CIS 842:
Specification and Verification

of Reactive Systems

Lecture Specifications:
Progress Properties

Copyright 2001-2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are copyrighted
materials and may not be used in other course settings outside of Kansas State University in their current form or modified
form without the express written permission of one of the copyright holders. During this course, students are prohibited
from selling notes to or being paid for taking notes by any person or commercial firm without the express written
permission of one of the copyright holders.

= To understand the essential difference
between safety and liveness properties

= To understand the algorithm used to
check for progress properties




= It is clear from looking at nearly all of our
examples that systems can cycle
indefinitely
= €.g., dining philosophers

= This is a characteristic of reactive systems

= We will want to be able to characterize
the fact that we expect the system to
eventually perform some action

Sy properic

Are fundamentally about not reaching
certain undesirable states

Progress ...

= Intuitively means that the system eventually
will do something

=« From every state we should be able to make
progress




-Progress

= A simple way to designate progress is to
name labels of actions that should
eventually be performed

= For example
= {Philosopherl.eating, Philosopher2.eating}

= Property states

= From all states in the system, eventually a
(all) progress labeled action (s) will be
executed

i




= A cyclic behavior on which no progress
label occurs o

-or Progress

= Reachability works well for predecessors
of progress actions

= Cycle detection works well for successors
of progress actions

= Need to combine both checks in a single
algorithm




Algorithm

1 seen := {sp}
2 pushStack(sg)
3 DFS(sq)

DFS(s)

4 workSet(s) := enabled(s)

5 while workSet(s) is not empty

6 let a € workSet(s)

7 workSet(s) := workSet(s) \ {a}
8 s’ = als)

9 if s’ & seen then

10 seen := seen U {s'}
11 pushStack(s")

12 DFS(s")

13 popStack()

end DFS

Algorithm

1 seen := {sg}
2 pushStack(sg)
3 DFS(so)

Deleted stack maintaining
DFS(s) statements for brevity
4 workSet(s) := enabled(s)
5 while workSet(s) is not empty
6 let a € workSet(s)
7 workSet(s) := workSet(s) \ {a}
8 s’ = a(s)
9 if s’ & seen then

10 seen := seen U {s'}

12 DFS(s")

13.1 if a is not progress then
13.2 NDFS(s,s")

end DFS




I prs Avzoritm

NDFS(s, seed) milar to DFS (with
14 workSet2(s) := enabled(s)

15 while workSet2(s) is not empty

parate data structures)

16 let o € workSet2(s)

17 if o is progress

18 return

19 workSet2(s) := workSet2(s) \ {a}
20 s' == a(s)

21 if s =seed then

22 Non-progress cycle detected
23 if s’ ¢ seen’ then

24 seen' := seen’ U {s'}

25 NDFS(s',seed)

end DFS

e vou o o

= Take the dining philosophers example,
with eating progress labels and apply the
nested DFS algorithm to it

= Do you find an error?




