 inherently supports reasoning with background knowledge (explicitly
described in an ontology) and infer more (implicit) knowledge. An OWL 2 reasoner is a piece of
software that performs the reasoning on an OWL ontology using the well defined semantics of OWL
2. Most reasoners support the following reasoning services:

• Ontology satisfiability: The reasoner checks if the input ontology is consistent (free of contra-
diction), a condradication occurs when an ontology has two statements that are incosistent
taken togther. e.g. author1 is an instance of class Author and author1 is an instance of negation
of class Author.

• Instance checking: Given a class C and individual a, check whether a is an instance of class
C.

• Class satisfiability: Given a class C, check whether it has any instance. A class is inconsistent
if it has no instance.

• Subsumption: Given two classes C and D check whether C is a subclasss of D.
• Classification: Given an ontology, generate all subclass relationships.



4

OWL 2 DL profiles

OWL 2 provides flexibility to the ontology curators to choose from the profiles (or sublanguages)
of OWL 2, on the basis of expressivity and scalability requirements. The more expressive profiles
of OWL 2 are theoretically proven to have higher computational complexity that those with lower
expressive power. The most expressive OWL 2 profile with guaranteed decidability of reasoning task
is the OWL 2 DL profile for which the worst case computational complexity of reasoning tasks fall in
the complexity class N2EXP-TIME-complete. Some lesser but sufficiently useful expressive profiles of
OWL 2 provide polynomial time computation guarantee for the reasoning tasks. Below is the listing
of the OWL 2 profiles:

• OWL 2 EL: The computational complexity of standard inferencing tasks in OWL 2 EL is
polynomial time. It is mainly useful for applications that have large class and property hi-
erarchies and don’t require the more complex OWL constructs. SNOMED CT is a medical
ontology which comes under the OWL 2 EL profile.

• OWL 2 QL: This profile was mainly designed to support conjunctive query answering on
relational database systems. The standard inferencing tasks in OWL 2 QL also have the
worst case computational complexity of polynomial time.

• OWL 2 RL: This profile allows for rule based systems to perform the reasoning in polynomial
time. It has been designed for systems that are implemented using rule based engines. It also
provides some interoperability with other rule base KR languages.

• OWL 2 DL: Is the profile with maximum expressivity while retaining computational decidabil-
ity, soundness and completeness. The formal foundations of OWL 2 DL is based on description
logics SRIOQ(D) [Horrocks, 2006] language.

• OWL 2 FULL: This is the most expressive OWL 2 profile which comprises of all of OWL
2 DL and RDF(S) constructs with no restrictions. However, there is no guarantee that the
reasoning process on an ontology written in this profile would terminate.

Conclusion

In this article we have introduced OWL 2 starting with the definition of the subject, then a brief
overview of OWL 2 syntax, and some coverage on reasoning and OWL 2 profiles. The content of this
article is at the introductory level and we suggest the reader to use the Recommended Reading section
as a guide to obtain further insight on this topic.

Cross-References

• Description Logics (00108)
• Linked Open Data (00111)
• RDF (00114)
• Reasoning (00115)
• RIF: The Rule Interchange Format (00118)
• Semantic Annotation (00119)

Acknowledgements

This work was supported by the National Science Foundation under award 1017225 “III: Small:
TROn—Tractable Reasoning with Ontologies,”

References

[W3C] World Wide Web Consortium - http://www.w3.org/. Accessed, 7 April 2013.



5

[Baader, 2007] Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider, eds. (2007) The Description
Logic Handbook. Cambridge University Press.

[Motik, 2009] Boris Motik, Peter F. Patel-Schneider, Bijan Parsia, eds. (2009) OWL 2 Web Ontology Lan-
guage: Structural Specification and Functional-Style, http://www.w3.org/TR/2009/REC-owl2-syntax-
20091027/. Latest version available at http://www.w3.org/TR/owl2-syntax/. Accessed, 7 April 2013.

[Hitzler, 2009] Hitzler P, Krötzsch M, and Rudolph S (2009) Foundations of Semantic Web Technologies.
Chapman & Hall/CRC.

[Horrocks, 2006] Horroks I, Kutz O, and Sattler U (2006) The Even More Irresistible SROIQ. In Proc. of the
10th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2006). AAAI Press, 2006.

Recommeded Reading

• The main website for OWL - http://www.w3.org/2007/OWL. Accessed, 7 April 2013.
• OWL 2 overview page (with details about differnces between OWL 1 and OWL 2) -

http://www.w3.org/TR/2009/WD-owl2-overview-20090327/.
• The OWL 2 primer - http://www.w3.org/TR/owl2-primer/. Accessed, 7 April 2013.
• More detailed discussion on OWL 2 profiles can be found at - http://www.w3.org/TR/owl2-

profiles/. Accessed, 7 April 2013.
• [Hitzler, 2009], provides thorough coverage of OWL syntax and semantics.
• [Horrocks, 2006] is the landmark paper on SROIQ, which forms the basis for the OWL 2

language specs.


