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Abstract
Recent work has demonstrated that symbolic execution

techniques can serve as a basis for formal analysis capa-
ble of automatically checking heap-manipulating software
components against strong interface specifications. In this
paper, we present an enhancement to existing symbolic exe-
cution algorithms for object-oriented programs that signifi-
cantly improves upon the algorithms currently implemented
in Bogor/Kiasan and JPF. To motivate and justify the new
strategy for handling heap data in our enhanced approach,
we present a significant empirical study of the performance
of related algorithms and an interesting case counting anal-
ysis of the heap shapes that can appear in several widely
used Java data structure packages.

1 Introduction
In development contexts that emphasize reusable com-

ponents, it is important for development methodologies and
processes to be supported by the following capabilities: (1)
specification notations such as those used in the Design-by-
Contract (DBC) [15] paradigm that provide “software con-
tracts” to specify the assumptions that a component makes
about its context and the behavior/functionality of the ser-
vices that the component guarantees to provide to clients,
and (2) tools for automatically checking that clients con-
form to component contract assumptions and that a com-
ponent’s implementation provides functionality that satis-
fies what its contract guarantees. These capabilities can be
difficult to provide in OOP languages due to the extensive
use of dynamically created heap objects, where one has to
be able to precisely reason about objects, their data, and
the relationships between them. We refer to invariants and
functional behavioral specifications on complex heap data
structures as strong properties [17] as they are hard to ana-
lyze due to aliasing issues (e.g., equivalence of object struc-
tures); lightweight properties such as simple relationships
between scalar values and variable null-ness are the coun-
terpart of strong properties that are also important to specify
and enforce as an integral part of the development process.
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Tools such as ESC/Java [9] that are founded on theorem-
proving techniques have made significant contributions in
the area of automated contract checking. However, ESC/-
Java and related tools have significant difficulties in sup-
porting checking of strong properties of heap-manipulating
programs; they provide weak support for generation of in-
formative counter-examples, and they lack integration with
existing quality assurance mechanisms such as testing.

Recent efforts such as JPF’s “lazy initialization” ap-
proach to symbolic execution [11] and others (e.g., [19, 6])
have demonstrated that symbolic execution can serve as a
basis for checking strong contract properties and invariants
of complex heap-based data structures and for supporting
automated test case generation. However, because symbolic
execution is typically implemented as a path-sensitive anal-
ysis, it can require significant computational resources.

In previous work, we have introduced Kiasan [6] –
a symbolic execution framework for object-oriented lan-
guages (including Java) built on top of the Bogor model-
checking framework [16]. A significant part of our effort
has focused on using: (a) empirical studies, and (b) a care-
ful case analysis of heap states necessary for verifying in-
variants of several complex data structure examples to drive
improvements in Kiasan (in particular, its treatment of heap
data) that provide performance levels that enable Kiasan
to be incorporated into realistic development contexts. In
this paper, we present the results of those empirical studies
and analyses and the resulting algorithmic improvements.
Specifically, the main contributions of this paper are:

• a new algorithm that significantly improves upon on
the performance of related algorithms currently imple-
mented in Kiasan and JPF,
• a rigorous case analysis of all possible heap shapes

generated by several complex data structure imple-
mentations that establishes the optimality of our new
algorithm on these data structures,
• an empirical evaluation (using twenty three different

data structure packages) of JPF’s lazy initialization al-
gorithm, Kiasan’s original lazier initialization algo-
rithm, and the new lazier# initialization algorithm pro-
posed that shows that the lazier# algorithm signifi-
cantly improves upon the lazier algorithm which in
turn significantly improves upon JPF’s lazy algorithm.



1 i n t max( i n t a , i n t b ) {
2 i n t z = a ;
3 i f ( b > a ) z = b ;
4 i f ( z < a | | z < b )
5 asser t fa lse ;
6 return z ;
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Figure 1. A Symbolic Execution Example

In an accompanying tech report [8], we provide a proof of
the relative soundness and completeness of the lazier# al-
gorithm along with additional performance data and discus-
sion. It is important to note the scope of the empirical study
that we present here goes far beyond previous work on this
topic which only considered anywhere from 1-7 examples.

2 Background

Symbolic Execution Basics: King proposed symbolic ex-
ecution [12] (SymExe) as a technique for program testing
and debugging. One key advantage of symbolic execution
over real/concrete execution (e.g., traditional testing) is it
can reason about unknown values which are represented as
symbols instead of concrete values (e.g., integers). Figure 1
illustrates the symbolic computation tree of an example
method max (each tree node is a symbolic state 〈a, b, z, φ〉
that associates a symbol/concrete value to a, b, z, and predi-
cate φ that constrains the symbols). When symbolically ex-
ecuting max with no initial information about its argument,
the initial state for the max method has a symbol α for a,
symbol β for b, 0 for z, and the constraint φ set to true
(no constraints imposed yet). When executing line 3, the
symbolic execution does not have sufficient information to
decide which branch to take because φ =⇒ (b > a) and
φ =⇒ ¬(b > a) are all satisfiable under the current symbolic
state – thus, both branches are explored. As each branch is
traversed, the predicate is augmented with a constraint cor-
responding to the logical condition that would have caused
the particular branch to be followed. Thus, the predicate φ
is often referred to as the path condition because it repre-
sents the conditions on variables that would be necessary
for execution to flow down the current path. An assignment
of concrete values to the symbols that satisfy the path con-
dition can be used to form a test case that drives execution
along the current path. If the path condition becomes false,
the path is infeasible hence abandoned. The example shows
that the true branch of line 5 is always infeasible.

As we can observe from this example, SymExe is a path-
sensitive analysis, and is typically phrased as a depth-first
search of a method’s execution paths. SymExe does not at-
tempt to discover loop invariants, so symbolically executing

public class Node<E> {
/ /@ ensures data == \ o ld ( n . data ) && n . data == \ o ld ( data ) ;
public void swap ( @NonNull Node<E> n )
{ E e = data ; data = n . data ; n . data = e ; }
private Node<E> next ; E data ;

}

Figure 2. A Swap Example

a loop or cycle of recursive methods could result in an un-
bounded search – which is typically terminated by imposing
some sort of bounding. SymExe also relies on underlying
decision procedures (e.g., linear arithmetic) and constraint
solvers to make deductive inferences and to find concrete
solutions of constraint sets. If data/operations are encoun-
tered that lie outside the scope of the decision procedure’s
theory, some other course of action must be taken.

Handling Objects: While the basic approach to SymExe
of programs with simple scalar data was proposed decades
ago and provides an intriguing approach to program check-
ing and test generation, it has gained a reputation across
the years as a technique that does poorly when applied to
real systems and languages like Java with complex features.
However, recent work on SymExe for object-oriented (OO)
languages [11, 10, 6] has introduced significant innovations
and moved the technology forward to the point where it
can now be applied to complex Java data structures such
as those in the Java Collection Framework. While some
OO SymExe frameworks use a logical representation of the
heap [19, 10], Kiasan leverages advances in explicit-state
model checking to represent heap data directly using heap
graphs. This approach provides the most precise alias infor-
mation on heap objects and allows Kiasan to decide strong
heap-oriented properties such as graph isomorphism with-
out calling decision procedures [17].

Lazy Initialization: To handle unknown heap structures, Ki-
asan uses an enhancement of the lazy initialization algo-
rithm originally introduced in [11]. The lazy initialization
algorithm starts with no or partial knowledge of object val-
ues (i.e., symbolic objects whose fields are uninitialized)
referenced by program variables. As the program executes
and accesses object fields, it “discovers” (i.e., materializes)
the field values on an on-demand basis (i.e., hence the term
“lazy initialization”). When an unmaterialized field is read,
if the field’s type is a scalar type, then a fresh symbol is
created. Otherwise, for an unmaterialized reference field,
the algorithm systematically (safely) explores all possible
points-to relationships by non-deterministically choosing
among the following values for the field: (a) , (b) any
existing symbolic object whose type is compatible with the
field’s type, or (c) a fresh symbolic object (whose type is
constrained to be equal to or a subtype of the field’s type).

To illustrate lazy initialization, consider the following
swap method for Node in Figure 2. The top part of Figure 3
illustrates the symbolic execution computation tree built us-
ing lazy initialization. To save space in the display of the
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Figure 3. Lazy Symbolic Execution Tree and An Example Trace (3-33-334-3341 and Sibling States)

tree, we represent each tree node (system state) by a unique
label corresponding to the path through the tree to the cur-
rent code. The bottom part of Figure 3 shows heap con-
figurations for some of the states in the computation tree.
To generate the computation tree of Figure 3, the symbolic
execution begins with a non-deterministic choice of possi-
ble aliasing between the method parameter n and the this
reference (i.e., States 1, 2, and 3). Note that both the next
and the data fields of this and n are unknown (unmaterial-
ized). Out of the three cases, State 1 does not satisfy the
@NonNull precondition for n, thus it is not considered fur-
ther. Now, consider the sub-tree starting from State 3. Upon
executing swap’s first statement, the this.data field is now ma-
terialized according to the lazy algorithm described above;
it non-deterministically chooses the value of this.data to be:
 (31), equal to this – n0 (32), n1 (33), or a fresh sym-
bolic object e0 (34). Let us continue on with the sub-tree
starting from State 33. Upon executing swap’s second state-
ment, the algorithm non-deterministically chooses the 
value, n0, n1, or a fresh symbolic object e1 for the n’s data
field, thus, resulting in the States 331, 332, 333, and 334,
respectively. Executing swap’s last statement from 334 pro-
duces 3341 (the trace 3-33-334-3341 is highlighted in Fig-
ure 3). Note that the symbolic computation tree character-
izes all possible concrete executions of swap; Kiasan’s lazy
initialization algorithm has been formalized and its relative
soundness and completeness have been proven [6]. In ad-
dition, all swap’s post-states in Figure 3 satisfy swap’s post-
condition, thus, we conclude that the postcondition always
holds (checking the postcondition requires reconstructing
the effective pre-state of each post-state [7]).

Lazier Initialization: As we can observe, the lazy algorithm
produces a rather large state-space even for swap. In [6],
we introduced an optimized algorithm called lazier initial-

ization based on the observation that when an uninitialized
reference type variable is first read, it is not necessary to re-
solve the aliasing/object value at that particular point; only
when the object referenced by the variable is accessed, that
is when it is necessary to resolve the value. Basically, the
lazier algorithm divides the lazy initialization into two steps
as follows. Step 1, when an uninitialized reference type
variable is read, it is lazier-ly initialized with the  value
or a fresh symbolic reference value (whose type is the same
as the variable’s type); in essence, the symbolic reference
represents all possible objects that may be referenced by
the variable (i.e., it abstracts such a set of objects). Non-
reference-type variables are handled similarly to the lazy
algorithm. Step 2, when a field of a symbolic reference is
accessed (read/write), (a) the symbolic reference is then re-
placed by non-deterministically choosing any existing ob-
ject or a fresh symbolic object (with compatible types); if
the access is a read access and the field is unmaterialized,
(b) the field is then initialized (with a  value or a fresh
symbolic reference). The effects of these two steps are: (1)
delaying the non-deterministic choice of objects in the lazy
algorithm, and (2) the second step may not be needed in
some cases. Thus, it produces a (significantly) smaller state-
space (see our experiment data in Section 5).

To illustrate the lazier algorithm, let us reconsider the
swap example in Figure 2. The left hand side of Figure 4
illustrates the symbolic computation tree using lazier ini-
tialization; the highlighted path in the (lazier) computation
tree corresponds to the highlighted path in the (lazy) com-
putation tree (i.e., it simulates the lazy path). Symbolic ref-
erences are annotated with ·̂. Similar to the lazy algorithm,
the initialization algorithm starts with a non-deterministic
choice. However, there are only two choices instead of three
in the beginning. State 1 in Figure 3 is abstracted into State
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Figure 4. Lazier Symbolic Execution Tree and An Example Trace (2-22-223-2231 and Sibling States)

1 in Figure 4, and State 2 and 3 in Figure 3 are abstracted
into State 2 in Figure 4 (i.e., both n̂0 and n̂1 may actually be
n0 or n1). When n̂0’s data field is read at swap’s first state-
ment, n̂0 is replaced with n0 (there is no existing symbolic
objects for the non-deterministic choice, thus, it uses a fresh
symbolic object), and n0’s data field is initialized with ei-
ther a  value (21) or a fresh symbolic reference ê0 (22).
From State 22, there are three possible choices when exe-
cuting swap’s second statement. We first replace n̂1 by non-
deterministically choosing the existing object n0 or a fresh
symbolic object n1. In the former case, the data field has
been initialized, thus no special treatment is needed (221).
In the latter case, n1’s data field is “lazier-ly” initialized with
either  (222) or a fresh symbolic reference e1 (223). Ex-
ecuting swap’s last statement from 223 produces 2231. Note
that 2231 in Figure 4 safely approximates 3341 in Figure 3.

As we can observe, the computation tree in Figure 4 is
much smaller than the one in Figure 3, because the non-
deterministic choices for this, n, and the data fields are de-
layed, and the second steps of the lazier initialization for
data never happen. Moreover, all swap’s post-states in Fig-
ure 4 still satisfy swap’s postcondition, thus, we conclude
that the postcondition always holds. Note that we do not
need to replace ê0 and ê1 with symbolic objects when check-
ing the postcondition, as they will be compared against
themselves (i.e., data==\old(n.data) iff ê1 = ê1). Kiasan’s
lazier algorithm has been formalized and proved that it sim-
ulates the lazy algorithm (i.e., it is relatively sound and com-
plete) [6].

k-bounding: There are two main challenges when using
symbolic execution: (1) the termination of and (2) the scal-
ability of the algorithm. To address these issues, Kiasan [6]
incorporates a different bounding technique to help man-
age symbolic execution’s complexity, while providing fine-
grained control over parts of the heap that one is interested
in. In essence, we bound the sequence of lazy initializa-
tions originating from each initial symbolic object up to a
user-supplied value k. This user-adjustable bounding pro-
vides an effective and controllable trade-off between anal-
ysis cost and behavioral coverage. When using a bound k,

the analysis can guarantee the correctness of a program on
any heap object configuration with reference chains whose
lengths are at most k. In the case where the analysis does
not exhaust k, a complete behavior coverage is guaranteed.
To handle diverging loops (or recursions), we limit the num-
ber of loop iterations that do not (lazily) initialize any heap
object. That is, we prefer exhausting the k-bound first to
try to achieve the advertised heap configuration coverage.
Kiasan’s path-sensitivity allows it to know exactly the paths
and the states under which its bounds are exhausted. This
provides us with better control (methodologically) on how
we increase the coverage on paths that exhaust the k-bound
without exhausting the loop bound. In addition, for each
path traversed, Kiasan can generate a JUnit test as well as
a graphical visualization of data values flowing in and out
of the method [7] – which can be very useful for developers
when trying to diagnose the cause of a fault (the supple-
mentary data on our website include these JUnit tests and
visualizations for all our examples). The bounding strat-
egy also allows Kiasan to terminate even without storing its
state-spaces (i.e., following a stateless search as in model
checking). Thus, it can be easily parallelized/distributed (by
forking the search at state-space branches).

3 Case-Optimality Analysis
Motivation: As described previously, the lazier initial-
ization algorithm significantly reduces the state-space for
symbolic execution of object-oriented programs while still
preserving strong heap-oriented properties. However, one
might wonder whether it can still be improved. More specif-
ically, we are interested in investigating whether the algo-
rithm is case-optimal – it considers the minimum number of
behavior cases (i.e., pairs of pre/post-states) when analyzing
a given property and example (e.g., it considers only non-
isomorphic heap shapes). Clearly, the answer is problem-
dependent (and size-dependent for programs working with
possibly unbounded number of objects).

For example, consider an insertion method of a binary
search tree data structure. Intuitively, given an element to
insert, the method should maintain the invariant of a binary



search tree. That is, given that the pre-state of the method
satisfies the invariant, the tree still satisfies the invariant af-
ter insertion (Kiasan can additionally check stronger prop-
erties such as ensuring that the set of elements at post-states
includes the set of elements at the prestate and the newly in-
serted elements, and only those elements). More concretely,
for any binary search tree with m nodes, after the insertion,
the inserted element could be located in one of the m in-
ternal nodes or the m + 1  leaves [18]. Thus, there are
2m+ 1 possible non-isomorphic cases for each input binary
search tree with m nodes.
Analysis Method: To generalize, we want to calculate the
possible number of cases for the insertion method of the bi-
nary search tree for any k-bound. Since we limit the longest
reference chain to k, the heights of the input trees are less
than k. Thus, we need to consider the number of non-
isomorphic binary search trees with m nodes and heights
less than k. Let such a number be b(m, k); the total num-
ber of non-isomorphic input trees is

∑
m≥0 b(m, k). Thus, the

optimal number of cases for all non-isomorphic input tree
heights less than k is ck =

∑
m≥0(2m + 1)b(m, k).

In order to compute ck, we need to first calculate b(m, k).
A non-empty tree with height less than k and m > 0 nodes
can have i nodes in the left subtree with height less than k−1
and m−1− i nodes in the right subtree with height less than
k − 1 for any 0 ≤ i ≤ m − 1. Thus,

b(m, k) =
∑

i+ j=m−1

b(i, k − 1)b( j, k − 1) m > 0, k ≥ 1, (1)

with boundary condition, b(0, 0) = 1.

Generating Function: The recurrence relation (1) is very
complex to work with. We will use a standard combina-
torics technique called generating functions to simplify the
calculation. A generating function [21] of a sequence of
numbers 〈an〉 is G(x) =

∑∞
n=0 anxn. This definition of G(x) is

sometimes called the ordinary generating function of 〈an〉.
For example, the generating function for 1, 1, . . . , 1, . . . is
G(x) =

∑∞
n=0 xn = 1

1−x . Let us define a generating function
for b(m, n) as:

Tk(x) =
∞∑

m=0

b(m, k)xm k ≥ 0. (2)

Now, we proceed to simplify Tk(x). The terms in (1)
can be simplified using following technique: G(x)H(x) =∑

k≥0(
∑

i+ j=k aib j)xk for G(x) =
∑

i≥0 aixi and H(x) =∑
j≥0 b jx j. After multiplying xm to both sides of (1) and

summing over 1 ≤ m ≤ ∞, we have:

Tk(x) = x[Tk−1(x)]2 + 1 k ≥ 1. (3)

Using recurrence (3) and T0(x) = 1, we have T1(x) = 1 + x,
T2(x) = 1 + x + 2x2 + x3, etc. Finally, we can use T (x) to
compute the number of cases, ck =

∑
m≥0(2m + 1)b(m, k).

ck =
∑

m≥0

(2m+1)b(m, k) = 2
∑

m≥0

mb(m, k)+
∑

m≥0

b(m, k). (4)

1 BinaryNode<T> i n s e r t (T x , BinaryNode<T> t ) {
2 i f ( t == nul l )
3 t = new BinaryNode<T>(x , null , nul l ) ;
4 else i f ( comparator . compare ( x , t . element ) < 0)
5 t . l e f t = i n s e r t ( x , t . l e f t ) ;
6 else i f ( comparator . compare ( x , t . element ) > 0)
7 t . r i g h t = i n s e r t ( x , t . r i g h t ) ;
8 else
9 ; / / Dup l i ca te ; do noth ing

10 return t ;
11 }

Figure 5. A Binary Search Tree Insertion

In order to calculate
∑

m≥0 mb(m, k), we take the deriva-
tive of Tk(x) and get T ′k(x) =

∑
m≥0 mb(m, k)xm−1. Hence,∑

m≥0 mb(m, k) = T ′k(1). Therefore, ck = 2T ′k(1)+Tk(1). We
use this formula to calculate c1 = 2T ′1(1) + T1(1) = 4.
Non-optimality of The Lazier Initialization Algorithm:
From Table 1, we know that the lazier algorithm considers
12 cases when k = 1 for the insert helper method shown
in Figure 5. Since 12 > c1, we conclude that there is an
inefficiency in the lazier algorithm. We have used this tech-
nique to calculate the minimum number of cases for differ-
ent k-bounds for the binary search tree, AVL tree, and red-
black tree (interested readers are referred to [8] for details).
We are not aware of any other work that uses generating
functions to compute complex data structure configurations
based on maximal length of reference chains.

4 The Lazier# Initialization Algorithm

To address the inefficiency of the lazier initialization al-
gorithm, we have developed an even lazier algorithm which
we named the lazier# initialization algorithm. We observed
that one source of efficiency in the lazier algorithm is due to
the fact that it is optimized for non- variables; it opti-
mistically assumes most variables are non-1. That is, it
eagerly initializes an uninitialized (reference type) variable
as  or a fresh symbolic reference upon access. For ex-
ample, consider the source code of insert shown in Figure 5.
The lazier algorithm non-deterministically chooses between
 and a fresh symbolic reference for the field t.element at
line 4. However, the t.element is only used when comparing
with the inserted element by comparator.compare, and the Java
Comparator interface does not require compare’s parameters to
be non-. Thus, whether the value is  or non-
is irrelevant (i.e., processing the compare interface following
a compositional checking approach to check the insert im-
plementation will produce either a negative value, zero, or a
positive value regardless). Therefore, the non-deterministic
choice is too early at line 4 in the sense that it unnecessarily
exposes details about the heap objects.

In the lazier# initialization algorithm, we introduce an
intermediate step by initializing such variables with a new

1This is in line with the current Java Modeling Language (JML) [13]
default invariant for reference type variables.
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Figure 6. Lazier# Symbolic Execution Tree and An Example Trace (1-11-112-1121 and Sibling States)

flavor of symbolic value that abstracts  as well as any
object of the appropriate type. For the rest of the paper, we
use the general term “symbolic values” (with annotation ·̄)
for abstract values that abstract both  and any object
of the appropriate type, and we use the term “symbolic ref-
erences” (with annotation ·̂ as used previously) to refer to
non- values (i.e., we now have three abstraction levels
for objects: (1) symbolic objects, (2) symbolic references,
and (3) symbolic values). Thus, the lazier# algorithm can
be described as follows. Step 1, when an unmaterialized
variable is read, it is initialized with a fresh symbolic value
(i.e., there is no non-deterministic choice). Step 2, when a
field of a symbolic value is accessed, the symbolic value is
replaced with  (which results in raising a null derefer-
ence exception), or a fresh symbolic reference. In the case
of the latter, the algorithm proceeds similarly to the lazier
algorithm (but, an uninitialized field is lazier#-ly initialized
instead lazierly initialized). The first step can be further op-
timized by directly using a fresh symbolic reference if the
variable is known to be non-; for the rest of the paper,
we refer to this as the Non-null Variable (NV) optimization.

To illustrate the lazier# initialization algorithm, let us re-
visit the swap example. Figure 6 illustrates the symbolic ex-
ecution tree using the lazier# algorithm and a trace (along
with its states and their sibling states) that simulates the
highlighted trace in Figure 4 (and thus, it simulates the
trace highlighted in Figure 3). The algorithm starts with
one state (State 1). Notice that n refers to n̂1 instead of a
symbolic value because of the NV optimization mentioned
above (without the optimization, we use a fresh symbolic
value n̄1). When executing swap’s first statement, n̂0 is re-
placed with a fresh symbolic object n0, and its data field is
initialized with a fresh symbolic value ē0, thus resulting in
State 11. Continue on with executing swap’s second state-
ment, n̂1 is replaced with either the existing symbolic ob-
ject n0 or a fresh symbolic object n1. In the former case,
n0’s data field has been initialized, thus no special treatment
is needed (111). In the latter case, n1’s data field is initial-
ized with a fresh symbolic value ē1 (112). From 112, it
produces 1121. As we can observe, the lazier# computa-
tion tree in Figure 6 realizes a correct abstraction of both
the lazy (Figure 3) and lazier (Figure 4) computation trees
while still exposing enough information to establish swap’s
post-condition.

Formalization: Our description of the lazier# initialization

algorithm above is informal. To be precise, we present the
formalization of k-bounded symbolic execution using the
lazier# algorithm in Figure 7 (along with the lazy and the
lazier algorithms for reference). We have proved that the
lazier# algorithm simulates the lazier algorithm, and thus,
simulates the lazy algorithm; formal simulation proofs as
well as relative soundness and completeness proofs of Ki-
asan’s lazy, lazier, and lazier# initialization algorithms can
be found at [22].

First, we introduce the semantic domains shown in the
upper portion of Figure 7. There are two kinds of data in
Java: primitive and non-primitive (including objects and ar-
rays); symbolic execution treats input parameters or globals
as symbols which can be either primitive or non-primitive.
Thus, we have total four kinds of data: concrete prim-
itive which is modeled by the Consts domain; symbolic
primitive is modeled by the Symbolsprim domain; concrete
and symbolic non-primitives are all modeled by the do-
main Symbolsnon−prim. Each symbol in Symbols (the union
of Symbolsprim and Symbolsnon−prim) is modeled as a par-
tial mapping from fields/indexes to values. For symbols in
Symbolsprim created by new-prim-sym function, the map-
pings are empty. While concrete non-primitive symbols
(created by new-obj and new-arr functions) have the field-
s/indexes defined; symbolic objects (created by new-sym
function) have all fields undefined and are initialized by
lazy/lazier/lazier# algorithms when used. Each symbol αm,n

τ

has three properties: type τ, object bound m, array bound
n. The object bounds are used to enforce the k bounds dis-
cussed in Section 2 (and similarly for arrays). We define
the symbolic execution state as a hextuple which consists of
globals, program counter, locals, operand stack, heap, and
the path condition.

Second, we introduce the transition rules shown in the
bottom portion of Figure 7. Each transition is in the
form of s )S instr ⇒ s1[stmt1] | . . . | sn[stmtn] |
exception, s0[stmt0] | Error, s′[stmt′] which intuitively
means that instr non-deterministically transforms state s
into: s1 to sn under condition stmt1 to stmtn, an exception
and a resulting state s0 under condition stmt0, or an error
and a resulting state s′ under condition stmt′. As previously
mentioned, states with inconsistent path condition are ig-
nored. The essence of lazy, lazier, and lazier# algorithms is
captured in the semantics of getfield. If the field is de-
fined, all three algorithms are the same; it just returns the



Semantic Domains
INT ∈ Typesprim = primitive types: int,char,float,etc.

Typesnon−prim = Typesrecord + Typesarray + SymTypes
τ ∈ Types = Typesprim + Typesnon−prim
pc ∈ PCs = the set of program counters
φ ∈ Φ = P(the set of boolean expressions)
i, j ∈ Locs = the set of locations
δ̂m,nτ ∈ SymRefs = the set of symbolic references
δ̄m,nτ ∈ SymVals = the set of symbolic values
m, n, k ∈ ! = the set of natural numbers
, c, d ∈ Consts = the set of constants including !

, , , fτ ∈ Fields = the set of fields
ι ∈ Indices = Fields ∪! ∪ Symbols
αm,n
τ , β, γ ∈ Symbols =

{
αm,n
τ | αm,n

τ : Indices⇀ Values
}

= Symbolsprim + Symbolsnon−prim
v ∈ Values = Consts ∪ Locs ∪ Symbolsprim ∪ SymRefs ∪ SymVals
g ∈ Globals = { g | g : Fields⇀ Values }
σ ∈ Stacks =

{
σ | σ is a sequence of values

}

l ∈ Locals = { l | l : !⇀ Values }
h ∈ Heaps =

{
h | h : Locs⇀ Symbolsnon−prim

}

s ∈ States = Globals × PCs × Locals × Stacks × Heaps × Φ

Auxiliary Functions (↓ = defined, ↑ = undefined)
default = λτ.v,where v is τ’s default value
fields = λτ.{ fτ′ | fτ′ is a field in τ}
τ′ <: τ = τ′ is a subtype of τ (reflexive)
acc-idx = λα.

{
k ∈ ! ∪ Symbols | α(k)↓ }

collect = λh. { i | h(i) = α ∧ α() ↑ }

symbols = λs.
{
α | α appears in s

}

new-prim-sym = λ(τ, ps).ατ,α ! ps
new-sym-type = λps.τ s.t. τ ∈ SymTypes ∧ τ does not appear in ps
array-type = λτ.τ′,where τ′ is a array type of element type τ
subst = λ(s, δ̂, i).s′, s′ is the resulting state of substituting δ̂ with i in s.

new-sym = λ(ps,m, n).αm,n
τ , s.t. α ! ps ∧ τ = new-sym-type(ps) ∧ ∀ι ∈ Indices.α(ι)↑

new-sarr = λ(ps,m, n).new-sym(ps ∪ {α},m, n)[ 2→ α] where α = new-prim-sym(, ps)
new-obj = λ(ps, τ).α0,0

τ , s.t. α ! ps ∧ ∀ fτ′ ∈ fields(τ).α( fτ′ ) = default(τ′)
new-arr = λ(ps, τ, v, n).α0,n

τ′ ,α ! ps ∧ τ′ = array-type(τ) ∧ domα = {, , } ∧ α() = default(τ) ∧ α() = v
init-sym-val = λ(s, δ̄m,nτ ).{subst(s, δ̄, ), subst(s, δ̄, δ̂m,nτ )} where δ̂ is fresh
init-sym-ref = λ((g, pc, l,σ, h, φ), δ̂m,nτ ).{subst((g, pc, l,σ, h′, φ′), δ̂, i) | i ∈ collect(h), h′ = h, φ′ = φ ∪ {τ′ <: τ} where h(i) = ατ′ ;

i ! dom h, h′ = h[i 2→ γm,n
τ′ ], φ′ = φ ∪ {τ′ <: τ} if τ ∈ Typesrecord ∧ m ≥ 0

where γτ′ = new-sym(symbols(g, pc, l,σ, h, φ),m, n); (the array case is similar)}

Transitions (Non-deterministic, k-Bounded): s )S instr ⇒ s1[stmt1] | . . . | sn[stmtn] | exception, s0[stmt0] | Error, s′[stmt′]
Lazy

(g, pc, l, i ::σ, h, φ) )S getfield fτ ⇒ (g, nxt(pc), l, v ::σ, h, φ) where v = βm,n( fτ), βm,n = h(i) if βm,n( fτ)↓
| (g, nxt(pc), l, v ::σ, h′, φ′) when βm,n = h(i), j is fresh, τ′′ = new-sym-type((g, pc, l, i ::σ, h, φ)),

v = new-prim-sym(τ, (g, pc, l, i ::σ, h, φ)), h′ = h[i 2→ βm,n[ fτ 2→ v]], φ′ = φ if βm,n( fτ)↑ ∧τ ∈ Typesprim;
v = , h′ = h[i 2→ βm,n[ fτ 2→ v]], φ′ = φ if τ ∈ Typesnon−prim;
v ∈ (collect(h) ∪ { j})τ′′ , h′ = h[i 2→ βm,n[ fτ 2→ v]][ j 2→ γτ′ ], φ′ = φ ∪ {τ′ <: τ′′, τ′′ <: τ}

where γτ′ = new-sym((g, pc, l, i ::σ, h, φ),m − 1, k) if βm,n( fτ)↑ ∧τ ∈ Typesrecord ∧ m > 0;
v ∈ (collect(h) ∪ { j})τ′′ , h′ = h[i 2→ βm,n[ fτ 2→ v]][ j 2→ γτ′ ], φ′ = φ ∪ {γ() ≥ 0, τ′ <: τ′′, τ′′ <: τ}

where γτ′ = new-sarr((g, pc, l, i ::σ, h, φ),m − 1, k) if βm,n( fτ)↑ ∧τ ∈ Typesarray ∧ m > 0;
v ∈ collect(h)τ′′ , h′ = h[i 2→ βm,n[ fτ 2→ v]], φ′ = φ ∪ {τ′′ <: τ} if βm,n( fτ)↑ ∧τ ∈ Typesnon−prim ∧ m = 0

(g, pc, l,  ::σ, h, φ) )S getfield f ⇒ NullPointerException, (g, pc, l,σ, h, φ)
(g, pc, l, j :: i ::σ, h, φ) )S if acmpeq pc′ ⇒ (g, nxt(pc), l,σ, h, φ) if i " j | (g, pc′, l,σ, h, φ) if i = j

Lazier
(g, pc, l, i ::σ, h, φ) )S getfield fτ ⇒ (g, nxt(pc), l, v ::σ, h, φ) where v = βm,n( fτ), βm,n = h(i) if βm,n( fτ)↓;

(g, nxt(pc), l, v ::σ, h[i 2→ βm,n[ fτ 2→ v]], φ) when βm,n = h(i),
v = new-prim-sym(symbols(g, pc, l, i ::σ, h, φ), τ) if βm,n( fτ)↑ ∧τ ∈ Typesprim;
v = , if βm,n( fτ)↑ ∧τ ∈ Typesnon−prim;
v = δ̂m−1,k

τ , where δ̂ is fresh if βm,n( fτ)↑ ∧τ ∈ Typesnon−prim;
(g, pc, l, δ̂m,nτ ::σ, h, φ) )S getfield fτ ⇒ s′ where s′ ∈ init-sym-ref((g, pc, l, δ̂m,nτ ::σ, h, φ), δ̂)
(g, pc, l, δ̂m,nτ :: δ̂m,nτ ::σ, h, φ) )S if acmpeq pc′ ⇒ (g, pc′, l,σ, h, φ)
(g, pc, l, δ̂m,nτ ::v ::σ, h, φ) )S if acmpeq pc′ ⇒ s′ where s′ ∈ init-sym-ref((g, pc, l, δ̂m,nτ ::v ::σ, h, φ), δ̂)

Lazier#
(g, pc, l, i ::σ, h, φ) )S getfield fτ ⇒ (g, nxt(pc), l, v ::σ, h, φ) where v = βm,n( fτ), βm,n = h(i) if βm,n( fτ)↓;

(g, nxt(pc), l, v ::σ, h[i 2→ βm,n[ fτ 2→ v]], φ) when βm,n = h(i),
v = new-prim-sym(symbols(g, pc, l, i ::σ, h, φ), τ) if βm,n( fτ)↑ ∧τ ∈ Typesprim;
v = δ̄m−1,k

τ , where δ̄ is fresh if βm,n( fτ)↑ ∧τ ∈ Typesnon−prim;
(g, pc, l, δ̄m,nτ ::σ, h, φ) )S getfield fτ ⇒ s′ where s′ ∈ init-sym-val((g, pc, l, δ̄m,nτ ::σ, h, φ), δ̄)
(g, pc, l, δ̄m,nτ :: δ̄m,nτ ::σ, h, φ) )S if acmpeq pc′ ⇒ (g, pc′, l,σ, h, φ)
(g, pc, l, δ̄m,nτ ::v ::σ, h, φ) )S if acmpeq pc′ ⇒ s′ where s′ ∈ init-sym-val((g, pc, l, δ̂m,nτ ::v ::σ, h, φ), δ̂)

Note: implicit universal quantifications on free variables; mid-bar (|) indicates a non-deterministic choice, and semi-colon (;) indicates different cases

Figure 7. Bytecode-level Symbolic Execution Operational Semantics (excerpts)

value mapped by the field. Also, all three algorithms be-
have the same if the field value is undefined and the field
is of primitive type; that is, the field is initialized to a new
primitive symbol. When the field is undefined and the type
of the field is non-primitive type, the three algorithms differ
as follows.

For the lazy algorithm, the field is initialized to ,
an existing heap object with a compatible type (using the
collect function), or a fresh new symbol with object bound
decreased by one if the object bound is greater than 0. For

the lazier algorithm, the field is initialized to  or a fresh
symbolic reference with object bound decreased by one.
Since the lazier algorithm introduces symbolic references,
the getfield rule needs to consider the case that a field
from a symbolic reference is accessed. The lazier semantics
defines a 2-step semantics for this case: (1) the symbolic
reference is initialized to an existing heap object with com-
patible type or a new symbolic object shown in init-sym-ref
function (note that the program counter is not changed), and
(2) regular (without symbolic reference) getfield rule is



applied. For the lazier# algorithm, the field is initialized
to a symbolic value. If there is field access from a sym-
bolic value, a 3-step semantics rule is defined: (1) the sym-
bolic value is initialized to either  or a fresh symbolic
reference by init-sym-val function; steps (2) and (3) corre-
spond to the (1) and (2) steps in lazier initialization algo-
rithm. Note that the rule does not use the NV optimization
(it is simple to include it, but it makes the rule a bit com-
plicated). Below are the relative soundness and complete-
ness propositions relating the lazier# and lazier algorithms
(detailed proofs are available at [22]). Note that R′′ is a bi-
nary relation on lazier symbolic states and lazier# symbolic
states; a R′′ b iff the concretization of lazier# state b to a set
of lazier symbolic states includes state a.

Proposition 1 (Soundness). Given any lazier symbolic
trace a1 −→S a2 −→S · · · −→S an, there is a corresponding
lazier# symbolic trace b1 −→S b2 −→S · · · −→S bn such
that ak R′′ bk for all 1 ≤ k ≤ n.2

Proposition 2 (Completeness). Given any lazier# symbolic
trace b1 −→S b2 −→S · · · −→S bn, there is a corresponding
lazier symbolic trace a1 −→S a2 −→S · · · −→S an such that
ak R′′ bk for all 1 ≤ k ≤ n.

Optimality: Our experiment data in the next section con-
firms that the lazier# algorithm is significantly faster than
the lazier algorithm when analyzing complex data struc-
tures. Furthermore, the counting arguments of the previ-
ous sections show that, for several complex data structures,
the abstract heap characterization generated by the lazier#
algorithm is optimal in the sense that it does not generate
heap shapes that are overly concrete – the cases of heap
configurations that the algorithm generates match exactly
the number of cases produced by using the generating func-
tion technique described in the previous section.

5 Evaluation

To evaluate the effectiveness of lazier# algorithm, we
have performed a comparative study on twenty three exam-
ples. Most examples are data structure and algorithm exam-
ples taken from the java.util package and the data structure
book [20]. Table 1 shows the excerpts of the experiment re-
sults (we have included data for the most complex examples
– complete results including statement and branch coverage
information can be found on the Bogor website [22]). All
the experiments are conducted in a 2.4GHz Opteron Linux
workstation with 512MB Java heap. Recall that Kiasan
performs a per-method analysis (similar to ESC/Java), and
moreover, a bound of k = 2 is almost always sufficient for

2Note that if s1 −→S s2, then the program counters of s1 and s2 have to
be different (each −→S may correspond to one or more⇒S). In essence,
we model 2/3-steps semantics of lazier/lazier# into 1-step semantics.

achieving 100% multiple condition coverage (MCC), so the
results indicate the feasibility of Kiasan in actual develop-
ment for code similar to these examples.

We present comparison among lazy/lazier/lazier# algo-
rithms on number of states, number of cases, total running
time, and theorem prover time. The number of “cases” cor-
responds to the number of paths (number of post-states) in
the symbolic computation tree. In general, lazier# is bet-
ter than lazier which in turn is better than lazy in terms of
smaller numbers of states, smaller numbers of cases, and
shorter total running/theorem prover times. However, there
are some anomalies in the running time and theorem prover
time comparison. For example, for all AvlTree methods
with k = 3, the lazier# takes more total running time and
theorem prover time than lazier. This is because (for reasons
unknown to us) the underlying theorem prover, CVC Lite,
takes more time under the lazier# initialization algorithm
for this example (even though lazier# invokes the theorem
prover fewer times). If we examine the difference between
total time and theorem prover time which is actual running
time of the algorithms, it follows the general trend: lazier#
takes less time than lazier.

Given our case analysis in Section 3, we are most in-
terested in the number of cases explored. We have three
observations about the numbers of cases:
Observation 1: for some examples, such as AVL tree, the
numbers of cases are the same for lazier and lazier#. This
is because in the example,  is not allowed for tree ele-
ments and this confirms our previous observation that lazier
initialization is optimal for non- data.
Observation 2: for lazier#, the numbers of cases of binary
search tree, AVL tree, and red-black tree insertion match
exactly with the numbers calculated by the combinatorics
technique discussed in Section 3 – thus establishing that the
algorithm is case-optimal for these examples (which are the
most complicated ones in our example pool).
Observation 3: all the numbers of cases for search/insert/re-
move operations are the same for each tree (binary search
tree, AVL tree, red-black tree) under the lazier# algorithm.
This is because the search/insert/remove operations that in-
volve finding the position for the element first and the rest
operations (inserting or removing tree node and then rebal-
ance the tree) are deterministic. So the calculations for in-
sertion are applicable to the search and remove operations.
Conclusion: The omitted data follows the same trends as
presented in Table 1. For the most complicated examples,
the lazier/lazier# algorithms have been able to produce dra-
matic performance improvements over JPF’s lazy algorithm
(e.g., moving from 5-7hrs down to 1-2mins for TreeMap).

6 Related Work
Throughout the paper we have contrasted our approach

to others, thus we limit ourselves to a concise discussion



Class Method States Cases Total Time Theorem Prover Time
k Lazy Lazier Lazier# Lazy Lazier Lazier# Lazy Lazier Lazier# Lazy Lazier Lazier#

Av
lT

re
e find

1 3271 2420 1864 5 4 4 1.2s 1.5s 0.8s 0.4s 0.5s 0.1s
2 48244 23807 18800 29 21 21 8.9s 7.2s 6.9s 2.8s 3.9s 2.5s
3 10944306 459718 351798 275 190 190 1.7h 2.4m 3.7m 1.1h 1.9m 3.2m

insert
1 4719 3841 3053 5 4 4 2.1s 2.6s 1.5s 0.3s 1.6s 0.7s
2 56832 31905 25702 29 21 21 10.3s 7.0s 7.5s 4.5s 3.1s 4.0s
3 11036507 542929 422049 275 190 190 2.1h 2.8m 3.9m 1.4h 2.2m 3.5m

B
in

ar
yS

ea
rc

hT
re

e insert
1 6097 5521 1621 13 12 4 3.5s 2.1s 1.1s 0.9s 0.5s 0.1s
2 91691 63931 12551 112 94 21 22.7s 17.1s 5.0s 9.5s 7.9s 1.7s
3 3349343 1855571 234595 2161 1668 236 50.1m 16.4m 1.5m 39.1m 12.6m 1.1m

remove
1 4146 3693 1001 13 12 4 2.4s 2.5s 1.3s 1.2s 0.7s 0.5s
2 74896 49422 9254 112 94 21 22.4s 14.5s 5.1s 12.8s 5.6s 1.9s
3 3031511 1599087 197738 2161 1668 236 43.0m 13.8m 1.3m 35.1m 10.9m 1.0m

find
1 4890 4301 1162 13 12 4 2.1s 2.9s 0.8s 0.3s 1.0s 0.2s
2 89819 57292 10443 126 98 21 23.1s 16.3s 4.9s 10.9s 8.4s 1.8s
3 3822839 1808683 212296 2873 1788 236 55.5m 15.7m 1.4m 42.5m 12.4m 1.1m

S
ta

ck
Li

st push
1 758 758 374 4 4 2 0.7s 0.7s 0.6s 0.0s 0.0s 0.0s
2 1466 1390 687 6 6 3 0.9s 0.8s 0.5s 0.0s 0.1s 0.1s
3 2450 2260 1119 8 8 4 2.1s 1.7s 0.7s 0.4s 0.1s 0.0s

pop
1 196 196 189 2 2 2 0.2s 0.2s 0.2s 0.0s 0.0s 0.1s
2 425 387 377 3 3 3 0.4s 0.3s 0.5s 0.0s 0.0s 0.1s
3 770 675 662 4 4 4 0.4s 0.6s 0.5s 0.0s 0.2s 0.0s

ja
va

.u
til

.T
re

eM
ap

get
1 4309 2009 1199 8 6 4 4.2s 2.1s 1.6s 3.0s 1.2s 1.0s
2 85601 27489 17440 62 40 28 16.0s 10.3s 7.7s 8.5s 4.3s 4.4s
3 20707094 774545 470913 782 482 331 7.0h 3.1m 2.0m 5.0h 2.3m 1.4m

remove
1 2247 1721 1110 7 5 4 1.4s 1.4s 1.4s 0.1s 0.4s 0.9s
2 74892 37832 17081 73 43 28 16.0s 12.2s 5.8s 7.9s 6.2s 2.3s
3 17631620 1166311 472985 1075 579 331 5.1h 7.6m 1.9m 3.7h 6.4m 1.4m

lastKey
1 1219 664 657 2 2 2 0.7s 0.4s 0.6s 0.1s 0.0s 0.3s
2 15680 7658 7614 6 6 6 7.7s 2.5s 3.6s 3.5s 0.5s 1.2s
3 3524450 205430 204738 31 31 31 27.0m 27.9s 30.3s 21.5m 17.3s 19.3s

ja
va

.u
til

.V
ec

to
r add

1 986 818 354 6 6 3 2.0s 1.4s 0.7s 1.0s 0.8s 0.5s
2 2932 1514 472 20 14 5 6.5s 2.8s 1.2s 4.2s 1.4s 0.7s
3 10990 2906 590 74 30 7 21.0s 5.6s 0.9s 15.8s 3.3s 0.4s

indexOf
1 644 588 438 7 6 6 0.9s 1.6s 0.9s 0.2s 0.3s 0.4s
2 1195 1135 486 17 16 7 2.1s 2.0s 1.1s 0.5s 1.0s 0.7s
3 2686 2339 486 44 38 7 4.5s 4.1s 0.5s 2.5s 1.7s 0.1s

removeElementAt
1 202 200 197 3 3 3 0.8s 0.3s 0.3s 0.6s 0.1s 0.1s
2 382 320 257 6 5 4 1.0s 0.7s 0.6s 0.2s 0.1s 0.4s
3 999 566 318 16 9 5 2.0s 0.9s 0.6s 0.7s 0.5s 0.2s

Table 1. Experiment Data (excerpts); s – seconds; m – minutes; h – hours

here. TestEra [14] and Korat [3] generate non-isomorphic
complex heap structures a priori instead of using lazy ini-
tialization algorithm (thus, they are less efficient). In ad-
dition, they focus on generating heap structure configura-
tions without scalar data. The closest work to ours is the
symbolic execution engine of JPF [11] which originally in-
spired our work (i.e., the lazy initialization algorithm). We
have demonstrated that lazier# algorithm significantly re-
duces analysis cost compared to the lazy algorithm, and
even compared to our lazier algorithm introduced in [6].
Other approaches such as XRT [10] and CUTE [19] use
a logical heap representation, and they depend on theorem
provers to decide assertions. Recent work on the KeY sys-
tem uses symbolic execution and dynamic logic [2]. While
using a logical representation does not introduce explicit
non-deterministic choices when considering aliasing cases
similar to Kiasan, such non-deterministic choices are still
done by the underlying theorem prover. Currently, there is
no conclusive rigorous empirical studies that compare the
two main approaches (explicit vs. logical heap representa-
tion). In contrast, Kiasan focuses on automatic reasoning
of strong heap-oriented properties similar to [17]. In addi-
tion, we mentioned before that Kiasan’s stateless search is

easily parallelizable, thus, it can leverage the recent trend in
multi-core processor architectures. Furthermore, we focus
more on establishing strong heap coverage as described in
Section 3, while they focus on branch coverage; based on
our empirical studies, k = 2 is often enough to reach 100%
feasible multiple condition coverage (MCC) [7].

In contrast to all of the work cited above except [2],
Kiasan fully supports the DBC methodology. In this re-
spect, ESC/Java-like frameworks [9, 4, 1] are the most pop-
ular contract-based checking tools for object-oriented pro-
grams based on weakest precondition calculi. One limita-
tion of this approach is that it is difficult to generate counter-
examples for contract violations. Recent work on [5] tried
to address this issue by processing ESC/Java failed proof
attempts, and then running programs with random inputs to
check whether the warnings are false alarms (if not, the tool
has found a test case illustrating the error). This seems to
work well for scalar data, however it does not work with
heap intensive programs and contracts (since ESC/Java it-
self targets lightweight properties). It is much simpler in
our case to generate counter-examples (or even test cases),
because the lazy initialization algorithms generate almost
concrete graphs that can be directly leveraged to generate



concrete pre-/post-states illustrating different computation
paths (including error paths). We believe that Kiasan pro-
vides an alternative solution for contract-based static check-
ing framework that is able to reason about strong heap-
oriented properties, while the work presented in this paper
takes us further in term of reducing the analysis cost.

7 Conclusion and Future Work

Symbolic execution techniques provide a promising for-
mal foundation for automatically checking interface con-
tracts and class invariants that state strong properties over
heap data as required in modern software engineering ap-
proaches. To continue to push these techniques toward prac-
tical tools that can be integrated software development con-
texts, we have presented a case counting method to quan-
tify heap coverage for their evaluation. We illustrated the
lazier initialization algorithm we introduced in [6] (as well
as early lazy initialization algorithm [11]) are sub-optimal
on some complex data structures such as the red-black tree
implementation in java.util.TreeMap. We described the lazier#
initialization algorithm that addressed the inefficiency of
the lazier algorithm, and demonstrated that it is optimal on
those data structures with respect to the counting method.
We also presented empirical case studies to demonstrate the
effectiveness of lazier# compared to the lazy and the lazier
initialization algorithms.

Moving forwards, we plan to investigate more efficient
algorithms for symbolic execution. While the lazier# algo-
rithm is optimal for complex data structures that we used for
experiments, we have yet to show that it is optimal in gen-
eral. In addition, we have presented a case counting method
for several complex tree structures; we plan to investigate
how it can be applied to arbitrary (cyclic) heap shapes.
We also plan to conduct empirical case studies to compare
graph-based and logical-based heap representations, as well
as experimenting with hybrid graph and logical representa-
tions.
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Class Method States Cases Total Time Theorem Prover Time
k Lazy Lazier Lazier# Lazy Lazier Lazier# Lazy Lazier Lazier# Lazy Lazier Lazier#

AP partition
1 152 152 150 1 1 1 0.2s 0.2s 0.2s 0.0s 0.0s 0.0s
2 533 392 389 4 3 3 0.9s 0.5s 0.5s 0.4s 0.2s 0.3s
3 2340 1010 1006 15 7 7 3.4s 2.0s 1.2s 1.4s 0.8s 0.6s

GC Mark 1 226510 222575 222149 306 306 306 32.2s 30.8s 32.6s 2.1s 2.0s 2.2s

LL merge
1 1007 1007 732 1 1 1 0.8s 0.5s 0.4s 0.0s 0.0s 0.1s
2 4707 3931 3631 6 6 5 2.3s 1.9s 1.8s 0.6s 0.1s 0.0s
3 63932 18122 17754 63 30 19 13.0s 6.2s 5.7s 3.5s 2.5s 1.1s

S
or

t

insertionSort
1 190 190 178 2 2 2 0.4s 0.2s 0.2s 0.1s 0.0s 0.0s
2 506 389 376 5 4 4 0.9s 0.8s 0.6s 0.3s 0.1s 0.3s
3 2427 1102 1088 19 10 10 4.1s 2.2s 2.4s 3.0s 1.2s 1.7s

shellsort
1 192 192 180 2 2 2 0.3s 0.3s 0.2s 0.1s 0.1s 0.0s
2 553 419 406 5 4 4 1.2s 0.9s 0.7s 0.6s 0.3s 0.2s
3 2674 1206 1192 19 10 10 5.5s 2.6s 2.8s 3.3s 1.1s 1.4s

S
ta

ck
A

r push
1 250 238 120 4 4 2 0.6s 0.2s 0.2s 0.4s 0.1s 0.1s
2 250 238 120 4 4 2 0.4s 0.2s 0.3s 0.1s 0.1s 0.0s
3 250 238 120 4 4 2 0.5s 0.8s 0.2s 0.1s 0.4s 0.0s

pop
1 105 105 104 2 2 2 0.3s 0.2s 0.2s 0.0s 0.1s 0.0s
2 105 105 104 2 2 2 0.2s 0.3s 0.2s 0.0s 0.1s 0.1s
3 105 105 104 2 2 2 0.3s 0.2s 0.2s 0.1s 0.0s 0.0s

S
ta

ck
Li push

1 758 758 374 4 4 2 0.7s 0.7s 0.3s 0.0s 0.0s 0.0s
2 1466 1390 687 6 6 3 0.9s 1.2s 0.7s 0.0s 0.0s 0.0s
3 2450 2260 1119 8 8 4 2.1s 1.6s 0.9s 0.4s 0.0s 0.0s

pop
1 196 196 189 2 2 2 0.2s 0.1s 0.2s 0.0s 0.0s 0.0s
2 425 387 377 3 3 3 0.5s 0.2s 0.3s 0.0s 0.0s 0.0s
3 770 675 662 4 4 4 0.5s 0.7s 0.5s 0.0s 0.0s 0.1s

Tr
ee

M
ap

get
1 4309 2009 1199 8 6 4 4.2s 1.5s 1.0s 3.0s 0.3s 0.6s
2 85601 27489 17440 62 40 28 16.0s 7.6s 7.4s 8.5s 3.4s 3.3s
3 20707094 774545 470913 782 482 331 7.0h 3.1m 2.0m 5.0h 2.3m 1.5m

remove
1 2247 1721 1110 7 5 4 1.4s 1.1s 0.7s 0.1s 0.1s 0.2s
2 74892 37832 17081 73 43 28 16.0s 9.9s 5.7s 7.9s 5.7s 2.6s
3 17631620 1166311 472985 1075 579 331 5.1h 7.4m 1.9m 3.7h 6.2m 1.4m

lastKey
1 1219 664 657 2 2 2 0.7s 0.4s 0.3s 0.1s 0.1s 0.1s
2 15680 7658 7614 6 6 6 7.7s 2.1s 2.4s 3.5s 0.5s 0.5s
3 3524450 205430 204738 31 31 31 27.0m 28.1s 26.4s 21.5m 17.0s 16.5s

put
1 9951 4125 1871 16 10 4 3.4s 1.6s 0.9s 1.1s 0.1s 0.2s
2 181493 54221 22872 144 78 28 34.7s 14.2s 6.8s 18.7s 9.2s 2.7s
3 N/A 2676863 530005 N/A 1978 331 >24h 11.0m 1.9m N/A 7.8m 1.3m

TCF classify 1 404 404 404 15 15 15 0.9s 0.8s 0.6s 0.6s 0.3s 0.2s

Ve
ct

or

add
1 986 818 354 6 6 3 2.0s 1.3s 0.6s 1.0s 0.6s 0.3s
2 2932 1514 472 20 14 5 6.5s 3.7s 1.0s 4.2s 2.7s 0.6s
3 10990 2906 590 74 30 7 21.0s 6.0s 1.3s 15.8s 4.3s 0.7s

ensureCapacity
1 1051 831 610 17 13 9 2.3s 2.0s 0.8s 1.1s 1.1s 0.2s
2 3239 1703 826 57 29 13 5.5s 4.0s 1.6s 2.3s 2.0s 0.7s
3 11339 3447 1042 205 61 17 14.2s 5.3s 2.8s 9.5s 2.8s 2.1s

insertElementAt
1 1425 1131 469 6 6 3 3.4s 1.8s 0.9s 2.0s 0.8s 0.3s
2 6874 3175 836 41 26 8 13.2s 5.1s 0.9s 10.1s 3.3s 0.5s
3 41077 9235 1389 210 78 15 1.5m 15.9s 3.2s 1.3m 12.6s 1.8s

lastIndexOf
1 662 608 445 9 8 7 0.6s 0.7s 0.8s 0.2s 0.2s 0.5s
2 1199 1141 975 19 18 17 1.9s 1.5s 1.3s 0.8s 0.5s 0.6s
3 2650 2313 2141 46 40 39 6.9s 3.7s 3.4s 3.6s 1.9s 1.7s

indexOf
1 644 588 438 7 6 6 0.9s 1.6s 1.0s 0.2s 0.3s 0.5s
2 1195 1135 486 17 16 7 2.1s 2.0s 1.1s 0.5s 1.0s 0.7s
3 2686 2339 486 44 38 7 4.5s 4.1s 0.5s 2.5s 1.7s 0.2s

removeElementAt
1 202 200 197 3 3 3 0.8s 0.5s 0.6s 0.6s 0.1s 0.3s
2 382 320 257 6 5 4 1.0s 0.5s 0.7s 0.2s 0.2s 0.2s
3 999 566 318 16 9 5 2.0s 1.2s 0.7s 0.7s 0.6s 0.2s
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Class Method States Cases Total Time Theorem Prover Time
k Lazy Lazier Lazier# Lazy Lazier Lazier# Lazy Lazier Lazier# Lazy Lazier Lazier#

ABS abs 1 60 60 60 2 2 2 0.3s 0.1s 0.1s 0.1s 0.0s 0.0s
Av

lT
re

e

find
1 3271 2420 1864 5 4 4 1.2s 0.8s 0.9s 0.4s 0.1s 0.0s
2 48244 23807 18800 29 21 21 8.9s 5.9s 7.0s 2.8s 2.3s 2.5s
3 10944306 459718 351798 275 190 190 1.7h 2.4m 3.4m 1.1h 2.0m 3.0m

insert
1 4719 3841 3053 5 4 4 2.1s 1.4s 1.0s 0.3s 0.1s 0.1s
2 56832 31905 25702 29 21 21 10.3s 5.6s 7.1s 4.5s 2.0s 2.5s
3 11036507 542929 422049 275 190 190 2.1h 2.7m 3.7m 1.4h 2.2m 3.2m

findMax
1 1457 1457 1132 2 2 2 1.2s 0.5s 0.7s 0.7s 0.0s 0.2s
2 12738 8733 7127 5 5 5 3.3s 2.0s 3.2s 0.6s 0.4s 0.8s
3 2395408 107574 85445 20 20 20 8.0m 18.1s 54.2s 5.5m 10.6s 46.7s

B
in

ar
yH

ea
p deleteMin

1 290 290 288 2 2 2 0.4s 0.4s 0.4s 0.1s 0.1s 0.1s
2 670 491 488 4 3 3 0.9s 0.7s 0.9s 0.4s 0.4s 0.1s
3 2327 894 890 11 5 5 3.3s 1.5s 1.2s 2.0s 0.6s 0.7s

insert
1 458 349 336 4 3 3 0.8s 0.5s 0.7s 0.5s 0.1s 0.1s
2 1470 664 650 12 6 6 2.0s 1.5s 1.3s 0.9s 0.4s 0.4s
3 5388 1113 1098 34 9 9 5.9s 2.1s 1.6s 3.2s 0.9s 1.0s

B
in

ar
yS

ea
rc

hT
re

e

insert
1 6097 5521 1621 13 12 4 3.5s 2.4s 1.4s 0.9s 0.2s 0.1s
2 91691 63931 12551 112 94 21 22.7s 15.0s 5.1s 9.5s 8.2s 1.7s
3 3349343 1855571 234595 2161 1668 236 50.1m 16.6m 1.5m 39.1m 13.2m 1.2m

remove
1 4146 3693 1001 13 12 4 2.4s 1.9s 0.7s 1.2s 0.1s 0.0s
2 74896 49422 9254 112 94 21 22.4s 14.8s 6.0s 12.8s 7.7s 3.4s
3 3031511 1599087 197738 2161 1668 236 43.0m 13.6m 1.3m 35.1m 11.2m 1.0m

find
1 4890 4301 1162 13 12 4 2.1s 2.6s 0.6s 0.3s 0.9s 0.0s
2 89819 57292 10443 126 98 21 23.1s 15.1s 4.8s 10.9s 7.4s 1.0s
3 3822839 1808683 212296 2873 1788 236 55.5m 15.8m 1.5m 42.5m 12.8m 1.1m

findMax
1 1430 1430 689 3 3 2 0.9s 0.8s 0.5s 0.1s 0.0s 0.0s
2 14851 12821 3719 13 13 5 4.3s 5.3s 1.9s 1.6s 0.9s 0.4s
3 331374 258323 43215 131 131 26 3.3m 2.7m 25.4s 3.0m 2.4m 20.2s

findMin
1 1428 1428 688 3 3 2 0.8s 0.9s 0.5s 0.1s 0.0s 0.0s
2 14888 12858 3729 13 13 5 4.3s 3.8s 1.8s 1.7s 1.0s 0.3s
3 332455 259404 43400 131 131 26 3.6m 2.7m 25.1s 3.1m 2.4m 19.4s

D
is

jS
et

s Find
1 267 267 266 1 1 1 0.3s 0.3s 0.5s 0.1s 0.1s 0.3s
2 1224 1224 1223 7 7 7 1.4s 1.6s 1.5s 0.6s 0.8s 0.7s
3 6302 6302 6301 55 55 55 7.9s 7.8s 9.5s 5.2s 4.6s 7.2s

union
2 1295 1295 1294 2 2 2 1.4s 1.4s 1.5s 0.7s 0.8s 0.6s
3 6939 6939 6938 20 20 20 7.7s 6.8s 7.0s 5.5s 4.7s 4.6s

D
is

jS
et

sF
as

t

Find
1 282 282 281 1 1 1 0.6s 0.3s 0.3s 0.1s 0.1s 0.1s
2 1269 1269 1268 7 7 7 2.5s 1.7s 1.9s 1.5s 1.1s 1.1s
3 6486 6486 6485 55 55 55 10.4s 8.3s 10.6s 7.6s 5.8s 6.7s

union
2 1644 1644 1643 6 6 6 2.3s 2.5s 2.1s 1.6s 1.1s 1.2s
3 10097 10097 10096 60 60 60 14.8s 15.2s 14.6s 11.1s 12.4s 12.2s

D
ou

bl
eL

in
ke

dL
is

t

remove
1 664 664 371 2 2 2 0.7s 0.7s 0.5s 0.1s 0.1s 0.0s
2 5105 1616 1100 19 6 6 3.5s 1.6s 1.3s 0.3s 0.1s 0.4s
3 15422 3831 3039 51 16 16 6.8s 2.7s 1.5s 1.5s 0.2s 0.2s

addBefore
1 6178 1010 364 8 2 1 2.5s 0.6s 0.2s 0.6s 0.0s 0.0s
2 34918 2922 608 24 6 1 8.5s 1.6s 0.3s 4.2s 0.2s 0.0s
3 99182 5846 914 40 12 1 14.9s 2.2s 0.5s 7.5s 0.8s 0.1s

indexOf
1 668 668 373 2 2 2 0.5s 0.6s 0.2s 0.0s 0.3s 0.0s
2 5214 1650 1130 19 6 6 2.6s 1.4s 1.0s 0.6s 0.3s 0.5s
3 15709 3937 3139 51 16 16 6.9s 2.2s 3.4s 3.4s 0.2s 1.3s

clear
1 226 226 223 1 1 1 0.2s 0.1s 0.2s 0.0s 0.0s 0.0s
2 1194 513 507 3 2 2 0.8s 0.5s 0.5s 0.1s 0.2s 0.0s
3 2798 841 832 4 3 3 1.3s 0.6s 0.7s 0.2s 0.0s 0.1s

lastIndexOf
1 670 670 374 2 2 2 0.7s 0.3s 0.3s 0.4s 0.0s 0.0s
2 5214 1654 1132 19 6 6 2.0s 1.5s 0.8s 0.6s 0.1s 0.2s
3 15693 3583 2783 51 14 14 5.6s 3.6s 1.8s 2.2s 1.3s 0.7s

removeLast
1 278 180 152 2 2 1 0.5s 0.2s 0.3s 0.1s 0.0s 0.1s
2 1677 597 453 6 4 2 0.9s 0.6s 0.5s 0.1s 0.1s 0.1s
3 3759 1143 839 8 6 3 2.5s 0.8s 0.7s 1.1s 0.1s 0.1s

toArray
1 165 165 162 1 1 1 0.2s 0.2s 0.1s 0.0s 0.0s 0.0s
2 1973 437 399 30 3 2 3.3s 0.3s 0.4s 2.0s 0.0s 0.1s
3 14484 842 691 351 7 3 19.2s 0.7s 0.7s 6.4s 0.1s 0.2s

Table A.1: Experiment Data (2); s – seconds; m – minutes; h – hours4



A.1 Lazy and Lazier Swap States

A.1.1 Lazy Swap States
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Figure A.1: Swap–Lazy States (1)

A.1.2 Lazier Swap States

A.1.3 Lazier# States
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Figure A.2: Swap–Lazy States (2)
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Figure A.3: Swap–Lazier States
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Figure A.4: Swap–Lazier# States
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Appendix B

Counting Trees

In this chapter, we count numbers of different binary search trees (including red-black trees, AVL
trees), and the numbers of outcomes after certain operations like insert/remove/search one
element to the trees. We use a technique called generating functions [8, 2] to facilitate the count-
ing.

Without loss of generality, we assume that the elements contained in tree nodes are integers
(Z). First we define BS T to be the set of all binary search trees and BS Tn = { t ∈ BS T | height(t) < n }
for all n ∈ N. Then we define two relations.

• R : BS T × BS T as

t1 R t2 ⇐⇒ ∃ f : Z⇀ Z. dom f ⊇ elements(t1)∧ f is strictly increasing ∧ f (t1) = t2. (B.1)

where elements(t) returns all the elements of tree t and f (t) substitutes elements of t using
f and keeps the structure of t. The relation R is an equivalence relation:

1. reflexivity, let f be the identity map then we get t R t for all t ∈ BS T .

2. symmetry, if we have t1 R t2 for some f , we need to show t2 R t1. By the property of f
is strictly increasing, f must be injective. Then we know that f −1 is a partial function
and strictly increasing. So we get t2 R t1 by f −1.

3. transitivity, if we have t1 R t2 and t2 R t3, we need to show t1 R t3. Suppose f1 maps t1 to
t2 and f2 maps t2 to t3. We can define a function f ′ : Z→ Z as f ′ = f2 ◦ f1 and clearly
f ′ is strictly increasing. Thus we conclude that t1 R t3 by f ′.

• R′ : (BS T × Z) × (BS T × Z)

(t1, x1) R′ (t2, x2) ⇐⇒ ∃ f : Z⇀ Z. dom f ⊃ elements(t1)∪ {x1}∧ f is strictly increasing
∧ f (x1) = x2 ∧ f (t1) = t2. (B.2)

Similarly, R′ is also an equivalence relation.

So we want to count two things:
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1. |BS Tn/R|, the number of partitions of binary search trees with heights less than n. Essen-
tially, we count the number of unlabeled binary trees.

2. |(BS Tn × Z)/R′|, the number of partitions of pairs of binary search trees with heights less
than n and integers. Obviously,

(BS Tn × Z)/R′ =
⊎

T∈BS Tn/R

(T × Z)/R′.

Now we proceed to count |(T × Z)/R′| for T ∈ BS Tn/R. We claim that

|(T × Z)/R′| = 2 × #nodes(T ) + 1,

where #nodes(T ) is the number of nodes of any tree in T . Clearly, the all the trees in T have
the same shape, #nodes(T ) is well-defined. Suppose #nodes(T ) = k and we define a tree
t ∈ T which has elements: 2, 4, . . . , 2k. Then define P = { (t, i) | 1 ≤ i ≤ 2k + 1 }. Clearly,
P ⊂ (T × Z). If we can show for all (t′, x) ∈ (T × Z), (t′, x) R′ p for some p ∈ P, then
we can conclude |(T × Z)/R′| = |P| = 2 × #nodes(T ) + 1. Given any (t′, x) ∈ (T × Z) and
the elements are e1, e2, . . . , ek (in increasing order), since t′, t ∈ T , then t′ R t, that is, there
exists a strictly increasing function f such than f (t′) = t. Then we know f (ei) = 2i for all
1 ≤ i ≤ k. If x = ei for some 1 ≤ i ≤ k, we get (t′, x) R′ (t, i) by f . Otherwise, WLOG,
suppose e1 < x < e2, we define a new function f ′ as follows:

f ′(y) =




f (y) if f (y) is defined and y ≥ e2 or e1 ≤ y
3 if y = x
unde f ined otherwise

.

Clearly, f ′ is strictly increasing. Therefore, we get (t′, x) R′ (t, 3) by f ′. We conclude that

|(BS Tn × Z)/R′| =
∑

T∈BS Tn/R

2 × #nodes(T ) + 1.

This number is used to count number of outcomes after the search/insert/remove op-
erations. The search/insert/remove operations are similar:

• these operations take in a tree t and an integer x;

• the most important part of these operations is to find/search the suitable position for x
in t. Suppose t has n nodes, there are total 2n + 1 positions that include n nodes and
n + 1 s. That is, for any binary search tree t with n nodes,

|{ [(t, x)]R′ | x ∈ Z }| = 2n + 1.
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B.1 Counting Binary Search Trees

B.1.1 Counting Numbers of Binary Search Trees BS Tn/R
Since we only consider tree shapes but not the labels (elements) of tree nodes, the number of
binary search trees with height less than n is the same as the number of binary trees with height
less than n. Let an be the number of binary trees whose heights less than n for n ≥ 0. We admit
empty tree as a legal binary tree with height −1. Clearly we have a0 = 1 for only empty tree with
height less than 0. Let consider an for n ≥ 1. Then for each tree of height less than n, either it is
empty or it non-empty. For a non-empty binary tree, it has a root. The left and right subtrees of
the root have heights less than n − 1. Therefore, we get

an = 1 + a2
n−1 n ≥ 1 (a0 = 1). (B.3)

We get

a1 = 1 + a2
0 = 2

a2 = 1 + a2
1 = 1 + 22 = 5

a3 = 1 + a2
2 = 1 + 52 = 26

a4 = 1 + a2
3 = 1 + 262 = 677

...

This sequence grows double exponentially. In fact, Aho[1] showed an = [k2n] where [] is the
nearest integer function and k = 1.502837 . . ..

B.1.2 Counting (BS Tn × Z)/R′

Let b(m, n) be |{ [t]R | t ∈ BS Tn ∧ t has m nodes }|, binary trees with m nodes and height less than
n. Clearly b(0, n) = 1 for all n ≥ 0 and b(m, 0) = 0 for all m ≥ 1. Let cn = (BS Tn × Z)/R′. We
have cn =

∑
0≤i(2i + 1)b(i, n). 1 Define a generating function for b(m, n) as

Tn(x) =
∑

m≥0

b(m, n)xm n ≥ 0. (B.4)

Note from the definition of b(m, n), we can see clearly that an = Tn(1) where an is the number of
binary trees whose heights less than n. A non-empty tree with height less than n and m > 0 nodes
can have i nodes left subtree with height less than n − 1 and m − 1 − i nodes right subtree with
height less than n − 1 for any 0 ≤ i ≤ m − 1. Thus we get

b(m, n) =
∑

i+ j=m−1

b(i, n − 1)b( j, n − 1) m > 0, n ≥ 1 (B.5)

1This result allows the duplicated resulting trees and corresponds to the stateless case.
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After multiplying xm to both sides of (B.5) and summing over 1 ≤ m ≤ ∞, we get

Tn(x) = x[Tn−1(x)]2 + 1 n ≥ 1. (B.6)

Since b(0, 0) = 1 and b(m, 0) = 0 for m > 0, we have T0(x) = 1. Using recurrence (B.6), we can
get T1(x) = 1 + x, T2(x) = 1 + x + 2x2 + x3, etc. From the definition of an and b(m, n), we know
an =

∑
m≥0 b(m, n). Thus an = Tn(1) and for x = 1 (B.6) becomes (B.3) as expected.

Next, define generating function

Gn(x) =
∑

m≥0

(2m + 1)b(m, n)xm n ≥ 0. (B.7)

Then

Gn(x) =
∑

m≥0

(2m + 1)b(m, n)xm

= 2
∑

m≥0

mb(m, n)xm +
∑

m≥0

b(m, n)xm

= 2xT ′n(x) + Tn(x).

Clearly, cn = Gn(1). In order to get Gn(x), we need to calculate T ′n(x),

T ′n(x) = (x(Tn−1(x))2)′ = 2xTn−1(x)T ′n−1(x) + (Tn−1(x))2 n ≥ 1,T ′0(x) = 0.

We can get

T ′1(1) = 1
T ′2(1) = 2 × T1(1)T ′1(1) + (T1(1))2 = 4 + 4 = 8
T ′3(1) = 2 × T2(1)T ′2(1) + (T2(1))2 = 2 × 5 × 8 + 52 = 105
T ′4(1) = 2 × T3(1)T ′3(1) + (T3(1))2 = 2 × 26 × 105 + 262 = 6136

...

Finally, we can calculate cn = Gn(1):

c0 = G0(1) = 2T ′0(1) + T0(1) = 1,
c1 = G1(1) = 2T ′1(1) + T1(1) = 2 × 1 + 2 = 4,
c2 = G2(1) = 2T ′2(1) + T2(1) = 2 × 8 + 5 = 21,
c3 = G3(1) = 2T ′3(1) + T3(1) = 2 × 105 + 26 = 236,
c4 = G4(1) = 2T ′4(1) + T4(1) = 2 × 6136 + 667 = 12939,

...
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Numbers of non-isomorphic binary search trees after insert operation Now we only con-
sider the insert operation and want to find out the number of resulting trees,

fn = |{ insert(t, x)/R | t ∈ BS Tn ∧ x ∈ Z }|, (B.8)

where insert(t, x) is the resulting tree after inserting x into tree t. The above calculation of cn

trees contain a lot of duplications. For example, an empty tree is inserted with element 1 will
have the same resulting tree as a tree with a single node 1 and inserted with element 1. Clearly
fn consists of all the input binary tree except the empty tree and the set of trees with one node
of depth n. Let eh be the total number of new trees (after insertion) with depth h. Since after
insertion, the resulting tree can not be empty, we have

fh = ah + eh − 1 h > 1, (B.9)

and f0 = 1.
In order to calculate eh, we need to count the number binary trees with one node of depth n.

Define d(h, l) as the number of binary trees with height less than h and having l nodes with depth
h − 1 for h ≥ 0, l ≥ 0. Then d(0, 0) = 1, d(0, n) = 0, for n > 0, d(1, 1) = 1, and d(h, 0) = ah−1.
Similar to (B.5), Since each node of depth h − 1 can have a left or right new child, eh =

∑
l≥0 2l ·

d(h, l) for h > 1 and e0 = 1, e1 = 2. Then for h > 1, we have

d(h, l) =
∑

i+ j=l

d(h − 1, i)d(h − 1, j) h > 1.

Define a generating function for d(h, l)

Fh(x) =
∑

i≥0

d(h, i)xi.

Then we get Fh(x) = (Fh−1(x))2 for h > 1 and F0(x) = 1, F1(x) = 1 + x. Since each node of depth
h − 1 can have a left or right new child, eh =

∑
l≥0 2l · d(h, l) for h > 1 and e0 = 1, e1 = 2. Then for

h > 1, eh = 2F′h(1) = 2
(
(1 + x)2h−1

)′
(1) = 2h(1 + 1) = 2h+1. Thus

f0 = 1 + 2 − 1 = 1,
f1 = 2 + 2 − 1 = 3,
f2 = 5 + 8 − 1 = 12,
f3 = 26 + 16 − 1 = 41,
f4 = 677 + 25 − 1 = 708,
...

B.2 Counting Number of Red-black Trees
Red-black tree is a special kind of binary search tree. We will denote RBT as the set of red-black
trees. Clearly, RBT ⊂ BS T . Similarly, we define RBTn as the set of red-black trees with heights
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less than or equal to n. In this section, we consider the kind of red-black trees whose leaf nodes
have no element and are treated the same as the empty tree . We admit the empty tree()
as a legal red black tree with height 0 and black height 0.

B.2.1 Counting Number of Red-black Trees RS Tn/R
Define

a(n, k) = |{ t | t ∈ RBTn ∧ blackheight(t) = k } /R| (B.10)

as the number of unlabeled red-black trees with height at most n and black height is k. Clearly we
have a(0, 0) = 1 for only the empty tree with height 0 and black height 0 and a(n, k) = 0 for k > n.
If k = 0, the only legal red black tree is the empty tree . Thus a(n, 0) = 1 for all n ≥ 0. Let us
consider a(n, k) for k ≥ 1 and n ≥ k. By the property of red-black tree, the root of any non-empty
red-black tree has to be black. There are four cases according to the colors of the children of the
root as shown in Figure B.1:

1. both the left and right children of the root node are black as shown in Figure B.1(a). Then
two subtrees have height less than n − 1 and black height k − 1.

2. left child is black but right child is red as shown in Figure B.1(d). Then two subtrees of left
child have height less than or equal to n − 2 and black height k − 1. Right child of the root
has height less than n − 1 and black height k − 1.

3. right child is red but left child is black as shown in Figure B.1(c). It is symmetric to the
black-red case.

4. both left and right children are red as shown in Figure B.1(b). Four grand children of the
root have height less than or equal to n − 2 and black height k − 1.

Therefore, we get

a(n, k) = a(n − 1, k − 1)2 + 2a(n − 1, k − 1)a(n − 2, k − 1)2 + a(n − 2, k − 1)4

= [a(n − 1, k − 1) + a(n − 2, k − 1)2]2, n ≥ 1, k ≥ 1.

13



(a) Both Children Black (b) Both Children Red

(c) Left Child Red and Right Child Black (d) Left Child Black and Right Child Red

Figure B.1: Red Black Counting Cases
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Here we let a(n, k) = 0 for n < 0. Then we get a(1, 1) = 1.

a(2, 1) = [a(1, 0) + a(0, 0)2]2 = (1 + 12)2 = 4.
a(2, 2) = [a(1, 1) + a(0, 1)2]2 = (1 + 0)2 = 1.
a(3, 1) = [a(2, 0) + a(1, 0)2]2 = (1 + 12)2 = 4.
a(3, 2) = [a(2, 1) + a(1, 1)2]2 = (4 + 12)2 = 25.
a(3, 3) = [a(2, 2) + a(1, 2)2]2 = (1 + 02)2 = 1.
a(4, 1) = [a(3, 0) + a(2, 0)2]2 = (1 + 12)2 = 4.
a(4, 2) = [a(3, 1) + a(2, 1)2]2 = (4 + 42)2 = 400.
a(4, 3) = [a(3, 2) + a(2, 2)2]2 = (25 + 12)2 = 676.
a(4, 4) = [a(3, 3) + a(2, 3)2]2 = (1 + 02)2 = 1.

...

Let bn = |RBTn/R| be the number of red-black trees with heights less than or equal to n. Clearly
bn =

∑n
k=0 a(n, k). Thus we get

b0 = a(0, 0) = 1,
b1 = a(1, 0) + a(1, 1) = 2,
b2 = a(2, 0) + a(2, 1) + a(2, 2) = 1 + 4 + 1 = 6,
b3 = a(3, 0) + a(3, 1) + a(3, 2) + a(3, 3) = 1 + 4 + 25 + 1 = 31,
b4 = a(4, 0) + a(4, 1) + a(4, 2) + a(4, 3) + a(4, 4) = 1 + 4 + 400 + 676 + 1 = 1082,
...

B.2.2 Counting (RBTn × Z)/R′

We will first count the numbers of red-black trees indexed by Height. Define

f (n, h, k) = |{ t ∈ RBTh | blackheight(t) = k ∧ lea f (t) = n } /R|, (B.11)

the number of red-black trees with n leaf nodes (s) and heights less than or equal to h and
black heights equal to k. So we have

f (n, h, k) =
∑

i+ j=n

f (i, h−1, b−1)a( j, h−1, b−1)+
∑

i+ j+k=n

f (i, h−2, b−1) f ( j, h−2, b−1) f (k, h−1, b−1)

+
∑

i+ j+k=n

f (i, h − 1, b − 1) f ( j, h − 2, b − 1) f (k, h − 2, b − 1)

+
∑

i+ j+k+l=n

a(i, h − 2, b − 1)a( j, h − 2, b − 1)a(k, h − 2, b − 1)a(l, h − 2, b − 1),
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for n > 0. Clearly, we have f (1, 0, 0) = 1 and f (1, h, k) = 0 for (h, k) ! (0, 0) and f (n, h, k) = 0 for
h < 0 or k < 0. Define generating function Fh,b(x) =

∑∞
n=1 a(n, h, b)xn for k ≥ 0. Then we get

Fh,b(x) = F2
h−1,b−1(x) + 2F2

h−2,b−1(x)Fh−1,b−1(x) + F4
h−2,b−1(x) = (Fh−1,b−1(x) + F2

h−2,b−1(x))2.

The boundary condition is

Fh,0(x) =




x, if h ≥ 0;
0, otherwise.

We can get F1,1(x) = x2, F2,1(x) = (x+ x2)2, F2,2(x) = x4, F3,1(x) = (x+ x2)2, F3,2(x) = ((x+ x2)2 +

x4)2, F3,3(x) = x8, F4,1(x) + (x + x2)2 = x4 + 2x3 + x2,

F4,2(x) = (F3,1(x) + F2,1(x)2)2 = [(x + x2)2 + (x + x2)4]2 = x4 + 4x5 + 8x6 + 16x7+

32x8 + 48x9 + 58x10 + 68x11 + 72x12 + 56x13 + 28x14 + 8x15 + x16,

F4,3(x) = (F3,2(x) + F2,2(x)2)2 = [((x + x2)2 + x4)2 + x8]2 = x8 + 8x9 + 32x10+

80x11 + 138x12 + 168x13 + 144x14 + 80x15 + 25x16,

and F4,4(x) = x16. Define Gh(x) =
∑h

i=0 Fh,i(x). So [xn]Gh(x) is the number of red-black trees
with n − 1 nodes 2 and heights less than or equal to h. Let compute Gh(x) = g(h, 0) + g(h, 1)x +
g(h, 2)x2 + · · · :

G1(x) = x + x2,

G2(x) = 2x4 + 2x3 + x2 + x,
G3(x) = x8 + ((x + x2)2 + x4)2 + (x + x2)2 + x

= 5x8 + 8x7 + 8x6 + 4x5 + 2x4 + 2x3 + x2 + x,
G4(x) = 27x16 + 88x15 + 172x14 + 224x13 + 210x12 + 148x11+

90x10 + 56x9 + 33x8 + 16x7 + 8x6 + 4x5 + 2x4 + 2x3 + x2 + x
...

Now we will compute number ph = |(RBTh × Z)/R′|, the total number of outcomes after insert
operation for red-black trees with height less than or equal to h is

ph =
∑

i=0

(2i − 1)g(h, i).

2This is because for a n node binary tree, it has n + 1  leaves [5].
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Then we have ph = 2G′(1) −G(1).

p1 = 2 × 3 − 2 = 4,
p2 = 2 × 17 − 6 = 28,
p3 = 2 × (40 + 56 + 48 + 20 + 8 + 6 + 2 + 1) − 31 = 331,
P4 = 2 × (27 · 16 + 88 · 15 + 172 · 14 + 224 · 13 + 210 · 12 + 148 · 11 + 90 · 10 + 56 · 9 + 33 · 8 + 16 · 7
+ 8 · 6 + 4 · 5 + 2 · 4 + 2 · 3 + 2 + 1) − 1082 = 2 · 13085 − 1082 = 25088,
...

B.3 Counting AVL Trees
AVL Tree [7] is another balanced binary search tree. The structure constraint is that for any node
in the tree, the heights of its left subtree and right subtree differ at most by 1. Similar to red-black
tree, we treat s as legal nodes.

We define AVL be the set of all AVL tree and AVLn = { t ∈ AVL | height(t) = n } for n ∈ N. So
AVL0 is a singleton that only contains the empty tree .

B.3.1 Counting Numbers of AVL Trees AVLn/R
Define an = |AVLn/R|, the number of unlabeled AVL tree. For a tree with height h greater than 0,
there are three cases according to heights of its left and right subtrees:

• the heights of the left and right subtrees are the same. So the heights of left and right subtrees
must be h − 1.

• the height of the left subtree is one larger than the height of the right subtree. So the height
of left subtree is h − 1 and right subtree is h − 2.

• the height of the left subtree is one smaller than the height of the right subtree. So the height
of left subtree is h − 2 and right subtree is h − 1.

So we get
ah = a2

h−1 + 2ah−1ah−2 h > 0. (B.12)

The boundary condition is a0 = 1. So we get

a1 = a2
0 = 1

a2 = a2
1 + 2a0a1 = 3

a3 = a2
2 + 2a2a1 = 15

a4 = a2
3 + 2a3a2 = 152 + 2 × 15 × 3 = 315

...
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B.3.2 Counting (AVLn × Z)/R′

Define b(h, n) be |{ [t]R | t ∈ AVLn ∧ t has n nodes }| (not counting leaf nodes ), AVL trees with
n nodes and height h.

b(h, n) =
∑

i+ j=n−1

b(h − 1, i)b(h − 1, j) + 2
∑

i+ j=n−1

b(h − 1, i)b(h − 2, j) h > 0, n ≥ 1. (B.13)

Clearly, we have b(0, 0) = 1 and b(0, n) = 0 for n > 0. Define generating functions

Hh(x) =
∑

i=0

b(h, i)xi. (B.14)

We have H0(x) = 1. We can multiply (B.13) by xn and summing over 1 ≤ n ≤ ∞ and get

Hh(x) = xH2
h−1(x) + 2xHi−1(x)Hi−2(x). (B.15)

So we get

H1(x) = x
H2(x) = x × x2 + 2x × x = x3 + 2x2

H3(x) = 4x4 + 6x5 + 4x6 + x7

...

Now we will compute number ch = |(AVLh × Z)/R′|, the total number of outcomes after insert
operation for AVL trees with height equal to h is

ch =
∑

i=0

(2i + 1)b(h, i).

Then we have ch = 2H′h(1) + Hh(1). From (B.15), we get

H′h(1) = H2
h−1(1) + H′h−1(1)Hh−1(1) + 2H′h−1(1)Hh−2(1) + 2Hh−1(1)H′h−2(1).

Then we get H′0(1) = 0,H′1(1) = 1,H′2(1) = 7,H′3(1) = 77, . . . . Therefore,

c0 = 2 × 0 + 1 = 1,
c1 = 2 × 1 + 1 = 3,
c2 = 2 × 7 + 3 = 17,
c3 = 2 × 77 + 15 = 169,
...
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Appendix C

Formalization of Kiasan Symbolic
Execution

C.1 Substitution Functions
First we will define some substitution functions. Assume that D,D′ are some domains and Seq(D)
is the set of all sequences of elements in D:

• the substitution function: sub : D × (D⇀ D)→ D as

sub(d, g) =




g(d) if d ∈ dom g;
d otherwise.

• the function substitution function sub-fun : (D′ ⇀ D) × (D ⇀ D) → (D′ ⇀ D) as
sub-fun( f , g) = f ′ where dom f = dom f ′ and ∀d ∈ dom f . f ′(d) = sub( f (d), g).

• the one-step function substitution function sub-fun1 : (D′ ⇀ D) × D × D → (D′ ⇀ D) as
sub-fun1( f , d, d′) = sub-fun( f , {(d, d′)}).

• the sequence substitution function: sub-seq : Seq(D)×(D⇀ D)→ Seq(D) as sub-seq(nil, g) =
nil and sub-seq(d ::q, g) = sub(d, g) ::sub-seq(q, g).

• the one-step sequence substitution function: sub-seq1 : Seq(D) × D × D → Seq(D) as
sub-seq1(q, d, d′) = sub-seq(q, {(d, d′)}).

• the functional substitution function sub-fun2 : (D′′ ⇀ D′ ⇀ D) × (D ⇀ D) → (D′′ ⇀
D′ ⇀ D) as sub-fun2( f , g) = f ′ where dom f = dom f ′ and ∀d′′ ∈ dom f . f ′(d′′) =
sub-fun( f (d′′), g).

• the one-step functional substitution function sub-fun21 : (D′′ ⇀ D′ ⇀ D) × D × D →
(D′′ ⇀ D′ ⇀ D) as sub-fun21( f , d, d′) = sub-fun2( f , {(d, d′)}).

Then we introduce some simple properties of the substitution functions:
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Lemma 1. Suppose partial function g : D ⇀ D for some domain D satisfies dom g ∩ ran g =
∅. Then for any (d, d′) ∈ g and function f : D′ ⇀ D, sequence q : Seq(D), and funtional
f ho : D′′ ⇀ D′ ⇀ D, we have sub-fun( f , g) = sub-fun(sub-fun1( f , d, d′), g), sub-seq(q, g) =
sub-seq(sub-seq1(q, d, d′), g), sub-fun2( f ho, g) = sub-seq(sub-fun21( f go, d, d′), g).

Lemma 2. if R be the range of f : D′ ⇀ D, the set of elements in a sequence q : Seq(D) or the
second range of f ho : D′′ ⇀ D′ ⇀ D, then for any g : D⇀ D, sub-fun( f , g) = sub-fun( f , g |R∩dom g

), sub-seq(q, g) = sub-seq(q, g |R∩dom g), sub-fun2( f ho, g) = sub-fun2( f ho, g |R∩dom g).

C.2 Operational Semantics
This section presents the formal operational semantics of Kiasan’s symbolic execution with lazier
initialization and lazier initialization, as well as a concrete execution semantics for Java bytecode
instructions.

C.2.1 Operational Semantics of Symbolic Execution with Lazy Initializa-
tion

We will discuss the core symbolic execution (with lazy initialization) operational semantics of
JVM bytecode with additional two instructions, assume and assert. First, the semantics domains
are introduced. Then some auxiliary functions that facilitate the definition of semantic rules are
defined. Finally the semantic rules for bytecode instructions and assume/assert are presented.

Semantic Domains

The semantic/syntactical domains are listed as following:

• the set of primitive types, Typesprim, consisting of INT, CHAR, etc.,

• the set of array types, Typesarray,

• the set of record types, Typesrecord,

• the set of symbolic types, SymTypes,

• the set of non-primitive types, Typesnon−prim = Typesrecord5 1 Typesarray 5 SymTypes,

• the set of all types, Types = Typesprim 5 Typesnon−prim,

• the set of program counters, PCs

• the set of boolean expressions, Φ,

• the set of locations, Locs,
15 denotes disjoint union
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• the set of natural numbers, N,

• the set of constants, Consts, including N, T, F, , etc.,

• the set of fields, Fields, including , , , etc.,

• the set of integer symbols, Symbols,

• the set of primitive symbols, Symbolsprim, including Symbols,

• the set of values, Values = Consts 5 Locs 5 Symbolsprim,

• the set of indexes, Indexes = Fields 5 N 5 Symbols,

• the set of non-primitive symbols, Symbolsnon−prim =
{

Xm,n
τ | Xm,n

τ : Indexes⇀ Values
}
,

• the set of symbols, Symbols = Symbolsprim 5 Symbolsnon−prim,

• the set of globals, Globals = { g | g : Fields⇀ Values },

• the set of operand stacks, Stacks =
{
ω | ω : Seq(Values)

}
, all sequences of values,

• the set of locals, Locals = { l | l : N⇀ Values },

• the set of heaps, Heaps =
{

h | h : Locs⇀ Symbolsnon−prim

}
,

• the set of bytecode instruction with additional assert and assume instructions, Instrs,

We follow Java type system in the semantic domains: we use Typesprim to model the primitive
types and Typesnon−prim for the reference types which are divided into object types (Typesrecord),
array types (Typesarray), and symbolic types (SymTypes). SymTypes is used to model the vari-
able real types of the non-primitive input parameters and global fields.2 PCs denotes the set of
program counters or indexes of code arrays. A special program counter, , is introduced to in-
dicate that the end of code array is reached and execution stops. Similar to types, Symbols are
divided into two types: primitive symbols, such as symbolic integers, symbolic floats, etc.; and
reference symbols including symbolic objects and symbolic arrays. Concrete values are modeled
by the Consts domain. For simplicity, we unify concrete objects and all symbolic values into the
Symbols domain. Each member of Symbolsnon−prim domain, Xm,n

τ , has three properties (we often
omit properties when they are not important/applicable): τ is the type of the symbol, m is the
object field or array element expansion bound, and n is the number of array elements bound. (We
will discuss the difference between m and n for arrays at the end of this section.) And each non-
primitive symbol, Xm,n

τ , is modeled as a partial mapping from its fields to values. Each primitive
symbol Xτ or field fτ also has a property of its type τ. Since arrays are also modeled by Symbols,
the domain (Indexes) of the partial mapping of array X includes natural numbers and symbolic
integers. Concrete objects created during the execution are represented as non-primitive symbols
too, but their field are all initialized (see the new-obj auxiliary function). On the other hand, fields

2In fact, all the non-primitive symbolic objects are created with symbolic types.
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of symbolic objects may have not been initialized (initially created using the new-sym function).
Fields of the array include indexes and length, , (which is always defined). Symbolic arrays and
concrete arrays are created using the new-sarr and new-arr functions respectively. Locs represents
the set of addresses in the heap.

State Since we only consider single threaded programs modularly (one method at a time), we
represent symbolic state with only one stack frame element (the stack frame element of the method
being analyzed). A state is represented as a tuple of global variables, program counter, locals,
operand stack, and heap following the Java Virtual Machine specification [4]; we add path condi-
tion φ (as a conjunctive-set of formulas) as another state component. So the definition of the set
of symbolic states is :

Σs = Globals × PCs × Locals × Stacks ×Heaps × Φ

and we let σ ranges over Σs.
We will follow the convention that

• τ ranges over types, Types,

• pc ranges over program counters, PCs,

• φ ranges over boolean expressions, Φ,

• i and j range over locations, Locs,

• m, n, and k range over natural numbers, N,

• c and d range over constants, Consts,

• f ranges over fields, Fields,

• X, Y , and Z range over symbols, Symbols,

• v ranges over values, Values,

• ι ranges over indexes, Indexes,

• g ranges over globals, Globals,

• ω ranges over operand stacks, Stacks,

• l ranges over locals, Locals,

The meta-variables used to range over the semantic domains may be primed or subscripted.
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Auxiliary Functions

We define some auxilurary functions to facilitate the definition of operational semantics:

• default value function, default : Types→ Values as λτ.v,where v is the default value of τ;

• fields of a type function, fields : Types→ P(Fields) as λτ.{ fτ′ | fτ′ is a field in τ};

• subtype function, τ′ <: τ : Types × Types→ Boolean as τ′ is a subtype of τ (reflexive);

• defined integral indexes of a non-primitive symbol function, acc-idx : Symbolsnon−prim →
P(N ∪ Symbols) as λX.

{
ι ∈ N ∪ Symbols | X(ι)↓ };

• locations that map to symbolic objects function, collect : Heaps→ P(Locs) as
λh. { i | h(i)() ↑ };

• the set of all symbols in a state function, symbols : Σs → P(Symbols) as
λσ.
{

X | X appears in σ
}
;

• new primitive symbol function, new-prim-sym : Typesprim × P(Symbols) → Symbolsprim
as λ(τ, ss).Xτ, X " ss;

• new symbolic type function, new-sym-type : P(Symbols) → SymTypes as λss.τ s.t. τ ∈
SymTypes and τ does not appear in ss;

• new array type function, array-type : Types → Typesarray as λτ.τ′, where τ′ is the array
type of element type τ;

• new symbolic record function, new-sym : P(Symbols) × N × N → Symbolsnon−prim as
λ(ss,m, n).Xm,n

τ , s.t. X " ss ∧ τ = new-sym-type(ss) ∧ ∀ι ∈ Indexes.X(ι)↑;

• new symbolic array function, new-sarr : P(Symbols)×N×N→ Symbols as λ(ss,m, n).new-sym(ss∪
{X},m, n)[ 8→ X] where X = new-prim-sym(, ss);

• new concrete object function, new-obj : P(Symbols)×Typesrecord → Symbols as λ(ss, τ).X0,0
τ ,

s.t. X " ss ∧ ∀ fτ′ ∈ fields(τ).X( fτ′) = default(τ′);

• new concrete array function, new-arr : P(Symbols) × Types × (N 5 Symbols) × N →
Symbols as λ(ss, τ, v, n).X0,n

τ′ , X " ss ∧ τ′ = array-type(τ) ∧ dom X = {, , } ∧
X() = default(τ) ∧ X() = v.

Semantics Rules

Given an array of instructions, we define a function code : PCs⇀ Instrs which takes in a program
counter and returns the corresponding instruction that is pointed to by the input program counter.

Operational semantic rules are in the format of

pre

σ⇒S σ1[‖ σ2] | E,σ′|E,σ′′
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that shows how a state is changed by one bytecode instruction to multiple normal states, or an
exception raised, or an error occurred due to non-determinism. More specifically, given a state σ,
if pre is satisfied, after executing instruction pointed by the program counter component of σ, the
resulting state is σ1 or nondeterministically σ1 or σ2; or an exception thrown with a state σ′; or
E with a state σ′′. Exceptions are handled the same way as JVM specification [4] does. If
an error occurred, then the program stops. For simplicity, we assume that garbage collection is
performed after each transition. Moreover, we stop exploring paths whose state’s path condition
is unsatisfiable.

Each symbolic semantics rule name is the format of xxxx#-S where xxx is the instruction
name and since there may be multiple rules for one instruction, we use number # (from 1 to n)
to distinguish the rules for same instruction. Due to limit of space, we only present semantics for
some representative JVM instructions and the instructions are divided into following categories:

• Arithmetic instructions: Instruction iadd adds two integers from the top of the stack and
puts result back into the stack. iadd is represented by rule IADD-S. A fresh symbolic integer
is introduced as the result and a constraint added to the path condition stating that the fresh
symbolic integer equals to the sum of two operands.

• Object creation and manipulation instructions: new τ, getfield f , putfield f , instanceof
τ, and checkcast τ are presented. Accesses to symbolic objects (e.g., getfield f ) op-
erate according to the lazy initialization algorithm described previously. Similar to [3], we
limit the choosing range to symbolic objects/arrays by introducing an additional field, ,
which is defined for concrete objects while undefined for symbolic objects. This eliminates
false alarms in the case where freshly created objects (using the new τ instruction during the
execution) are reachable through object expansion; concretely, this only happens through
assignments.

– Instruction new τ creates a fresh object of type τ and put it into heap. By the definition
of new-obj, all the fields including  are initialized. This guarantees that the newly
created object will not put in the range of lazy initialization.

– Instruction getfield f reads the f field of an object which is indexed by the ad-
dress on the top of the stack. Semantics rules GETFIELD(1..7)-S are for getfield.
Rules GETFIELD1-S and GETFIELD7-S are the default behavior of the getfield f :
GETFIELD1-S is for the case of the field of the object is defined; GETFIELD7-S is for
the case of the object reference is . Rules GETFIELD(2..6)-S demonstrate the
lazy initialization algorithm when the field is undefined. GETFIELD2-S handles the
subcase of primitive field type. A new symbol is created and the field is initialized
with the fresh symbol. GETFIELD3-S lazily initializes a non-primitive field to .
GETFIELD4-S lazily initializes a non-primitive field by nondeterministically choos-
ing from existing symbolic objects (with  undefined) from heap with compatible
types. Rules GETFIELD5-S and GETFIELD6-S show the field is initialized with a new
symbolic object or array respectively if the object bound is not exhausted (greater than
zero).
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– Instruction putfield τ writes a value to a field of an object. The value and object
address are in the top of the stack. There are two rules for putfield τ: PUTFIELD1-S
and PUTFIELD2-S. PUTFIELD1-S handles the normal case and PUTFIELD2-S deals
with the case of the object is .

– Instruction instanceof τ tests whether an object is a type of τ. According the JVM
specification [4], if the object is , the test returns true. If the object is non-
, returns true if the type of the object is a subtype of τ, false otherwise. Rule
INSTANCEOF1-S represents the  case and INSTANCEOF2-S does the non-
case.

– Instruction checkcast τ is very similar to the instruction instanceof except that it
does not return true or false instead it does nothing if the test passes otherwise throws
a ClassCastException.

• Array manipulation instructions: anewarray τ, iastore, and iaload are presented. As
mentioned previously, symbolic arrays require a special treatment: fields of symbolic ob-
jects are fixed by their types but elements of symbolic arrays are not fixed because the length
may be unknown; this includes arrays explicitly created with a symbolic length. To address
this, we introduce another bound n on symbol Xm,n that limits the number of distinct array
elements that can be lazily initialized; each symbolic array allows lazy initializations up to
n kinds of distinct elements. If an array element is accessed through a symbolic index (e.g.,
iaload):

1. the index maybe out of bounds,
2. the index is equal to one of the accessed indexes (from the acc-idx function), or
3. n is decremented if the above does not hold, the number of distinct indexes accessed

so far is less than the length of array, and n is greater than zero.

Elements of local arrays (created by anewarray) should have default values, but we cannot
simply assign default values to all elements to a local array because the array length maybe
unknown. Instead, we keep a default value for the array on its  field and lazily initialize
an accessed index with it.

– Instruction anewarray τ creates a new array with length on the top of the stack. Be-
cause the way we bound arrays, there are two rules for this instruction: ANEWARRAY1-S
for fixed (concrete) array length then the array bound is the same as the length; ANEWARRAY2-S
for symbolic array length.

– Instruction iastore writes an integer value into an integer array. Rule IASTORE1-S
is for the array index out of bound case and IASTORE4-S presents the case of array
is . Rule IASTORE2 is for the case of the index equals to one of accessed index.
Rule IASTORE3 creates a new index in the array.

– Instruction iaload reads the value from an index of an array. Similar to getfield,
lazy initialization is applied when an index is undefined (Rule IALOAD3-S). The rest
of rules are similar to the rules for instruction iastore.
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• Control transfer instructions: we list semantic rules for instructions if icmplt and if acmpeq.

– Instruction if icmplt compares the top two integral values on the stack. Since the
two compared values may be symbolic and thus can not decide the ordering, rule
IF ICMPLT-S has two end states to cover both the true and the false branches if the top
of the stack cannot be determined to greater than the one below it (if one branch can
be determined, then the other branch will have inconsistent path condition, which will
then be ignored).

– Instruction if acmpeq compares two object references on the top of the stack. Since
Kiasan maintains a precise visible heap, the two references are either equal or not
equal. Thus there are two rules for if acmpeq: IF ACMPEQ1-S for not equal case and
IF ACMPEQ2-S for the equal case.

• Instructions assume and assert instructions: the semantics for assume and assert are
standard: if the top of the stack is true, assume and assert does nothing; otherwise,
assume terminates the execution silently by making path condition F, while assert
signals an error and terminates the execution.

We use the binding, σ = (g, pc, l,ω, h, φ), for all the rules. And k is used as both the object
bound and the array bound.

IADD-S
code(pc) = iadd ω = v1 ::v2 ::ω′

σ⇒S (g, next(pc), l,Y ::ω′, h, φ ∪ {Y = v1 + v2})
where Y = new-prim-sym(, symbols(σ))

IF ICMPLT-S
code(pc) = if icmplt pc′ ω = v1 ::v2 ::ω′

σ⇒S (g, next(pc), l,ω′, h, φ ∪ {v2 ≮ v1}) ‖ (g, pc′, l,ω′, h, φ ∪ {v2 < v1})

NEW-S
code(pc) = new τ i " dom h

σ⇒S (g, next(pc), l, i ::ω, h[i 8→ new-obj(symbols(σ), τ)], φ)

GETFIELD1-S
code(pc) = getfield fτ ω = i ::ω′ h(i)( fτ)↓

σ⇒S (g, next(pc), l, h(i)( fτ) ::ω′, h, φ)

GETFIELD2-S
code(pc) = getfield fτ ω = i ::ω′ h(i)( fτ)↑ τ ∈ Typesprim

σ⇒S (g, next(pc), l, X ::ω′, h[i 8→ h(i)[ f 8→ X]], φ)
where X = new-prim-sym(τ, symbols(σ))

GETFIELD3-S
code(pc) = getfield fτ ω = i ::ω′ h(i)( fτ)↑ τ ∈ Typesnon−prim

σ⇒S (g, next(pc), l,  ::ω′, h[i 8→ h(i)[ f 8→ ]], φ)

GETFIELD4-S

code(pc) = getfield fτ
ω = i ::ω′ h(i)( fτ)↑ τ ∈ Typesnon−prim j ∈ collect(h) Zτ′ = h( j)

σ⇒S (g, next(pc), l, j ::ω′, h[i 8→ h(i)[ f 8→ j]], φ ∪ {τ′ <: τ})

GETFIELD5-S

code(pc) = getfield fτ ω = i ::ω′

h(i)( fτ)↑ τ ∈ Typesarray Ym,n = h(i) m > 0 j " dom h

σ⇒S (g, next(pc), l, j ::ω′, h[i 8→ h(i)[ f 8→ j]][ j 8→ Zτ′], φ ∪ {τ′ <: τ,Z() ≥ 0})
where Zτ′ = new-sarr(symbols(σ),m − 1, k)
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GETFIELD6-S

code(pc) = getfield fτ ω = i ::ω′

h(i)( fτ)↑ τ ∈ Typesrecord Ym,n = h(i) m > 0 j " dom h

σ⇒S (g, next(pc), l, j ::ω′, h[i 8→ h(i)[ f 8→ j]][ j 8→ Zτ′], φ ∪ {τ′ <: τ})
where Zτ′ = new-sym(symbols(σ),m − 1, k)

GETFIELD7-S
code(pc) = getfield fτ ω =  ::ω′

σ⇒S NullPointerException, (g, pc, l,ω′, h, φ)

PUTFIELD1-S
code(pc) = putfield f ω = v :: i ::ω′

σ⇒S (g, next(pc), l,ω′, h[i 8→ h(i)[ f 8→ v]], φ)

PUTFIELD2-S
code(pc) = putfield f ω = v :: ::ω′

σ⇒S NullPointerException, (g, pc, l,ω′, h, φ)

ANEWARRAY1-S
code(pc) = anewarray τ ω = m ::ω′ i " dom h

σ⇒S (g, next(pc), l,ω′, h[i 8→ new-arr(symbols(σ), τ,m,m)], φ)

ANEWARRAY2-S
code(pc) = anewarray τ ω = X ::ω′ i " dom h

σ⇒S (g, next(pc), l,ω′, h[i 8→ new-arr(symbols(σ), τ, X, k)], φ ∪ {X ≥ 0}) ‖
NegativeArraySizeException, (g, pc, l,ω′, h, φ ∪ {X < 0})

IASTORE1-S
code(pc) = iastore ω = v :: ι :: i ::ω′

σ⇒S ArrayIndexOutOfBoundException, (g, pc, l,ω′, h, φ ∪ {ι < 0 ∨ ι ≥ h(i)()})

IASTORE2-S
code(pc) = iastore ω = v :: ι :: i ::ω′ Z = h(i) ι′ ∈ acc-idx(Z)

σ⇒S (g, next(pc), l,ω′, h[i 8→ Z[ι′ 8→ v]], φ ∪ {ι = ι′})

IASTORE3-S

code(pc) = iastore
ω = v :: ι :: i ::ω′ Zm,n = h(i) n > 0 I = acc-idx(Z)

σ⇒S (g, next(pc), l,ω′, h[i 8→ Zm,n−1[ι 8→ v]], φ ∪ { ι ! ι′ | ι′ ∈ I }
∪{0 ≤ ι, ι < Z(), |I| < Z()})

IASTORE4-S
code(pc) = iastore ω = v :: ι :: ::ω′

σ⇒S NullPointerException, (g, pc, l,ω′, h, φ)

IALOAD1-S
code(pc) = iaload ω = ι :: i ::ω′

σ⇒S ArrayIndexOutOfBoundsException, (g, pc, l,ω′, h, φ ∪ {ι < 0 ∨ h(i)() ≤ ι})

IALOAD2-S
code(pc) = iaload ω = ι :: i ::ω′ Z = h(i) ι′ ∈ acc-idx(Z)

σ⇒S (g, next(pc), l,Z(ι′) ::ω′, h, φ ∪ {ι = ι′})

IALOAD3-S
code(pc) = iaload ω = ι :: i ::ω′ Zm,n = h(i) I = acc-idx(Zm,n)

σ⇒S (g, next(pc), l, v ::ω′, h[i 8→ Zm,n−1[ι 8→ v]], φ ∪ { ι′ ! ι | ι′ ∈ I }
∪{0 ≤ ι, ι < Zm,n(), |I| < Zm,n(), n > 0})

where v =




Zm,n() if Zm,n()↓
new-prim-sym(INT, symbols(σ)) if Zm,n()↑

IALOAD4-S
code(pc) = iaload ω = ι :: ::ω′

σ⇒S NullPointerException, (g, pc, l,ω′, h, φ)
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IF ACMPEQ1-S
code(pc) = if acmpeq pc′ ω = j :: i ::ω′ i ! j

σ⇒S (g, next(pc), l,ω′, h, φ)

IF ACMPEQ2-S
code(pc) = if acmpeq pc′ ω = j :: i ::ω′ i = j

σ⇒S (g, pc′, l,ω′, h, φ)

IFNULL1-S
code(pc) = ifnull pc′ ω = i ::ω′

σ⇒S (g, next(pc), l,ω′, h, φ)

IFNULL2-S
code(pc) = ifnull pc′ ω =  ::ω′

σ⇒S (g, pc′, l,ω′, h, φ)

IFNONNULL1-S
code(pc) = ifnonnull pc′ ω = i ::ω′

σ⇒S (g, pc′, l,ω′, h, φ)

IFNONNULL2-S
code(pc) = ifnonnull pc′ ω =  ::ω′

σ⇒S (g, next(pc), l,ω′, h, φ)

INSTANCEOF1-S
code(pc) = instanceof τ ω =  ::ω′

σ⇒S (g, next(pc), l, 1::ω′, h, φ)

INSTANCEOF2-S
code(pc) = instanceof τ ω = i ::ω′ Xτ′ = h(i)

σ⇒S (g, next(pc), l, 1::ω′, h, φ ∪ {τ′ <: τ}) ‖ (g, next(pc), l, 0::ω′, h, φ ∪ {τ′ ≮: τ})

CHECKCAST1-S
code(pc) = checkcast τ ω =  ::ω′

σ⇒S (g, next(pc), l,  ::ω′, h, φ)

CHECKCAST2-S
code(pc) = checkcast τ ω = i ::ω′ Xτ′ = h(i)

σ⇒S (g, next(pc), l, i ::ω′, h, φ ∪ {τ′ <: τ}) ‖
ClassCastException, (g, pc, l, i ::ω′, h, φ ∪ {τ′ ≮: τ})

ASSUME-S
code(pc) = assume ω = v ::ω′

σ⇒S (g, next(pc), l,ω′, h, φ ∪ {v = 1})

ASSERT-S
code(pc) = assert ω = v ::ω′

σ⇒S (g, next(pc), l,ω′, h, φ ∪ {v = 1}) ‖ E, (g, pc, l,ω′, h, φ ∪ {v = 0})

C.2.2 Operational Semantics of Symbolic Execution with Lazier Initializa-
tion

First we introduce a new semantic domain: the set of symbolic locations, SymLocs, to model
unknown non- references. We let δ ranges over symbolic locations and each δm,n

τ has the same
three properties as non-primitive symbols do. Clearly, we need to add the symbolic locations into
values. So we have Values = Consts∪Locs∪Symbolsprim ∪SymLocs. We use Σa

3 to denote the
set of lazier states. The only difference between lazier and symbolic states is that the lazier states
can have symbolic location. Thus Σa ⊃ Σs.

3Subscript a denotes that the component is a part of lazier state.
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Auxiliary Functions

We introduce some auxiliary functions to facilitate the definition of operational semantics of lazier
initialization. init-loc-heap returns the modified heap and new constraints introduced by initial-
izing a symbolic location to a location. init-sym-loc transforms a lazier state into a new lazier
state by initializing a symbolic location into a location. init-sym-loc∗ takes in a lazier state and a
symbolic location and returns a set of states which are end states of input state with the symbolic
location is initialized.

init-loc-heap : (Heapsa × P(Symbols) × SymLocs × Locs)→ (Heapsa × Φ))
init-sym-loc : Σa × SymLocs × Locs→ Σa

init-sym-loc∗ : Σa × SymLocs→ P(Σa).

The definitions are listed as follows with binding σa = (g, pc, l, h, φ):

• the init-loc-heap function: init-loc-heap(ha, ss, δm,n
τ , i) = (h′a, φ′) where

– if i ∈ dom ha: h′a = sub-fun21(ha, δ, i) and

φ′ = {τ′ <: τ} where ha(i) = Xτ′ .

– if i " dom ha:
dom h′a = dom ha ∪ {i}

and
∀ j ∈ dom ha.h′a( j) = sub-fun1(ha( j), δτ, i)

and h′a(i) = Xτ′ where

Xτ′ =




new-sarr(ss,m, k) if τ ∈ Typesarray

new-sym(ss,m, k) if τ ∈ Typesrecord

and

φ′ =



{X() ≥ 0, τ <: τ′} if τ ∈ Typesarray

{τ′ <: τ} if τ ∈ Typesrecord
.

• init-sym-loc function,

init-sym-loc = λ(σa, δ
m,n
τ , i).{(sub-fun1(g, δ, i), pc, sub-fun1(l, δ, i), sub-seq1(ω, δ, i),

#1(init-loc-heap(h, symbols(σa), δm,n
τ , i)), #2(init-loc-heap(h, symbols(σa), δm,n

τ , i)) ∪ φ)}

• init-sym-loc∗ function,

init-sym-loc∗ = λ(σa, δ
m,n
τ ).{init-sym-loc(σa, δ

m,n
τ , i) | i ∈ collect(h)

or i ∈ (Locs \ dom h) if m ≥ 0}.
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In general, the lazier initialization semantic rules are the same as symbolic execution with lazy
initialization semantics rules if all the operands are not symbolic locations; otherwise, initializa-
tions of the symbolic locations in the operands will be done first. We show the lazier initialization
semantic rules for instructions if acmpeq and getfield below. There are two notable features
in the operational semantics for lazier initialization. First, the rules are “small step”. For exam-
ple, there are three semantics rules for the if acmpeq instruction: the two rules just initialize the
operand if either operand is a symbolic location (the program counter does not change); if two
operands are locations, then rule IF ACMPEQ1-S or IF ACMPEQ2-S will apply. Second, instead of
using a symbolic location to represent all the candidates (, existing objects, and a new sym-
bolic object) for return, the getfield rule treats  case separately, thus for a reference field
access, the getfield will return a non-deterministic choice between  (rule GETFIELD3-S)
and a symbolic location which denotes a non- unknown reference (rule GETFIELD2-A). This
is because there are usually a lot of null-ness tests in Java code and specifications; and we still
want to take advantage of lazier initialization after a null-ness test. So, for getfield, the rules
GETFIELD1,2,3,7-S stay the same in the lazier initialization and rules GETFIELD4,5,6-S are
replaced by GETFIELD2-A.

Similar to the symbolic semantics rules, we use the binding σ = (g, pc, l,ω, h, φ) and all the
end states with path conditions unsatisfiable are ignored.

IF ACMPEQ1-A
code(pc) = if acmpeq pc′ ω = δm,n

τ ::δm,n
τ ::ω′

σ⇒A (g, pc′,ω′, h, φ))

IF ACMPEQ2-A
code(pc) = if acmpeq pc′ ω = v ::δm,n

τ ::ω′

σ⇒A σ′ where σ′ ∈ init-sym-loc∗(σ, δm,n
τ )

IF ACMPEQ3-A
code(pc) = if acmpeq pc′ ω = δm,n

τ ::v ::ω′

σ⇒A σ′ where σ′ ∈ init-sym-loc∗(σ, δm,n
τ )

IFNULL-A
code(pc) = ifnull pc′ ω = δ ::ω′

σ⇒A (g, next(pc), l,ω′, h, φ)

IFNONNULL-A
code(pc) = ifnonnull pc′ ω = δ ::ω′

σ⇒A (g, pc′, l,ω′, h, φ)

GETFIELD1-A
code(pc) = getfield fτ ω = δm,n

τ ::ω′

σ⇒A σ′ where σ′ ∈ init-sym-loc∗(σ, δm,n
τ )

GETFIELD2-A

code(pc) = getfield fτ
ω = i ::ω′ Ym,n = h(i) Y( fτ)↑ τ ∈ Typesnon−prim δ is fresh

σ⇒A (g, next(pc), l, δm−1,k
τ ::ω′, h[i 8→ Ym,n[ fτ 8→ δm−1,k

τ ]], φ)

C.2.3 Operational Semantics of Symbolic Execution with Lazier# Initial-
ization

First we introduce a new semantic domain: the set of symbolic references, SymRefs, to model
unknown non- references or . We let δ̂ ranges over SymRefs and each δ̂m,n

τ just like δm,n
τ

except that it can be initialized to . Clearly, we need to add the new domain into the domain
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Values. So we have

Values = Consts ∪ Locs ∪ Symbolsprim ∪ SymLocs ∪ SymRefs.

We use Σb
4 to denote the set of lazier# states. Clearly Σb ⊃ Σa.

Auxiliary Functions

Similar to lazier initialization, we introduce some auxiliary functions to facilitate the definition of
operational semantics of lazier# initialization:

init-sym-ref : Σb × SymRefs × (SymLocs ∪ {})→ Σb

init-sym-ref∗ : Σb × SymRefs→ P(Σb).

The definitions are listed as follows with binding σb = (g, pc, l,ω, h, φ):

• init-sym-ref function,

init-sym-ref(σb, δ̂, ) = {(sub-fun1(g, δ̂, ), pc, sub-fun1(l, δ̂, ),
sub-seq1(ω, δ̂, ), sub-fun21(h, δ̂, ), φ)}

and

init-sym-ref(σb, δ̂, δ) = {(sub-fun1(g, δ̂, δ), pc, sub-fun1(l, δ̂, δ), sub-seq1(ω, δ̂, δ),
sub-fun21(h, δ̂, δ), φ)}

• init-sym-ref∗ function,

init-sym-ref∗(σb, δ̂) = {init-sym-ref(σb, δ̂, δ) | δ " collect-sym-locs(σb)}
∪ {init-sym-ref(σb, δ̂, )}.

In general, the lazier# initialization semantic rules are the same as symbolic execution with lazier
initialization semantics rules if all the operands are not symbolic references; otherwise, initial-
izations of the element in symbolic references in the operands will be done first. We show the
lazier# initialization semantic rules for instructions if acmpeq and getfield below. Compared
to lazier initialization, there is difference in the operational semantics for lazier# initialization.
For instruction getfield, instead of returns a non-deterministic choice between  and a sym-
bolic location, rule GETFIELD2-B just returns a fresh symbolic reference. So, for getfield, the
rules GETFIELD1,2,7-S and GETFIELD1-A stay the same in the lazier# initialization and rules
GETFIELD3, 4,5,6-S are replaced by GETFIELD2-A.

Similar to the symbolic semantics rules, we use the binding σ = (g, pc, l,ω, h, φ) and all the
end states with path conditions unsatisfiable are ignored.

4Subscript b denotes that the component is a part of lazier# state.
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IF ACMPEQ1-B
code(pc) = if acmpeq pc′ ω = δ̂m,n

τ :: δ̂m,n
τ ::ω′

σ⇒B (g, pc′,ω′, h, φ)

IF ACMPEQ2-B
code(pc) = if acmpeq pc′ ω = v :: δ̂m,n

τ ::ω′

σ⇒B σ′ where σ′ ∈ init-sym-ref∗(σ, δ̂m,n
τ )

IF ACMPEQ3-B
code(pc) = if acmpeq pc′ ω = δ̂m,n

τ ::v ::ω′

σ⇒B σ′ where σ′ ∈ init-sym-ref∗(σ, δ̂m,n
τ )

GETFIELD1-B
code(pc) = getfield fτ ω = δ̂m,n

τ ::ω′

σ⇒B σ′ where σ′ ∈ init-sym-ref∗(σ, δ̂m,n
τ )

GETFIELD2-B

code(pc) = getfield fτ
ω = i ::ω′ Ym,n = h(i) Y( fτ)↑ τ ∈ Typesnon−prim δ̂ is fresh

σ⇒B (g, next(pc), l, δ̂m−1,k
τ ::ω′, h[i 8→ Ym,n[ fτ 8→ δ̂m−1,k

τ ]], φ)

C.2.4 Bytecode Concrete Execution Semantics
To prove properties of our symbolic execution, we need to formalize the concrete bytecode exe-
cution. Thus, we introduce concrete states:

σc ∈ Σc = Globals × PCs × Locals × Stacks ×Heaps × B.

Compared to the symbolic states, there are three restrictions in concrete states: first, no X ∈
Symbolsprim appears in concrete states; second, no SymTypes appears in the concrete states;
third, for all Xτ ∈ Symbolsnon−prim which appears in concrete states, all the fields of type τ are
defined and there is no bound associated with X. Furthermore,  and  are removed from the
Fields domain.

We also need to change the definition of new-arr to new-arrc : P(Symbols) × Types × N →
Symbolsnon−prim =

λ(ss, τ,m).Xτ′ , s.t. X " ss ∧ τ′ = array-type(τ)∧
∀0 ≤ j < m.Xτ′( j) = default(τ) ∧ Xτ′() = m.

The concrete JVM bytecode operational semantics is listed below. We use the binding σ =
(g, pc, l,ω, h,T) for all the rules. When the last component of the end state is F, the tran-
sition is ignored. Note that we do not use the wrap around semantics for integral types because it
complicates the operational semantics presentation. In addition, we do not concern ourselves to
check bugs introduced by integer wrap arounds in our symbolic execution. However, wrap arounds
can be supported by using appropriate decision procedures that model integers using bit-vectors.

IADD-C
code(pc) = iadd ω = c ::d ::ω′

σ⇒C (g, next(pc), l, (c + d) ::ω′, h,T)

IF ICMPLT1-C
code(pc) = if icmplt pc′ ω = d ::c ::ω′ c < d

σ⇒C (g, pc′, l,ω′, h,T)
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IF ICMPLT2-C
code(pc) = if icmplt pc′ ω = d ::c ::ω′ c ≮ d

σ⇒C (g, next(pc), l,ω′, h,T)

IF ACMPEQ1-C
code(pc) = if acmpeq pc′ ω = i :: j ::ω′ i ! j

σ⇒C (g, next(pc), l,ω′, h,T)

IF ACMPEQ2-C
code(pc) = if acmpeq pc′ ω = i :: j ::ω′ i = j

σ⇒C (g, pc′, l,ω′, h,T)

IFNULL1-C
code(pc) = ifnull pc′ ω = i ::ω′

σ⇒C (g, next(pc), l,ω′, h, φ)

IFNULL2-C
code(pc) = ifnull pc′ ω =  ::ω′

σ⇒C (g, pc′, l,ω′, h, φ)

IFNONNULL1-C
code(pc) = ifnonnull pc′ ω = i ::ω′

σ⇒C (g, pc′, l,ω′, h, φ)

IFNONNULL2-C
code(pc) = ifnonnull pc′ ω =  ::ω′

σ⇒C (g, next(pc), l,ω′, h, φ)

ANEWARRAY1-C
code(pc) = anewarray τ ω = c ::ω′ c ≥ 0 i " dom h

σ⇒C (g, next(pc), l, i ::ω′, h[i 8→ new-arrc(symbols(σ), τ, c)],T)

ANEWARRAY2-C
code(pc) = anewarray τ ω = c ::ω′ c < 0

σ⇒C NegativeArraySizeException, (g, pc, l,ω′, h,T)

NEW-C
code(pc) = new τ i " dom h

σ⇒C (g, next(pc), l, i ::ω, h[i 8→ new-obj(symbols(σ), τ)],T)

IASTORE1-C
code(pc) = iastore ω = d ::c :: i ::ω′ c < 0 ∨ c ≥ h(i)()

σ⇒C ArrayIndexOutOfBoundsException, (g, pc, l,ω′, h,T)

IASTORE2-C
code(pc) = iastore ω = d ::c :: i ::ω′ 0 ≤ c < h(i)()

σ⇒C (g, next(pc), l,ω′, h[i 8→ h(i)[c 8→ d]],T)

IASTORE3-C
code(pc) = iastore ω = d ::c :: ::ω′

σ⇒C NullPointerException, (g, pc, l,ω′, h, ,T)

IALOAD1-C
code(pc) = iaload ω = c :: i ::ω′ c < 0 ∨ c ≥ h(i)()

σ⇒C ArrayIndexOutOfBoundsException, (g, pc, l,ω′, h,T)

IALOAD2-C
code(pc) = iaload ω = c :: ::ω′

σ⇒C NullPointerException, (g, pc, l,ω′, h,T)

IALOAD3-C
code(pc) = iaload ω = c :: i ::ω′ 0 ≤ c < h(i)()

σ⇒C (g, next(pc), l, h(i)(c) ::ω′, h,T)

GETFIELD1-C
code(pc) = getfield f ω = i ::ω′

σ⇒C (g, next(pc), l, h(i)( f ) ::ω′, h,T)

GETFIELD2-C
code(pc) = getfield f ω =  ::ω′

σ⇒C NullPointerException, (g, pc, l,ω′, h,T)
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PUTFIELD1-C
code(pc) = putfield f ω = v :: i ::ω′

σ⇒C (g, next(pc), l,ω′, h[i 8→ h(i)[ f 8→ v]],T)

PUTFIELD2-C
code(pc) = putfield f ω = v :: ::ω′

σ⇒C NullPointerException, (g, pc, l,ω′, h,T)

INSTANCEOF1-C
code(pc) = instanceof τ ω =  ::ω′

σ⇒C (g, next(pc), l, 1::ω′, h,T)

INSTANCEOF2-C
code(pc) = instanceof τ ω = i ::ω′ Xτ1 = h(i) τ1 <: τ

σ⇒C (g, next(pc), l, 1::ω′, h,T)

INSTANCEOF2-C
code(pc) = instanceof τ ω = i ::ω′ Xτ1 = h(i) τ1 ≮: τ

σ⇒C (g, next(pc), l, 0::ω′, h,T)

CHECKCAST1-C
code(pc) = checkcast τ ω =  ::ω′

σ⇒C (g, next(pc), l,  ::ω′, h,T)

CHECKCAST2-C
code(pc) = checkcast τ ω = i ::ω′ Xτ1 = h(i) τ1 <: τ

σ⇒C (g, next(pc), l, i ::ω′, h,T)

CHECKCAST2-C
code(pc) = checkcast τ ω = i ::ω′ Xτ1 = h(i) τ1 ≮: τ

σ⇒C ClassCastException, (g, pc, l,ω′, h,T)

ASSUME1-C
code(pc) = assume ω = 0::ω′

σ⇒C (g, next(pc), l,ω′, h,F)

ASSUME2-C
code(pc) = assume ω = 1::ω′

σ⇒C (g, next(pc), l,ω′, h,T)

ASSERT1-C
code(pc) = assert ω = 0::ω′

σ⇒C E, (g, pc, l,ω′, h,T)

ASSERT2-C
code(pc) = assert ω = 1::ω′

σ⇒C (g, next(pc), l,ω′, h,T)

C.3 Formal Proofs
In this section, we will prove the soundness and completeness for symbolic execution relates to
concrete execution and lazier symbolic execution relates to symbolic execution.

C.3.1 Relative Soundness and Completeness of Basic Symbolic Execution
In this section, we relate symbolic execution (non-compositional) and concrete execution under
the assumption the bounds k are sufficient large. First we will define a concretization function γs
5 to relate symbolic states and concrete state. Second, we will introduce binary relations between

5Since we assume the ideal case: the object bound and array length bounds k are sufficient large, any symbol/array
always has bounds greater than 0.
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concrete states and symbolics and prove simulation between concrete state-space and symbolic
state-space. Finally, we will prove the relative sound and completeness of symbolic execution
regards to concrete execution within one method and no invocation in the body of the method.

Definition of γs

Let us start with some definitions:

• the set of all environments, Env =
{

E | E : Symbolsprim → Consts
}
;

• the set of all type environments, Γ =
{

T | T : SymTypes→ (Typesarray 5 Typesrecord)
}
;

• the group of all permutations of Locations, Sym(Locs).

Then we introduce some semantic functions6 to facilitate the definition of γs.

Vs :Valuess → ((Env × Sym(Locs))→ Valuesc)
Os :Symbolsnon−prim → ((Γ × Env × Sym(Locs))→ P(Symbolsnon−prim))
Hs :Heapss → ((Γ × Env × Sym(Locs))→ P(Heapsc))
ST s :ΣS → ((Γ × Env × Sym(Locs))→ P(ΣC)).

Here are the definitions (∀T ∈ Γ, E ∈ Env, ρ ∈ Sym(Locs)):

• theVs function:

Vs!v"(E, ρ) = sub(sub(v, E), ρ)

• the Os function:

Os!Xτ"(T, E, ρ) =
{

X′τ′ | τ′ = sub(τ,T ) ∧ mapfields(X, X′τ′ , E, ρ)
}
,

where

mapfields(X, X′τ′ , E, ρ)
def
= ∀ι.X(ι)↓ =⇒ X′(ι) = Vs!X(ι)"(E, ρ), if τ′ ∈ Typesrecord

mapfields(X, X′τ′ , E, ρ)
def
= X′() = Vs!X()"(E, ρ) ∧ ∀ι ∈ acc-idx(X).

X′(Vs!ι"(E, ρ)) = Vs!X(ι)"(E, ρ) ∧ (X()↓ =⇒ ∀(0 ≤ m < X′()
∧ m "

{Vs!ι"(E, ρ) | ι ∈ acc-idx(X)
}
).X′(m) = X()

)
, if τ′ ∈ Typesarray

• theHs function 7:

Hs!hs"(T, E, ρ) = { hc | contains(hc, hs,T, E, ρ) ∧ well-typed(hc)
∧ well-formed(hc, hs,T, E, ρ) },

6From this point on, we use subscript s to denote symbolic state components/domains and c for concrete state
components/domains.

7An alternative view of functions as sets of pairs may be taken.
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where contains(hc, hs,T, E, ρ) if and only if

∀(i, X) ∈ hs.∃Y ∈ Os!X"(T, E, ρ).(ρ(i),Y) ∈ hc.

well-typed(hc) if and only if for each non-primitive symbol in hc must have all its fields
mapped to values of their types. More specifically, each primitive field is mapped to a
constant of its type; each reference type field is mapped to either  or a location in hc

which is mapped a non-primitive symbol of a compatible type.

well-formed(hc, hs,T, E, ρ) if and only if for each entry (i, Xc) in hc, Xc is well-formed, that
is,

1. if (i, Xc) is mapped from ( j, Xs) in hs (i = ρ( j) and Xc ∈ Os!Xs"(T, E, ρ)), and if any
field f of Xs is undefined and non-primitive, Xc( f ) has to be one of following values:

– 
– i′ where i′ " ρ(dom hs).
– i′′ where i′′ ∈ ρ(dom hs) and hs(ρ−1(i′′))() ↑.

2. if (i, Xc) is not mapped from any entry in hs (i " ρ(dom hs)), all the fields of Xc are
treated as the ones with corresponding undefined fields in hs.

• the ST s function:

ST s!(g, pc, l,ω, h, φ)"(T, E, ρ) = { (sub-fun(sub-fun(g, E), ρ), pc,
sub-fun(sub-fun(l, E), ρ), sub-seq(sub-seq(ω, E), ρ), h′,T) | h′ ∈ Hs!h"(T, E, ρ) }.

Finally, the definition of γs : Σs → P(Σc) is

γs(σs) =
⋃

∀E,T!φ,∀ρ
ST s!σs"(T, E, ρ).

Concrete and Symbolic Kripke Structures

Given a method m, we have a set of global variables G and local variables L (ordered from 0..n).
We use Kripke structures 8 C = (ΣC, IC,−→C, LC) and S = (ΣS, IS,−→S, LS) to model the state-
spaces from the concrete and the symbolic executions, respectively. Each component is defined as
following

• states,
ΣC = Σc ∪ (E × Σc) ∪ (E × Σc).

ΣS = Σs ∪ (E × Σs) ∪ (E × Σs).

Furthermore, we require that all the ΣC and ΣS are well typed according to the signature of
m.

8Appendix D.1 presents definitions of Kripke structures and simulations on Kripke structures adapted from [6] for
a quick reference.
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• initial states, according to JVM specification [4], the initial states have empty operand stacks
and all the arguments are stored in local. So

IC = { (gc, pcinit, lc, nil, hc,T) | dom(gc) = G ∧ dom(lc) = L } ,

where pcinit is the start program counter of the method.

IS = { (gs, pcinit, ls, nil, hs, {T}) | dom(gs) = G ∧ dom(ls) = L }

and each local and global is initialized as follows: if it is primitive type, a symbolic primitive
symbolic is created; otherwise, it is nondeterministically initialized as a symbolic object
with all its fields undefined or  with all the possible aliasing.

• transition relations,

c1 −→C c2 ⇐⇒ c1 ⇒C c2 ∧ last component of c2 is T.
s1 −→S s2 ⇐⇒ s1 ⇒S s2 ∧ the path condition of s2 is satisfiable.

• labels, we will not use this component. So let them undefined.

Function γs is trivially extended to γ∗s : ΣS → P(ΣC) as

γ∗s(s) =




γs(σs), if s = σs for some σs ∈ Σs;
{ (E,σc) | σc ∈ γs(σs) } , if s = (E,σs) for some σs ∈ Σs;
{ (E,σc) | σc ∈ γs(σs) } , if s = (E,σs) for some σs ∈ Σs.

Simulation Relations

To show the relationship between C and S, we define a relation.

Definition 1. R ⊆ ΣC × ΣS, as follows: c R s ⇐⇒ c ∈ γ∗s(s).

For any σs with path condition (φ) satisfiable, there exists one σc such that σc R σs since there
exist some E and T which satisfy φ.

Clearly, for all c0 ∈ IC, there exists s0 ∈ IS such that c0 R s0.

Proposition 1. C "R S.

Proof. It is sufficient to show that for all σc ∈ ΣC,σs ∈ ΣS if σc −→C σ′c and σc R σs then there
exists σ′s ∈ S such that σs −→S σ′s and σ′c R σ′s.

We will proceed with the rule induction on −→C.

• Rule IADD-C: Let σc = (gc, pc, lc, d :: c ::ωc, hc,T), then σ′c = (gc, next(pc), lc, (c + d) ::
ωc, hc,T). Suppose σc R σs. We need to show that there exists σ′s ∈ ΣS such that
σs −→S σ′s and σ′c R σ′s. Since σc R σs, we have σc ∈ γs(σs). The symbolic state σs must
have the form of (gs, pc, ls, v1 ::v2 ::ωs, hs, φ) for some T, E, ρ with T, E ! φ,Vs!v1"(E, ρ) =
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c,Vs!v2"(E, ρ) = d, sub-fun(sub-fun(gs, E), ρ) = gc, sub-fun(sub-fun(ls, E), ρ) = lc,
sub-seq(sub-seq(ωs, E), ρ) = ωc, and hc ∈ Hs!hs"(T, E, ρ). Using the rule IADD-S, we get
σs −→S σ′s with σ′s = (gs, next(pc), ls,Y ::ωs, hs, φ ∪ {Y = v1 + v2}) where Y is fresh. We
only need to show σ′c ∈ γs(σ′s), that is, to find T ′, E′, ρ′ such that σ′c ∈ ST s!σ′s"(T ′, E′, ρ′).
We claim that T ′ = T , E′ = E[Y 8→ c + d], and ρ′ = ρ are the right choice. Since Y is fresh,
sub-fun(sub-fun(gs, E′), ρ′) = sub-fun(sub-fun(gs, E), ρ) = gc, sub-fun(sub-fun(ls, E′), ρ′) =
sub-fun(sub-fun(ls, E), ρ) = lc, sub-seq(sub-seq(ωs, E′), ρ′) = sub-seq(sub-seq(ωs, E), ρ) =
ωc, and hc ∈ Hs!hs"(T ′, E′, ρ′) = Hs!hs"(T, E, ρ). Furthermore, since Vs!Y"(E′, ρ) =
c + d = Vs!v1"(E, ρ) + Vs!v2"(E, ρ), we get T, E′ ! (φ ∪ {Y = v1 + v2}). Therefore,
σ′c ∈ ST s!σ′s"(T, E′, ρ) ⊆ γs(σ′s).

• Rule IF ICMPLT2-C: Let σc = (gc, pc, lc, d :: c :: ωc, hc,T), then c ≥ d and σ′c =
(gc, next(pc), lc,ωc, hc,T). Suppose σc R σs. We need to show that there exists σ′s ∈ ΣS
such that σs −→S σ′s and σ′c R σ′s. Since σc R σs, we have σc ∈ γs(σs). The symbolic
state σs must have the form of (gs, pc, ls, v2 :: v1 ::ωs, hs, φ) for some T, E, ρ with T, E ! φ,
Vs!v1"(E, ρ) = c,Vs!v2"(E, ρ) = d, sub-fun(sub-fun(gs, E), ρ) = gc, sub-fun(sub-fun(ls, E), ρ) =
lc, sub-seq(sub-seq(ωs, E), ρ) = ωc, and hc ∈ Hs!hs"(T, E, ρ). Using the IF ICMPLT-S, we
get σs −→S σ′s with σ′s = (gs, next(pc), ls,ωs, hs, φ∪ {v1 ≥ v2}) (the first end state). We only
need to show σ′c ∈ γs(σ′s). Since Vs!v1"(E, ρ) = c, Vs!v2"(E, ρ) = d, and c ≥ d, we get
T, E ! φ ∪ {v1 ≥ v2}. Therefore, σ′c ∈ ST s!σ′s"(T, E, ρ) ⊆ γs(σ′s).

• Rule ANEWARRAY1-C: Suppose σc = (gc, pc, lc, c ::ωc, hc,T). Then c ≥ 0 and σ′c =
(gc, next(pc), lc,ωc, h′c,T) where i is fresh and h′c = hc[i 8→ new-arrc(symbols(σc), τ, c)].
Suppose σc R σs. We need to show that exists σ′s ∈ ΣS such that σs −→S σ′s and σ′c R σ′s.
Since σc R σs, we have σc ∈ γs(σs). The symbolic state σs has the form of (gs, pc, ls, v ::
ωs, hs, φ) for some T, E, ρ with T, E ! φ, Vs!v"(E, ρ) = c, sub-fun(sub-fun(gs, E), ρ) =
gc, sub-fun(sub-fun(ls, E), ρ) = lc, sub-seq(sub-seq(ωs, E), ρ) = ωc, and hc ∈ Hs!hs"(T, E, ρ).
Using the ANEWARRAY2-S rule, we get σs −→S σ′s with σ′s = (gs, next(pc), ls,ωs, h′s, φ ∪
{v ≥ 0}) where h′s = hs[ j 8→ new-arr(symbols(σs), τ, X, k)] and j is fresh (the first end state).
We only need to show σ′c ∈ γs(σ′s). Define ρ′ = ρ[ j 8→ i][ρ−1(i) 8→ ρ( j)]. It is clear that
ρ′ ∈ S and for location i′ " { j, ρ−1(i)}, ρ′(i′) = ρ(i′). Since i is fresh in σc and σc R σs,
ρ−1(i) must be fresh in σs (not in dom hs) too. Thus we get sub-fun(sub-fun(gs, E), ρ′) =
gc, sub-fun(sub-fun(ls, E), ρ′) = lc, and sub-seq(sub-seq(ωs, E), ρ′) = ωc. From c ≥ 0,
Vs!v"(E, ρ′) ≥ 0, that is, T, E ! φ ∪ {v ≥ 0}. It remains to show h′c ∈ Hs!h′s"(T, E, ρ′).
Clearly well-typed(h′c) because i is fresh in hc. Then we show that contains(h′c, h′s,T, E, ρ′).
For any entry (i′, X′) ∈ hs, since j and ρ−1(i) are fresh in hs, we get
Os!X′"(T, E, ρ′) = Os!X′"(T, E, ρ). Furthermore, since new-arrc(symbols(σc), τ, c) ∈
Os!new-arr(symbols(σc), τ, X, k)"(T, E, ρ′), we can get contains(h′c, h′s,T, E, ρ′). Next we
need to show well-formed(h′c, hs,T, E, ρ′). Since new-arr(symbols(σs), τ, X, k)() ↓, sym-
bol new-arrc(symbols(σc), τ, c) of entry (i, new-arrc(symbols(σc), τ, c)) in h′c is well-formed
under E and ρ′. For any symbol Y in the range of hc, if Y has a reference field f whose corre-
sponding field is not defined in hs, by the well-formed(hc, hs,T, E, ρ), f can not be any loca-
tion that points to concrete object in hc. But h′c has only one extra concrete object at i than hc
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and i is fresh in hc. Therefore, f can not point to i, that is, symbol new-arrc(symbols(σc), τ, c)
is well-formed. We get well-formed(h′c, h′s,T, E, ρ′). Thus h′c ∈ Hs!h′s"(T, E, ρ′). Finally,
σ′c ∈ ST s!σ′s"(T, E, ρ′) ⊆ γs(σ′s).

• Rule GETFIELD1-C: Suppose σc = (gc, pc, lc, i :: ωc, hc), then σ′c = (gc, next(pc), lc, v ::
ωc, hc) where X = hc(i), v = X( f ). Let τv be the real type of symbol hc(v). Suppose
σc R σs. We need to show that exists σ′s ∈ ΣS such that σs −→S σ′s and σ′c R σ′s.
Since σc R σs, we have σc ∈ γs(σs). The symbolic state σs must have the form of
(gs, pc, ls, i′ ::ωs, hs, φ) for some T, E, ρ with T, E ! φ, ρ(i′) = i, sub-fun(sub-fun(gs, E), ρ) =
gc, sub-fun(sub-fun(ls, E), ρ) = lc, sub-seq(sub-seq(ωs, E), ρ) = ωc, and hc ∈ Hs!hs"(T, E, ρ).
WLOG, assume that the type of f , τ, is a record type and f is not in the domain of hs(i′). We
will proceed with a case analysis according to the value of v by well-formed(hc, hs,T, E, ρ):

– case v = . We will apply the GETFIELD3-S rule and get σ′s = (g, next(pc), l,  ::
ω, h′s, φ), where h′s = hs[i 8→ hs(i)[ f 8→ ]]. It suffices to show contains(hc, h′s,T, E, ρ)
and well-formed(hc, h′s,T, E, ρ). Since ρ(i′) = i and σc R σs, X ∈ Os!Y"(T, E, ρ).
Furthermore, Since hc ∈ Hs!hs"(T, E, ρ) and X ∈ Os!hs(i)[ fτ 8→ ]"(T, E, ρ) by
X( f ) =  = hs(i)( f ), we get contains(hc, h′s,T, E, ρ) and well-formed(hc, h′s,T, E, ρ)
hold. We get hc ∈ Hs!h′s"(T, E, ρ). Then σ′c ∈ γs(σ′s).

– case v ∈ ρ(dom hs) ∧ hs(ρ−1(v))() ↑. We will apply the rule GETFIELD4-S and
get σ′s = (g, next(pc), l, v′ :: ω, h′s, φ ∪ {τ′ <: τ}) where h′s = hs[i 8→ hs(i)[ f 8→ j]]
and Zτ′ = hs(v′). We also have v′ = ρ−1(v) (v′ ∈ collect(hs) because v ∈ ρ(dom hs)
and hs(ρ−1(v))() ↑). Since well-typed(hc), the type of hc(v), τv, is a subtype of τ.
Furthermore, since hc(v) ∈ Os!Zτ′"(T, E, ρ), we arrive at T ! τ′ <: τ. Thus T, E !
φ ∪ {τ′ <: τ}. The rest of the proof is similar to the  case.

– case v ∈ Locs ∧ v " ρ(dom hs). We will apply the rule GETFIELD6-S (because we
assume that bound k is sufficient large and m > 0) and get σ′s = (g, next(pc), l, v ::
ω′, h′s, φ∪{τ′ <: τ}) where h′s = hs[i 8→ hs(i)[ f 8→ j]] and Zτ′ = new-sym(symbols(σ),m−
1, k). Define ρ′ = ρ[ j 8→ v] and T ′ = T [τ′ 8→ τv]. Since well-typed(hc), we get
τv <: τ. Furthermore, since ρ′ = ρ[ j 8→ v] and T ′ = T [τ′ 8→ τv], T ′ ! τ′ <: τ.
Thus T ′, E ! φ ∪ {τ′ <: τ}. Since j is fresh in hs, sub-fun(sub-fun(gs, E), ρ′) =
sub-fun(sub-fun(gs, E), ρ), sub-fun(sub-fun(ls, E), ρ′) = sub-fun(sub-fun(ls, E), ρ), and
sub-seq(sub-seq(ωs, E), ρ′) = sub-seq(sub-seq(ωs, E), ρ) hold. It remains to show
contains(hc, h′s,T, E, ρ) and well-formed(hc, h′s,T, E, ρ). Since X ∈ Os!Ym,n[ fτ 8→ v′]"(T ′, E, ρ′)
and hc(v) ∈ Os!Zτ′"(T ′, E, ρ′), contains(hc, h′s,T ′, E, ρ) holds. Since v " ρ(dom hs),
hc(v) is well-formed. Since the new symbol Zτ′ in h′s has  field undefined, the rest
of symbols in hc are well-formed. Thus we get well-formed(hc, h′s,T, E, ρ) and further,
hc ∈ Hs!h′s"(T ′, E, ρ′). Therefore, σ′c ∈ ST s!σ′s"(T ′, E, ρ′) ⊆ γs(σ′s).

#

Definition 2. R• ⊆ ΣS × P(ΣC), as σs R• S c ⇐⇒ γ∗s(σs) = S c.
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The relation R• is left total by definition. Also it is clear that for σs R• S c, S c is not empty, if
and only if the path condition φ of σs is satisfiable. Furthermore, for any σs ∈ IS and σs R• S c, it
is clear that S c ⊆ IC by the definition of γs function.

Proposition 2. S "R• P(C).

Proof. It is sufficient to show that for all σs,σ′s ∈ ΣS, S c, S ′c ∈ P(ΣC), if σs −→S σ′s, σs R• S c,
and σ′s R• S ′c then S c

•−→C S ′c.
We will prove by rule induction on symbolic operational semantics transitions, −→S.

• Rule IADD-S: σs = (gs, pc, ls, v1 :: v2 ::ωs, hs, φ). Then σ′s = (gs, next(pc), ls,Z ::ωs, hs, φ ∪
{Z = v1 + v2}) where Z is fresh. Suppose σs R• S c and σ′s R• S ′c. We need to show that
S c

•−→C S ′c, that is, for any σ′c ∈ S ′c, there exists some σc ∈ S c such that σc −→C σ′c.
Suppose σ′c ∈ S ′c, that is, σ′c ∈ γs(s′s). Then σ′c must be in the form of (g′c, next(pc), l′c, c ::
ω′c, h′c,T) with some T, E, ρ such that T, E ! φ ∪ {Z = v1 + v2}, Vs!Z"(E, ρ) = c,
sub-fun(sub-fun(gs, E), ρ) = g′c, sub-fun(sub-fun(ls, E), ρ) = l′c, sub-seq(sub-seq(ωs, E), ρ) =
ω′c, and h′c ∈ Hs!hs"(T, E, ρ). Take σc = (g′c, pc, l′c, E(X) :: E(Y) :: ω′c, h′c,T). Clearly
σc −→C σ′c. We only need to show that σc ∈ γs(σs). Since Z is fresh, T, E ! φ. Thus
σc ∈ ST s!σs"(T, E, ρ) ⊆ γs(σs).

• Rule IF ICMPLT-S: σs = (gs, pc, ls, v1 :: v2 ::ωs, hs, φ) and σ′s = (gs, next(pc), ls,ωs, hs, φ ∪
{v2 ≥ v1}). (we only consider one end state, the other end state is symmetric.) Suppose
σs R• S c and σ′s R• S ′c. We need to show that S c

•−→C S ′c, that is, for any σ′c ∈
S ′c, there exists some σc ∈ S c such that σc −→C σ′c. Suppose σ′c ∈ S ′c, that is, σ′c ∈
γs(s′s). Then σ′c must be in the form of (g′c, next(pc), l′c,ω′c, h′c,T) with some T, E, ρ
such that T, E ! φ ∪ {v2 ≥ v1}, sub-fun(sub-fun(gs, E), ρ) = g′c, sub-fun(sub-fun(ls, E), ρ) =
l′c, sub-seq(sub-seq(ωs, E), ρ) = ω′c, and h′c ∈ Hs!hs"(T, E, ρ). Takeσc = (g′c, pc, l′c,Vs!v1"(E, ρ) ::
Vs!v2"(E, ρ) :: ω′c, h′c). Clearly σc −→C σ′c. We conclude that σc ∈ ST s!σs"(T, E, ρ) ⊆
γs(σs).

• Rule ANEWARRARY2-S: Suppose σs = (gs, pc, ls, X ::ωs, hs, φ). We only consider that non-
exceptional end state here. Thenσ′s = (gs, next(pc), ls, i ::ωs, hs[i 8→ new-arr(symbols(σs), τ, X, k)], φ∪
{X ≥ 0}) where i is fresh. Supposeσs R• S c andσ′s R• S ′c. We need to show that S c

•−→C S ′c,
that is, for any σ′c ∈ S ′c, there exists some σc ∈ S c such that σc −→C σ′c. Suppose σ′c ∈ S ′c,
that is, σ′c ∈ γs(s′s). Then σ′c must be in the form of (g′c, next(pc), l′c, j :: ω′c, h′c,T)
with some T, E, ρ such that T, E ! φ ∪ {X ≥ 0}, ρ(i) = j, sub-fun(sub-fun(gs, E), ρ) =
g′c, sub-fun(sub-fun(ls, E), ρ) = l′c, sub-seq(sub-seq(ωs, E), ρ) = ω′c, and h′c ∈ Hs!hs[i 8→
new-arr(symbols(σs), τ, X, k)]"(T, E, ρ). We need to find a σc ∈ ΣC such that σc ∈ γs(σs)
and σc −→C σ′c. We claim that σc = (g′c, pc, l′c, E(α) ::ω′c, hc,T) where hc = h′c \ ( j, h′c( j))
satisfies the above two conditions. Since T, E ! φ∪ {X ≥ 0}, T, E ! φ. To show σc ∈ γs(σs),
it suffices to show that hc ∈ Hs!hs"(T, E, ρ). Since new-arr(symbols(σs), τ, X, k) will return a
symbol with  field defined and h′c ∈ Hs!hs[i 8→ new-arr(symbols(σs), τ, X, k)]"(T, E, ρ),
symbols in h′c such that their corresponding symbols in hs[i 8→ new-arr(symbols(σs), τ, X, k)]
have  fields not defined or do not have corresponding symbols can not contains j (ρ(i)).
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Furthermore, since i is fresh in hs, hc does not have any symbol such that j is in its range.
Therefore, well-typed(hc), contains(hc, hs,T, E, ρ), and well-formed(hc, hs,T, E, ρ). We get
σc ∈ ST s!σs"(T, E, ρ) ⊆ γs(σs). Clearly σc −→C σ′c.

• Rule GETFIELD3-S: Suppose σs = (gs, pc, ls, i :: ωs, hs, φ). Then f is not defined in hs(i)
and σ′s = (gs, next(pc), ls,  ::ωs, h′s, φ) where h′s = hs[i 8→ hs(i)[ fτ 8→ ]]. Suppose
σs R• S c and σ′s R• S ′c. We need to show that S c

•−→C S ′c, that is, for any σ′c ∈ S ′c, there ex-
ists some σc ∈ S c such that σc −→C σ′c. Suppose σ′c ∈ S ′c, that is, σ′c ∈ γs(s′s). Then σ′c must
be in the form of (g′c, next(pc), l′c,  ::ω′c, h′c,T) with some T, E, ρ such that T, E ! φ,
sub-fun(sub-fun(gs, E), ρ) = g′c, sub-fun(sub-fun(ls, E), ρ) = l′c, sub-seq(sub-seq(ωs, E), ρ) =
ω′c, and h′c ∈ Hs!h′s"(T, E, ρ). We need to find a σc such that σc −→C σ′c and σc ∈ γs(σs).
Take σc = (g′c, pc, l′c, ρ(i) ::ω′c, h′c,T). From h′c ∈ Hs!h′s"(T, E, ρ), it is clear that σc −→C
σ′c. Then it suffices to show h′c ∈ Hs!hs"(T, E, ρ). Since h′c ∈ Hs!h′s"(T, E, ρ),well-typed(h′c),
contains(h′c, hs,T, E, ρ), and well-formed(h′c, hs,T, E, ρ) hold. Finally,σc ∈ ST s!σs"(T, E, ρ) ⊆
γs(σs).

• Rule GETFIELD6-S: Suppose σs = (gs, pc, ls, i :: ωs, hs, φ). Then f is not defined in hs(i)
and σ′s = (gs, next(pc), ls, j ::ωs, h′s, φ′) where hs(i) = Ym,n, h′s = hs[i 8→ Ym,n[ fτ 8→ j]][ j 8→
Zτ′], φ′ = φ ∪ {τ′ <: τ} where Zτ′ = new-sym(symbols(σs),m − 1, k) and j " dom hs. Sup-
pose σs R• S c and σ′s R• S ′c. We need to show that S c

•−→C S ′c, that is, for any σ′c ∈ S ′c,
there exists some σc ∈ S c such that σc −→C σ′c. Suppose σ′c ∈ S ′c, that is, σ′c ∈ γs(s′s).
Then σ′c must be in the form of (g′c, next(pc), l′c, v′ :: ω′c, h′c,T) with some T, E, ρ such
that T, E ! φ′,Vs!v"(E, ρ) = v′, sub-fun(sub-fun(gs, E), ρ) = g′c, sub-fun(sub-fun(ls, E), ρ) =
l′c, sub-seq(sub-seq(ωs, E), ρ) = ω′c, and h′c ∈ Hs!h′s"(T, E, ρ). We need to find a σc such that
σc −→C σ′c and σc ∈ γs(σs). Define ρ′ = ρ[ j 8→ v′] and σc = (g′c, pc, l′c, ρ′(i) ::ω′c, h′c,T).
From h′c ∈ Hs!h′s"(T, E, ρ), it is clear that σc −→C σ′c. Since T, E ! φ ∪ {τ′ <: τ}, T, E ! φ.
Then it suffices to show h′c ∈ Hs!hs"(T, E, ρ′). Since h′c ∈ Hs!h′s"(T, E, ρ), well-typed(h′c)
and contains(h′c, hs,T, E, ρ) hold. Since h′s( j) = Z and  " dom Z, well-formed(h′c, hs,T, E, ρ)
hold. Finally, σc ∈ ST s!σs"(T, E, ρ′) ⊆ γs(σs).

#

Relative Soundness and Completeness

The soundness means that if there is an error in the concrete execution, then the symbolic execution
will be able to find it. And the completeness is the converse. We use a theorem prover to decide the
satisfiability of path conditions. But in general, theorem provers are neither sound nor complete
for the first order logic with integer and float arithmetics. But in this section, we proceed to show
the symbolic execution is sound and complete with assumption that the underlying theorem prover
is sound and complete. This is why we called it “Relative Soundness and Completeness”.

Proposition 3 (Soundness). Given any concrete trace c1 −→C c2 −→C · · · −→C cn with c1 ∈ IC,
there is a corresponding symbolic trace s1 −→S s2 −→S · · · −→S sn with s1 ∈ IS such that ck R sk

for all 1 ≤ k ≤ n.
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Proof. We get s1 by the simulation relation between C and S. Then we proceed by mathematical
induction on n using Proposition 1. #

Proposition 4 (Completeness). Given any symbolic trace s1 −→S s2 −→S · · · −→S sn with
s1 ∈ IS, there is a corresponding concrete trace c1 −→C c2 −→C · · · −→C cn such that ck R sk for
all 1 ≤ k ≤ n and c1 ∈ IC.

Proof. Since the φ of s1 is not false, C1 = γ∗s(s1) ! ∅. Then we show there exists a trace in P(C),
C1

•−→C C2
•−→C · · ·

•−→C Cn such that sk R• Ck for all 1 ≤ k ≤ n by mathematical induction on
n using Proposition 2. Since the φ of sn is satisfiable, then Cn ! ∅. Pick any cn ∈ Cn and use the
definition of

•−→C, we get the corresponding concrete trace c1 −→C c2 −→C · · · −→C cn. #

C.3.2 Relative Soundness and Completeness of Symbolic Execution with
Lazier Initialization

Following the outline of Section C.3.1, we relate the lazier initialization symbolic execution in
Section C.2.2 and symbolic execution in Section C.2.1. First, we define a function γa which given
a lazier symbolic state, it returns all the symbolic states that have the same shape and only change
symbolic locations to concrete locations. Then we introduce binary relations between symbolic
states (power) and lazier symbolic state-spaces. Finally, we will prove the relative sound and
completeness of lazier symbolic execution with regards to symbolic execution intra-procedurely.

Definition of γa

Let us first introduce a definition: The set of all symbolic variable environments

Π = { F | F : SymLocs→ Locs } . (C.1)

Then we define some semantics functions with subscript a denoting lazier symbolic domain-
s/components:

Ha : (Heapsa × Φ)→ (P(Symbols) × P(SymLocs) × Π)→ P(Heapss × Φ))
ST a : Σa → Π→ P(Σs).

The definitions 9 are listed as follows (∀F ∈ Π.).

• theHa function:

Ha!(ha, φ)"(ss,∆, F) = {(hs, φ
′) | well-mapped(∆, ha, F) ∧ heap(ss,∆, ha, hs, F)

∧ pc(φ′, φ, hs, F) ∧ φ′ is satisfiable},

where well-mapped : P(SymLocs) × Heapsa × Π → B with well-mapped(∆, ha, F)
if and only if

∀δ ∈ ∆.(ha(F(δ)) ↑ ∨ha(F(δ))() ↑ );
9Subscript a is frequently used to indicate a component in the lazier symbolic states.
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heap : P(Symbols)×P(SymLocs)×Heapsa×Heapss×Π→ Bwith heap(ss,∆, ha, hs, F)
if and only if

dom hs = dom ha ∪ F(∆) ∧ ∀i ∈ dom ha.hs(i) = sub-fun(ha(i), F)
∧ ∀i ∈ (dom hs − dom ha).hs(i) = Xτ,

where Xτ =




new-sarr(ss ∪ hs(Locs − {i}), k, k), if∃δτ′′ ∈ F−1(i) such that τ′′ ∈ Typesarray

new-sym(ss ∪ hs(Locs − {i}), k, k) otherwise;

pc : Φ × Φ × Heapss × Π × P(SymLocs) → B with pc(φ′, φ, hs, F,∆) if and only if
φ′ is the least set of predicates that satisfies following conditions:

φ ⊆ φ′ ∧ ∀δτ ∈ ∆.τ′ <: τ ∈ φ′ ∧ X() ≥ 0 ∈ φ′ if τ ∈ Typesarray where hs(F(δ)) = Xτ′ .

Note: similar the property of substitution, Lemma 2,

Ha!(ha, φ)"(ss,∆, F) = Ha!(ha, φ)"(ss,∆, F |∆),

for any F. TheHa function either returns a empty set which means contradicting F or a set
with a single element.

• the ST a function (we use binding σa = (g, pc, l,ω, h, φ)):

ST a!σa"(F) = {(sub-fun(g, F), pc, sub-fun(l, F), sub-seq(ω, F), h′, φ′) | (h′, φ′)
∈ Ha!(h, φ)"(symbols(σa), collect-sym-locs(σa), F)},

where collect-sym-locs takes in a state and returns the set of symbolic locations that appear
in the state. In the light of the return of Ha function can only be ∅ or a singleton, ST a

function return ∅ or a singleton too.

Finally, the definition of γa : Σa → P(Σs) is

γa(σa) =
⋃

∀F∈Π
ST a!σa"(F).

Properties of γa

Definition 3. A location i is a legal value for δ regarding to a lazier symbolic stateσa = (g, pc, l,ω, h, φ)
if and only if the following conditions hold:

1. δ ∈ collect-sym-locs(σa);

2. i " dom h or h(i)() ↑;

3. (h′, φ′) = init-loc-heap(h, symbols(σa), δ, i) with φ′ is satisfiable.
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Lemma 3. Let σa ∈ Σa and F ∈ Π. Suppose σs ∈ ST a!σa"(F). For any (δ, i) ∈ F, if σ′a ∈
init-sym-loc(σa, δ, i) and i is a legal value for δ regarding to σa, then σs ∈ ST a!σ′a"(F).

Proof. Suppose σa = (ga, pc, la,ωa, ha, φ) and σs = (gs, pc, ls,ωs, hs, φs). By the definition of
init-sym-loc,σ′a = (sub-fun1(ga, δ, i), pc, sub-fun1(la, δ, i), sub-seq1(ωa, δ, i), h′a, φ′), where (h′a, φ′) =
init-loc-heap(ha, φ, symbols(σa), δ)i. Sinceσs ∈ ST a!σa"(F), we have gs = sub-fun(sub-fun1(ga, δ, i), F),
ls = sub-fun(sub-fun1(la, δ, i), F), and ωs = sub-seq(sub-seq1(ωa, δ, i), F) by Lemma 1. It remains
to show that

(hs, φs) ∈ Ha!(h′a, φ
′)"(symbols(σ′a), collect-sym-locs(σ′a), F).

We know that (hs, φs) ∈ Ha!(ha, φ)"(symbols(σa), collect-sym-locs(σa), F). We will proceed by
the definition ofHa. Since σ′a has one fewer symbolic location (δ) than σa, the predicate
well-mapped(symbols(σ′a), collect-sym-locs(σ′a), F) holds. Also it is easy to see that both
heap(collect-sym-locs(σ′a), h′a, hs, F) and pc(φs, φ′, hs, F, collect-sym-locs(σ′a)) hold. We conclude
that σs ∈ ST a!σ′a"(F) holds. #

Lemma 4. Let σa ∈ Σa and F ∈ Π. For any (δ, i) ∈ F where i is a legal value for δ regarding to
σa, if σ′a ∈ init-sym-loc(σa, δ, i) and σs ∈ ST a!σ′a"(F), then σs ∈ ST a!σa"(F).

Proof. Similar to Lemma 3, the difficult part is to show that

(hs, φs) ∈ Ha!(ha, φ)"(symbols(σa), collect-sym-locs(σa), F).

We know that (hs, φs) ∈ Ha!(h′a, φ′)"(symbols(σ′a), collect-sym-locs(σ′a), F). We will proceed by
the definition of Ha. Since σa has one more symbolic location (δ) than σ′a and by i is legal for
δ regarding to σa, the predicate well-mapped(symbols(σa), collect-sym-locs(σa), F) holds. Also it
is easy to see that both heap(collect-sym-locs(σa), ha, hs, F) and
pc(φs, φ, hs, F, collect-sym-locs(σa)) hold. We conclude that σs ∈ ST a!σa"(F) holds. #

Lazier Kripke Structure

For any given method m, we have a set of global variables G and local variables L (ordered from
0..n). We use Kripke structure A = (ΣA, IA,−→A, LA) to model the state-space from the lazier
initialization symbolic executions. The components are defined as follows:

• states, ΣA = Σa ∪ (E × Σa) ∪ (E × Σa).

• initial states,

IA = { (ga, pcinit, la, nil, ha, {T}) | dom(ga) = G ∧ dom(la) = L } ,

and each local and global is initialized as follows: if it is primitive type, a symbolic primitive
symbolic is created; otherwise, it is nondeterministically initialized as a fresh symbolic
location or .

• transition relation, a −→A a′ ⇐⇒ a ⇒A a2, a2 ⇒A a3, . . . , an ⇒A a′ for some n ∈ N
with program counters of a, a2, . . . , an are the same and the program counter of a and a′ are
different and the path condition of a′ is satisfiable.
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• labels, we do not use this part and thus they are ignored.

Similar to γs, function γa is trivially extended to γ∗a : ΣA → P(ΣS) as

γ∗a(a) =




γa(σa), if a = σa for some σa ∈ Σa;
{ (E,σs) | σs ∈ γa(σa) } , if a = (E,σa) for some σa ∈ Σa;
{ (E,σs) | σs ∈ γa(σa) } , if a = (E,σa) for some σa ∈ Σa.

Simulation Relations

We introduce a relation R′ between lazier symbolic states ΣA and ΣS as follows:

Definition 4. σs R′ σa ⇐⇒ σs ∈ γ∗a(σa).

Clearly, for all s0 ∈ IS, there exists a a0 ∈ IA such that s0 R′ a0.

Proposition 5. S "R′ A.

Proof. It is sufficient to show that for all σs,σ′s ∈ ΣS,σa ∈ ΣA if σs −→S σ′s and σs R′ σa then
there exists σ′a ∈ A such that σa −→A σ′a and σ′s R′ σ′a. We will proceed with the rule induction
on −→S.

• Rule IF ACMPEQ1-S: Letσs = (gs, pc, ls, i :: j ::ωs, hs, φ). Then i ! j andσ′s = (gs, next(pc), ls,ωs, hs, φ).
Suppose σs R′ σa, we need to show there exists σ′a ∈ A such that σa −→A σ′a and
σ′s R′ σ′a. Since σs R′ σa, we have σs ∈ γa(σa). WLOG, suppose that σa has the
form of (ga, pc, la, δτ :: δ′τ′ :: ωa, ha, φ′) for some F with V′!δ"(F) = i, V′!δ′"(F) = j,
and σs ∈ ST a!σa"(F). After taking the IF ACMPEQ2-A rule, we get an invisible state
t1 = (g′a, pc, l′a, i :: δ′τ′ :: ω′a, h′a, φ′′) with t1 ∈ init-sym-loc(σa, δ, i). By Lemma 3, we have
σs ∈ ST a!t1"(F). After taking the IF ACMPEQ1-A rule, we get another invisible state t2 =

(g′′a , pc, l′′a , i :: j :: ω′′a , h′′a , φ′′′) with t2 ∈ init-sym-loc(t1, δ′, j). By Lemma 3, we have σs ∈
ST a!t2"(F). Finally, we take the IF ACMPEQ1-S rule and getσ′a = (g′′a , next(pc), l′′a ,ω′′a , h′′a , φ′′′).
Now it is sufficient to show that σ′s ∈ γa(σ′a). Clearly sub-fun(g′′a , F) = sub-fun(ga, F) =
gs, sub-fun(l′′a , F) = sub-fun(la, F) = ls, and sub-seq(ω′′a , F) = sub-seq(ωa, F) = ωs by ap-
plying Lemma 1 twice. It remains to show that
(hs, φ) ∈ Ha!(h′′a , φ′′′)"(symbols(σ′a), collect-sym-locs(σ′a), F). Since symbols(σ′a) = symbols(t2)
and collect-sym-locs(σ′a) = collect-sym-locs(t2) = collect-sym-locs(σa) \ {δ, δ′}, we get
(hs, φ) ∈ Ha!(h′′a , φ′′′)"(symbols(σ′a), collect-sym-locs(σ′a), F). Therefore, σ′s ∈ γa(σ′a).

• Rule GETFIELD3-S: Supposeσs = (gs, pc, ls, i ::ωs, hs, φ). Thenσ′s = (gs, next(pc), ls,  ::
ωs, h′s, φ) where hs(i) = Y and h′s = hs[i 8→ Y[ fτ 8→ ]]. Suppose σs R′ σa, we need
to show there exists σ′a ∈ A such that σa −→A σ′a and σ′s R′ σ′a. Since σs R′ σa, we
have σs ∈ γa(σa). WLOG, suppose that σa has the form of (ga, pc, la, δτ′ :: ωa, ha, φ′) for
some F with V′!δ"(F) = i and σs ∈ ST a!σa"(F). After taking the GETFIELD1-A rule,
we get an invisible state t = (g′a, pc, l′a, i :: ω′a, h′a, φ′′) with t ∈ init-sym-loc(σa, δ, i). By
Lemma 3, we have σs ∈ ST a!t"(F). Finally, we take the rule GETFIELD3-S and get σ′a =
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(g′a, next(pc), l′a,  :: ω′a, h′a[i 8→ h′a(i)[ fτ 8→ ]], φ′′). We need to show σ′s ∈ γa(σ′a).
By Lemma 1, sub-fun(g′a, F) = sub-fun(ga, F) = gs, sub-fun(l′a, F) = sub-fun(la, F) = ls, and
sub-seq(ω′a, F) = sub-seq(ωa, F) = ωs hold. It is sufficient to show that (hs[i 8→ hs(i)[ fτ 8→
]], φ) ∈ Ha!(h′a[i 8→ h′a(i)[ fτ 8→ ]], φ′)"(symbols(σ′a), collect-sym-locs(σ′a), F).
Since symbols(σ′a) = symbols(t) and collect-sym-locs(σ′a) = collect-sym-locs(t) = collect-sym-locs(σa\
{δ}), and h′a(i)( f ) = hs(i)( f ) = , (hs[i 8→ hs(i)[ fτ 8→ ]], φ) ∈ Ha!(h′a[i 8→ h′a(i)[ fτ 8→
]], φ′′)"(symbols(σ′a), collect-sym-locs(σ′a), F) by the definition ofHa.

• Rule GETFIELD6-S Suppose σs = (gs, pc, ls, i :: ωs, hs, φ). Then σ′s = (gs, next(pc), ls, j ::
ωs, h′s, φ′) where hs(i) = Ym,n and h′s = hs[i 8→ Ym,n[ fτ 8→ j]][ j 8→ Zτ′], φ′ = φ ∪ {τ′ <:
τ} where Zτ′ = new-sym(symbols(σs),m − 1, k) and j " dom hs. Suppose σs R′ σa, we need
to show there exists σ′a ∈ A such that σa −→A σ′a and σ′s R′ σ′a. Since σs R′ σa, we have
σs ∈ γa(σa). WLOG, suppose that σa has the form of (ga, pc, la, δτ′ :: ωa, ha, φ′) for some
F with V′!δ"(F) = i and σs ∈ ST a!σa"(F). After taking the GETFIELD1-A rule, we get
an invisible state t = (g′a, pc, l′a, i ::ω′a, h′a, φ′′) with t ∈ init-sym-loc(σa, δ, i). By Lemma 3,
we get σs ∈ ST a!t"(F). Finally, We can take GETFIELD3-S transition rule and get σ′a =
(g′a, next(pc), l′a, δτ :: ω′a, h′a[i 8→ h′a(i)[ fτ 8→ δ′′]], φ′′) where δ′′ " collect-sym-locs(t). Let
F′ = F[δ′′ 8→ j]. Since δ′′ is fresh in t, sub-fun(g′a, F′) = sub-fun(g′a, F) = gs, sub-fun(l′a, F′) =
sub-fun(l′a, F) = ls, and sub-seq(ω′a, F′) = sub-seq(ω′a, F) = ωs. It remains to show (hs[i 8→
hs(i)[ fτ 8→ j]][ j 8→ Zτ′], φ∪{τ′ <: τ}) ∈ Ha!(h′a[i 8→ h′a(i)[ fτ 8→ δ′′]], φ′′)"(symbols(σ′a), collect-sym-locs(s′a), F′).
Since we already have (hs, φ) ∈ Ha!(h′a, φ′′)"(symbols(t), collect-sym-locs(t), F), according
to the definition of Ha function, we only need to consider the extra elements: δ′′, j, and
Z. Since j is not in the domain of hs, j is not in the domain of h′a. So j is not in the do-
main of h′a[i 8→ h′a(i)[ fτ 8→ δ′′]]. We get well-mapped(collect-sym-locs(t) ∪ {δ′′}, h′a[i 8→
h′a(i)[ f 8→ δ′′]], F′). Since Z = new-sym(symbols(σs),m − 1, k) and F′(δ′′) = j, we have
heap(collect-sym-locs(t) ∪ {δ′′}, h′a[i 8→ h′a(i)[ f 8→ δ]], hs[i 8→ hs(i)[ fτ 8→ j]][ j 8→ Zτ′]).
Since F′ introduce a new entry (δ′′, j) then pc(φ′′, φ ∪ {τ′ <: τ}, hs[i 8→ hs(i)[ fτ 8→ j]][ j 8→
Zτ′], F′, collect-sym-locs(t) ∪ {δ′′}) holds. Thus (hs[i 8→ hs(i)[ fτ 8→ j]][ j 8→ Zτ′], φ ∪ {τ′ <:
τ}) ∈ Ha!(h′a[i 8→ h′a(i)[ fτ 8→ δ]], φ′′)"(symbols(σ′a), collect-sym-locs(σ′a), F′) holds.

#

Next we define a relation.

Definition 5. R′• ⊆ ΣA × P(ΣS), as follows:

σa R′• S s ⇐⇒ γ∗a(σa) = S s

Clearly, R′• is left total. Since R′ is right total, then for all σa, if σa R′• S s, then S s ! ∅.
Furthermore, for any σa ∈ IA and σa R′• S s, it is clear that S s ⊆ IS by the definition of γa function.

Proposition 6. A "R′• P(S).

Proof. It is sufficient to show that for all σa ∈ ΣA, S s ∈ P(ΣS) if σa −→A σ′a and σa R′• S s and
σ′a R′• S ′s then S s

•−→S S ′s.
We will prove by rule induction on transitions, −→A.
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• Rule if acmpeq: Suppose, WLOG, σa = (ga, pc, la, δτ :: δ′τ′ ::ωa, ha, φ′). Then by the defi-
nition of −→A, the rule consists of three lazier symbolic transitions rules: IF ACMPEQ2-A,
IF ACMPEQ1-A, and IF ACMPEQ1-S or IF ACMPEQ2-S. After taking IF ACMPEQ2-A rule,
we get an invisible state t1 = (g′a, pc, l′a, i :: δ′τ′ :: ω′a, h′a, φ′′) for some i ∈ Locs and t1 ∈
init-sym-loc(σa, δ, i). Then after taking IF ACMPEQ1-A rule, we get another invisible state
t2 = (g′′a , pc, l′′a , i :: j ::ω′′a , h′′a , φ′′′) for some j ∈ Locs and t2 ∈ init-sym-loc(t2, δ′, j). WLOG,
suppose i ! j (the i = j case is symmetric). Finally, we take IF ACMPEQ1-S rule and get
σ′a = (g′′a , next(pc), l′′a ,ω′′a , h′′a , φ′′′). Suppose σa R′• S s and σ′a R′• S ′s. We need to show that
S s

•−→S S ′s, that is, for any σ′s ∈ S ′s, there exists some σs ∈ S s such that σs −→S σ′s. Sup-
pose σ′s ∈ S ′s, that is, σ′s ∈ γa(s′a). Then σ′s must be in the form of (g′s, next(pc), l′s,ω′s, h′s, φ)
for some F and σ′s ∈ ST a!σ′a"(F). Define σs = (g′s, next(pc), l′s, i :: j :: ω′s, h′s, φ). It is
clear that σs −→S σ′s. We only need to show σs ∈ S s, that is, σs ∈ γa(σa). Define
F′ = F[δ 8→ i][δ′ 8→ j]. We will show σs ∈ ST a!σa"(F′). Since δ and δ′ do not appear
in σ′a, thus t2, we have σs ∈ ST a!t2"(F′) by Lemma 2 and property of Ha. By applying
Lemma 4 twice, we get σs ∈ ST a!σa"(F′).

• Rule getfield fτ: Suppose, WLOG, σa = (ga, pc, la, δτ′ ::ωa, ha, φ′) and τ ∈ Typesrecord.
By the definition of −→A, the transition consists of two lazier rules: GETFIELD1-A and
(GETFIELD2-A, GETFIELD3-A, or GETFIELD1-S). After taking the GETFIELD1-A rule, we
get an invisible state t = (g′a, pc, l′a, i ::ω′a, h′a, φ′′) for some i ∈ Locs and t = init-sym-loc(σa, δ, i).
WLOG, assume that f field is undefined in h′a(i). We take the GETFIELD2-A rule and get
σ′a = (g′a, next(pc), l′a, δ′τ ::ω′a, h′a[i 8→ h′a(i)[ fτ 8→ δ′]], φ′′), where δ′ is fresh in t.

Suppose σa R′• S s and σ′a R′• S ′s. We need to show that S s
•−→S S ′s, that is, for any σ′s ∈ S ′s,

there exists some σs ∈ S s such that σs −→S σ′s. Suppose σ′s ∈ S ′s, that is, σ′s ∈ γa(σ′a).
Then σ′s must be in the form of (g′s, next(pc), l′s, j ::ω′s, h′s, φ) for some F such that F(δ′) = j
and σ′s ∈ ST a!σ′a"(F). Define hs as h′s after following two operations:

1. remove h′s(i)( f ). So the f field of hs(i) becomes undefined.

2. if no symbol in hs has a field points to h′s(i)( f ), then the entry at location h′s(i)( f ) is
removed from hs.

Define φs as satisfying pc(φs, φ′′, hs, F, collect-sym-locs(t)), so φs ∪ {τ′′ <: τ} = φ where
Zτ′′ = h′s(F(δ′)). Define σs = (g′s, next(pc), l′s, i :: ω′s, hs, φs). We will first show σs ∈ S s

and then σs −→S σ′s. To show σs ∈ S s, it suffices to show σs ∈ ST a!t"(F) (then we
can apply Lemma 4 with F[δ 8→ i]). Now we use the definition of Ha to show (hs, φs) ∈
Ha!(h′a, φ′′)"(symbols(t), collect-sym-locs(t), F). Since pc predicate obviously holds by con-
struction of φs, it suffices to show the well-mapped and heap predicates. Since h′a has one
less symbolic location (δ′) than h′a[i 8→ h′a(i)[ fτ 8→ δ′]], well-mapped(collect-sym-locs(t), h′a, F)
holds. We will prove the heap predicate by an cases analysis according the freshness of
F(δ′):

– F(δ′) " F(collect-sym-locs(t) ∪ dom h′a: then the entry (F(δ′), h′s(F(δ′)) is removed
from hs. Since heap(collect-sym-locs(σ′a), h′a[i 8→ h′a(i)[ fτ 8→ δ′]], h′s, F) holds and

47



collect-sym-locs(σ′a) − collect-sym-locs(t) = {δ′}, we have
heap(collect-sym-locs(t), h′a, F) holds.

– otherwise: so the entry (F(δ′), h′s(F(δ′)) is not removed from hs by the definition of hs.
We are done because heap(collect-sym-locs(σ′a), h′a[i 8→ h′a(i)[ fτ 8→ δ′]], h′s, F) holds.

So we have proved (hs, φs) ∈ Ha!(ha, φ′)"(symbols(t), collect-sym-locs(t), F). Thus σs ∈
ST a!t"(F) holds and further, σs ∈ S s. It remains to show that σs −→S σ′s. There are two
cases:

– hs(F(δ′)) is not defined: Since the σ′a has only δ′ that is not in σa, so h′s(F(δ′)) is a
fresh symbol. We can take the GETFIELD6-S rule and get σs −→S σ′s.

– hs(F(δ′)) is defined: By the wellmappedness of ha, hs(F(δ′))() is not defined. So
we can take the GETFIELD4-S rule and get σs −→S σ′s.

#

Soundness and Completeness

Proposition 7 (Soundness). Given any symbolic trace s1 −→S s2 −→S · · · −→S sn with s1 ∈ IS,
there is a corresponding lazier symbolic trace a1 −→A a2 −→A · · · −→A an with a1 ∈ IA such
that sk R′ ak for all 1 ≤ k ≤ n.

Proof. We proceed by mathematical induction on n using Proposition 9. #

Proposition 8 (Completeness). Given any lazier symbolic trace a1 −→A a2 −→A · · · −→A an

with a1 ∈ IA, there is a corresponding symbolic trace s1 −→S s2 −→S · · · −→S sn such that
sk R′ ak for all 1 ≤ k ≤ n and s1 ∈ IS.

Proof. It is easy to show that there exists a trace in P(S), S 1
•−→S S 2

•−→S · · ·
•−→S S n such that

ak R• S k for all 1 ≤ k ≤ n by mathematical induction on n using Proposition 6. Since S n ! ∅,
we can pick a sn ∈ S n and use the definition of

•−→S, then get the corresponding symbolic trace
s1 −→S s2 −→S · · · −→S sn. #

C.3.3 Relative Soundness and Completeness of Symbolic Execution with
Lazier# Initialization

Following the outline of Section C.3.2, we relate the lazier# initialization symbolic execution in
Section C.2.3 and laizer symbolic execution in Section C.2.2. First, we define a function γb which
given a lazier# symbolic state, it returns all the lazier symbolic states that have the same shape and
only change symbolic references to either  or symbolic locations. Then we introduce binary
relations between lazier symbolic states (power) and lazier# symbolic state-spaces. Finally, we
will prove the relative sound and completeness of lazier# symbolic execution with regards to
lazier symbolic execution intra-procedurely.
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Definition of γb

Let us first introduce a definition: The set of all symbolic reference environments

Ξ = {G | G : SymRefs→ (SymLocs ∪ {}) } . (C.2)

Then we define a function: legal-env : Σb → P(Ξ) as

legal-env(σb) = {G ∈ Ξ | G(collect-sym-refs(σb)) ∩ collect-sym-locs(σb) = ∅∧
∀δ̂1 ! δ̂2 ∈ collect-sym-refs(σb).G(δ̂1) = G(δ̂2) =⇒ G(δ̂1) = },

where collect-sym-refs collects all the symbolic references in a state.
And ST b : Σb × Ξ→ Σa as

ST b!σb"(G) = (sub-fun(g,G), pc, sub-fun(l,G), sub-seq(ω,G), sub-fun2(h,G), φ),

with binding σb = (g, pc, l,ω, h, φ).
The definition of γb : Σb → P(Σa) is

γb(σb) =
⋃

∀G∈legal-env(σb)

ST b!σb"(G).

Properties of γb

Lemma 5. Letσb ∈ Σb and G ∈ legal-env(σb). Supposeσa = ST b!σb"(G) andσa = (ga, pc, la,ωa, ha, φa).
For any (δ̂, v) ∈ G, if σ′b = init-sym-ref(σb, δ̂, v), then (ga, pc′, la,ωa, ha, φa) = ST b!σ′b"(G).

Proof. Supposeσb = (gb, pc, lb,ωb, hb, φ). By the definition of init-sym-ref,σ′b = (sub-fun1(gb, δ̂, v), pc′,
sub-fun1(lb, δ̂, v), sub-seq1(ωb, δ̂, v), sub-fun21(hb, δ̂, v), φ). Since σa = ST b!σb"(G), we have ga =

sub-fun(sub-fun1(gb, δ̂, v),G), la = sub-fun(sub-fun1(lb, δ̂, v),G),ωa = sub-seq(sub-seq1(ωb, δ̂, v),G),
and ha = sub-fun2(sub-fun21(hb, δ̂, v)),G), by Lemma 1. We conclude that (ga, pc′, la,ωa, ha, φa) ∈
ST b!σ′b"(G) holds. #

Lemma 6. Let σb = (gb, pc, lb,ωb, φ) ∈ Σb and G ∈ legal-env(σb). For any (δ̂, v) ∈ G, if
σ′b = init-sym-ref(σb, δ̂, v) and (ga, pc′, la,ωa, ha, φ) = ST b!σ′b"(G), then (ga, pc, la,ωa, ha, φ) =
ST b!σb"(G).

Proof. Proof is similar to Lemma 5. #

Improved Lazier Kripke Structure

For any given method m, we have a set of global variables Globals and local variables Locals
(ordered from 0..n). We use Kripke structure B = (ΣB, IB,−→B, LB) to model the state-space from
the lazier# initialization symbolic executions. The components are defined as follows:

• states, ΣB = Σb ∪ (E × Σb) ∪ (E × Σb).
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• initial states,

IB = { (gb, pcinit, lb, nil, hb, {T}) | dom(gb) = Globals ∧ dom(lb) = Locals } ,

and each local and global is initialized as follows: if it is primitive type, a primitive symbol
is created; otherwise, it is initialized as a fresh symbolic reference. Furthermore, hb is the
empty heap.

• transition relation, b −→B b′ ⇐⇒ b ⇒B b2, b2 ⇒B b3, . . . , bn ⇒B b′ for some n ∈ N
with program counters of b, b2, . . . , bn are the same and the program counter of b and b′ are
different and the path condition of b′ is satisfiable.

• labels, we do not use this part and thus it is ignored.

Similar to γa, function γb is trivially extended to γ∗b : ΣB → P(ΣA) as

γ∗b(b) =




γb(σb), if b = σb for some σb ∈ Σb;
{ (E,σa) | σa ∈ γb(σb) } , if b = (E,σb) for some σb ∈ Σb;
{ (E,σa) | σa ∈ γb(σb) } , if b = (E,σb) for some σb ∈ Σb.

Simulation Relations

We introduce a relation R′′ between lazier# symbolic states ΣB and ΣA as follows:

Definition 6. σa R′′ σb ⇐⇒ σa ∈ γ∗b(σb).

Clearly, for all a0 ∈ IA, there exists a b0 ∈ IB such that a0 R′′ b0.

Proposition 9. A "R′′ B.

Proof. It is sufficient to show that for all σa,σ′a ∈ ΣA,σb ∈ ΣB if σa −→A σ′a and σa R′′ σb then
there exists σ′b ∈ ΣB such that σb −→B σ′b and σ′a R′′ σ′b. We will proceed with the rule induction
on −→A.

• Rule if acmpeq: Suppose, WLOG, σa = (ga, pc, la, δτ :: δ′τ′ ::ωa, ha, φ′). Then by the defi-
nition of −→A, the rule consists of three lazier symbolic transitions rules: IF ACMPEQ3-A,
IF ACMPEQ2-A, and IF ACMPEQ1-S or IF ACMPEQ2-S. After taking IF ACMPEQ3-A rule,
we get an invisible state t1 = (g′a, pc, l′a, i :: δ′τ′ :: ω′a, h′a, φ′′) for some i ∈ Locs and t1 ∈
init-sym-loc(σa, δ, i). Then after taking IF ACMPEQ2-A rule, we get another invisible state
t2 = (g′′a , pc, l′′a , i :: j ::ω′′a , h′′a , φ′′′) for some j ∈ Locs and t2 ∈ init-sym-loc(t2, δ′, j). WLOG,
suppose i ! j (the i = j case is symmetric). Finally, we take IF ACMPEQ1-S rule and
get σ′a = (g′′a , next(pc), l′′a ,ω′′a , h′′a , φ′′′). Suppose σa R′′ σb. We need to show that there
exists any σ′b ∈ ΣB such that σb −→B σ′b. WLOG, suppose that σb = (gb, pc, lb, δ̂ :: δ′ ::
ωb, hb, φ). Since σa R′′ σb, there exists G ∈ legal-env(σb) such that σa = ST b!σb"(G).
Clearly G(δ̂) = δ. We take rule IF ACMEQ3-B and get a state t′0 = init-sym-ref(σb, δ̂, δ)
with stack δ :: δ′ :: sub-seq(ωb, δ̂, δ). By Lemma 5, we get σa R′′ t′0. Then we take
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IF ACMPEQ3-A, IF ACMPEQ2-A, and IF ACMPEQ1-S. We get t′1 = init-sym-loc(t′0, δ, i) af-
ter rule IF ACMPEQ3-A, t′2 = init-sym-loc(t′1, δ

′, j) after rule IF ACMPEQ2-A, and σ′b after
IF ACMPEQ1-S. Since all the rules do not involve any symbolic references, it clearly that
t1 R′′ t′1, and t2 R′′ t′2, and finally σ′a R′′ σ′b.

• Rule getfield fτ: Suppose, WLOG, τ ∈ Typesnon−prim and σa = (ga, pc, la, i :: ωa, ha, φ)
and Ym,n = ha(i) and Y( f ) ↑. Assume that rule GETFIELD2-A is taken. We get σ′a =
(ga, next(pc), la, δ

m−1,k
τ ::ωa, ha[i 8→ Ym,n[ fτ 8→ δm−1,k

τ ]], φ) where δ is fresh. Supposeσa R′′ σb

and σa = ST b!σb"(G) for some G ∈ legal-env(σb). WLOG, assume σb = (gb, pc, lb, i ::
ωb, hb, φ). Clearly we have Xm,n = hb(i) for some X and X( f ) ↑. After rule GETFIELD2-B,
we get σ′b = (gb, next(pc), lb, δ̂

m−1,k
τ ::ω′, hb[i 8→ Ym,n[ fτ 8→ δ̂m−1,k

τ ]], φ) and δ̂ is fresh in σb. It
is easy to see that G[δ̂ 8→ δ] ∈ legal-env(σ′b). Thus we have σ′a = ST b!σ′a"(G[δ̂ 8→ δ]), that
is, σ′a R′′ σ′b.

#

Next we define a relation.

Definition 7. R′′• ⊆ ΣB × P(ΣA), as follows:

σb R′′• S a ⇐⇒ γ∗b(σb) = S a

Clearly, R′′• is left total. Since R′′ is right total, then for all σb, if σb R′′• S a, then S a ! ∅.
Furthermore, for any σb ∈ IB and σb R′′• S a, it is clear that S a ⊆ IA by the definition of γb

function.

Proposition 10. B "R′′• P(A).

Proof. It is sufficient to show that for all σb ∈ ΣB, S a ∈ P(ΣA) if σb −→B σ′b and σb R′′• S a and
σ′b R′• S ′a then S a

•−→A S ′a.
We will prove by rule induction on transitions, −→B.

• Rule if acmpeq: Suppose, WLOG, σb = (gb, pc, lb, δ̂1 :: δ̂2 :: ωb, hb, φ). Then by the def-
inition of −→B, the rule consists of five transitions rules: IF ACMPEQ3-B, IF ACMEQ2-B,
IF ACMPEQ3-A, IF ACMPEQ2-A, and IF ACMPEQ1-S or IF ACMPEQ2-S. After taking IF ACMPEQ3-B
rule, we get an invisible state t1 = init-sym-ref(σb, δ̂1, δ1) and then IF ACMPEQ2-B rule,
we get t2 = init-sym-ref(t1, δ̂2, δ2). Then by IF ACMPEQ3-A rule, we get to t3 and by
IF ACMEQ2-A rule, we arrive at t4 where δ1 and δ2 are fresh. WLOG, suppose we take
IF ACMPEQ1-S rule and getσ′b = (sub-fun1(sub-fun1(gb, δ̂1, δ1), δ̂2, δ2), next(pc), sub-fun1(sub-fun1(lb, δ̂1, δ1), δ̂2, δ2)
, sub-seq1(sub-seq1(ωb, δ̂1, δ1), δ̂2, δ2),
sub-fun21(sub-fun21(hb, δ̂1, δ1), δ̂2, δ2), φ′). Suppose σb R′• S a and σ′b R′• S ′a. We need
to show that S a

•−→S S ′a, that is, for any σ′a ∈ S ′a, there exists some σa ∈ S a such that
σa −→A σ′a. Suppose σ′a ∈ S ′a, that is, σ′a ∈ γb(σ′b). Then σ′a must be in the form
of (g′a, next(pc), l′a,ω′a, h′a, φ) for some G and σ′a ∈ ST b!σ′b"(G). Define G′ = G[δ̂1 8→
δ1][δ̂2 8→ δ2]. Clearly G′ ∈ legal-env(σb). Define σa = ST b!σb"(G′). We need to show
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that σa −→A σ′a. After applying Lemma 5 twice, we get σa = ST b!t2"(G′). Since σa only
differs from t2 by some symbolic references which are not operands of the instruction, σa

can takes exactly the same rules and get to σ′a. We conclude that σa −→A σ′a.

• Rule getfield fτ: Suppose, WLOG, σb = (gb, pc, lb, δ̂τ′ ::ωb, hb, φ′) and τ ∈ Typesrecord.
By the definition of−→B, the transition multiple lazier# rules. The first one is GETFIELD1-B.
WLOG, assume that the invisible state after GETFIELD1-B is t1 = (sub-fun1(gb, δ̂, δ), pc,
sub-fun1(lb, δ̂, δ), sub-seq1(ωb, δ̂, δ), sub-fun21(hb, δ̂, δ), φ) for some fresh δ. Then rule GETFIELD1-A
is taken and get an invisible state t2 = (g2, pc, l2,ω2, h2, φ2) = init-sym-loc(t, δ, i) for some
i ∈ Locs. WLOG, assume that f field is undefined in h2(i). We take the GETFIELD2-B rule
and get σ′b = (g2, next(pc), l2, δ̂′τ ::ω2, h2[i 8→ h2(i)[ fτ 8→ δ̂′]], φ2), where δ̂′ is fresh in t2.

Suppose σb R′′• S a and σ′b R′′• S ′a. We need to show that S a
•−→A S ′a, that is, for any

σ′a ∈ S ′a, there exists some σa ∈ S a such that σa −→A σ′a. Suppose σ′a ∈ S ′a, that is,
σ′a ∈ γb(σ′b). Then σ′a must be in the form of (g′a, next(pc), l′a, δ′ ::ω′a, h′a, φ) for some G such
that G(δ̂′) = δ′ and σ′a ∈ ST b!σ′b"(G). Define G′ = G[δ̂ 8→ δ]. Clearly G′ ∈ legal-env(σb).
Let σa = ST b!σb"(G′). Using Lemma 5, we get σa = ST b!t1"(G′). Since t1 only has more
symbolic references than σa, rule GETFIELD1-A is applicable and get s′2. Since δ̂′ is fresh
in t2 and G(δ̂′) = δ′, δ′ is fresh in s′2. Therefore, we can apply GETFIELD2-A and get σ′a.
We conclude that σa −→A σ′a.

#

Soundness and Completeness

Proposition 11 (Soundness). Given any lazier symbolic trace a1 −→A a2 −→A · · · −→A an with
a1 ∈ IA, there is a corresponding lazier# symbolic trace b1 −→B b2 −→B · · · −→B bn with b1 ∈ IB
such that ak R′′ bk for all 1 ≤ k ≤ n.

Proof. We proceed by mathematical induction on n using Proposition 9. #

Proposition 12 (Completeness). Given any lazier# symbolic trace b1 −→B b2 −→B · · · −→B bn

with b1 ∈ IB, there is a corresponding symbolic trace a1 −→A a2 −→A · · · −→A an such that
ak R′′ bk for all 1 ≤ k ≤ n and a1 ∈ IA.

Proof. It is easy to show that there exists a trace in P(A), S 1
•−→A S 2

•−→A · · ·
•−→A S n such that

bk R′′• S k for all 1 ≤ k ≤ n by mathematical induction on n using Proposition 10. Since S n ! ∅,
we can pick a an ∈ S n and use the definition of

•−→A, then get the corresponding lazier symbolic
trace a1 −→A a2 −→A · · · −→A an. #
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Appendix D

Kripke Structures

D.1 Simulation on Kripke Structures
The presentation in this section is adapted from [6], and it is provided here for a quick reference.

Definition 8 (Kripke Structure). A Kripke structure is a triple,K = (ΣK , IK ,−→K , LK ), where ΣK
is a set of states, IK is a set of initial states that IK ⊆ ΣK , −→K⊆ ΣK ×ΣK is the transition relation
(finite image), and LK : ΣK → P(Atom) associates a set of atomic properties, ∀s ∈ ΣK .LK (s) ⊆
Atom.

Definition 9 (Simulation Relation on Kripke Structures). For Kripke structures C = (ΣC, IC,−→C
, LC) and S = (ΣS, IS,−→S, LS), a binary relation, R ⊆ ΣC × ΣS, is a simulation of C by S,
written C !R S, if ∀c ∈ ΣC, s ∈ ΣS.c R s ∧ c −→ c′ =⇒ ∃s′ ∈ ΣS.s −→ s′ ∧ c′ R s′ and
∀c0 ∈ IC.∃s0 ∈ IS.c0 R s0.

Definition 10 (Left-/Right-total Simulation Relations). A binary relation, R ⊆ S × T, is left total
if ∀s ∈ S .∃t ∈ T.s R t. The relation is right total if ∀t ∈ T.∃s ∈ S .s R t.

Definition 11 (Power Kripke Structure). For a Kripke structure, K = (ΣK , IK ,−→K , LK ), the
power kripke structure P(K) = (P(ΣK ),P(IK ),

•−→K , LP(K)), where ∀S , S ′ ⊆ ΣK .S
•−→K S ′ if

and only if for every s′ ∈ S ′, there exists some s ∈ S such that s −→K s′ and LP(K)(S ) =
∩ { LK (s) | s ∈ S }.
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