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= To understand the goals and basic
approach to specifying sequencing
properties

= To understand the different classes of
sequencing properties and the algorithmic
techniques that can be used to check
them




= What is a sequencing specification?
= What kinds of sequencing specifications
are commonly used?
= Safety properties
= Liveness properties
= In depth on safety properties
= How to specify them
= Examples
= How to check them

-Sequencing Specification?

= We've seen specifications that are about
individual program states

= €.g., assertions, invariants

= Sometimes we want to reason about the
relationship between multiple states
= Must one state always precede another?
= Does seeing one state preclude the possibility

of subsequently seeing another?

= We need to shift our thinking from states

to paths in the state space
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Recall that the system’s executions can be viewed
as a tree. We want to determine the set of paths in
that tree that match a given pattern.
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Consider the pattern:
a l.* is followed by a *.1
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Here are all the states that immediately
follow a 1.*
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Here are all the states that immediately

follow a *.1
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Here are both 1.* and *.1 successor
states (with black indicating both)
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Do all paths conform to the pattern:
a 1.* is followed by a *.1
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Some paths obviously match the pattern
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For others it is more interesting
can the 1.* follow a *.1?
what if the 1.* and *.1 coincide?
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For still others we can’t tell yet
will we ever see a 1.*%?
if not, then does the property hold?
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For still others we can’t tell yet
will we ever see a subsequent *.1?
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= A language for describing sequencing
patterns
= There are many such languages with
different strengths and weaknesses
= An algorithm for exhaustively considering
whether all paths match the pattern

= Currently we've only seen the exhaustive
consideration of individual states

-distinction N..

= Safety properties
= “"nothing bad ever happens”
= are violated by a finite path prefix that ends in a bad
thing
= are fundamentally about the //sfory of a computation
up to a point
= Liveness properties
= “something good eventually happens”

= are violated by /nfinite path suffixes on which the
good thing never happens

= are fundamentally about the /w/ure of a computation
from a point onward




= A use of a variable must be preceded by a
definition

= When a file is opened it must subsequently be
closed

= You cannot shift from drive to reverse without
passing through neutral

= No pair of adjacent dining philosophers can be
eating at the same time

= The program will eventually terminate
= The program is free of deadlock

= A use of a variable must be preceded by a
definition -- Safety

= When a file is opened it must subsequently be
closed -- Liveness

= You cannot shift from drive to reverse without
passing through neutral -- Safety

= No pair of adjacent dining philosophers can be
eating at the same time -- Safety

= The program will eventually terminate -- Liveness
= The program is free of deadlock -- Safety




= Think of three more properties
=« Classify them as safety or liveness

= How many observations are being made in the
properties

= Try to think of at least one positive property
= i.e., saying what the system can do

= ... and one negative property
= i.e., saying what the system cannot do

= Is an invariant a safety or liveness property?

-g Safety Properties

= Let’s simplify things to start with ...

= We can observe the location of a BIR-lite
thread, e.g.,

thread MAIN() {
loc open: live {}
do { .. } goto run;
loc run: live {}

= Name observables as a pair
= €.J, MAIN:open, MAIN:run

= Such an observable is true when the named
thread enters the named location
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-pressions

= Regular expressions can be used to
specify safety properties
= Symbols are observables — MAIN:open

= Basic Operators
= Concatenation— e ; e
« Disjunction— e | e
« Closure — e*
= Grouping — (e)

-pressions

= Some Useful Derived Operators
=« Option — e?
« Positive closure — e+
=« Finite closure — e~k
=« Any symbol — .
= Symbol sets — [e, £, ..]
= Symbol exclusion - [- e, £, ..]
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thread MAIN() {
loc open: live {} do {
// open
} goto run;

loc run: live {} do {
// run, call close
} goto close;
loc close: live {} do {
// close
} goto open;

» Opens and closes happen in matching pairs

= Positive specification
(MAIN:open; MAIN:close)*

= Negative specification (i.e., violation)
MAIN:close; .* |
.*, Main:open; Main:open; .* |

.*; Main:close; Main:close;
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system TwoDiningPhilosophers ({
boolean forkl;
boolean fork2;
thread Philosopherl () {
loc pickupl: live {} when !forkl

do { forkl := true; } goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;

loc eating: live {} do {} goto drop2;
loc drop2: live {}
do { fork2 := false; } goto dropl;
loc dropl: live {}
do { forkl := false; } goto pickupl;
}
thread Philosopher2() {..}

» Whenever philosopher 1 is eating,
philosopher 2 cannot eat, until philosopher
1 drops his first fork
= Positive specification
[- Pl:eating]¥*;
(Pl:eating; [- P2:eating]*; Pl:dropl)*
= Negative specification (i.e., violation)
.*;, Pl:eating; [- Pl:dropl]; P2.eating; .*
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= Make up an alphabet and specify the
following properties as regular expressions
= A use of a variable must be preceded by a
definition
= You cannot shift from drive to reverse without
passing through neutral

= Give positive and negative formulations

- Safety Properties

= Think of it as a language problem

= Program generates a language of strings over
observables (each path generates a string) — L(P)

= Property generates a (regular) language — L(S)
= Test the languages against each other
« Language containment — L(P) € L(S)
= Non-empty language intersection -- L(P) N L(S) % 0

= Interchangeable due to complementation of finite-
state automata
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- Safety Properties

= Two basic approaches

= Both require a deterministic finite-state
automaton for the violation of the property

= Easy to get via complementation and
standard RE->DFA algorithms

= Instrument the program with property

= Check reachability in the product of the
program and property

= Assertions instrument the program
= They are inserted at specific points
= They perform tests of program state

= They render an immediate verdict that is
determined completely locally

= The same approach can be applied for
safety properties
= Instrumentation determines a partial verdict

=« Need a mechanism for communicating between
different parts of the instrumentation

15



boolean forkl, fork2;
thread Philosopherl () {
loc pickupl: live {} when !forkl

do { forkl := true; } goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;

loc eating: live {} do {} goto drop2;
loc drop2: live {}

do { fork2 := false; } goto dropl;
loc dropl: live {}

do { forkl := false; } goto pickupl;

Consider the property:
a philosopher must pickup a fork before dropping it
e.g., [-Pl.pickupl]*; Pl:dropl; .*

boolean forkl, fork2;
thread Philosopherl () ({
loc pickupl: live {} when !forkl

do {
// record that a pickup of 1 happened
forkl := true;

} goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;
loc eating: live {} do {} goto drop2;
loc drop2: live {}
do { fork2 := false; } goto dropl;
loc dropl: live {}
do {
// check that a pickup of 1 happened
forkl := false;
} goto pickupl;
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boolean forkl, fork2, sawpickup;
thread Philosopherl () {
loc pickupl: live {} when !forkl
do {
sawpickup := true;
forkl := true;
} goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;
loc eating: live {} do {} goto drop2;
loc drop2: live {}
do { fork2 := false; } goto dropl;
loc dropl: live {}

do { _ Does this capture the
assert (sawpickup) ;
forkl := false; correctness property?

} goto pickupl;

-ation Approach

= Works well when you only want to check
conditions at specific points

= What if you want to exclude some action

from a region of program execution?
[- Pl:eating]*;
(Pl:eating; [—- P2:eating]*; Pl:dropl)*

= Need to use invariants
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boolean forkl, fork2, pleating;
thread Philosopherl () {
loc pickupl: live {} when !forkl

do { forkl := true; } goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;
loc eating: live {}
do {
pleating := tr1e-

} goto drop2; Same instrumentation for Philosopher2
loc drop2: live { . .
do { fork2 := £ Check invariant:
loc dropl: live . .
do { P ¢ pleating -> !p2eating
forkl := false;
pleating := false;
} goto pickupl;

ation Approach

= No change to the checking algorithm!

= Safety checking has been compiled to assertion
checking

= Additional property state variables increase cost
= Instrumenting programs is

= Laborious — must identify all points that are related to
the property (may .

= Error prone — lack AUtomate 1t' ' change
(false error), lack of iInstrumentation at a state check
(missed error)

= Property specific — must be done for each property
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= Pick your favorite BIR-lite program
= Develop two safety properties for it

= Instrument the program with those
properties

= Check them with Bogor

It ey

= Next time
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