Neural-Symbolic Integration

PD Dr. Pascal Hitzler

AIFB, Universität Karlsruhe, Germany

St. Andrews, Scotland, January 2009

PD Dr. Pascal Hitzler

- Diplom (Mathematics) Univ. of Tübingen 1998
- PhD (Mathematics), Nat. Univ. of Ireland Cork 2001
- 2001-2004 AI Institute TU Dresden
- 2005 Habilitation (Computer Science)
- since 2004 Assistant Professor, AIFB, Univ. of Karlsruhe
 - Knowledge Representation and Reasoning for the Semantic Web
 - Neural-Symbolic Integration
 - Mathematical Foundations of Artificial Intelligence

Main references for this talk

- S. Bader, P. Hitzler, S. Hölldobler. Connectionist Model Generation: A First-Order Approach. Neurocomputing 71, 2008, 2420-2432.
- S. Bader, P. Hitzler, S. Hölldobler, A. Witzel. A Fully Connectionist Model Generator for Covered First-Order Logic Programs. In: Manuela M. Veloso, Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, IJCAI-07, Hyderabad, India, January 2007, AAAI Press, Menlo Park CA, 2007, pp. 666-671.
- P. Hitzler, S. Hölldobler and A. K. Seda. Logic Programs and Connectionist Networks. Journal of Applied Logic 2(3), 2004, 245-272.

State-of-the-art collection:

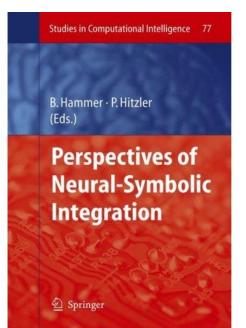
Barbara Hammer, Pascal Hitzler (eds.)

Perspectives of Neural-Symbolic Integration.

Studies in Computational Intelligence 77. Springer, 2007.

With contributions by

Barreto, de Raedt, Frasconi, Garcez, Gust Hölldobler, **Komendantskaya**, Kühnberger, Ritter, Saunders, Seda, Shastri, Sperduti, Tino



5th International Workshop on Neural-Symbolic Learning and Reasoning

Workshop at IJCAI-09, Pasadena CA, July 11, 2009

Submission deadline April 10, 2009

http://www.neural-symbolic.org

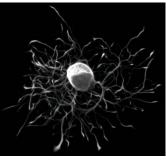
Organisers: Artur d'Avila Garcez, City University London, UK Pascal Hitzler, University of Karlsruhe (TH), Germany

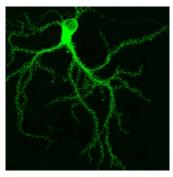
Contents

1. Why neural-symbolic integration?

- 2. Earlier work
- 3. The neural-symbolic learning cycle
- 4. Propositional fixation
- 5. The cycle for first-order logic
 - a. The Core Method
 - b. Realising the cycle
- 6. Outlook

Neural-symbolic Integration



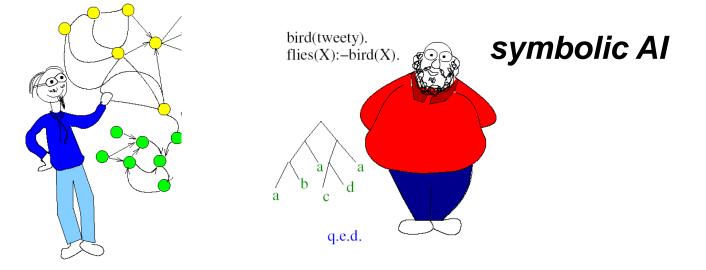


AIFB C

Why neural-symbolic integration?

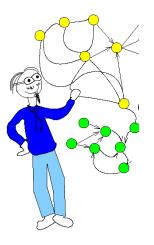
connectionism

Neural-symbolic Integration



- Artificial neural networks and symbolic AI are two fundamentally different paradigms in AI.
- Their strengths and weaknesses are complementary.
- *Neural-symbolic Integration* is about integrating the paradigms while retaining their strengths.

Artificial neural networks



- Powerful machine-learning paradigm.
- Inspired by Biology/Neuroscience.
- Learning from noisy data possible.
- Robust. Graceful degradation.
- No declarative semantics. Black boxes.
- Recursive structures difficult.
- Cannot learn with background knowledge.

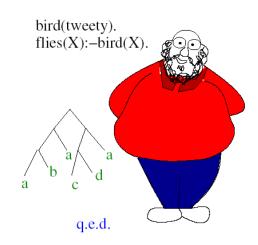
 (\mathcal{R})

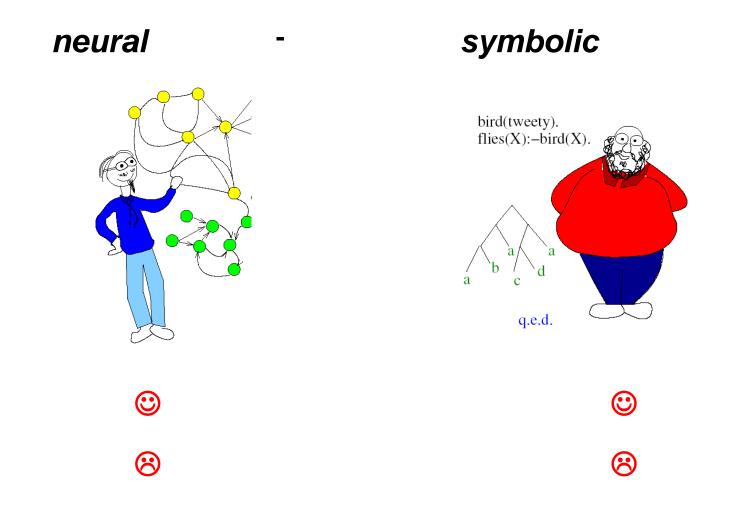
Knowledge representation/symbolic Al

- Logic-based. Declarative.
- Modelled from human thinking.
 - Explicit coding of knowledge.
 - Highly recursive.

 (\mathcal{R})

- Learning is difficult.
- Hardly tolerant against noise.
- Reasoning has high computational complexity.





realising connectionist processing of symbolic knowledge

The four main problems of neural-symbolic integration

- Connectionist representation of symbolic knowledge.
- Extraction of symbolic knowledge from artificial neural networks.
- Connectionist learning of symbolic knowledge.
- Learning under background knowledge.

Besides ...

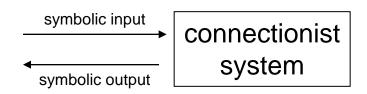
IFB O

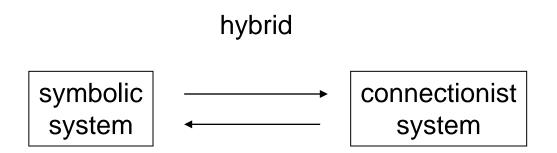
- ... the *technical* motivation just given:
- neural-symbolic integration is about the study from a computer science perspective – how knowledge can be processed within models of the brain
- standard artificial neural networks appear to be insufficient to capture human knowledge processing
- logic also appears to be insufficient to capture human knowledge processing

Driving motivation

- Our approach is mainly *computer-science-driven*.
 realisation of intelligent systems
- It contributes only indirectly to the question, how humans model reality and think about it.
- At hindsight, our approach probably rather shows, how humans do *not* model reality and think about it.
- Generally, neural-symbolic research requires more input from recent developments in neuroscience!

Hybrid vs. Integrated Approach



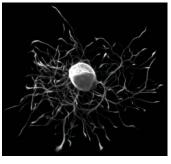


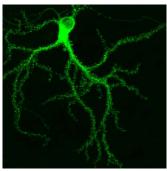
14/49

AIFB

Contents

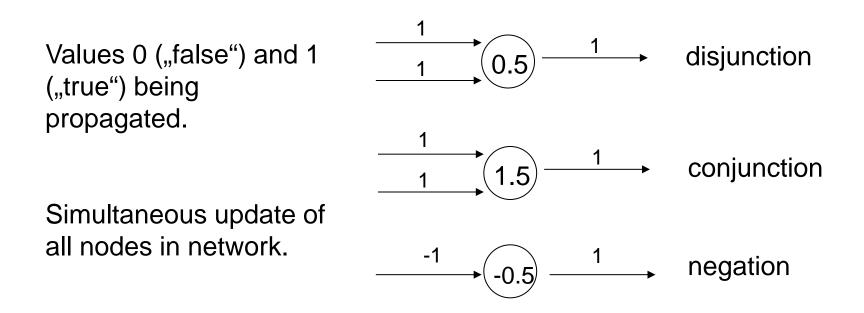
- 1. Why neural-symbolic integration?
- 2. Earlier work
- 3. The neural-symbolic learning cycle
- 4. Propositional fixation
- 5. The cycle for first-order logic
 - a. The Core Method
 - b. Realising the cycle
- 6. Outlook





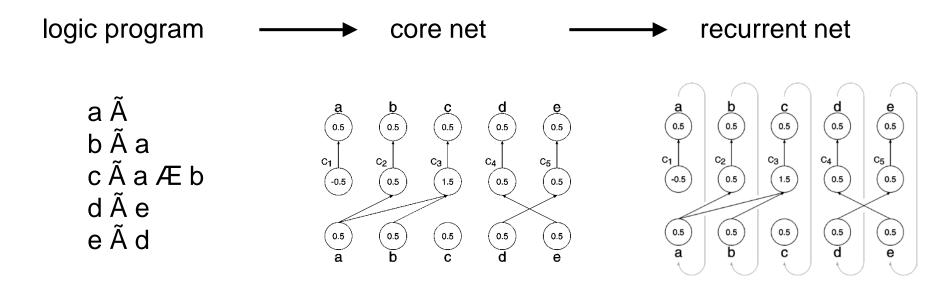
Earlier work

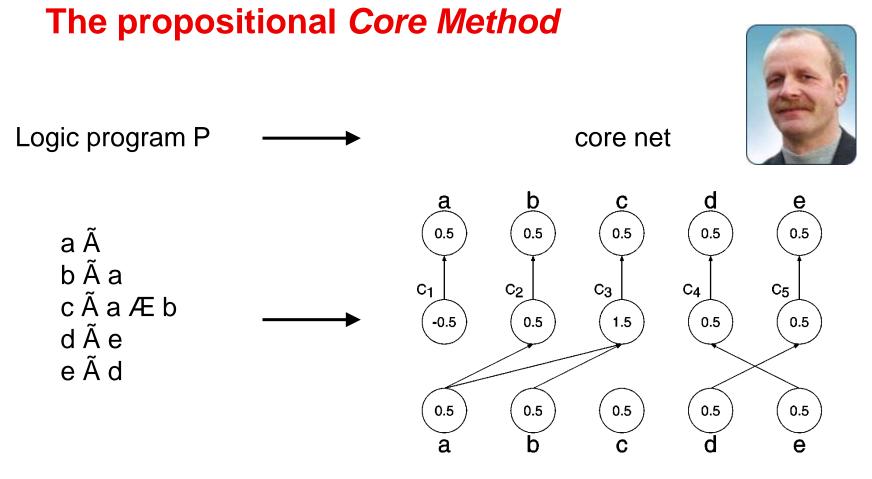
- McCulloch & Pitts 1943
 - Neurons with binary activation functions.
 - Modelling of propositional connectives.
 - Networks equivalent to finite automata.



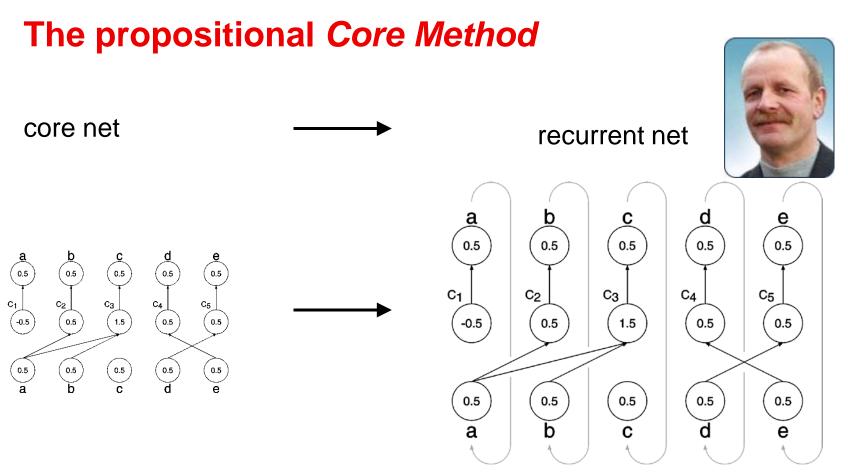
The propositional Core Method

- Hölldobler & Kalinke 1994
 - Extends the approach by McCulloch & Pitts.
 - Representation of propositional logic programs and their semantics.
 - "Massively parallel reasoning."





- Update "along implication".
- Corresponds to computing the semantic operator T_{P} .
- T_P represents meaning (semantics) of P through its fixed points.



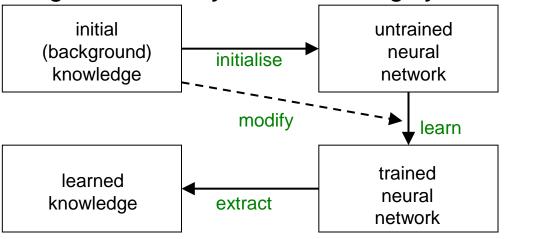
- Repeated updates along layers corresponds to iterations of the semantic operator.
- Semantics of the program (= fixed point of the operator) can be computed in a parallel manner.

LIFB C

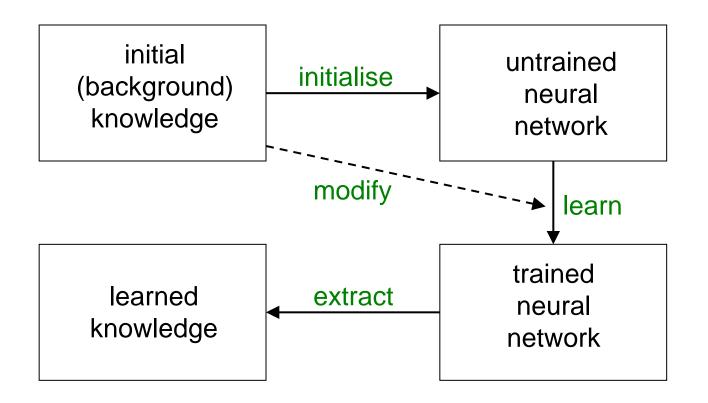
CILP – Connectionist Inductive Logic Programming

Garcez & Zaverucha 1999
 Garcez, Broda & Gabbay 2001

- Development of a learning paradigm from the Core Method.
- Required: differentiable activation function.
 - Allows learning with standard methods.
 - Backpropagation algorithm.
- Establishing the neural-symbolic learning cycle.



The neural-symbolic learning cycle



The four main problems of Neural-symbolic Integration.

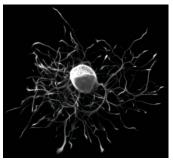
Multi-valued Logic Programs

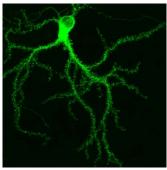
- Approach can be generalised to logic programs under multiple truth values.
- Rather general results can be obtained.
- No practical evaluation yet.
- [Komendantskaya, Lane, Seda, 2007]

IFB O

Contents

- 1. Why neural-symbolic integration?
- 2. Earlier work
- 3. The neural-symbolic learning cycle
- 4. Propositional fixation
- 5. The cycle for first-order logic
 - a. The Core Method
 - b. Realising the cycle
- 6. Outlook





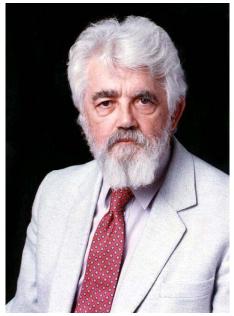
NIFB

Conectionism and first-order predicate logic (PL)

 Connectionist representation of PL-knowledge very hard to realise.
 McCarthy 1988: "Propositional fixation."

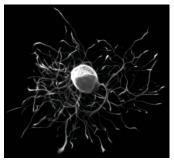
We need to capture the infinite in a finite way.

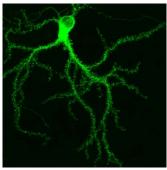
- infinite ground instantiations
 (8x) male(x) Æ hasSon(x,son(x)) ! father(x)
- term representations member(X, [a,b,c | [d,e]])
- variable bindings
 male(x) Æ hasSon(x,y) ! father(x)



Contents

- 1. Why neural-symbolic integration?
- 2. Earlier work
- 3. The neural-symbolic learning cycle
- 4. Propositional fixation
- 5. The cycle for first-order logic
 - a. The Core Method
 - b. Realising the cycle
- 6. Outlook





NIFB

PL Core Method

• Hölldobler, Kalinke, Störr 1999 Hitzler, Hölldobler, Seda 2004

- Idea:
 - Use results by Funahashi 1989: "Every continuous function on the reals is approximable by standard feedforward networks. "
 - Hence: Consider logic programs for which T_P-operator is continuous in this sense.

Funahashi 1989 (simplified)

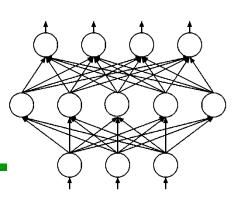
- σ sigmoidal activation function
- K µ R compact
- f: K ! R continuous
- c > 0

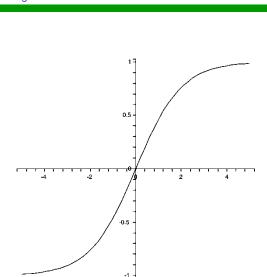
Then there exists a three-layer feedforward network with activation function σ and I/O-function F, so that

$$\max_{x \in \mathsf{K}} \{ d(\mathsf{f}(x), \mathsf{F}(x)) \} < \varepsilon.$$

Here d is a metric which induces the natural topology on R.

I.e. continuous functions can be *uniformly approximated* by such networks with arbitrary accuracy.





AIFB O

Continuity of T_P – I

• Hitzler, Hölldobler, Seda 2004

Let \mathbf{B}_A be the set of all body atoms in ground instantiated clauses of P with head A.

 $\begin{array}{l} \mathsf{T}_{\mathsf{P}} \colon \mathsf{I}_{\mathsf{P}} \mathrel{!} \mathsf{I}_{\mathsf{P}} \; \text{is called locally finite, if} \\ \text{for all atoms A and all I 2 I}_{\mathsf{P}} \\ \text{there exists a finite S } \mu \; \mathbf{B}_{\mathsf{A}}, \\ \text{such that } \mathsf{T}_{\mathsf{P}}(\mathsf{J})(\mathsf{A}) = \mathsf{T}_{\mathsf{P}}(\mathsf{I})(\mathsf{A}) \\ \text{for all J 2 I}_{\mathsf{P}} \; \text{which coincide with I on S.} \end{array}$

p(s(x)) Ã p(x). p(0) p(x) Ã p(s(x)).

e.g. $\mathbf{B}_{p(s(0))} = \{p(0), p(s(s(0)))\}$

Continuity of $T_P - II$

 T_P : I_P ! I_P is locally finite iff T_P is continuous in Cantor space.

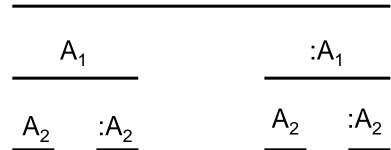
- Cantor-continuity is continuity wrt. the Cantor topology on the Cantor set.
- The Cantor topology is homeomorphic to the prefix-distance on (infinite) binary trees.
- The Cantor topology is homeomorphic to the subspace topology which is induced on a subset of R which is compact, totally disconnected and dense in itself.

FB

Continuity of T_P – III

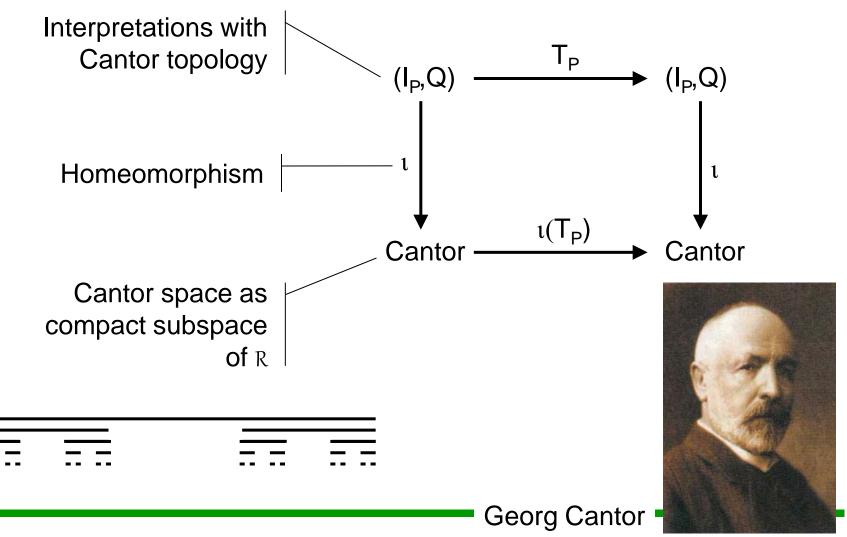
- There are (uncontably) many homeomorphisms which map I_P with the Cantor topology into suitable subsets of R.
- Locally finiteness is a logical (topology-free) characterisation of logic programs which can be represented in a a connectionist way in the sense of Funahashi.
- Problem: this argumentation is not constructive!

A₁, A₂, ... enumeration of Herbrand base
Elements of Cantor Set identifiable with interpretations



IFB O

Relationship of I_P to Cantor Space

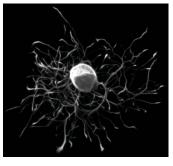


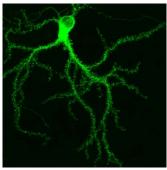
The Cantor topology as a paradigm bridge

- Connectionist side:
 - Cantor topology is a subtopology of the usual topology on the real numbers
- Logic Programming side:
 - Cantor topology captures useful notions of convergence of semantic operators, e.g.
 If T_Pⁿ ! I (for n→1), then I is a model of P.

Contents

- 1. Why neural-symbolic integration?
- 2. Earlier work
- 3. The neural-symbolic learning cycle
- 4. Propositional fixation
- 5. The cycle for first-order logic
 - a. The Core Method
 - b. Realising the cycle
- 6. Outlook



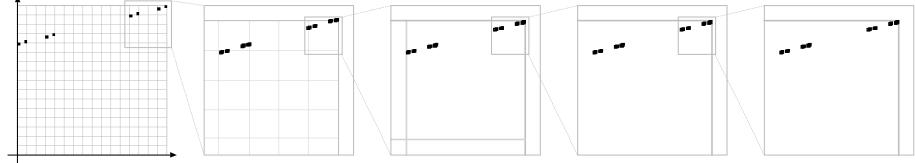


Realising the cycle: Representation of symbolic knowledge

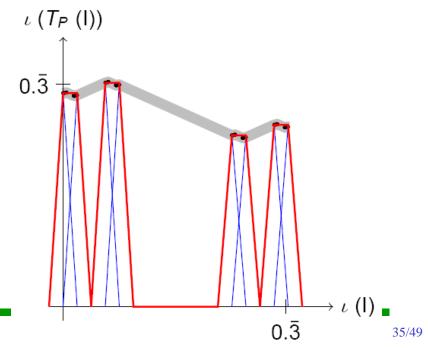
- Bader, Hitzler, Hölldobler, Witzel IJCAI-07
 - Algorithm for the approximate construction of neural networks from logic programs.
 - Realised for
 - RBS nets with triangular activation function
 - RBF nets with raised cosine activation function

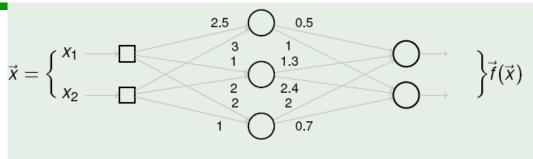
$$\tau_{w,h,m}(x) = \begin{cases} \frac{h}{2} \cdot \left(1 + \cos\left(\frac{\pi(x-m)}{w}\right)\right) & \text{if } |x-m| < w \\ 0 & \text{otherwise} \end{cases}$$

Realising the cycle (first-order representation)



- Graph of T_P is a fractal.
- Approximation up to arbitrary precision possible.
- Requires quite some calculation to get correct parameters in higher dimensions ...

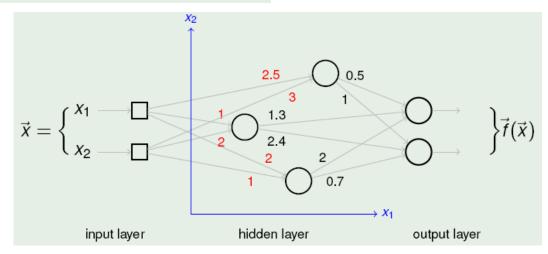




hidden layer

Local representation

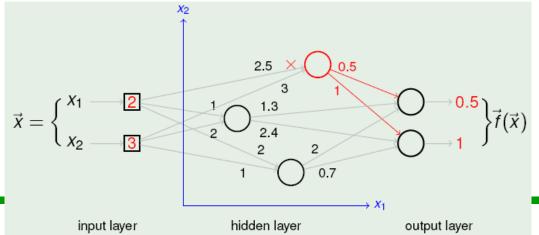
input layer



output layer

and

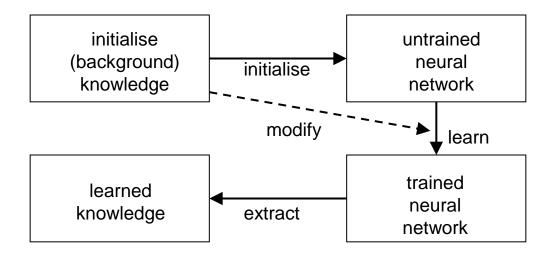
domination of output by one unit



36/49

Realising the cycle: learning

- Reuse of standard network architecture allows to use known and powerful learning methods.
 - Backpropagation
 - We merged in techniques from Supervised Growing Neural Gas (SGNG) [Fritzke 1998].

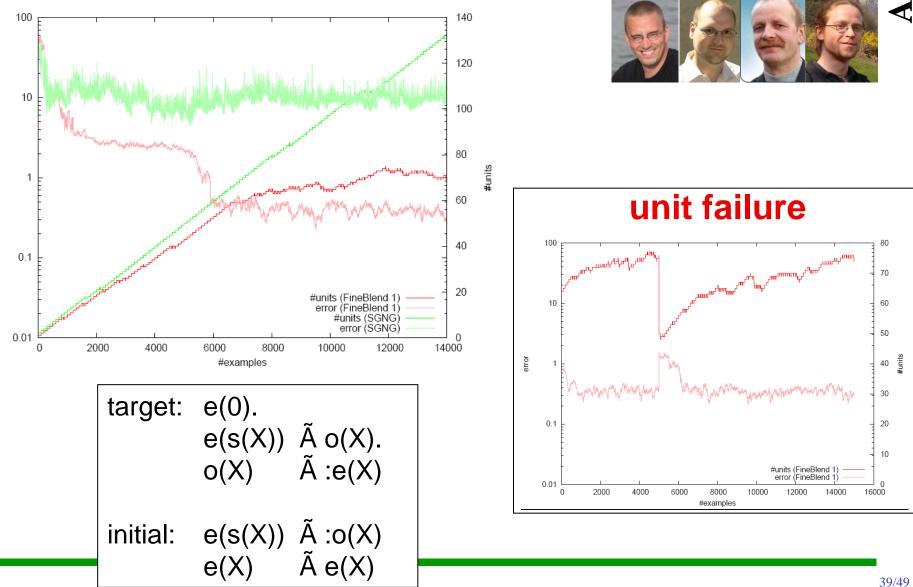


Realising the cycle: Implementation

- Bader & Witzel, first prototype
- JDK 1.5 unter Eclipse.
- Merging of techniques above and SGNG. *Fine Blend* system.
- Radial basis function network approximating T_P.
- Very robust with respect to noise and damage.
- Trainable using a version of backpropagation together with techniques from SGNG (Supervised Growing Neural Gas).

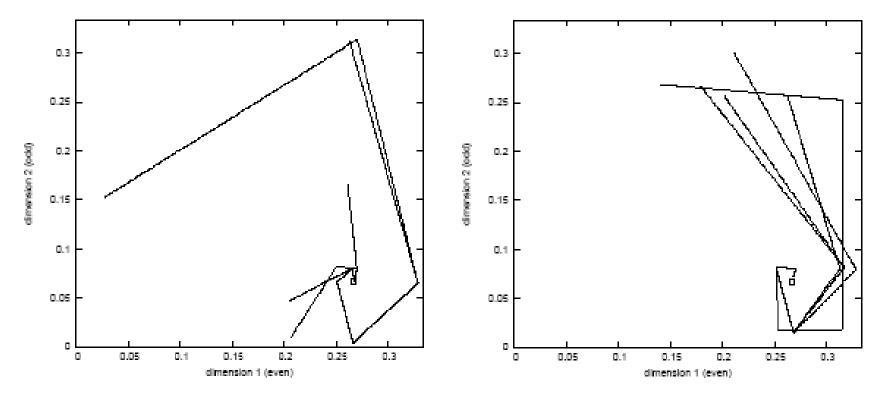
Fine blend vs. SGNG

error



Iterating Random Inputs

We observe convergence to unique supported model of the program.

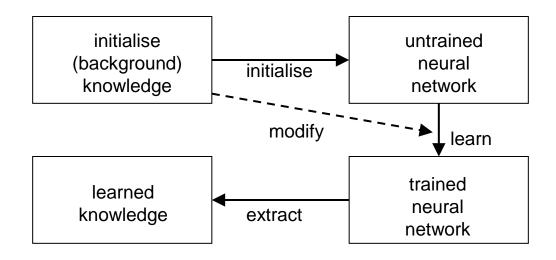


Realised integration

- Neural
 - trainable by backpropagation
 - robust
- Symbolic
 - computes logical model

Realising the cycle: Extraction of symbolic knowledge

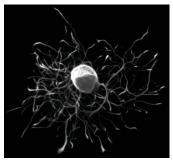
- Extraction of PL-knowledge from trained neural networks has never been attempted before.
- Idea: Represent programs and nets in Rⁿ (with n = number of weights in net) and search for best approximators using suitable metrics on vectors.

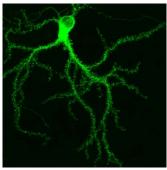


Contents

- 1. Why neural-symbolic integration?
- 2. Earlier work
- 3. The neural-symbolic learning cycle
- 4. Propositional fixation
- 5. The cycle for first-order logic
 - a. The Core Method
 - b. Realising the cycle
- 6. Outlook







NIFB

Outlook

Short term:

- Further experiments and evaluations.
- Develop and realise extraction method.
- Develop concrete application scenarios.
- Realise learning under background knowledge.

Medium and long term:

- Carry over to other KRR paradigms, e.g. DLs.
- Develop integrated connectionist learning and reasoning for cognitive systems applications.

Related work I

- There is hardly any work on first-order neuralsymbolic integration.
- M. Lane, A. Seda. Some Aspects of the Integration of Connectionist and Logic-Based Systems. Information, 9(4)(2006), 551-562.
 - Based on the propositional Core Method:
 Approximation of first-order programs by a finite number of ground instantiated clauses.
 - Purely theoretical.

Related work II

- H. Gust, K.-U. Kühnberger, P. Geibel. Learning Models of Predicate Logical Theories with Neural Networks Based on Topos Theory. In P. Hitzler, B. Hammer (eds.). Perspectives of Neural-Symbolic Integration, Studies in Computational Intelligence 77, Springer, 2007, pp. 233-264.
 - variable-free representation using category theory
 - learns corresponding models
 - running system

Related work III

- Using Bilattice-based annotated logic programs
- Propositional + first-order. Basically a lifting of the Hölldobler & Kalinke approach.
- No running system available
- [Komendantskaya, Seda, 2006]

Related work IV

- Connectionist realisation of proof-theory
- Specifically, SLD-resolution
- Tough ...
- [Komendantskaya 2007, 2008] and ongoing

Critical Questions

- The brain doesn't use logic.
 - Well yes. Logic is a (coarse) model. Like Newtonian physics is a coarse model.
 - We DO NEED more neuroscience input!
- The "infinity" discussion doesn't apply to the brain.
 Well yes. But give me something better.
- So where do you want to apply all this?
 - Good question. We currently have a hammer. We need to find some suitable nails.
 - But we DO HAVE one of the first two approaches to first-order neural-symbolic integration after 10 years of searching for it!!!!

Thank you for your attention

Collaborators

- Sebastian Bader
- Artur S. d'Avila Garcez
- Steffen Hölldobler
- Jens Lehmann
- Sebastian Rudolph
- Anthony K. Seda
- Andreas Witzel

please visit http://www.neural-symbolic.org

AIFB

References I

- P. Hitzler, S. Hölldobler and A. K. Seda. Logic Programs and Connectionist Networks. Journal of Applied Logic, 2(3), 2004, 245-272.
- S. Bader and P. Hitzler, Logic Programs, Iterated Function Systems, and Recurrent Radial Basis Function Networks, Journal of Applied Logic 2(3), 2004, 273-300.
- S. Bader and P. Hitzler, Dimensions of neural-symbolic integration a structured survey. In: S. Artemov et al. (eds). We Will Show Them: Essays in Honour of Dov Gabbay, Volume 1. College Publications, London, 2005, pp. 167-194.
- S. Bader, A.S. d'Avila Garcez and P. Hitzler, Computing First-Order Logic Programs by Fibring Artificial Neural Networks. In: I. Russell, Z. Markov (Eds.): Proceedings of FLAIRS05, Clearwater Beach, Florida, USA. AAAI Press 2005, May 2005, pp. 314-319.

References II

- r Logic
- S. Bader, P. Hitzler and A. Witzel, Integrating First Order Logic Programs and Connectionist Systems - A Constructive Approach, In: Proceedings of the IJCAI-05 Workshop on Neural-Symbolic Learning and Reasoning, NeSy'05, Edinburgh, UK, August 2005.
- P. Hitzler, S. Bader and A. S. d'Avila Garcez, Ontology leaning as a use case for neural-symbolic integration, In: Proceedings of the IJCAI-05 Workshop on Neural-Symbolic Learning and Reasoning, NeSy'05, Edinburgh, UK, August 2005.
- J. Lehmann, S. Bader and P. Hitzler, Extracting reduced logic programs from artificial neural networks, In: Proceedings of the IJCAI-05 Workshop on Neural-Symbolic Learning and Reasoning, NeSy'05, Edinburgh, UK, August 2005.
- S. Bader, P. Hitzler, and S. Hölldobler, The Integration of Connectionism and First-Order Knowledge Representation and Reasoning as a Challenge for Artificial Intelligence, Journal of Information 9 (1), 2006. Invited paper.

References III

- S. Bader, P. Hitzler, S. Hölldobler, A. Witzel. A Fully Connectionist Model Generator for Covered First-Order Logic Programs. In: Manuela M. Veloso, Proceedings of the Twentieth International Joint Conference on Artificial Intelligence, IJCAI-07, Hyderabad, India, January 2007, AAAI Press, Menlo Park CA, 2007, pp. 666-671.
- B. Hammer, P. Hitzler (eds.). Perspectives of Neural-Symbolic Integration. Studies in Computational Intelligence, Vol. 77. Springer, 2007, ISBN 978-3-540-73952-1.
- S. Bader, P. Hitzler, S. Hölldobler, A. Witzel. The Core Method: Connectionist Model Generation for First-Order Logic Programs. In: B. Hammer, P. Hitzler, Perspectives of Neural-Symbolic Integration. Studies in Computational Intelligence Vol. 77. Springer, 2007, ISBN 978-3-540-73952-1, pp. 205-232.
- S. Bader, P. Hitzler, S. Hölldobler. Connectionist Model Generation: A First-Order Approach. Neurocomputing 71, 2008, 2420-2432.