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ABSTRACT
The relation between data, annotations, and schemata seems
straightforward at first: Data are annotated with additional
meta information according to some schemata in order to ex-
pose additional non-intrinsic characteristics relevant to the
meaningful interpretation of said data. However, on closer
examination, things are not as simple. Focusing on geo-
information retrieval, we will try to disentangle the afore-
mentioned relations. We will report from our own experi-
ence and from observations gathered by editing papers about
ontologies and Linked Data for the Semantic Web journal.
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Introduction
After peeling of the jargon, Linked Data is less about spe-
cific technologies but about a paradigm shift. Today’s Web
is about documents and simple links between them. These
documents providing the structure and context for the inher-
ent data and, thus, support their interpretation. In contrast,
Linked Data are not bound to a specific document but can be
freely combined outside of their original creation context. In
theory, one can use Linked Data to answer complex queries
that span multiple repositories and establish new links be-
tween data. Unfortunately, receiving meaningful results is
more difficult than one may expect. While uncoupling data
from documents eases accessibility it puts the burden on
their interpretation. In theory, ontologies are supposed to
provide reference frames to overcome these difficulties.

In a nutshell, our argumentation is as follows. We be-
lieve that the sweet spot for ontologies is still un-
clear. Are ontologies an additional layer on top of data
models; are they data models themselves; are Linked Data
entities instances of ontological classes or just annotated us-
ing ontologies which exist in their own realm; what difference
does this make; what is the role of semantics & reasoning for
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querying and information retrieval; are labels all we need?
While we cannot answers all these questions, we will illus-
trate the relation to data models and the role of semantics.

Ontologies and Data Models
While the term data model/schema is overloaded, we will
follow the established tradition [9] to differentiate data mod-
els into conceptual models concerned with types of entities
and their relationships on an abstract level, the more con-
crete logical models that introduce attributes, cardinalities,
and so forth, without enforcing a particular implementation,
and physical models which are implementation specific, e.g.,
by assigning primitive data types to attributes. Intuitively,
ontologies are an additional layer on top of conceptual mod-
els. While conceptual models are not implementation spe-
cific, they are purpose-driven nonetheless. Thus, it has been
argued that an additional layer of abstraction is required
which is independent of specific applications, tasks, or view-
points. It is often said that ontologies model the world, i.e.,
what exists. Similarly as logical models rest upon conceptual
models, the latter should build upon ontologies. This can
either be realized by extending & instantiating ontologies,
or by relating to them, i.e., by semantic annotations.

(I) In the first case, conceptual models use classes and
relations from ontologies and extend them to introduce
purpose-specific aspects. For example, an ontology may de-
fine a Place Of Interest (POI) class and conceptual models
may subclass it in different ways depending on whether they
are used for a navigation system or a historical gazetteer.
Entities such as the French Press Cafe in Santa Barbara,
are instances of these classes. Intuitively, for this to func-
tion, such ontologies must be universal enough to act as a
common foundation for different, purpose-driven conceptual
models. At the same time they should not be overly generic
to a degree where no interesting statements about the de-
fined classes and relations are made. In the literature [4],
these ontologies are known as top-level or foundational on-
tologies. In practice, however, it turns out that their level
of abstraction is not suitable anymore for many use cases
and certainly not for information retrieval. These ontologies
introduce classes such as Endurant and Perdurant together
with numerous complex ontological commitments. Conse-
quently, additional types of ontologies have been proposed
that rest upon the foundational level but are more tangible,
namely domain, task, and application ontologies. Unfor-
tunately, this does not address the real problems. First,
how would such ontologies differ from conceptual models?
Secondly, the emerging, constructed, cultural, and highly



contextual nature of meaning, does not harmonize well with
static, context-free, and highly abstract foundational ontolo-
gies. Thus, based on our observations, it is not surprising
that these ontologies only play a marginal role for Linked
Data.

Alternatively one can argue that ontologies are concep-
tual models. In this case, one would expect that they re-
main on an abstract level and do not introduce attributes,
cardinality constraints, and so forth. However, today’s Se-
mantic Web knowledge representation languages, such as the
Web Ontology Language (OWL) or the Resource Descrip-
tion Framework Schema (RDFS), go even further by include
XML Schema data types. These languages are clearly suit-
able for physical models and many ontologies make heavy
use of data type properties. In fact, the distinction between
different data model layers got lost in the Semantic Web
community over the years; cf. [7]. This does not necessarily
mean that one would need yet another modeling language;
these aspects can be approached from a methodological per-
spective, e.g., by modeling patterns [2].

The real issue are not representation languages but that
models of the physical world do not necessarily make
for good data models; cf. [1]. For example, comparing
the definition of Person in the Dolce Ultra Light (DUL) on-
tology1 to schema.org one will notice that the latter lists
givenName, telephone number, and spouse among other
properties while DUL does not. The difference between
modeling the physical world and data models becomes even
more clear from an information retrieval perspective. An on-
tology engineer would argue that telephone numbers are not
properties of persons but of devices in possession by these
persons and model this accordingly. While this is certainly
true, querying Linked Data based on such an ontology us-
ing the SPARQL Protocol and RDF Query Language would
be cumbersome. Instead of matching against a single triple,
one would have to retrieve the devices first and then query
for their numbers. In almost all cases these devices are of
no interest but would have to be introduced nonetheless –
just imagine a phone book would have to list such devices.

(II) In the second case, data do not directly instantiate
classes but are annotated using classes from an ontology.
These data may be text from a Web page or encoded using
some language, e.g, the Geography Markup Language. GML
comes with its own specifications that clearly distinguish
between data model layers. In case of the Open Geospatial
Consortium this is exactly the difference between abstract
specifications and implementation specifications. In these
cases, the ontologies used for annotation form an entirely
separate layer and the annotation relation has no formal
semantics. In case of Linked Data this is not the intended
approach. Entities such as Berlin are instances of a certain
type, e.g., City2 and link to other resources, e.g., using OWL
language constructs such as owl:SameAs; cf. [6].

Summing up, we argue that ontologies suitable for
Linked Data querying necessarily lead to physical
data models. Unsurprisingly, based on our observations,
this leads to a gap between knowledge engineers and their
ontologies and Linked Data enthusiasts and their vocabular-
ies. Expressive ontologies that support interesting reason-

1See www.ontologydesignpatterns.org/ont/dul/DUL.owl
2See http://dbpedia.org/page/Berlin

ing are rarely used for massive datasets, while vocabularies
widely used on the Web of Linked Data are mere taxonomies.

Semantics and Reasoning
Is there more to the above discussion than just an academic
five-finger exercise? We believe that semantics beyond sim-
ple labels does matter. By reviewing existing Linked Data it
becomes clear that most of them use ontologies/vocabularies
that do not go beyond surface semantics, i.e., the ontolo-
gies merely consist of explicit subsumption relations together
with some other relations without providing a detailed ax-
iomatization.3 For instance, such an ontology would merely
state that Restaurant is a subclass of POI and has a Name.
The lack of a deeper axiomatization prevents any interesting
reasoning, e.g., that restaurants cannot have visitors out-
side of their opening hours. Such surface ontologies make
the meaningful interpretation and querying of Linked Data
a difficult and manually intensive task and reduce ontology
alignment techniques to educated guessing.

Figure 1: Querying for Eratosthenes’ age using Google’s
Knowledge Graph in 2012.

Figure 2: Querying for Eratosthenes’ age using Google’s
Knowledge Graph in 2013.

To give an example for the power of semantics in query
answering, compare the results from Google’s Knowledge
Graph in 2012 with the same query in 2013. Fig. 1 depicts
a query for the age of Eratosthenes and its result – 2288

3In the literature the terms lightweight & heavyweight ontol-
ogy [3] are frequently used. We find them rather misleading
as even minimal ontologies can convey detailed semantics.

www.ontologydesignpatterns.org/ont/dul/DUL.owl
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Figure 3: Fluidops maps the Copernicus crater to the Chad.

years. Note that the born and died information is available
on the right. One year later, the query result (82) is dis-
played in Fig. 2. While the first result is not wrong, the
so-called ontological commitments have clearly changed and
the Google engineers decided to stop increasing the age of a
human post mortem. It is worth noting that the query Eiffel
Tower age will not work despite the opening date (opened)
being available. Summing up, the Knowledge Graph does
not only contain class and property labels but also rules that
exploit the pair born and died to compute the age of humans.

Now let us consider an example where the semantics is
not sufficiently captured and meaning is largely conveyed
via human readable labels. Fig. 3 shows the Fluidops in-
terface rendering Linked Data about the Copernicus crater
from DBpedia. The crater is located on the Moon’s sur-
face but geo:lat and geo:long have been used to represent its
centroid. While they are reserved for WGS84, this is not
enforced by the W3C Basic Geo specs. While DBpedia ig-
nores this fact, Fluidops rightfully renders whatever geo:lat
and geo:long pair it finds using Google Maps. Consequently,
the crater is placed near the city of Sarh in Chad.4

Consequences
So where is the sweet spot for ontologies that go beyond
surface semantics? We have no simple answer but would ar-
gue that standardizing meaning is a misconception. Maybe,
at least for Linked Data, it is time to give up on the idea
of context-free ontologies as models of the physical world
and instead define a multitude of purpose and data-driven
micro-ontologies; cf. [5]. Research should focus on align-
ing and translating different perspectives expressed by these
micro-ontologies and ground them [8] to foster interoperabil-
ity. Ontologies should be engineered based on the
real data they are supposed to reflect and their ax-
iomatization should be driven by the inference needs
of typical queries; see the age example. In contrast to the
current state of the Knowledge Graph, these axioms (query
answering rules, if you like) should be shared together with
the data. Finally, we share Google’s recent argument that
maps should be personalized; the same is true for ontologies.
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4See http://stko.geog.ucsb.edu/location_linked_data
for more details, examples, and unintended consequences.
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