CIS 842:
Specification and Verification
of Reactive Systems

Lecture Specifications:
Sequencing Properties

Copyright 2001-2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are copyrighted
materials and may not be used in other course settings outside of Kansas State University in their current form or modified
form without the express written permission of one of the copyright holders. During this course, students are prohibited
from selling notes to or being paid for taking notes by any person or commercial firm without the express written
permission of one of the copyright holders.

= To understand the goals and basic
approach to specifying sequencing
properties

= To understand the different classes of
sequencing properties and the algorithmic
techniques that can be used to check
them

= What is a sequencing specification?
= What kinds of sequencing specifications
are commonly used?
= Safety properties
= Liveness properties
= In depth on safety properties
= How to specify them
= Examples
= How to check them

-Sequencing Specification?

= We've seen specifications that are about
individual program states

= €.g., assertions, invariants

= Sometimes we want to reason about the
relationship between multiple states
= Must one state always precede another?
= Does seeing one state preclude the possibility

of subsequently seeing another?

= We need to shift our thinking from states

to paths in the state space

)

Recall that the system’s executions can be viewed
as a tree. We want to determine the set of paths in
that tree that match a given pattern.

[]
0.0)
o e 29
° 19) o
w20 o1) ® a9 o) g o2
1.1
[] [] [] ._J [] [] [] []

11 20/ 14 21/ 1) 29 _J_J_J_J_J_J_J_J_J_J_J _J _J
oooooooooooooooooooo

)

Consider the pattern:
a l.* is followed by a *.1

[]
00)
o e 29
° 10) o
w0 o) * g o) 1o 2y
1.1
[] e 0 ._J. e o0 []

14) 20] 1y 2414 20) 0y © 20] oy 24 10] 2404 24 0y 20
d9) Ly Ly F)
¢ & 0 0 0 0 & 0 0 0 0 6 06 00 0 0 0 o o

Here are all the states that immediately
follow a 1.*

[) ®
w2 a0 o w0
1.1
® o o o o e O o
1) 20 1) 211 20 o1 20 oi 24 10 zajoa) 21 o3 20
1.0) 11 11 10]

Here are all the states that immediately

follow a *.1
®
00)
o) e 29
[10) °
w0 o) * g o 19 24
1.1
. ¢ o o ® o ®

1 20 1 21 200 oy 20 b4 2y 10 2901 24 o4 20
19) 14] 1]
®° 000 °*0 ¢ 00000000

)

Here are both 1.* and *.1 successor
states (with black indicating both)

[]
0.
o e 20
PY 10 o
w2 a0 o 19 24
1.1
® + o o o o o °

1 20) 211 20 oy 20 oy 24 10 2oy 21 o 20

19) 1] 11 10)
®°000°%g 0 0g0gpr0000°

)

Do all paths conform to the pattern:
a 1.* is followed by a *.1

®
0.0)
o e 29
° 19) ®
10 20) 04 _J.w o 10 29
1.1
® ¢« O o o o ®
1) 200 1 2424 200 04 20 o4 24 10 2yo4 24) 04 20
19) 1) 14] 19)
® 000 °*%g 0 0g0ggpcr0000°

)

Some paths obviously match the pattern

[]
Py
ol i @ 20)
) P i) o
19) 20) 04 _?QJ o 9 21
1.1},
® « O o o o ®

G2 W e W &Y e i W a wl

1) S L) L1] 10
®°0 00 %¢g 00glgoero9o000:

)

For others it is more interesting
can the 1.* follow a *.1?
what if the 1.* and *.1 coincide?

e

anst® w

o e 29

°® 10))

RO T 20) 04 _J.w o 10 29
o 1.1
P s O [) o o ®
fo) 200 o 2914 20 o 200 oy 24 10 2404 24 o4 20
: 19 14] L] 19)
‘'@ 200009 ¢« 0g0gp9r 0000

)

For still others we can’t tell yet
will we ever see a 1.*%?
if not, then does the property hold?

-0
.... 00)
""""""" o) e 29
.o.o"‘ .HJ L
10) 20) 04 20 o 9 21
N 1.1
e o o o o ®

1 20 i 2914 20 oy 20 o 2y 10 zijoi 2y o1 29

; 19) 1] 11 10)
®°0 0 0% 0 0glgopero9o000°

)

For still others we can’t tell yet
will we ever see a subsequent *.1?

Lo
............. 00)
""""""""""" 0. [] 20
o 1) o
W a2 o iy a1
3 1.1
o ¢ o °* o o o
1) 20) 1) 291 200 04} 200 b4) 21 10 2a)04) 24 o4 29
: 19) 14] 11] 10)
000 °%9 00909090000

= A language for describing sequencing
patterns
= There are many such languages with
different strengths and weaknesses
= An algorithm for exhaustively considering
whether all paths match the pattern

= Currently we've only seen the exhaustive
consideration of individual states

-distinction N..

= Safety properties
= “"nothing bad ever happens”
= are violated by a finite path prefix that ends in a bad
thing
= are fundamentally about the //sfory of a computation
up to a point
= Liveness properties
= “something good eventually happens”

= are violated by /nfinite path suffixes on which the
good thing never happens

= are fundamentally about the /w/ure of a computation
from a point onward

= A use of a variable must be preceded by a
definition

= When a file is opened it must subsequently be
closed

= You cannot shift from drive to reverse without
passing through neutral

= No pair of adjacent dining philosophers can be
eating at the same time

= The program will eventually terminate
= The program is free of deadlock

= A use of a variable must be preceded by a
definition -- Safety

= When a file is opened it must subsequently be
closed -- Liveness

= You cannot shift from drive to reverse without
passing through neutral -- Safety

= No pair of adjacent dining philosophers can be
eating at the same time -- Safety

= The program will eventually terminate -- Liveness
= The program is free of deadlock -- Safety

= Think of three more properties
=« Classify them as safety or liveness

= How many observations are being made in the
properties

= Try to think of at least one positive property
= i.e., saying what the system can do

= ... and one negative property
= i.e., saying what the system cannot do

= Is an invariant a safety or liveness property?

-g Safety Properties

= Let’s simplify things to start with ...

= We can observe the location of a BIR-lite
thread, e.g.,

thread MAIN() {
loc open: live {}
do { .. } goto run;
loc run: live {}

= Name observables as a pair
= €.J, MAIN:open, MAIN:run

= Such an observable is true when the named
thread enters the named location

10

-pressions

= Regular expressions can be used to
specify safety properties
= Symbols are observables — MAIN:open

= Basic Operators
= Concatenation— e ; e
« Disjunction— e | e
« Closure — e*
= Grouping — (e)

-pressions

= Some Useful Derived Operators
=« Option — e?
« Positive closure — e+
=« Finite closure — e~k
=« Any symbol — .
= Symbol sets — [e, £, ..]
= Symbol exclusion - [- e, £, ..]

11

thread MAIN() {
loc open: live {} do {
// open
} goto run;

loc run: live {} do {
// run, call close
} goto close;
loc close: live {} do {
// close
} goto open;

» Opens and closes happen in matching pairs

= Positive specification
(MAIN:open; MAIN:close)*

= Negative specification (i.e., violation)
MAIN:close; .* |
.*, Main:open; Main:open; .* |

.*; Main:close; Main:close;

12

system TwoDiningPhilosophers ({
boolean forkl;
boolean fork2;
thread Philosopherl () {
loc pickupl: live {} when !forkl

do { forkl := true; } goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;

loc eating: live {} do {} goto drop2;
loc drop2: live {}
do { fork2 := false; } goto dropl;
loc dropl: live {}
do { forkl := false; } goto pickupl;
}
thread Philosopher2() {..}

» Whenever philosopher 1 is eating,
philosopher 2 cannot eat, until philosopher
1 drops his first fork
= Positive specification
[- Pl:eating]¥*;
(Pl:eating; [- P2:eating]*; Pl:dropl)*
= Negative specification (i.e., violation)
.*;, Pl:eating; [- Pl:dropl]; P2.eating; .*

13

= Make up an alphabet and specify the
following properties as regular expressions
= A use of a variable must be preceded by a
definition
= You cannot shift from drive to reverse without
passing through neutral

= Give positive and negative formulations

- Safety Properties

= Think of it as a language problem

= Program generates a language of strings over
observables (each path generates a string) — L(P)

= Property generates a (regular) language — L(S)
= Test the languages against each other
« Language containment — L(P) € L(S)
= Non-empty language intersection -- L(P) N L(S) % 0

= Interchangeable due to complementation of finite-
state automata

14

- Safety Properties

= Two basic approaches

= Both require a deterministic finite-state
automaton for the violation of the property

= Easy to get via complementation and
standard RE->DFA algorithms

= Instrument the program with property

= Check reachability in the product of the
program and property

= Assertions instrument the program
= They are inserted at specific points
= They perform tests of program state

= They render an immediate verdict that is
determined completely locally

= The same approach can be applied for
safety properties
= Instrumentation determines a partial verdict

=« Need a mechanism for communicating between
different parts of the instrumentation

15

boolean forkl, fork2;
thread Philosopherl () {
loc pickupl: live {} when !forkl

do { forkl := true; } goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;

loc eating: live {} do {} goto drop2;
loc drop2: live {}

do { fork2 := false; } goto dropl;
loc dropl: live {}

do { forkl := false; } goto pickupl;

Consider the property:
a philosopher must pickup a fork before dropping it
e.g., [-Pl.pickupl]*; Pl:dropl; .*

boolean forkl, fork2;
thread Philosopherl () ({
loc pickupl: live {} when !forkl

do {
// record that a pickup of 1 happened
forkl := true;

} goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;
loc eating: live {} do {} goto drop2;
loc drop2: live {}
do { fork2 := false; } goto dropl;
loc dropl: live {}
do {
// check that a pickup of 1 happened
forkl := false;
} goto pickupl;

16

boolean forkl, fork2, sawpickup;
thread Philosopherl () {
loc pickupl: live {} when !forkl
do {
sawpickup := true;
forkl := true;
} goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;
loc eating: live {} do {} goto drop2;
loc drop2: live {}
do { fork2 := false; } goto dropl;
loc dropl: live {}

do { _ Does this capture the
assert (sawpickup) ;
forkl := false; correctness property?

} goto pickupl;

-ation Approach

= Works well when you only want to check
conditions at specific points

= What if you want to exclude some action

from a region of program execution?
[- Pl:eating]*;
(Pl:eating; [—- P2:eating]*; Pl:dropl)*

= Need to use invariants

17

boolean forkl, fork2, pleating;
thread Philosopherl () {
loc pickupl: live {} when !forkl

do { forkl := true; } goto pickup2;
loc pickup2: live {} when !fork2
do { fork2 := true; } goto eating;
loc eating: live {}
do {
pleating := tr1e-

} goto drop2; Same instrumentation for Philosopher2
loc drop2: live { . .
do { fork2 := £ Check invariant:
loc dropl: live . .
do { P ¢ pleating -> !p2eating
forkl := false;
pleating := false;
} goto pickupl;

ation Approach

= No change to the checking algorithm!

= Safety checking has been compiled to assertion
checking

= Additional property state variables increase cost
= Instrumenting programs is

= Laborious — must identify all points that are related to
the property (may .

= Error prone — lack AUtomate 1t' ' change
(false error), lack of iInstrumentation at a state check
(missed error)

= Property specific — must be done for each property

18

e vou o

= Pick your favorite BIR-lite program
= Develop two safety properties for it

= Instrument the program with those
properties

= Check them with Bogor

It ey

= Next time

19

