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Abstract. Nominal schemas is a recently introduced extension of de-
scription logics which makes it possible to express rules which generalize
DL-safe ones. A tractable description logic, ELROVn, has been identi-
fied. This leads us to the question: can we improve approximate reasoning
results by employing nominal schemas? In this paper, we investigate how
to approximately cast SROIQ into ELROVn. Using a datalog-based
tractable algorithm, a preliminary evaluation shows that our approach
can indeed do approximate SROIQ-reasoning with a high recall.

1 Introduction

Reasoning with large or complex terminology is computationally difficult and
is one of the bottlenecks for Semantic Web applications. Most reasoning tasks
for ontologies underlying OWL [11] are intractable. Even with small ontologies,
sound and complete reasoning is practically infeasible, in particular for applica-
tions where quick responses are critical.

This fundamental insight that expressive ontology reasoning is often neces-
sarily of high computational complexity has triggered a line of research which
aims at utilizing approximate algorithms, i.e. algorithms which are (provably)
not sound and complete, but which nevertheless provide answers which are good
enough for practical purposes [6,9,10,24]. This general idea of approximate rea-
soning is not new and to a certain extent had been studied already before the
advent of the Semantic Web [4,25,26]. But the Semantic Web effort with its in-
creased requirements for scalability has recently put this into a focus which this
branch of reasoning research has never had before [7,8,12,20,21,22,23,27].

One of the prominent general approaches to approximate reasoning is known
as language weakening. Language weakening refers to the idea of rewriting a
knowledge base into a language which can be handled more efficiently. Obviously,
if the target language has a lower complexity class, this rewriting in general
cannot be done without a loss, resulting in an approximate reasoning procedure.
In order to limit loss in the translation, it is of advantage if the target language be
as expressive as possible while still being of low computational complexity, and
hence languages which push expressivity while retaining tractability are natural
choices for a language weakening approach.

In this paper, we use ELROVn for approximate reasoning over SROIQ using
language weakening. ELROVn is essentially a tractable extension of EL++ [2],



Table 1. Normal forms of SROIQ TBox axioms. A,B and C are atomic concept
or negations of atomic concepts.

A v ⊥ ⊥ v C A v C A uB v C A v B t C
∃R.A v C A v ∃R.C ∀R.A v C A v ∀R.C A v {a} {a} v A

≥ nR.A v C ≤ nR.A v C A v≤ nR.C A v≥ nR.C

a.k.a. OWL 2 EL [18], by nominal schemas [17].1 As such, ELROVn incorporates
DL-safe Datalog under Herbrand semantics [14]. We have recently described
an efficient procedure to reasoning with ELROVn [5] on which we base the
evaluations in this paper.

The plan of this paper is as follows. In Section 2 we recall the languages
SROIQ and ELROVn. In Section 3 we describe our approximate compilation of
SROIQ into ELROVn. In Section 4 we recall our ELROVn reasoning approach
from [5]. In Section 5 we describe our implementation and evaluation results. In
Section 6 we conclude.

2 Preliminaries

In this section, we introduce the description logics (DLs) SROIQ and ELROVn.
The latter includes the new constructor from [17], nominal schemas, which we
use to approximate some features of SROIQ.

A signature Σ = 〈ΣI , ΣC , ΣR, ΣS〉 consists of mutually disjoint finite sets
of atomic roles role names ΣR, atomic concepts ΣC , and individuals individual
ΣI , together with a distinguished subset ΣS ⊆ ΣR of simple atomic roles. The
set of roles (over Σ) is R := ΣR ∪ {R−|R ∈ ΣR}; the set of simple roles is
S := ΣS ∪ {S−|S ∈ ΣS}. A role chain is an expression of the from R1 · . . . ·
Rn with n ≥ 1 and each Ri ∈ R. The function inv(·) is defined on roles by
inv(R) := R− and inv(R−) := R where R ∈ R, and extended to role chains by
inv(R1 · . . . ·Rn) :=inv(Rn) · . . . ·inv(R1).

The set C of SROIQ concepts (over Σ) is defined recursively as follows:

C := ΣC |{ΣI}|C uC|C tC|¬C|∃R.C|∀R.C| ≥ nS.C| ≤ nS.C|∃S.Self

A TBox is a finite set of general concept inclusions (GCIs) of the form C v D
where C,D ∈ C. A SROIQ TBox can be normalized such that it only contains
the normal forms in Table 1 [1].

Satisfiability checking of SROIQ ontologies is in N2ExpTime [13]. Given a
disjunctive assertion (C tD)(s), the tableau algorithm [13] nondeterministically
guesses that either C(s) or D(s) holds, which can give rise to exponential be-
havior. Although the absorption technique and the hypertableaux approach [19]
reduce the cost of this nondeterminism, it is still a considerable performance
bottleneck.

1 It was called SROELVn in [17].



SROIQ defines simple roles and role regularity to ensure decidability [13].
However, since we will later approximately cast SROIQ into ELROVn, which
is free of these restrictions, we do not have to concern ourselves with them for
the purposes of this paper. ELROVn extends EL++ with nominal schemas (see
[5,17] for details). To deal with the new constructor, we extend the signature to
Σ = 〈ΣI , ΣC , ΣR, ΣV 〉, where ΣV is a set of variables. A nominal schema is a
concept of the form {x} where x ∈ ΣV . Semantically, these variables can only
bind to known individuals. The n in ELROVnis a global bound on the number of
different nominal schemas which can occur in any axiom in a knowledge base—
this restriction guarantees tractability. The set of C of ELROVn concepts is
defined as follows:

C := ΣC |{ΣI}|{ΣV }|C uC|∃R.C|∃S.Self

To give an example, consider the first-order rule

R1(x, y) ∧R2(y, z) ∧R3(x, z)→ R(x, z)

which cannot be translated faithfully into SROIQ. By limiting the variable z
in the sense that it can bind only to known individuals (such variables are called
DL-safe [16]), we can express this rule in ELROVn as

∃R1.∃R2.{z} u ∃R3.{z} v ∃R.{z}.

If a1, . . . , ak are all the known individuals in the knowledge base, then this axiom
can also be expressed using the k SROIQ-axoims

∃R1.∃R2.{ai} u ∃R3.{ai} v ∃R.{ai}

where i ranges from 1 to k. This kind of conversion, called full or naive grounding,
of nominal schemas into classical description logics is, however, computationally
infeasible [5] even for ELROVn, which is of PTime complexity [17]. In [5], we thus
presented a datalog-based algorithm for ELROVn which avoids full grounding,
and have also shown experimentally that the algorithm is efficient.

3 Approximation

For our approximation of SROIQ by ELROVn, we use a number of different
techniques, some of which are borrowed from existing literature. The key ideas
are as follows.

– We rewrite mincardinality restrictions into maxcardinality restrictions or
approximate using an existential.

– We rewrite universal quantification into existential quantification.
– We approximate maxcardinality restrictions using functionality.
– We approximate inverse roles and functionality using nominal schemas.
– We approximate negation using class disjointness.



Algorithm 1 Approximation Algorithm

1: normalize the SROIQ KB into normal forms;
2: for each concept C do
3: introduce a fresh concept neg(C);
4: add axiom C u neg(C) v ⊥;
5: end for
6: for each role R− appearing in KB do
7: introduce a fresh role inv(R);
8: add {x} u ∃R.{y} v {y} u ∃inv(R).{x};
9: end for

10: for each axiom a in TBox do
11: if a is of type A v C then
12: add axiom neg(A) v neg(C);
13: else if a is of type A v B t C then
14: add axiom neg(B) u neg(C) v neg(A);
15: else if a is of type A v ∀R.C then
16: add axiom ∃R.neg(C) v neg(A);
17: add axiom ∃inv(R).A v C and {x} u ∃R.{y} v {y} u ∃inv(R).{x};
18: else if a is of type ∀R.A v C then
19: add axiom neg(C) v ∃R.neg(A);
20: else if a is of type C v≥ nR.A then
21: add axiom C v ∃R.A;
22: else if a is of type C v≤ nR.A then
23: add axiom C u ∃R.({z1} uA) u ∃R.({z2} uA) v ∃U.({z1} u {z2});
24: else if a is of type ≤ nR.A v C then
25: add axiom neg(C) v ∃R.A;
26: else if a is of type ≥ nR.A v C then
27: add axiom neg(C) u ∃R.({z1} uA) u ∃R.({z2} uA) v ∃U.({z1} u {z2});
28: else
29: add axiom a;
30: end if
31: end for

– We approximate disjunction using conjunction.

A pseudocode description is given in Algorithm 1, we explain the relevant
parts in more detail below. Role chain axioms are left untouched, as are axioms
which can already directly be expressed in ELROVn. We drop the soundness
proof, since one can easily find out that our approach is sound but incomplete.

3.1 Approximation of Inverse Role and Functionality

Since ELROVn can express DL-safe Datalog rules, all rule-like axioms in SROIQ
can be approximated easily in ELROVn.

For role inclusion axioms of the form R v S−, the first-order logic rule is
R(x, y)→ S(y, x). By restricting the variables to nominals, we obtain nom(x)∧
nom(y) ∧ R(x, y) → S(y, x), where nom(x) is defined by the collection of facts



nom(ai) for each individual ai. The latter rule can be expressed by means of the
nominal schema axiom,

{x} u ∃R.{y} v {y} u ∃S.{x}

where x and y are nominal schemas. This axiom will be later translated into
datalog rule,

nom(x), nom(y), triple(x,R, y)→ triple(y, S, x)

where we can clearly see that the rule expresses the inverse role with restricting
variable bounded to known individuals.

Similarly, for a functionality axiom C v≤ 1R.D, we can cast it into

C u ∃R.({z1} uD) u ∃R.({z2} uD) v ∃U.({z1} u {z2})

where U is the universal role. This axiom will be translated into two datalog
rules:

nom(z1), nom(z2), inst(x,C), inst(x,D), triple(x,R, z1), triple(x,R, z2)→ inst(z1, z2)

nom(z1), nom(z2), inst(x,C), inst(x,D), triple(x,R, z1), triple(x,R, z2)→ inst(z2, z1)

Briefly, it means if there are two triples triple(x,R, z1) and triple(x,R, z2), then
z1 and z2 must be same. (See details of translation in [5].)

Since A v ∀R.C is the same as ∃R−.A v C, we can approximate A v ∀R.C
by adding

∃inv(R).A v C

and
{x} u ∃R.{y} v {y} u ∃inv(R).{x}.

Furthermore, for each axiom A v≤ nR.C, we reduce it to A v≤ 1R.C, such
that it can be approximated through the nominal schema axiom

A u ∃R.({x} u C) u ∃R.({y} u C) v ∃U.({x} u {y}).

3.2 Approximation of Negation and Disjunction

Our approach for approximating negation is derived from [23]. In brief, we add a
fresh concept neg(C) for each concept C in KB, and add the axiom neg(C)uC v
⊥ to express that the negation of C and C are disjoint. Furthermore, we rewrite
the following axioms by using their De Morgan equivalent axioms and replace
¬C by the fresh concept neg(C).

(1) A v B t C ⇒ ¬B u ¬C v ¬A⇒ neg(C) v neg(A)
(2) A v ∀R.C ⇒ ∃R.¬C v ¬A ⇒ ∃R.neg(C) v neg(A)
(3) ∀R.A v C ⇒ ¬C v ∃R.¬A ⇒ neg(C) v ∃R.neg(A)
(4) ≤ nR.A v C ⇒ ¬C v> nR.A ⇒ neg(C) v> nR.A
(5) ≥ nR.A v C ⇒ ¬C v< nR.A ⇒ neg(C) v< nR.A



Table 2. Evaluation ontologies for our algorithm

Ontology Classes Annotation P. Data P. Object P.

Rex3 552 10 0 6
Spatial4 106 13 0 13

Xenopus5 710 19 0 5

Note that we can always reduce C v≥ nR.A to C v ∃R.A. Then, for the
last two axioms (4) and (5), we reduce them to neg(C) v ∃R.A and neg(C) v<
1R.A. Following the ideas in [12,27], for A v B t C, it can be reduced to
A v B u C, i.e., A v B and A v C, falling into unsound but complete results.
We will attempt to combine this idea with the approach in the paper. Briefly,
combining unsound results and incomplete results to achieve higher precise and
recall.

4 Reasoning over ELROVn

We briefly recall the algorithm for reasoning over ELROVn presented in [5], and
the evaluation results presented therein. The algorithm actually imposes some
restrictions on ELROVn which are described in detail in [5] and which cause no
problem for our approximation approach.

The algorithm itself is based on results presented in [15]. Following this ap-
proach, for every ELROVn knowledge base KB we can construct a Datalog
program PKB that can be used for reasoning over KB. The Datalog program
PKB contains facts which are translated from all the DL normal forms (Figure
1) and rules (Figure 2). [5] contains a correctness proof.

The evaluation reported in [5] was performed using the Java-based Datalog
reasoner IRIS2 [3], and we compared it to a full grounding approach for which
we also used IRIS. We used suitable ontologies from the TONES repository, see
Table 2 for some basic metrics, and artificially added named individuals and
axioms using nominal schemas. Results are listed in Table 3. In our approach,
the number of nominal schemas per axioms had almost no effect on the runtime,
thus indicating that the approach performs very well indeed.

2 http://iris-reasoner.org/
3 http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/

physicochemical/rex.obo
4 http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/anatomy/caro/

spatial.obo
5 http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/anatomy/gross_

anatomy/animal_gross_anatomy/frog/xenopus_anatomy.obo

http://iris-reasoner.org/
http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/physicochemical/ rex.obo 
http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/physicochemical/ rex.obo 
http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/anatomy/caro/ spatial.obo 
http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/anatomy/caro/ spatial.obo 
http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/anatomy/gross_ana tomy/animal_gross_anatomy/frog/xenopus_anatomy.obo 
http://obo.cvs.sourceforge.net/checkout/obo/obo/ontology/anatomy/gross_ana tomy/animal_gross_anatomy/frog/xenopus_anatomy.obo 


Table 3. Evaluation, IRIS reasoning time listed only (no pre-processing, no
load time), in ms. The ”No ns” column refers to the running with no nominal
schemas, while k ns refers to the use of k nominal schemas in an axiom. Times
in brackets are for full grounding, for comparison. If not listed, full grounding
was OOM (Out of Memory)

Ontology number of individuals no ns 1 ns 2 ns 3 ns 4 ns 5 ns

Rex
100 263 263 (321) 267 (972) 273 275 259
1000 480 518 (1753) 537 (OOM) 538 545 552
10000 2904 2901 (133179) 3120 (OOM) 3165 3192 3296

Spatial
100 22 191 (222) 201 (1163) 198 202 207
1000 134 417 (1392) 415 (OOM) 421 431 432
10000 1322 1792 (96437) 1817 (OOM) 1915 1888 1997

Xenopus
100 62 332 (383) 284 (1629) 311 288 280
1000 193 538 (4751) 440 (OOM) 430 456 475
10000 1771 2119 (319013) 1843 (OOM) 1886 2038 2102

5 Implementation and Evaluation

We realized the implementation based on the ELROVndatalog-based reasoner
[5]. All experiments were conducted on a laptop with a 2.4GHz Intel CoreTM
i7-3630QM processor and 8GB RAM operated by Windows 7 64-bit system with
Java VM v.1.7.0. We set time out of 1 hour and Java heap space of 1GB. The
ontologies were chose from Oxford Ontologies Repository 6, in Table Table 4.
To evaluate the performance in practice, we also compared with mainstream
reasoners Pellet 2.3.07, FaCT++ 1.6.28 and HermiT 1.3.79. The reasoning task
is classification, therefore recall equals the number of subsumption relations be-
tween concepts divides its correct number. Since our approach needs some indi-
vidual to fire the datalog rules, we add one unique dummy individual for each
concepts if the testing ontology does not contain individuals. Therefore, we can
check subsumption relations by tracking those dummy individuals.

The experiment, Table 5 , shows our approach has good recalls but fails
when conducting very large ontologies. The reason is that IRIS reasoner has a
difficulty to run with large number of rules or facts. However, with a quicker
datalog reasoner or a more efficient reasoner that supports nominal schemas, we
believe it will achieve a better result. Also, since the number of rules (Figure 2)
are fixed, we do not need a full powerful Datalog reasoner. We can specifically
program the rules to improve the efficiency.

To be noticed, the approximation in this paper can be done by HermiT
reasoner since HermiT can handle DL-safe rules and the rules can directly be

6 http://www.cs.ox.ac.uk/isg/ontologies/
7 http://clarkparsia.com/pellet/
8 http://owl.man.ac.uk/factplusplus/
9 http://www.hermit-reasoner.com/

http://www.cs.ox.ac.uk/isg/ontologies/
http://clarkparsia.com/pellet/
http://owl.man.ac.uk/factplusplus/
http://www.hermit-reasoner.com/


C(a) 7→ {subClass(a,D)} R(a, b) 7→ {subEx(a,R, b, b)}
> v C 7→ {top(C)} A v ⊥ 7→ {bot(A)}
{a} v C 7→ {subClass(a,C)} A v {c} 7→ {subClass(A, c)}
A v C 7→ {subclass(A,C)} A uB v C 7→ {subConj(A,B,C)}

∃R.Self v C 7→ {subSelf(R,C)} A v ∃R.Self 7→ {supSelf(A,R)}
∃R.A v C 7→ {subEx(R,A,C)} A v ∃R.C 7→ {supEx(A,R,B, auxAv∃R.C)}

R v T 7→ {subRole(R, T )} R ◦ S v T 7→ {subRChain(R,S, T )}
R v C ×D 7→ {supProd(R,C,D)} A ∈ NC 7→ {cls(A)}

R ∈ NR 7→ {rol(R)} a ∈ NI 7→ {nom(a)}

Fig. 1. Input Translation IV

Table 4. Evaluation ontologies for our algorithm, the No. denotes the number
order of Oxford Repository. Since the implementation does not support datatype
property, any ontologies containing datatype properties are not chosen here.

No. Ontology expressivity Classes Object Properties Individuals TBox RBox ABox

00004 BAMS SHIF 1110 12 0 18813 9 0
00015 DOLCE SHI 37 70 0 279 76 0
00039 GALEN ALEHIF+ 3097 403 0 14661 111 0
00040 GO SRIQ 58882 220 0 130376 104 0
00103 Gardiner ALEO 176 10 187 263 0 187
00387 OBO SRIF 27412 215 34 55998 87 157897

added to the input ontology in functional style. But, HermiT doesn’t have spe-
cific reasoning procedure for EL-families, such that reasoning for EL is not its
advantage. Moreover, there are ELROVnaxioms which cannot be expressed as
DL-safe rules, e.g., ∃R.{z} v ∃T.∃S.{z}. Moreover,

6 Conclusions and Future Work

We have described an approximate reasoning procedure for SROIQ which uti-
lizes the tractable nominal-schemas-based ELROVn using a language weakening
approach. We have also provided an experimental evaluation which shows the
feasibility of this setting.

Going forward, there are several directions which we intend to explore. On
the one hand, we will be looking into variants on how to obtain the weakened
language, in the spirit of [27], and will attempt to further tweak and optimize
our approach. On the one hand, we will be looking into incremental methods



nom(x) 7→ inst(x, x) (1)

nom(x) ∧ triple(x, v, x) 7→ self(x, v) (2)

top(z) ∧ inst(x, z′) 7→ inst(x, z) (3)

bot(z) ∧ inst(u, z) ∧ inst(x, z′) ∧ cls(y) 7→ inst(x, y) (4)

subClass(y, z) ∧ inst(x, y) 7→ inst(x, z) (5)

subConj(y1, y2, z) ∧ inst(x, y1) ∧ inst(x, y2) 7→ inst(x, z) (6)

subEx(v, y, z) ∧ triple(x, v, x′) ∧ inst(x′, y) 7→ inst(x, z) (7)

subEx(v, y, z) ∧ self(x, v) ∧ inst(x, y) 7→ inst(x, z) (8)

supEx(y, v, z, x′) ∧ inst(x, y) 7→ triple(x, v, x′) (9)

supEx(y, v, z, x′) ∧ inst(x, y) 7→ inst(x′, z) (10)

subSelf(v, z) ∧ self(x, v) 7→ inst(x, z) (11)

supSelf(y, v) ∧ inst(x, y) 7→ self(x, v) (12)

subRole(v, w) ∧ triple(x, v, x′) 7→ triple(x,w, x′) (13)

subRole(v, w) ∧ self(x, v) 7→ self(x,w) (14)

subRChain(u, v, w) ∧ triple(x, u, x′) ∧ triple(x′, v, x′′) 7→ triple(x,w, x′′) (15)

subRChain(u, v, w) ∧ self(x, y) ∧ triple(x, v, x′) 7→ triple(x,w, x′) (16)

subRChain(u, v, w) ∧ triple(x, u, x′) ∧ self(x′, v) 7→ triple(x,w, x′) (17)

subRChain(u, v, w) ∧ self(x, u) ∧ self(x, v) 7→ triple(x,w, x) (18)

supProd(v, z1, z2) ∧ triple(x, v, x′) 7→ inst(x, z1) (19)

supProd(v, z1, z2) ∧ self(x, v) 7→ inst(x, z1) (20)

supProd(v, z1, z2) ∧ triple(x, v, x′) 7→ inst(x′, z2) (21)

supProd(v, z1, z2) ∧ self(x, v) 7→ inst(x, z2) (22)

inst(x, y) ∧ nom(y) ∧ inst(x, z) 7→ inst(y, z) (23)

inst(x, y) ∧ nom(y) ∧ inst(y, z) 7→ inst(x, z) (24)

inst(x, y) ∧ nom(y) ∧ triple(z, u, x) 7→ triple(z, u, y) (25)

self(x, y) 7→ triple(x, y, x) (26)

Fig. 2. Deduction Rules PV



Table 5. Evaluation, reasoning time of each reasoner, in ms. N/A denotes that
the datalog-based reasoner corrupts with too many loading rules.

Ontology HermiT Fact++ Pellet Ours Ours Recall

BAMS 3 2 10 107 100%
DOLCE 1 1 4 53 100%
GALEN 4 2 17 7840 90.8%

GO 36 75 59 N/A N/A
GardinerCorpus 14 6 17 89 92.3%

OBO 34 61 139 N/A N/A

which use the approximate reasoning results as starting point and subsequently
compute correct results in all or at least most cases.
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