CIS 842:
Specification and Verification

of Reactive Systems

Lecture Specifications:
LTL Model Checking

Copyright 2001-2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are copyrighted
materials and may not be used in other course settings outside of Kansas State University in their current form or modified
form without the express written permission of one of the copyright holders. During this course, students are prohibited
from selling notes to or being paid for taking notes by any person or commercial firm without the express written
permission of one of the copyright holders.

= To understand Buchi automata and the
relationship to LTL

= To understand how Buchi acceptance
search enables a general LTL model
checking algorithm

For safety properties we automated the
“instrumentation” of checking for
acceptance of a regular expression for a
violation

This involved modifying the DFS algorithm to

« Calculate states of the property automaton
= Check to see whether an accept state is
reached

We will apply the same basic strategy for LTL

IR voder checkin

From the semantics

=« An LTL formula defines a set of (accepting)
traces

We can
= Check for trace containment

Property

C

IR el chectin

From the semantics

= An LTL formula defines a set of (accepting)
traces

We can
» Check for non-empty language intersection

Negation of Property

I Bpiness chect

LTL is closed under complement

L(¢) = L(—9)
where the language of a formula defines a
set of /nfinite traces

A Buchi automaton accepts a set of infinite
traces

A Buchi automaton is a quadruple (S, I, 6, F')
S is a set of states
I C Sis a set of initial states
6 1 S — P(S) is a transition relation
F is a set of accepting states

Automaton states are labeled with atomic
propositions of the formula

A:S — P(A)

- Buchi Automaton

S = {s0,51,52}

I = {so}

6 = {(s0,{s0,51}), (s1,{s2}), (52, {s2})}
F={so}

A = {(s0, {cruise}, (s1, {off}), (s2,{})}

An infinite trace
O = 8081 ---

is accepted by a Buchi automaton iff
sg €1
Vi>0 ' 8i+1 € 6(s;)
Vizoajzz' . 85 € F

Assume each system state (S) is labeled (A)
with the complete set of literals (A)
= either a literal or its negation is present

A Buchi automaton accepts a system trace

> = SgSq ... iff

Jsoer - N(Sg) satisfies A(sq)

Vizo : 331’—}—165(51') . /\(Si—l—l) satisfies A(Si—l—l)
ViZO : 3]’21’ L8 e F

- Buchi Automaton

o = Ccruise cruise off off accel accel cruise ...

o/ = cruise cruise accel cruise off accell ...

50 51 53

-uchi Automata

= Every LTL formula has a Buchi automaton
that accepts its language (not vice versa)

L(LTL) C L(Buchi)
L(Buchi) N L(LTL) #=
= Buchi automata cannot be determinized
= i.e., there is no canonical deterministic
automaton that accepts the same language
= Buchi automata are closed under the
standard set operations

-uchi Automaton

What LTL property does this correspond to?

DD~
50 51 53

-uchi Automaton

What LTL property does this correspond to?

IR el chectin

= Apply same strategy as before

= Generate Buchi automaton for the negation
of the LTL property

« Compose the automaton with the system
= Check for emptiness

= Composition alternates transitions
between the system and property

= Violation are indicated by accepting traces
« Cycles containing an accept state

IR prs Atz

1 seen := {(s0,P0)|Vpoer} :
P
29, (50, P00 Multiple start states (search them all)

DFS(s,p) .

3 workSet(s) := enabled(s) If you can't continue _the

4 while workSet(s) is not empty property trace then give up
5 let a € workSet(s) (cannot lead to accept)

6 workSet(s) := workSet(s) \ {a}
7 s’ = a(s)
7.1 if 23y esp) - A(S') satisfies A(p') then

7.2 continue

8 if s’ & seen then

9 seen := seen U {s'}

10 DFS((s',p))

10.1 if o/ € F then Only initiate a cycle check for
10.2 seer — () < accept states (since they are
10.3 NDFS((s', 1), (5", p')) required in an acceptance cycle)

end DFS

S Algorithm

NDFS((s,p), seed)
11 workSet'(s) := enabled(s)
12 while workSet/(s) is not empty

If you can't continue the
property trace then give up
(cannot lead to accept)

13 let « € workSetN(s)

14 workSet'(s) := workSet'(s) \ {a}

15 s’ = a(s)

15.1 if =3¢5(p) - A(8') satisfies A(p') then

15.2 continue

16 if (s/,p') = seed then

17 Acceptance cycle det‘ectex Any cycle is an
18 if (s',p') ¢ seen’ then acceptance cycle
19 seen’ := seen’ U {(s,p')} (since it started with
20 NDFS((s,p'),seed) an accept state)
end DFS

o Do

= Take the dining philosophers example, and the
property

[1(P1.eating && P2.eating)

Build a Buchi automaton for that property
(using your intuition about automatag)

Apply the LTL NDFS algorithm
= You may need to make the program counter explicit

to do this since these automata are fundamentally
state oriented

Do you find an error?

Can you think of a way to find errors faster in
the NDFS() routine?

= Progress states that the system should
eventually do something

= Often times in real systems threads rely on a
schedule to give them a chance to run

= Abstracting scheduling to non-deterministic
choice introduces severe approximation
= There are many forms of fairness

= The intuition is that we restrict the systems
behaviors to only those on which each
process gets a chance to execute

= LTL is expressive enough to state fairness
properties directly
= []<> (Phill.eating || Phil2.eating)
= ([]<>Phill.eating) && ([]<>Phil2.eating)
= Fairness formula can be used to filter the
behaviors that are checked as follows
= Fairness -> Property
= If not Fairness then whole thing is true
= Property checked only when Fairness holds

10

