Neural-Symbolic Integration
A self-contained introduction

Sebastian Bader Pascal Hitzler

ICCL, Technische Universität Dresden, Germany
AIFB, Universität Karlsruhe, Germany
Outline of the Course

- Introduction and Motivation
- The Core Method for Propositional Logic
- Applications of the Propositional Core Method
- The Core Method for First-Order Logic
- More on First-Order & other Perspectives
Part

The Core-Method for Propositional Logic
Outline: The Core-Method for Propositional Logic

Propositional Logic Programs

The Core Method for Propositional Logic

CILLP and some Derivatives

Conclusions
Outline: The Core-Method for Propositional Logic

Propositional Logic Programs

The Core Method for Propositional Logic

CILLP and some Derivatives

Conclusions
Propositional Logic Programs – An Example

- $A \leftarrow \neg B$. % A is true, if B is false.
- $B \leftarrow A \land \neg B$. % B is true, if A is true and B is false.
- $B \leftarrow B$. % B is true, if B is true.
Propositional Logic Programs – The Syntax

Definition (Propositional Variables & Connectives)

\[A, B, C, D, \ldots \land = \text{“and”} \quad \leftarrow = \text{“if-then”} \quad \neg = \text{“not”} \]

Definition (Clause)

\[\begin{aligned}
& \text{\{Head\}} \quad \leftarrow \\
& \text{\{Body\} with } L_i \text{ either } X \text{ or } \neg X
\end{aligned} \]

Definition (Propositional Logic Program)

A propositional logic program is a finite set of clauses.
Propositional Logic Programs – The Semantics

Definition (Herbrand Base \(B_\mathcal{L} \))
The Herbrand base is the set of all variables occurring in \(P \).

Example (\(B_\mathcal{L} \) for the running example)
\[
B_\mathcal{L} = \{A, B\}
\]

Definition (Interpretation)
An interpretation is a subset of the Herbrand base.

Example (Interpretations for the running example)
\[
\begin{align*}
l_1 &= \emptyset \\
l_2 &= \{A\} \\
l_3 &= \{B\} \\
l_4 &= \{A, B\}
\end{align*}
\]
Propositional Logic Programs – The Semantics Ctd.

Example (For \(I_2 = \{A\} \))

\[
\begin{align*}
(A)^{I_2} &= \text{true} & (\neg A)^{I_2} &= \text{false} \\
(B)^{I_2} &= \text{false} & (\neg B)^{I_2} &= \text{true}
\end{align*}
\]

\[
\begin{align*}
A &\leftarrow \neg B.
B &\leftarrow A \land \neg B.
B &\leftarrow B.
\end{align*}
\]
Example (For $I_2 = \{A\}$)

$$(A)^{I_2} = true$$

$$(\neg A)^{I_2} = false$$

$$(B)^{I_2} = false$$

$$(\neg B)^{I_2} = true$$

$$(A \leftarrow \neg B)^{I_2} = true$$

$$(B \leftarrow B)^{I_2} = true$$

$$(A \land \neg B)^{I_2} = true$$

$$(B \leftarrow A \land \neg B)^{I_2} = false$$

$A \leftarrow \neg B.$

$B \leftarrow A \land \neg B.$

$B \leftarrow B.$
Definition (Model)
An interpretation M satisfying every clause of a program P is called a model of P (in symbols $M \models P$).

Example (Models of the running example)

\[\begin{align*}
A & \leftarrow \neg B. \\
B & \leftarrow A \land \neg B. \\
B & \leftarrow B.
\end{align*}\]

\[\begin{align*}
\emptyset & \not\models P \\
\{A\} & \not\models P \\
\{B\} & \models P \\
\{A, B\} & \models P
\end{align*}\]
The Immediate Consequence Operator T_P

Definition (T_P)

$$T_P(I) = \{ A \mid \text{there is a clause } A \leftarrow body \text{ in } P \text{ and } I \models body \}$$

- The T_P-operator propagates truth along the clauses.
The Immediate Consequence Operator T_P

Definition (T_P)

$T_P(I) = \{A \mid \text{there is a clause } A \leftarrow \text{body in } P \text{ and } I \models \text{body}\}$

- The T_P-operator propagates truth along the clauses.

Example (T_P for our running example)

\[
\begin{align*}
A & \leftarrow \neg B. \\
B & \leftarrow A \land \neg B. \\
B & \leftarrow B.
\end{align*}
\]

\[
\begin{align*}
\emptyset & \mapsto \{A\} \\
\{A\} & \mapsto \{A, B\} \\
\{B\} & \mapsto \{B\} \\
\{A, B\} & \mapsto \{B\}
\end{align*}
\]

- For definite programs, T_P converges to the least model.
Outline: The Core-Method for Propositional Logic

Propositional Logic Programs

The Core Method for Propositional Logic
- Embedding a Propositional Program into a Network
- Reasoning using the Core-Network
- Extracting Propositional Programs from Core-Networks

CILLP and some Derivatives

Conclusions
Constructing the Core-Network

1. For each element of B_L, add an input unit and an output unit with threshold 0.5.

2. For each clause $H \leftarrow L_1 \ldots L_n$ do the following:
 2.1 Add a hidden unit c and a connection to H' ($w = 1.0$).
 2.2 Connect every L_i and c with $w = \begin{cases} +1.0 & \text{if } L_i \text{ is positive,} \\ -1.0 & \text{if } L_i \text{ is negated.} \end{cases}
 2.3 Set the threshold of c to “number of pos. L_i”$-0.5.$

Example

\begin{align*}
A & \leftarrow \neg B. \\
B & \leftarrow A \land \neg B. \\
B & \leftarrow B.
\end{align*}
Constructing the Core-Network

1. For each element of B_L, add an input unit and an output unit with threshold 0.5.

2. For each clause $H \leftarrow L_1 \ldots L_n$ do the following:
 2.1 Add a hidden unit c and a connection to H' ($w = 1.0$).
 2.2 Connect every L_i and c with $w = \begin{cases} +1.0 & \text{if } L_i \text{ is positive,} \\ -1.0 & \text{if } L_i \text{ is negated.} \end{cases}$
 2.3 Set the threshold of c to “number of pos. L_i” – 0.5.

Example

$A \leftarrow \neg B.$

$B \leftarrow A \land \neg B.$

$B \leftarrow B.$
Constructing the Core-Network

1. For each element of B_L, add an input unit and an output unit with threshold 0.5.
2. For each clause $H \leftarrow L_1 \ldots L_n$ do the following:
 2.1 Add a hidden unit c and a connection to H' ($w = 1.0$).
 2.2 Connect every L_i and c with $w = \begin{cases} +1.0 & \text{if } L_i \text{ is positive,} \\ -1.0 & \text{if } L_i \text{ is negated.} \end{cases}$
 2.3 Set the threshold of c to “number of pos. L_i”—0.5.

Example

\[
\begin{align*}
A & \leftarrow \neg B. \\
B & \leftarrow A \land \neg B. \\
B & \leftarrow B.
\end{align*}
\]
Constructing the Core-Network

1. For each element of B_L, add an input unit and an output unit with threshold 0.5.

2. For each clause $H \leftarrow L_1 \ldots L_n$ do the following:
 2.1 Add a hidden unit c and a connection to H' ($w = 1.0$).
 2.2 Connect every L_i and c with $w = \begin{cases} +1.0 & \text{if } L_i \text{ is positive}, \\ -1.0 & \text{if } L_i \text{ is negated}. \end{cases}$
 2.3 Set the threshold of c to “number of pos. L_i”–0.5.

Example

$A \leftarrow \neg B$.
$B \leftarrow A \land \neg B$.
$B \leftarrow B$.

![Diagram of the Core-Network](image_url)
Constructing the Core-Network

1. For each element of B_L, add an input unit and an output unit with threshold 0.5.

2. For each clause $H \leftarrow L_1 \ldots L_n$ do the following:
 2.1 Add a hidden unit c and a connection to H' ($w = 1.0$).
 2.2 Connect every L_i and c with $w = \begin{cases} +1.0 & \text{if } L_i \text{ is positive,} \\ -1.0 & \text{if } L_i \text{ is negated.} \end{cases}$
 2.3 Set the threshold of c to “number of pos. L_i”–0.5.

Example

$A \leftarrow \neg B.$
$B \leftarrow A \land \neg B.$
$B \leftarrow B.$

![Network Diagram]

Neural-Symbolic Integration (Sebastian Bader, Pascal Hitzler)
Constructing the Core-Network

1. For each element of B_L, add an input unit and an output unit with threshold 0.5.

2. For each clause $H \leftarrow L_1 \ldots L_n$ do the following:
 2.1 Add a hidden unit c and a connection to H' ($w = 1.0$).
 2.2 Connect every L_i and c with
 \[w = \begin{cases}
 +1.0 & \text{if } L_i \text{ is positive,} \\
 -1.0 & \text{if } L_i \text{ is negated.}
 \end{cases} \]
 2.3 Set the threshold of c to “number of pos. L_i”–0.5.

Example

\[
\begin{align*}
A & \leftarrow \neg B. \\
B & \leftarrow A \land \neg B. \\
B & \leftarrow B.
\end{align*}
\]
Constructing the Core-Network

1. For each element of B_L, add an input unit and an output unit with threshold 0.5.

2. For each clause $H \leftarrow L_1 \ldots L_n$ do the following:
 2.1 Add a hidden unit c and a connection to H' ($w = 1.0$).
 2.2 Connect every L_i and c with $w = \begin{cases} +1.0 & \text{if } L_i \text{ is positive,} \\ -1.0 & \text{if } L_i \text{ is negated.} \end{cases}$
 2.3 Set the threshold of c to “number of pos. L_i”−0.5.

Example

$A \leftarrow \neg B.$

$B \leftarrow A \land \neg B.$

$B \leftarrow B.$
Constructing the Core-Network

1. For each element of B_L, add an input unit and an output unit with threshold 0.5.

2. For each clause $H \leftarrow L_1 \ldots L_n$ do the following:

 2.1 Add a hidden unit c and a connection to H' ($w = 1.0$).

 2.2 Connect every L_i and c with $w = \begin{cases} +1.0 & \text{if } L_i \text{ is positive,} \\ -1.0 & \text{if } L_i \text{ is negated.} \end{cases}$

 2.3 Set the threshold of c to "number of pos. $L_i" - 0.5.

Example

\[
\begin{align*}
A & \leftarrow \neg B. \\
B & \leftarrow A \land \neg B. \\
B & \leftarrow B.
\end{align*}
\]
One Application of T_P

\[A \leftarrow \neg B. \]
\[B \leftarrow A \land \neg B. \]
\[B \leftarrow B. \]
One Application of T_P

$A \leftarrow \neg B.$

$B \leftarrow A \land \neg B.$

$B \leftarrow B.$

\[
\{\} \rightarrow \{A\}
\]

\[
\begin{array}{c}
A \\
\otimes \\
\end{array}
\]

\[
\begin{array}{c}
B \\
\otimes \\
\end{array}
\]

\[
\begin{array}{c}
A' \\
0.5 \\
\end{array}
\]

\[
\begin{array}{c}
B' \\
0.5 \\
\end{array}
\]

\[
\begin{array}{c}
0.5 \\
\text{A'} \\
\end{array}
\]

\[
\begin{array}{c}
0.5 \\
\text{B'} \\
\end{array}
\]
One Application of T_P

$A \leftarrow \neg B.$

$B \leftarrow A \land \neg B.$

$B \leftarrow B.$

\[
\{\} \rightarrow \{A\}
\]
One Application of T_P

$$A \leftarrow \neg B.$$
$$B \leftarrow A \land \neg B.$$
$$B \leftarrow B.$$

$$\{\} \mapsto \{A\}$$
One Application of T_P

$$A \leftarrow \neg B.$$
$$B \leftarrow A \land \neg B.$$
$$B \leftarrow B.$$

\[
\{\} \mapsto \{A\} \\
\{A\} \mapsto \{A, B\} \\
\} \mapsto \{\} \\
\} \mapsto \{A, B\}
\]
One Application of T_P

\[A \leftarrow \neg B. \]
\[B \leftarrow A \land \neg B. \]
\[B \leftarrow B. \]

\[\{\} \rightarrow \{A\} \]
\[\{A\} \rightarrow \{A, B\} \]
One Application of T_P

\[
A \leftarrow \neg B.
\]

\[
B \leftarrow A \land \neg B.
\]

\[
B \leftarrow B.
\]

\[
\{\} \mapsto \{A\}
\]

\[
\{A\} \mapsto \{A, B\}
\]
One Application of T_P

$A \leftarrow \neg B.$

$B \leftarrow A \land \neg B.$

$B \leftarrow B.$

$\emptyset \mapsto \{A\}$

$\{A\} \mapsto \{A, B\}$

$\{B\} \mapsto \{B\}$

Neural-Symbolic Integration (Sebastian Bader, Pascal Hitzler)
One Application of T_P

$A \leftarrow \neg B.$

$B \leftarrow A \land \neg B.$

$B \leftarrow B.$

\[
\begin{align*}
\{\} & \mapsto \{A\} \\
\{A\} & \mapsto \{A, B\} \\
\{B\} & \mapsto \{B\}
\end{align*}
\]
One Application of T_P

$$A \leftarrow \neg B.$$
$$B \leftarrow A \land \neg B.$$
$$B \leftarrow B.$$

$$\{\} \mapsto \{A\}$$
$$\{A\} \mapsto \{A, B\}$$
$$\{B\} \mapsto \{B\}$$
One Application of T_P

\[A \leftarrow \neg B. \]
\[B \leftarrow A \land \neg B. \]
\[B \leftarrow B. \]

\[
\begin{align*}
\{\} & \mapsto \{A\} \\
\{A\} & \mapsto \{A, B\} \\
\{B\} & \mapsto \{B\} \\
\{A, B\} & \mapsto \{B\}
\end{align*}
\]
One Application of T_P

\[A \leftarrow \neg B. \]
\[B \leftarrow A \land \neg B. \]
\[B \leftarrow B. \]

\[
\begin{align*}
\{\} & \mapsto \{A\} \\
\{A\} & \mapsto \{A, B\} \\
\{B\} & \mapsto \{B\} \\
\{A, B\} & \mapsto \{B\}
\end{align*}
\]
One Application of T_P

\[
\begin{align*}
A & \leftarrow \neg B. \\
B & \leftarrow A \land \neg B. \\
B & \leftarrow B.
\end{align*}
\]

\[
\begin{align*}
\{\} & \mapsto \{A\} \\
\{A\} & \mapsto \{A, B\} \\
\{B\} & \mapsto \{B\} \\
\{A, B\} & \mapsto \{B\}
\end{align*}
\]
Repetitive Application of T_P

\[A \leftarrow \neg B. \]
\[B \leftarrow A \land \neg B. \]
\[B \leftarrow B. \]
Repetitive Application of T_P

$A \leftarrow \neg B.$

$B \leftarrow A \land \neg B.$

$B \leftarrow B.$
Repetitive Application of T_P

\[A \leftarrow \neg B. \]
\[B \leftarrow A \land \neg B. \]
\[B \leftarrow B. \]
Repetitive Application of T_P

$A \leftarrow \neg B.$

$B \leftarrow A \land \neg B.$

$B \leftarrow B.$
Repetitive Application of T_P

$A \leftarrow \neg B.$

$B \leftarrow A \land \neg B.$

$B \leftarrow B.$
Repetitive Application of T_P

$A \leftarrow \neg B.$

$B \leftarrow A \land \neg B.$

$B \leftarrow B.$
Repetitive Application of T_P

$A \leftarrow \neg B.$

$B \leftarrow A \land \neg B.$

$B \leftarrow B.$
Repetitive Application of T_P

$A \leftarrow \neg B$.
$B \leftarrow A \land \neg B$.
$B \leftarrow B$.

![Diagram showing the repetitive application of T_P]
Main Results (Hölldobler & Kalinke, 1994)

- 2-layer networks cannot compute T_P.
- For each program P there exists a 3-layer kernel computing T_P.
Space and Time Complexity

Let n be the number of clauses, m be the number of propositional variables:

- $2m + n$ units, $2mn$ connections in the kernel.
- $T_P(I)$ is computed in 2 steps.
- The parallel model to compute T_P is optimal.
- The recurrent network settles down in at most $3n$ steps.
Extraction Methods

- Single units do not necessarily correspond to single rules.
- In general: It is NP-complete to find the minimal logical description for a trained network (Golea, 1996).
- There is not always a single minimal program (Lehmann, Bader & Hitzler, 2005).
Extraction Methods

- Single units do not necessarily correspond to single rules.
- In general: It is NP-complete to find the minimal logical description for a trained network (Golea, 1996).
- There is not always a single minimal program (Lehmann, Bader & Hitzler, 2005).
Extraction – A Pedagogical Approach

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>A'</th>
<th>B'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.0 / 0.0</td>
<td>0.0 / 1.0</td>
<td>0.0 / 0.0</td>
<td>0.0 / 1</td>
<td>-1.0 / 0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1.5 / 1.0</td>
<td>0.3 / 1.0</td>
<td>0.8 / 1.0</td>
<td>1.8 / 1</td>
<td>0.7 / 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1.0 / 1.0</td>
<td>-2.0 / 0.0</td>
<td>-0.5 / 0.0</td>
<td>2.0 / 1</td>
<td>0.7 / 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2.5 / 1.0</td>
<td>-1.7 / 0.0</td>
<td>0.3 / 0.0</td>
<td>2.0 / 1</td>
<td>0.7 / 1</td>
</tr>
</tbody>
</table>
Extraction – A Pedagogical Approach

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A'</th>
<th>B'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
A \leftarrow \neg A \land \neg B. \\
A \leftarrow \neg A \land B. \\
A \leftarrow A \land \neg B. \\
A \leftarrow A \land B. \\
B \leftarrow \neg A \land B. \\
B \leftarrow A \land \neg B. \\
B \leftarrow A \land B.
\]
Extraction – A Pedagogical Approach

\[A \leftarrow \lnot A \land \lnot B. \]
\[A \leftarrow \lnot A \land B. \]
\[A \leftarrow A \land \lnot B. \]
\[A \leftarrow A \land B. \]
\[B \leftarrow \lnot A \land B. \]
\[B \leftarrow \lnot A \land B. \]
\[B \leftarrow A \land \lnot B. \]
\[B \leftarrow A \land B. \]

\[A. \]
\[B \leftarrow \lnot A \land B. \]
\[B \leftarrow A. \]
Extraction – A Pedagogical Approach

😊 Sound, i.e. every extracted rule is a rule implemented by the network.
😊 Complete, i.e. every rule implemented by the network will be extracted.
😊 Bad time-complexity, due to the exponential blow-up.
😊 Does not create the smallest program automatically.
Main Results (Hölldobler & Kalinke, 1994)

- 2-layer networks cannot compute T_P.
- For each program P there exists a 3-layer kernel computing T_P.
- For each 3-layer kernel K there exists a program P, such that K computes T_P.
- Let n be the number of clauses, m be the number of propositional variables
 - $2m + n$ units, $2mn$ connections in the kernel.
 - $T_P(I)$ is computed in 2 steps.
 - The parallel model to compute T_P is optimal.
 - The recurrent network settles down in at most $3n$ steps.
Outline: The Core-Method for Propositional Logic

Propositional Logic Programs

The Core Method for Propositional Logic

CILLP and some Derivatives

Conclusions
The CILLP-System

Can the learning capabilities of ANNs be combined with the Core Method (Garcez & Zaverucha, 1999)?
The CILLP-System

Can the learning capabilities of ANNs be combined with the Core Method (Garcez & Zaverucha, 1999)?

- Using sigmoidal / tanh functions, we obtain a standard 3-layer feed-forward neural network.
The CILLP-System

Can the learning capabilities of ANNs be combined with the Core Method (Garcez & Zaverucha, 1999)?

- Using sigmoidal / tanh functions, we obtain a standard 3-layer feed-forward neural network.

- This network is trainable using back-propagation.
CILLP - The Construction

▶ Define ranges for “true” and “false”:

- “true”
- “false”

▶ Compute a, the weights and thresholds such that the sigmoidal kernel computes T_P (Garcez & Zaverucha, 1999).
CILLP - Extracting a Learned Program

- The pedagogical approach would work, but ...
- Garcez, Broda & Gabbay (2001) proposed a suitable method, which ...
 - ☻ is sound.
 - ☻ is computational feasible due to clever restriction of the search space.
 - ☹ is not necessarily complete.
 - ☹ does not necessarily create the small programs.
CILLP - The MONK’s Problems

- Robots are described by 6 properties, e.g. head-shape ∈ \{round, square, octagon\}, ...
- Classification task: “Recognize robots with (body-shape = head-shape) or (jacket-color = red)”
- Network architecture:
 - 17 input units: one for each attribute.
 - 3 hidden layer units.
 - 1 output unit: indicating answer “yes” or “no”.
- 100% performance of the network and extracted rules.
- Pruning: from 131072 possible inputs for some hidden unit, only 18724 were queried.
CILLP - Conclusions

- Successfully used for ...
 - classification tasks like the MONK’s problem.
 - DNA sequence analysis (Promoter Recognition, Splice Junction Determination).
 - Power system fault diagnosis.

- Extensions of the CILLP-System:
 - Metalevel priorities between rules (Garcez, Broda & Gabbay, 2000).
 - Intuitionistic logic (Garcez, Lamb & Gabbay, 2003).
 - Modal logic (Garcez, Lamb, Broda & Gabbay, 2004).
Outline: The Core-Method for Propositional Logic

Propositional Logic Programs

The Core Method for Propositional Logic

CILLP and some Derivatives

Conclusions
The Core Method

- Relate logic programs and connectionist systems
- Embed interpretations into (vectors of) real numbers.
- Hence, obtain an embedded version of the T_P-operator.
- Construct a network computing one application of f_P.
- Add recurrent connections from output to input layer.
Major Problems in Neural-Symbolic Integration

- How can symbolic knowledge be represented within connectionist systems? (What is ι?)
- How can symbolic knowledge be extracted from connectionist systems? (What is ι^{-1}?)
- How can symbolic knowledge be learned using connectionist systems?
- How can connectionist learning be guided by symbolic background knowledge?
Conclusions

We have a complete system implementing the NeSy-Cycle for propositional logic programs.
Main Results

- 3-layer feedforward networks can compute T_P.
- Using sigmoidal units, the network is trainable using Back-Propagation.
- Logic programs can be extracted.
- Successfully applied to real world problems.
Outline of the Course

- Introduction and Motivation
- The Core Method for Propositional Logic
- Applications of the Propositional Core Method
- The Core Method for First-Order Logic
- More on First-Order & other Perspectives