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PD Dr. Pascal Hitzler 

• Diplom (Mathematics) Univ. of Tübingen 1998 
• PhD (Mathematics), Nat. Univ. of Ireland Cork 2001 
• 2001-2004 AI Institute TU Dresden 
• 2005 Habilitation (Computer Science) 
• since 2004 Assistant Professor, AIFB, Univ. of 

Karlsruhe 
 
– Knowledge Representation and Reasoning for the 

Semantic Web 
– Neural-Symbolic Integration 
– Mathematical Foundations of Artificial Intelligence 
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Main references for this talk 

• S. Bader, P. Hitzler, S. Hölldobler. Connectionist 
Model Generation: A First-Order Approach. 
Neurocomputing 71, 2008, 2420-2432.  

• S. Bader, P. Hitzler, S. Hölldobler, A. Witzel. A Fully 
Connectionist Model Generator for Covered First-
Order Logic Programs. In: Manuela M. Veloso, 
Proceedings of the Twentieth International Joint 
Conference on Artificial Intelligence, IJCAI-07, 
Hyderabad, India, January 2007, AAAI Press, Menlo 
Park CA, 2007, pp. 666-671.  

• P. Hitzler, S. Hölldobler and A. K. Seda. Logic 
Programs and Connectionist Networks. Journal of 
Applied Logic 2(3), 2004, 245-272. 
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State-of-the-art collection: 

Barbara Hammer, Pascal Hitzler (eds.) 
Perspectives of Neural-Symbolic  

Integration. 
Studies in Computational Intelligence 77. 
Springer, 2007.  
 
 
With contributions by 
 Barreto, de Raedt, Frasconi, Garcez, Gust 

Hölldobler, Komendantskaya, Kühnberger, Ritter,  
Saunders,  Seda, Shastri, Sperduti, Tino 
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5th International Workshop on Neural-Symbolic 
Learning and Reasoning 
 
 
Workshop at IJCAI-09, Pasadena CA, July 11, 2009 
 
Submission deadline April 10, 2009 
 

http://www.neural-symbolic.org 
Organisers: 
Artur d'Avila Garcez, City University London, UK 
Pascal Hitzler, University of Karlsruhe (TH), Germany 
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Contents 

1. Why neural-symbolic integration? 
2. Earlier work 
3. The neural-symbolic learning cycle 
4. Propositional fixation 
5. The cycle for first-order logic 

a. The Core Method 
b. Realising the cycle 

6. Outlook 

Neural-symbolic 
Integration 
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Neural-symbolic 
Integration 

Why neural-symbolic integration? 
connectionism 

symbolic AI 

• Artificial neural networks and symbolic AI are two fundamentally 
different paradigms in AI. 

• Their strengths and weaknesses are complementary. 
• Neural-symbolic Integration is about integrating the paradigms while 

retaining their strengths. 
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Artificial neural networks 

• Powerful machine-learning paradigm. 
• Inspired by Biology/Neuroscience. 
• Learning from noisy data possible. 
• Robust. Graceful degradation. 

 
• No declarative semantics. Black boxes. 
• Recursive structures difficult. 
• Cannot learn with background knowledge. 

 

 
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Knowledge representation/symbolic AI 

• Logic-based. Declarative. 
• Modelled from human thinking. 
• Explicit coding of knowledge. 
• Highly recursive. 

 
• Learning is difficult. 
• Hardly tolerant against noise. 
• Reasoning has high computational complexity. 

 
 

 

 
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neural symbolic 

 

 

 

 

- 

realising connectionist processing of symbolic knowledge 
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The four main problems of neural-symbolic 
integration 

• Connectionist representation of symbolic knowledge. 
• Extraction of symbolic knowledge from artificial 

neural networks. 
• Connectionist learning of symbolic knowledge. 
• Learning under background knowledge. 
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Besides ... 

... the technical motivation just given: 
 
• neural-symbolic integration is about the study – from 

a computer science perspective – how knowledge 
can be processed within models of the brain 
 

• standard artificial neural networks appear to be 
insufficient to capture human knowledge processing 
 

• logic also appears to be insufficient to capture human 
knowledge processing 
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Driving motivation 

• Our approach is mainly computer-science-driven. 
– realisation of intelligent systems 

• It contributes only indirectly to the question, how 
humans model reality and think about it. 
 

• At hindsight, our approach probably rather shows, 
how humans do not model reality and think about it. 
 

• Generally, neural-symbolic research requires more 
input from recent developments in neuroscience! 
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Hybrid vs. Integrated Approach 

hybrid 

integrated 

connectionist 
system 

symbolic input 

symbolic output 

connectionist 
system 

symbolic 
system 
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Earlier work 

• McCulloch & Pitts 1943 
– Neurons with binary activation functions. 
– Modelling of propositional connectives. 
– Networks equivalent to finite automata. 

0.5 
1 

1 disjunction 1 

1.5 
1 

1 conjunction 1 

-0.5 
-1 negation 1 

Values 0 („false“) and 1 
(„true“) being 
propagated. 

 

Simultaneous update of 
all nodes in network. 
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The propositional Core Method 

• Hölldobler & Kalinke 1994 
– Extends the approach by McCulloch & Pitts. 
– Representation of propositional logic programs  

and their semantics. 
– „Massively parallel reasoning.“ 

logic program 

a Ã 
b Ã a 
c Ã a Æ b 
d Ã e 
e Ã d 

core net recurrent net 
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The propositional Core Method 

Logic program P 

a Ã 
b Ã a 
c Ã a Æ b 
d Ã e 
e Ã d 

core net 

• Update „along implication“. 
• Corresponds to computing the semantic operator TP. 
• TP represents meaning (semantics) of P through its fixed points. 
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The propositional Core Method 

core net recurrent net 

• Repeated updates along layers corresponds to iterations of the 
semantic operator. 

• Semantics of the program (= fixed point of the operator) can be 
computed in a parallel manner. 
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CILP – Connectionist Inductive Logic 
Programming 
• Garcez & Zaverucha 1999 

Garcez, Broda & Gabbay 2001 
• Development of a learning paradigm from the Core Method. 
• Required: differentiable activation function. 

– Allows learning with standard methods. 
– Backpropagation algorithm. 

 
• Establishing the neural-symbolic learning cycle. 

initial 
(background) 
knowledge 

untrained 
neural 

network 

trained 
neural 

network 

learned 
knowledge 

initialise 

extract 

learn modify 
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The neural-symbolic learning cycle 

initial 
(background) 
knowledge 

untrained 
neural 

network 

trained 
neural 

network 
learned 

knowledge 

initialise 

extract 

learn modify 

The four main problems of Neural-symbolic Integration. 
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Multi-valued Logic Programs 

• Approach can be generalised to logic 
programs under multiple truth values. 
 

• Rather general results can be obtained. 
 

• No practical evaluation yet. 
 

• [Komendantskaya, Lane, Seda, 2007] 
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Conectionism and first-order predicate logic (PL) 

• Connectionist representation of PL-knowledge very hard to 
realise.  
McCarthy 1988: „Propositional fixation.“  
 
We need to capture the infinite in a finite way. 
 

 
– infinite ground instantiations 

 (8x) male(x) Æ hasSon(x,son(x)) ! father(x) 
– term representations 

 member(X, [ a,b,c | [ d,e ] ]) 
– variable bindings 

 male(x) Æ hasSon(x,y) ! father(x) 
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PL Core Method 

• Hölldobler, Kalinke, Störr 1999 
Hitzler, Hölldobler, Seda 2004 
 

• Idea: 
– Use results by Funahashi 1989: „Every continuous function 

on the reals is approximable by standard feedforward 
networks. “ 

– Hence: Consider logic programs for which TP-operator is 
continuous in this sense. 
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Funahashi 1989 (simplified) 

•  σ sigmoidal activation function 
•  K µ R compact 
•  f: K ! R continuous 
•  ε > 0 
Then there exists a three-layer feedforward network with activation 

function σ and I/O-function F, so that 
 
 
Here d is a metric which induces the natural topology on R. 
 
I.e. continuous functions can be uniformly  
 approximated by such networks with arbitrary  
 accuracy. 
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Continuity of TP – I 
• Hitzler, Hölldobler, Seda 2004 
 
Let BA be the set of all body atoms in ground instantiated clauses 

of P with head A. 
 
TP: IP ! IP is called locally finite, if 

for all atoms A and all I 2 IP  
there exists a finite S µ BA,  
 such that TP(J)(A)=TP(I)(A)  
for all J 2 IP which coincide with I on S.  

p(s(x)) Ã p(x). 
p(0) 
p(x) Ã p(s(x)). 
 
e.g. Bp(s(0)) = {p(0),p(s(s(0)))} 
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Continuity of TP – II 

TP: IP ! IP is locally finite 
iff 

TP is continuous in Cantor space. 
 
• Cantor-continuity is continuity wrt. the Cantor topology on the 

Cantor set. 
• The Cantor topology is homeomorphic to the prefix-distance on 

(infinite) binary trees. 
• The Cantor topology is homeomorphic to the subspace topology 

which is induced on a subset of R which is compact, totally 
disconnected and dense in itself. 
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Continuity of TP – III 

• There are (uncontably) many homeomorphisms which map IP 
with the Cantor topology into suitable subsets of R. 

• Locally finiteness is a logical (topology-free) characterisation of 
logic programs which can be represented in a a connectionist 
way in the sense of Funahashi. 

• Problem: this argumentation is not constructive! 
 

A1, A2, ... enumeration of 
 Herbrand base 
Elements of Cantor Set 
 identifiable with  
 interpretations :A2 

A1 

A2 

:A1 

:A2 A2 
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(IP,Q) (IP,Q) 

Cantor Cantor 
ι(TP) 

TP 

ι ι Homeomorphism 

Cantor space as 
compact subspace 

 of R 

Interpretations with 
Cantor topology  

Relationship of IP to Cantor Space 

Georg Cantor 
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The Cantor topology as a paradigm bridge 

• Connectionist side: 
– Cantor topology is a subtopology of the usual 

topology on the real numbers 
 

• Logic Programming side: 
– Cantor topology captures useful notions of 

convergence of semantic operators, e.g. 
If TP

n ! I (for n→1), then I is a model of P. 
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Realising the cycle: Representation of symbolic 
knowledge 

• Bader, Hitzler, Hölldobler, Witzel – IJCAI-07 
– Algorithm for the approximate construction of neural 

networks from logic programs. 
– Realised for 

• RBS nets with triangular activation function 
• RBF nets with raised cosine activation function 
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Realising the cycle (first-order representation) 

• Graph of TP is a fractal. 
• Approximation up to arbitrary 

precision possible. 
 

• Requires quite some 
calculation to get correct 
parameters in higher 
dimensions ... 
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Local 
representation 
 
 
and 
 
 
domination of 
output by one unit 
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Realising the cycle: learning 

• Reuse of standard network architecture allows to use known 
and powerful learning methods. 
– Backpropagation 
– We merged in techniques from Supervised Growing Neural 

Gas (SGNG) [Fritzke 1998]. 
 

initialise 
(background) 
knowledge 

untrained 
neural 

network 

trained 
neural 

network 

learned 
knowledge 

initialise 

extract 

learn modify 
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Realising the cycle: Implementation 

• Bader & Witzel, first prototype 
 

• JDK 1.5 unter Eclipse.  
 

• Merging of techniques above and SGNG. 
Fine Blend system. 
 

• Radial basis function network approximating TP. 
 

• Very robust with respect to noise and damage. 
 

• Trainable using a version of backpropagation together with 
techniques from SGNG (Supervised Growing Neural Gas). 
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Fine blend vs. SGNG 

target: e(0). 
 e(s(X)) Ã o(X). 
 o(X)  Ã :e(X) 
 
initial: e(s(X))  Ã :o(X) 
 e(X)  Ã e(X) 

unit failure 
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Iterating Random Inputs 

We observe convergence to unique supported  
    model of the program. 
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Realised integration 

• Neural 
– trainable by backpropagation 
– robust 

• Symbolic 
– computes logical model 

 
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Realising the cycle: Extraction of symbolic 
knowledge 

• Extraction of PL-knowledge from trained neural networks has 
never been attempted before. 
 

• Idea: Represent programs and nets in Rn  (with n = number of 
weights in net) and search for best approximators using 
suitable metrics on vectors. 

initialise 
(background) 
knowledge 

untrained 
neural 

network 

trained 
neural 

network 

learned 
knowledge 

initialise 

extract 

learn modify 
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Outlook 

Short term: 
• Further experiments and evaluations. 
• Develop and realise extraction method. 
• Develop concrete application scenarios.  
• Realise learning under background knowledge. 
 
Medium and long term: 
• Carry over to other KRR paradigms, e.g. DLs. 
• Develop integrated connectionist learning and 

reasoning for cognitive systems applications. 
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Related work I 

• There is hardly any work on first-order neural-
symbolic integration. 
 

• M. Lane, A. Seda. Some Aspects of the Integration 
of Connectionist and Logic-Based Systems. 
Information, 9(4)(2006), 551-562.  
– Based on the propositional Core Method: 

Approximation of first-order programs by a finite 
number of ground instantiated clauses. 

– Purely theoretical. 
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Related work II 

• H. Gust, K.-U. Kühnberger, P. Geibel. Learning 
Models of Predicate Logical Theories with Neural 
Networks Based on Topos Theory. In P. Hitzler, B. 
Hammer (eds.). Perspectives of Neural-Symbolic 
Integration, Studies in Computational Intelligence 77, 
Springer, 2007, pp. 233-264. 
– variable-free representation using category theory 
– learns corresponding models 

 
– running system 
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• Using Bilattice-based annotated  
logic programs 
 

• Propositional + first-order. Basically a lifting 
of the Hölldobler & Kalinke approach. 
 

• No running system available 
 

• [Komendantskaya, Seda, 2006] 

Related work III 
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• Connectionist realisation of proof-theory 
 

• Specifically, SLD-resolution 
 

• Tough ... 
 

• [Komendantskaya 2007, 2008] and ongoing 

Related work IV 
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Critical Questions 

• The brain doesn't use logic. 
– Well – yes. Logic is a (coarse) model. Like 

Newtonian physics is a coarse model. 
– We DO NEED more neuroscience input! 

• The "infinity" discussion doesn't apply to the brain. 
– Well – yes. But give me something better. 

• So where do you want to apply all this? 
– Good question. We currently have a hammer. We 

need to find some suitable nails. 
– But we DO HAVE one of the first two approaches 

to first-order neural-symbolic integration after 10 
years of searching for it!!!! 
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Collaborators 
• Sebastian Bader 
• Artur S. d’Avila Garcez 
• Steffen Hölldobler 
• Jens Lehmann  
• Sebastian Rudolph 
• Anthony K. Seda 
• Andreas Witzel 

Thank you for your attention 

please visit 
http://www.neural-symbolic.org 
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