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= To understand Buchi automata and the
relationship to LTL

= To understand how Buchi acceptance
search enables a general LTL model
checking algorithm




For safety properties we automated the
“instrumentation” of checking for
acceptance of a regular expression for a
violation

This involved modifying the DFS algorithm to

« Calculate states of the property automaton
= Check to see whether an accept state is
reached

We will apply the same basic strategy for LTL

IR voder checkin

From the semantics

=« An LTL formula defines a set of (accepting)
traces

We can
= Check for trace containment

Property

C




IR el chectin

From the semantics

= An LTL formula defines a set of (accepting)
traces

We can
» Check for non-empty language intersection

Negation of Property

I Bpiness chect

LTL is closed under complement

L(¢) = L(—9)
where the language of a formula defines a
set of /nfinite traces

A Buchi automaton accepts a set of infinite
traces




A Buchi automaton is a quadruple (S, I, 6, F')
S is a set of states
I C Sis a set of initial states
6 1 S — P(S) is a transition relation
F is a set of accepting states

Automaton states are labeled with atomic
propositions of the formula

A:S — P(A)

- Buchi Automaton

S = {s0,51,52}

I = {so}

6 = {(s0,{s0,51}), (s1,{s2}), (52, {s2})}
F={so}

A = {(s0, {cruise}, (s1, {off}), (s2,{})}




An infinite trace
O = 8081 ---

is accepted by a Buchi automaton iff
sg €1
Vi>0 ' 8i+1 € 6(s;)
Vizoajzz' . 85 € F

Assume each system state (S) is labeled (A)
with the complete set of literals (A)
= either a literal or its negation is present

A Buchi automaton accepts a system trace

> = SgSq ... iff

Jsoer - N(Sg) satisfies A(sq)

Vizo : 331’—}—165(51') . /\(Si—l—l) satisfies A(Si—l—l)
ViZO : 3]’21’ L8 e F




- Buchi Automaton

o = Ccruise cruise off off accel accel cruise ...

o/ = cruise cruise accel cruise off accell ...

50 51 53

-uchi Automata

= Every LTL formula has a Buchi automaton
that accepts its language (not vice versa)

L(LTL) C L(Buchi)
L(Buchi) N L(LTL) #=
= Buchi automata cannot be determinized
= i.e., there is no canonical deterministic
automaton that accepts the same language
= Buchi automata are closed under the
standard set operations




-uchi Automaton

What LTL property does this correspond to?

DD~
50 51 53

-uchi Automaton

What LTL property does this correspond to?




IR el chectin

= Apply same strategy as before

= Generate Buchi automaton for the negation
of the LTL property

« Compose the automaton with the system
= Check for emptiness

= Composition alternates transitions
between the system and property

= Violation are indicated by accepting traces
« Cycles containing an accept state

IR prs Atz

1 seen := {(s0,P0)|Vpoer} :
P
29, (50, P00 Multiple start states (search them all)

DFS(s,p) .

3 workSet(s) := enabled(s) If you can't continue _the

4 while workSet(s) is not empty property trace then give up
5  let a € workSet(s) (cannot lead to accept)

6 workSet(s) := workSet(s) \ {a}
7 s’ = a(s)
7.1 if 23y esp) - A(S') satisfies A(p') then

7.2 continue

8 if s’ & seen then

9 seen := seen U {s'}

10 DFS((s',p))

10.1 if o/ € F then Only initiate a cycle check for
10.2 seer — () < accept states (since they are
10.3 NDFS((s', 1), (5", p')) required in an acceptance cycle)

end DFS




S Algorithm

NDFS((s,p), seed)
11 workSet'(s) := enabled(s)
12 while workSet/(s) is not empty

If you can't continue the
property trace then give up
(cannot lead to accept)

13 let « € workSetN(s)

14 workSet'(s) := workSet'(s) \ {a}

15 s’ = a(s)

15.1 if =3¢5(p) - A(8') satisfies A(p') then

15.2 continue

16 if (s/,p') = seed then

17 Acceptance cycle det‘ectex Any cycle is an
18  if (s',p') ¢ seen’ then acceptance cycle
19 seen’ := seen’ U {(s,p')} (since it started with
20 NDFS((s,p'),seed) an accept state)
end DFS

o Do

= Take the dining philosophers example, and the
property

[1(P1.eating && P2.eating)

Build a Buchi automaton for that property
(using your intuition about automatag)

Apply the LTL NDFS algorithm
= You may need to make the program counter explicit

to do this since these automata are fundamentally
state oriented

Do you find an error?

Can you think of a way to find errors faster in
the NDFS() routine?




= Progress states that the system should
eventually do something

= Often times in real systems threads rely on a
schedule to give them a chance to run

= Abstracting scheduling to non-deterministic
choice introduces severe approximation
= There are many forms of fairness

= The intuition is that we restrict the systems
behaviors to only those on which each
process gets a chance to execute

= LTL is expressive enough to state fairness
properties directly
= []<> (Phill.eating || Phil2.eating)
= ([]<>Phill.eating) && ([]<>Phil2.eating)
= Fairness formula can be used to filter the
behaviors that are checked as follows
= Fairness -> Property
= If not Fairness then whole thing is true
= Property checked only when Fairness holds
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