
SAnToS Laboratory
Laboratory for Specification, Analysis and Transformation of Software

Department of Computing and Information Sciences
Kansas State University

Technical Report SAnToS-TR2004-7

Last Updated: May 6, 2005

Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Checking JML Specifications
Using An Extensible Software
Model Checking Framework?

Robby1, Edwin Rodrı́guez1, Matthew B. Dwyer2, John
Hatcliff1

1 Department of Computing and Information Sciences, Kansas State
University??

e-mail: {robby,edwin,hatcliff}@cis.ksu.edu

2 Department of Computer Science and Engineering, University of
Nebraska-Lincoln???

e-mail: dwyer@cse.unl.edu

May 5, 2005

Abstract. The use of assertions to express correctness prop-
erties of programs is growing in practice. Assertions provide
a form of lightweight checkable specification that can be very
effective in finding defects in programs and in guiding devel-
opers to the cause of a problem. A wide variety of assertion
languages and associated validation techniques have been de-
veloped, but run-time monitoring is commonly thought to be
the only practical solution.

In this paper, we describe how specifications written in
the Java Modeling Language (JML), a general purpose be-
havioral specification and assertional language for Java, can
be validated using a customized model checker built on top
of the Bogor model checking framework. Our experience il-
lustrates the need for customized state-space representations
and reduction strategies in model checking frameworks in or-
der to effectively check the kind of strong behavioral specifi-
cations that can be written in JML. We discuss the advantages
and trade-offs of model checking relative to other specifica-
tion validation techniques and present data that suggest that

? This is an extended version of the paper Checking Strong Specifica-
tions Using An Extensible Model Checking Framework that appeared in
Proceedings of the 10th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS 2004. This work was
supported in part by the U.S. Army Research Office (DAAD190110564),
by DARPA/IXO’s PCES program (AFRL Contract F33615-00-C-3044), by
NSF (CCR-0306607) by Lockheed Martin, and by Rockwell-Collins.
?? 234 Nichols Hall, Manhattan, KS 66506, USA.

??? 256 Avery Hall, Lincoln, NE 68588, USA.

the cost of model checking strong specifications is practical
for several real programs.

1 Introduction

The idea of interspersing specifications of the intended be-
havior of a program directly in the source code is nearly as
old as programming itself [11]. Those foundational ideas in-
spired the development of more elaborate design practices
and methodologies, for example, design-by-contract [22]. The
use of assertional specifications has long been regarded as a
means for improving software quality, but only recently have
studies demonstrated support for this conjecture [32]. The in-
creasing number of modern languages (e.g., Java, C#, PHP)
and implementation frameworks (e.g., Microsoft Foundation
Classes (MFC)) that include simple assertion mechanisms
suggests that they will finally have the practical impact that
was predicted decades ago.

To fulfill this promise, there is a need for program asser-
tion checking mechanisms that are cost-effective, automatic,
and thorough in considering both specification and program
behavior. Run-time monitoring of assertions during program
execution is the only mechanism that is widely used in prac-
tice today. It is both cost-effective and automatic, but can
only analyze the program behaviors that are actually exe-
cuted. This lack of coverage of program behavior is a signif-
icant weakness of run-time methods, especially for concur-
rent programs where subtle errors may depend on the order
in which threads execute. To address this behavior coverage
problem, a variety of static analysis approaches have been
proposed to thoroughly check a program’s possible behav-
iors with respect to certain lightweight specifications, such as
pointer non-nullness and array bounds [10], and propositional
temporal properties [39]. These methods gain program cov-
erage by sacrificing the expressiveness of their specification
language.

Building on a long line of work on formal methods for
manual reasoning about complete behavioral specifications
of programs, several recent languages have emerged that bal-
ance the desire for completeness and the pragmatics of check-
ability. The Java Modeling Language (JML) is one such lan-
guage [20]. With JML, one can specify properties of varying
strength from lightweight assertions about pointer null-ness
to complete functional correctness of program components;
the latter we refer to as a strong property. JML is a behav-
ioral interface specification language that allows developers

2 Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework

to specify both the syntactic and behavioral interface of a
portion of Java code. It supports the design-by-contract [22]
paradigm by including notation for pre/postconditions and in-
variants. JML uses Java’s expression syntax and adds con-
structs that dramatically increase expressiveness (e.g., it is
possible to quantify, universally or existentially, over objects
in the heap).

In this paper, we describe how we have adapted a flexible
model checking framework called Bogor [28] to check JML
specifications of sequential and concurrent Java programs.
Model checking adds a new and complementary approach to
the existing run-time and theorem-proving technologies for
reasoning about JML. While tools based on those technolo-
gies have proven effective in supporting certain kinds of Java
validation and verification activities, there is currently no au-
tomatic technique for thoroughly checking a wide-range of
strong JML specifications especially in the presence of con-
currency. Our checking tool is automatic and exhaustive in
its reasoning about general JML properties up to user defined
bounds on the space consumed by a program run.

Using existing model checking techniques to verify strong
specifications is problematic for several reasons. First, exist-
ing model checkers, such as Spin [16], do not provide di-
rect support for modeling dynamically allocated objects and
heap structures making it difficult to represent the program’s
behavior; Bogor maintains an explicit, yet compact, repre-
sentation of the dynamic program heap [29]. Second, even if
one could encode the behavior in the input language of such
a model checker, the underlying checking algorithms would
not exploit the semantic properties of the original language
to optimize the state space search; Bogor incorporates novel
partial order reductions that exploit the semantics of a pro-
gram’s heap and locking structure to achieve efficiency [6].
Finally, existing model checking frameworks support tempo-
ral properties but do not provide direct support for expressing
rich data or heap-related functional properties; Bogor sup-
ports extension of the expressions sublanguage via user de-
fined atomic expressions that can be evaluated over the full
extent of a program state including the heap [28].

The contributions of this paper are as follows:

– we demonstrate that with a sufficiently feature-rich model
checking framework one can check strong behavioral spec-
ifications;

– we describe how Bogor’s extension facilities can be ap-
plied to implement checking of JML specifications, in-
cluding specifications that have proven difficult to check
by other means such as run-time checking or theorem-
proving; and

– we demonstrate that the overhead of checking JML spec-
ifications can be mitigated, and in most cases completely
eliminated, through the use of sophisticated state-space
reductions.

In the next section, we give an overview of JML and il-
lustrate its main features through an example. Section 3 de-
scribes the features of the Bogor model checking framework
that enable the efficient treatment of JML specifications. There
are a number of different techniques for reasoning about JML
specifications; we compare representatives of the main classes
of techniques to our model checking approach in Section 6.
Section 4 details our strategy for efficiently reasoning about
JML specifications on-the-fly during state-space exploration
of a concurrent Java program. In Section 5, we detail the anal-
ysis of a collection of JML annotated Java programs and re-
port on the cost and effectiveness of checking them with Bo-
gor and then conclude. We also refer the reader to the SpEx
web site [33] for the complete JML-annotated Java code and
the associated Bogor models for all of the examples consid-
ered in this paper.

2 JML: The Java Modeling Language

The Java Modeling Language (JML) [20] is a Java-specific
behavioral specification language [40] designed at Iowa State
University by Gary Leavens and others. We illustrate JML
and the treatment of JML specifications with the example
in Figure 1. This example is a concurrent linked-list-based
queue from [19] with some JML specifications, written in
Java comments with special tags such as //@, added to de-
scribe its behavior.

Instances of the class LinkedNode implement the nodes
of the linked list representing the queue. The LinkedQueue
class provides put and takemethods that implement a fine-
grained locking protocol, through the use of the protected
methods insert and extract, to maximize concurrent
access to the queue. This design leads to functional code that
is nested inside synchronized statements and conditionals in
those protected methods. In order to specify the behavior of
that functional code we have refactored them into additional
protected methods, e.g., refactoredInsert.

When a new queue is created, an object that is used to
guarantee mutual exclusion of put operations is created and
assigned to the putLock field and a new node is created and
assigned to the head and tail instance fields (this dummy
node, with an unused data field, forms the head of every list).
Whenever a thread attempts to take an object from an empty

Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework 3

c l a s s LinkedNode {
p u b l i c O b j e c t v a l u e ;
p u b l i c LinkedNode n e x t ;

/∗@ b e h a v i o r e n s u r e s v a l u e == x &&
@ n e x t == n u l l ;
@∗ /

p u b l i c LinkedNode (O b j e c t x) {
v a l u e = x ;

}
. . .

}

p u b l i c c l a s s LinkedQueue {
p r o t e c t e d f i n a l /∗@ n o n n u l l @∗ / O b j e c t putLock ;
p r o t e c t e d /∗@ n o n n u l l @∗ / LinkedNode head ;
p r o t e c t e d /∗@ n o n n u l l @∗ / LinkedNode l a s t ;
p r o t e c t e d i n t w a i t i n g F o r T a k e = 0 ;

. . .
/ /@ i n s t a n c e i n v a r i a n t w a i t i n g F o r T a k e >= 0;
/ /@ i n s t a n c e i n v a r i a n t \ reach (head) . has (l a s t) ;

/∗@ b e h a v i o r
@ a s s i g n a b l e head , l a s t , putLock , w a i t i n g F o r T a k e ;
@ e n s u r e s \ f r e s h (head , pu tLock) &&
@ head . n e x t == n u l l ;
@∗ /

p u b l i c LinkedQueue () {
putLock = new O b j e c t () ;
l a s t = head = new LinkedNode (n u l l) ;

}

/∗@ b e h a v i o r
@ e n s u r e s \ r e s u l t <==> head . n e x t == n u l l ;
@∗ /

p u b l i c boolean i sEmpty () {
synchron ized (head) {

re turn head . n e x t = = n u l l ;
}

}

/∗@ b e h a v i o r
@ r e q u i r e s n ! = n u l l ;
@ a s s i g n a b l e l a s t , l a s t . n e x t ;
@∗ /

p r o t e c t e d vo id r e f a c t o r e d I n s e r t (LinkedNode n) {
l a s t . n e x t = n ;
l a s t = n ;

}
/∗@ b e h a v i o r

@ r e q u i r e s x ! = n u l l ;
@ e n s u r e s t r u e ;
@ a l s o b e h a v i o r
@ r e q u i r e s x == n u l l ;
@ s i g n a l s (E x c e p t i o n e)
@ e i n s t a n c e o f I l l e g a l A r g u m e n t E x c e p t i o n ;
@∗ /

p u b l i c vo id p u t (O b j e c t x) {
i f (x = = n u l l)
throw new I l l e g a l A r g u m e n t E x c e p t i o n () ;

i n s e r t (x) ;
}

p r o t e c t e d synchron ized O b j e c t e x t r a c t () {
synchron ized (head) {

re turn r e f a c t o r e d E x t r a c t () ;
}

}
/∗@ b e h a v i o r

@ a s s i g n a b l e head , head . n e x t . v a l u e ;
@ e n s u r e s \ r e s u l t == n u l l | | (\ e x i s t s LinkedNode n ;
@ \o l d (\ reach (head)) . has (n) ;
@ n . v a l u e == \ r e s u l t
@ && !(\ reach (head) . has (n))) ;
@∗ /

p r o t e c t e d O b j e c t r e f a c t o r e d E x t r a c t () {
O b j e c t x = n u l l ;
LinkedNode f i r s t = head . n e x t ;
i f (f i r s t ! = n u l l) {
x = f i r s t . v a l u e ;
f i r s t . v a l u e = n u l l ;
head = f i r s t ;

}
re turn x ;

}

/∗@ b e h a v i o r
@ r e q u i r e s x ! = n u l l ;
@ e n s u r e s l a s t . v a l u e == x && \ f r e s h (l a s t) ;
@∗ /

p r o t e c t e d vo id i n s e r t (O b j e c t x) {
synchron ized (putLock) {

LinkedNode p = new LinkedNode (x) ;
synchron ized (l a s t) r e f a c t o r e d I n s e r t (p) ;
i f (w a i t i n g F o r T a k e > 0) putLock . n o t i f y () ;
re turn ;

}
}

/ /@ e n s u r e s \ r e s u l t ! = n u l l ;
p u b l i c O b j e c t t a k e () {

O b j e c t x = e x t r a c t () ;
i f (x ! = n u l l) re turn x ;
e l s e {

synchron ized (putLock) {
t r y {
++ w a i t i n g F o r T a k e ;
f o r (; ;) {

x = e x t r a c t () ;
i f (x ! = n u l l) {
−−w a i t i n g F o r T a k e ;
re turn x ;

}
e l s e putLock . w a i t () ;

}
}
ca tch (I n t e r r u p t e d E x c e p t i o n ex) {
−−w a i t i n g F o r T a k e ;
putLock . n o t i f y () ;
throw new Runt imeExcep t ion () ;

}
}

}
}

Fig. 1. A Concurrent Linked-list-based Queue Example (excerpts)

4 Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework

queue, the thread is blocked. If the queue is not empty, then
only the head is locked, and its stored value is returned. The
dequeuing is done in the extract method. Whenever an
object is enqueued, the tail is locked, a new node is created to
store the object and one of the threads waiting to dequeue is
notified.

JML specifications are phrased as invariants on instances
of classes and contracts for method invocations. One impor-
tant aspect of JML is that it balances support for complete
behavioral specification with lightweight assertion features,
such as Java assertions. Thus, it allows developers to vary
the strength of their specifications across classes and within
classes. The variation in the strength of specifications in the
example is apparent (e.g., method extract has no specifi-
cation whereas method refactoredExtract has a be-
havioral specification that captures removal of an element
from the queue).

Invariants on objects are stated using invariant clauses.
In an object-oriented language such as Java, the notion of an
object invariant is different than the traditional model check-
ing definition of invariant, which requires a condition to hold
at every reachable system state. The intuition is that an object
invariant is not required to hold before the object is initialized
nor during execution of methods acting upon the object. JML
invariants for instances of a class C are required to hold in vis-
ible states which are defined at the end of execution of a con-
structor for C and at the entry and exit of method calls. This
last condition ensures that changes to a public field that do
not occur through methods of C are visible to the invariant. In
the example, the first invariant in class LinkedQueue states
that the integer field waitingForTake is non-negative.
For convenience several short-hand type modifiers, such as
non null which specifies that a reference field never has
a null value, are also defined. Class LinkedQueue speci-
fies that all of its reference fields are non-null using this JML
modifier.

Method preconditions are written using the JML requires
clause, which specifies the conditions on program state when
the method is called (i.e., the method prestate) that callers
must assure. Postconditions for non-exceptional methods are
written using the ensures clause, which specifies the con-
ditions on the program state upon return (i.e., the method
poststate) that the method guarantees. JML’s invariant,
requires, and ensures clauses specify a boolean condi-
tion on the state of the program that can be expressed using
Java’s expression syntax and a set of JML operators includ-
ing:

– \old(e): used only in postconditions to access the value
of expression e in the method prestate.

– \reach(e): returns the set of objects that are reachable
through chains of field accesses from reference e.

– \forall, \exists: allows one to state properties us-
ing logical quantification; this is especially useful for stat-
ing properties about all or some of the objects in the heap.

– \fresh(x1, . . . , xn): used only in postconditions to state
that the variables xi hold objects not allocated in the prestate.

– \result: evaluates to the return value of a method.

These operators allow for strong behavioral properties to be
specified. For example, the refactoredExtractmethod’s
postcondition states that the result is either null (when the
list is empty) or that there exists a node n such that n is
in the list in the prestate of the method, n’s value is re-
turned as the method result, and n is not in the list in the
poststate of the method. To express this intent the specifica-
tion captures the set of objects on the heap that are reach-
able from the LinkedQueue head, using \reach, in the
method prestate, using \old, and then quantifies over them
on method exit, using \exists. As another example, the
insert method has a precondition that requires its argu-
ment, giving the object to be inserted, to be non-null, and
a postcondition that ensures the last node in the list is newly
allocated in the call, using \fresh, and holds the object sup-
plied for insertion.

The assignable clause states a form of frame condi-
tion for a method: only reference expressions that are listed
in assignable may be modified by a method call. Loca-
tions that are local to the method (or any methods that it calls)
and locations that are created during the method’s execution
are not subject to this restriction. This clause is used in the
refactoredExtract method to state the invariance of
the LinkedQueue head and the initial dummy node across
the call.

Syntactically, a specification is heavyweight as long as
it is annotated using one of the behavior keywords, oth-
erwise the specification is lightweight. The put method il-
lustrates a heavyweight specification where the possible in-
vocation states are covered by a pair of behavior specifi-
cations consisting of ensures and signals clauses; JML
provides the signals clause to specify the conditions un-
der which a method returns via exception throw. As com-
plete behavioral specifications, heavyweight JML specifica-
tions always have a well-defined default value for any omitted
clause. Table 1 defines the default values for missing clauses
in both heavyweight and lightweight JML specifications; the
special JML tag \not specified means that the clause is
free to take on any legal value.

JML is a large and complex specification language. Rather
than provide a detailed description of all of its language fea-

Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework 5

Omitted Clause Lightweight Heavyweight

requires \not specified true
diverges \not specified false

assignable \not specified \everything
ensures \not specified true
signals (Exception) \not specified (Exception) true

Table 1. Default values for JML clauses in lightweight and heavyweight specifications.

tures, in the subsequent presentation, we focus on those fea-
tures that are problematic to check with existing technologies
or that raised particular issues in the implementation of our
model checking support. A complete discussion of our sup-
port for JML features is given at [33].

3 The Bogor Model Checker

Bogor [28] is an extensible and highly modular software model
checking framework that can be adapted and customized to
the specific characteristics of different problem domains. Fig-
ure 2 depicts the internal architecture of Bogor. What makes
Bogor unique is that it is designed to be easily customized
both in terms of its input language, through the use of front-
end and interpretive components, and in terms of the seman-
tics of the modules that implement the core capabilities of
the explicit-state model checking algorithms, depicted on the
right side of Figure 2. For example, Bogor has been cus-
tomized to analyze properties of real-time embedded design
models of avionics systems [7] by both adding primitives for
modeling the semantics of avionics middleware services and
by customizing the state-storage and search strategies of the
model checker based on those semantics. In this section, we
present an overview of the extension mechanisms in Bogor
since they are the vehicle through which JML specifications
are checked. We also survey several customized Bogor mod-
ules that exploit the semantics of JVM byte-codes to improve
the performance of model checking multi-threaded Java pro-
grams. Those modules provide essential capabilities for en-
coding JML operations and for eliminating the overhead of
checking JML specifications against Java code.

3.1 Language Extension

Like many model checkers Bogor’s input language BIR, an
example of which is given in Figure 3, is a guarded command
transition system language with explicit locations (loc), ex-
plicit guards (when), sequences of statements comprising a

transition’s action (do), and explicit transitions (goto). Un-
like most model checkers, BIR includes support for dynami-
cally allocated data (record,new), method calls (function),
and other features needed to model JVM byte-codes, such as
exceptions. In addition, BIR features an extension language
facility that allows introductions of new Abstract Data Types
(ADTs) and abstract operations as first-class constructs of the
language. These introductions are analogous to adding new
native types and native instructions, so they can be used to
build abstract machines tailored to specific application do-
mains.

The figure presents a BIR model for a simple system in
which there are several processes competing for resources
collected in a pool. For this particular system, we only care
about membership operations on the resource pool, thus, we
create a new Set ADT to model this pool of resources. To
do this, the keyword extension is used to declare the ex-
tension name. The for keyword provides the fully qualified
name of the class that implements the extension. The idea is
that by introducing a customized extension, the concept of a
set data structure is made a primitive component of the lan-
guage, allowing: (i) hiding all the implementation complex-
ity from the model and (ii) the introduction of optimizations
based on the state of the set. The front-end components sup-
port extension syntax directly and do not require the user to
modify any internal Bogor components. Extensions map the
newly introduced type to instances of Bogor interpretive in-
terfaces and implement the semantics of extension methods,
such as add<’a>, as Java that manipulates those structures.
These implementations follow a very regular pattern and use
a clean and well-defined API using widely known design pat-
terns [12], thus making it easy for non-model checking ex-
perts to extend the toolset.

We define a BIR extension for each JML construct and
embed the checks for a JML specification directly into the
BIR representation that is compiled from Java source code.
We note that encoding JML constructs directly in the input
language of most existing model checkers would be difficult
or impossible in many cases. Features like \reach, which

6 Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework

Lexer

IExpEval

IStateFactory

IValueFactory

IActionTaker

ITransformer

ness Checker
Well−formed−

Transformer
AST

Data−flow
Framework

ISearcher IStateMgr

IBacktrackIF.bir

.config
counter
example

Verified
ISchedulingS

ICounterExWr IProgressMgr

IClassLoaderIEventProvidr

Extension−1 Extension−N

Parser

Model CheckingInterpretiveFront−End

Fig. 2. Bogor Architecture.

system ResourceContention {
extension Set for myPackage . SetModule {

typedef type <’a>;
expdef Set . type <’a> create <’a>(’a . . .) ;
expdef ’ a choose<’a>(Set . type <’a>);
expdef boolean isEmpty <’a>(Set . type <’a>);
expdef boolean f o r A l l <’a>(’a −> boolean ,

Set . type <’a>);
actiondef add<’a>(Set . type <’a> , ’ a) ;
actiondef remove<’a>(Set . type <’a> , ’ a) ;

}

record Resource { boolean i sFree ; }
record Disk extends Resource { }
record Disp lay extends Resource { }

Set . type<Resource> resourcePool ;

fun isResourceFree (Resource resource)
returns boolean = resource . isFree ;

fun AreAl lResourcesInPoolFreeInv ()
returns boolean =

Set . f o r A l l <Resource>(isResourceFree ,
resourcePool) ;

main thread MAIN () {
loc l oc0 :

do { / / c rea te the pool and crea tes two processes
resourcePool : = Set . create<Resource>

(new Disk , new Disk , new Disp lay) ;
s ta r t Process () ; s ta r t Process () ;

} return ;
}

thread Process () {
loc l oc1 :

invoke run ()
return ;

}

function run () {
Resource resource ;
loc l oc2 :

when ! Set . isEmpty<Resource>(resources)
do { / / choose an element and remove i t

resource : = Set . choose<Resource>

(resourcePool) ;
Set . remove<Resource>(resourcePool ,

resource) ;
} goto l oc3 ;

loc l oc3 :
do { / / resource i n use

resource . isFree : = fa lse ;
} goto l oc4 ;

loc l oc4 :
do { / / resource f r ee

resource . isFree : = true ;
} goto l oc5 ;

loc l oc5 :
do { / / add the resource back to pool

Set . add<Resource>(resourcePool ,
resource) ;

} goto l oc2 ;
do { / / empty t r ans fo rma t i on
} goto l oc2 ;

}
}

Fig. 3. Resource Contention Example

Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework 7

requires scanning the heap for reachable sets of objects, would
require an iterative or recursive block of code to be embed-
ded into the model checker input. Bogor extensions are im-
plemented in Java (in the model checker rather than in the
input model) which alleviates this problem.

3.2 Module Extension

Bogor can be thought of as a well-factored design for an
explicit-state model checker that is encoded into the module
structure of a Java implementation. Figure 2 shows the func-
tionality common to every explicit-state model checker, for
example, the storage of system states (IStateMgr), the par-
ticular form of search implemented (ISearcher), the strat-
egy used to select the next transition to explore (ISchedulingStg),
and information needed to guide backtracking in the search
(IBackTrackIF). These interfaces form the extension points
for the core Bogor model checking framework. Developers
can implement custom versions of components that imple-
ment the interfaces and then configure Bogor to use selected
components. This greatly simplifies customization of the model
checker.

To implement certain JML operators, such as \old, one
needs to inspect the state of the heap and access informa-
tion about method prestates. This functionality cannot be im-
plemented in a BIR language extension alone, but it can be
achieved through Bogor module extension. We present the
details of JML module extensions in Section 4, but to set the
stage for that explanation we provide an overview of several
Java-specific module extensions.
Heap and Thread Symmetry Bogor exploits similarity in the
behavior of threads and in the structure of the program heap
to define equivalence classes of states.

The semantics of Java dictate that a program can observe
neither the physical address of an object nor the unreclaimed
unreachable objects (i.e., garbage). For these reasons, execu-
tion states of a Java program that differ only in the physi-
cal addresses of objects or in the unreclaimed garbage can
be considered equivalent. Therefore, any property that holds
for a state also holds for any equivalent state. It is common
in Java programs for multiple instances of a thread type to
be running at a given time. Such threads are distinguishable
only by their thread object references which can only be ob-
served by explicit reference equality comparisons. For pro-
grams without such comparisons, states that differ only in the
identity of the threads that are at specific points in their execu-
tion can be considered equivalent. Using these observations,
the time and space required for model checking a system can

often be reduced by restricting state-space search to a single
representative of each equivalence class.

Bogor’s heap symmetry reduction is implemented in a
custom IStateMgrmodule extension that topologically sorts
the heap based on a lexicographic ordering of the reference
chains that reach each object in the heap [29]. Since this mod-
ule already traverses the heap, it is natural to implement JML
operators like \reach as a variation on this module that re-
stricts itself to a portion of the heap rooted at a given refer-
ence.
Collapse Compression Bogor reduces the space required to
store a state by sharing common parts of distinct states. This
technique leverages the fact that a transition usually only mod-
ifies a small part of the state; in Java model checking, a tran-
sition models a JVM byte-code which typically modifies a
single variable or object field.

Most explicit-state model checkers [16,2] store states in
a compressed form while maintaining a small number of un-
compressed state instances for direct manipulation during tran-
sition execution. A compressed state, which is encoded as a
bit-vector, acts as a unique fingerprint for the state that is used
to determine whether the state has been encountered previ-
ously during search. Bogor’s collapse compression exploits
the fact that a Java program’s state can be represented as a hi-
erarchy of components (e.g., each thread has separate locals
and control information, the topologically sorted heap is a hi-
erarchy of sub-heaps) [29]. This makes it possible to localize
the effect of a transition on the overall state. For example,
a transition that updates a thread’s local variable is guaran-
teed to preserve the other thread’s data and the heap. When
compressing a state, Bogor reuses the portion of the previous
state’s fingerprint that corresponds to the unchanged portions
of the state; this significantly reduces the cost of state com-
pression and the space required to represent the state.

Accessing information about the history of a trace in a
stateful search requires that traces be distinguished by dif-
ferent history values. Since JML operators, like \old, refer-
ence method prestate information, correct stateful search of
JML annotated Java code must distinguish traces based on
prestates. Efficient state-compression techniques are useful
for encoding portions of method prestates that are referred
to in JML postconditions and the resulting fingerprints are an
efficient way of distinguishing traces leading to those post-
conditions.
Backtracking Depth-first Search Bogor performs a depth-first
search and, like Spin, it is designed to backtrack by execut-
ing undo actions for previously taken transitions. This elimi-
nates the need to uncompress states which can be expensive.
For implementing JML operators that access history infor-

8 Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework

mation, such as \old, it has the negative consequence of not
allowing access to the values of a state given its fingerprint.
In Section 4, we describe how a custom version of the back-
tracking module is used to walk back through the transitions
in a method body to construct the portion of the prestate that
is referenced in the postcondition by an \old expression.

Partial Order Reductions Bogor minimizes the set of paths
that need to be explored in the state-space during model check-
ing. Classical partial order reductions (POR) (e.g., [5]) lever-
age the independence of transitions to induce equivalence
classes of paths such that it is sufficient to explore a sin-
gle path from each class. Intuitively, a pair of transitions are
independent if the execution of one transition cannot influ-
ence the execution of the other. Existing implementations of
partial-order reductions (e.g., SPIN) use efficient techniques
for safely approximating the set of independent transitions.
For example, transitions that access only thread-local vari-
ables cannot influence transitions in other threads and can
therefore be classified as independent of all other transitions
by a simple syntactic analysis.

For multi-threaded Java programs, we leverage the struc-
ture of the Java heap and Java synchronization idioms to infer
more precise information about transition independence [6].
For example, transitions that access thread-local objects (i.e.,
objects that are reachable from a single thread) are indepen-
dent because no transition in another thread can possibly ac-
cess such an object (until the object becomes shared). Tran-
sitions that operate on a properly locked object (e.g, where
the set of locks held by each thread when accessing the ob-
ject always contains at least one common lock) are also inde-
pendent as are operations on read-only objects. An additional
feature of Bogor’s POR implementation is that it biases the
search to coalesce transitions in a method into a consecutive
run of transitions. By doing this, the model checker is able
to defer state-storage until the end of the run of independent
transitions effectively implementing on-the-fly detection of
atomic blocks of transitions.

The combination of partial order reduction techniques in
Bogor yields orders of magnitude reduction in the space and
time required for model checking nearly all of the Java pro-
grams we have encountered. Furthermore these reductions
prove very useful when checking JML specifications. If an
entire method execution can be treated as an atomic block,
then even if the postcondition of that method accesses all
of the prestate of the method there is no additional state-
storage required. In such situations, the overhead of complex
JML operators such as \old can be completely eliminated
by state-of-the-art POR implementations.

4 Checking JML Specifications with Bogor

4.1 Implementation Strategy

All existing JML checking tools of which we are aware of
employ a two-phase implementation strategy. In the first phase,
JML specifications along with the associated Java code are
translated to a lower-level representation. In the second phase,
the lower-level representations are checked using the corre-
sponding verification technologies.

It is important to note that a significant portion of the
effort in implementing JML checking is associated with the
translation phase. Implementation of the translation phase is
non-trivial, since it is this phase that captures JML semantics
of specifications associated with class inheritance, method
overriding, etc. [20]. For example, the “effective precondi-
tion” (i.e., the condition that should actually be checked as
compared to the one that is written in JML comments) of a
method that overrides previously defined methods, is a com-
bination of all the preconditions listed in the current method
conjoined with all preconditions defined in the method of the
same signature above the present one in the inheritance hier-
archy. Specifications for implemented interfaces must also be
taken into account (e.g., by combining the pre/postconditions
declared on methods in interfaces with the pre/postconditions
of the implementing methods). In addition, since invariants
are checked at method entry/exit, invariants are conjoined
with pre/postconditions to form the effective pre/postcondi-
tions.

To avoid much of the effort in implementing appropriate
pre/postconditions in the translation phase described above,
we have chosen to reuse part of the (jmlc) JML run-time
checker infrastructure developed by Cheon and Leavens [4].
jmlc translates Java source code annotated with JML speci-
fications into byte-code that includes run-time assertions that
encode the specifications. For our Bogor JML checking in-
frastructure, we are in the process of modifying the JML trans-
lation module of the jmlc compiler to target BIR plus the
BIR language extensions that we introduce in the remain-
der of this section to support specific JML constructs 1. This
Java/JML translation results in a representation in which BIR
code that realizes system semantics and BIR code that real-
izes program specifications are integrated into a single model.
This combination of system and specification representations
occurs not only in jmlc, where Java byte code represents
both system behavior and assertions representing specifica-
tions, but also in theorem-proving-based JML tools such as

1 The specifications used in this paper were translated manually according
to the approach taken by jmlc, for evaluation purposes, in Section 5.

Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework 9

ESC-Java [10] and LOOP [38], where logic formulas repre-
sent both system behavior and specifications.

In a representation that combines system and specifica-
tions using an executable representation like BIR or byte code,
one may have concerns that execution of code representing
system behavior may interfere with the execution of code rep-
resenting specifications. When multi-threaded programs are
considered, this is actually a problem in runtime-monitoring
approaches like jmlc as we explain in greater detail below.
Thus, one might imagine an approach for checking JML with
a model checking engine in which specifications are not in-
serted directly into the system BIR, but instead simple trig-
gering events are inserted that cause the checking of spec-
ifications stored separately from the system BIR (i.e., stop
the state-space exploration, check the specifications, and re-
sume). In fact, Bogor conceptually achieves this form of sep-
aration due to the fact that all system execution is suspended
(i.e., not considered for scheduling) when specifications are
being executed. Moreover, as we explain in Section 4.10, Bo-
gor checks that specifications are pure in the sense that their
evaluation does not produce any visible changes to the state.
Thus, evaluation of the BIR representing specifications will
not interfere with the current state to be used in evaluating
the BIR representing the system.

The key to our implementation strategy is that Bogor is,
in essence, an extensible interpreter in which rich verifica-
tion primitives (e.g., quantification over heap structures) can
be implemented directly using Bogor’s modeling language
extension primitives and in which direct control over action
execution (e.g., scheduling of thread actions) can be obtained
using Bogor’s pluggable state-space exploration engine mod-
ules. To emphasize this point, below we summarize the prin-
ciples of our implementation strategy in which the flexibil-
ity of Bogor is used to implement the verification of a rich
subset of the JML language. In particular, we seek to draw
contrasts with the checking approach of jmlc which most
closely matches the architecture of our model-checking-based
solution. The contrasts that we draw with jmlc stem from
the fact that Bogor provides significant flexibility in terms of
granularity of actions as well as control over when those ac-
tions are scheduled for evaluation in relationship to actions
from other threads. The rest of Section 4 presents a detailed
discussed of how these principles were applied for particular
JML constructs.

Rich verification primitives: jmlc must represent all
verification requirements as regular Java bytecode which has
a fixed granularity. With Bogor, we add primitives to the
modeling language to directly represent almost all JML con-
structs such as quantifications, \reach, \old, etc. Many

of these constructs are difficult to represent using Java byte-
code/assertions. For example, the general form of universal
quantification in jmlc involves instrumenting the Java code
to build extra data structures that hold references to all al-
located objects of a particular type. This is difficult to sup-
port without modifying the Java Virtual Machine. Realizing
the semantics of these constructs inside the Bogor execu-
tion engine itself instead of in the interpreted language also
reduces the interpretive overhead associated with executing
these statements.

Direct access to underlying data structures represent-
ing the heap: When one adds extensions to Bogor’s model-
ing language, the semantics of extensions is implemented by
plugging in code to the Bogor interpretive engine. This code
has full access to Bogor’s internal representations, including
its representation of the heap. Thus, constructs such as uni-
versal quantification and \reach are easily implemented by
walking over the Bogor representation of the current state.

Direct access to state history: The semantics of \old
in which the state of all objects reachable from the argument
of \old must be preserved is virtually impossible to imple-
ment using only bytecode/assertions without modifying the
Java Virtual Machine (e.g., not all Java classes are clone-
able, comparison between cloned objects is problematic due
to mismatches in reference values, etc.). Since Bogor stores
history information, the task of implementing \old in Bogor
is made easier by calling the state history management fa-
cilities in Bogor to re-create relevant portions of a method’s
prestate.

Control of interleaving: In the presence of concurrency,
it is difficult to apply the jmlc approach to implementing
checking of JML pre/post conditions or invariants using byte-
code/assertions since, conceptually, evaluations of these ex-
pressions should happen in a single atomic step. One might
imagine using Java’s locking mechanism to avoid interfer-
ence associated with interleaving of other thread actions dur-
ing the actions of specification checks. However, there are a
number of problems with locking individual objects occur-
ring in the expressions (e.g, undesirable interference can still
occur unless all the objects are locked in a single step). In
Bogor, since extension implementations have complete con-
trol of the Bogor scheduler, other threads can simply be sus-
pended during the evaluation of a specification expression –
which effectively allows the expression to be evaluated in a
single atomic step in relation to other thread actions. Further-
more, it is the direct control of interleaving that allows the
model checking engine to explore all possible schedules for
the program – unlike the relatively low coverage of concur-
rent interleavings obtained by run-time monitoring.

10 Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework

4.2 Translating JML to BIR

In this section, we explain the details of how JML annota-
tions are translated to BIR. Space constraints only allow a
brief overview of the translation. We refer the reader to [33]
for complete JML-annotated source and the BIR code that
results from the translation for all the examples listed in the
experimental studies of Section 5.

Figure 4 shows the translation to BIR code of the method
refactoredExtract() of the linked queue program in
Figure 1. The Java program is translated by a tool called
J2B (Java to BIR) and it is equivalent, instruction by instruc-
tion, to the original program, that is, there is no abstraction
involved. We will be using this figure throughout the next
sections to describe the implementation of several JML fea-
tures. Figure 4 displays only the specification code. These are
the instructions that are added to the generated BIR code to
check JML specifications; the instructions corresponding to
the body of the method have been elided.

Most of the JML annotations are translated to BIR as-
sertions. Some others are translated to specific operators that
have been added as BIR extensions that realize the JML check-
ing algorithm. The assertions are normally inserted in every
method’s pre and poststate, because these are, according to
JML definition, the visible states.

To ensure proper behavior, assertions that correspond to
the same group of checks in the method (e.g. corresponding
to a postcondition, an invariant, etc.) are all grouped together
in a single atomic block. This ensures that the execution of
specification assertions is totally invisible and separated from
the actual system code and does not interfere with the under-
lying model. This is true because no system instructions are
executed while a JML specification is checked and because
JML checks leave the system in the same state as it was be-
fore the check was performed. For example, we can see in
Figure 4 how all the checks for the precondition and invari-
ants have been grouped in a single location: locSpec1.

Further details about the verification code in Figure 4,
with their relationship to the corresponding JML annotations,
will be given throughout the remaining subsections (4.3 to
4.4).

4.3 Lightweight versus Heavyweight Specifications

As explained in Section 2, JML provides two different styles
of specifications, based on their thoroughness: lightweight
and heavyweight specifications. Our framework checks both
types of specification in a straightforward manner because

most specifications are translated to simple assertions (with
the exception of invariants as described in Section 4.7). Lightweight
specifications, which are already assertions, are simply in-
serted in the appropriate position in the BIR code, whereas
the heavyweight specifications, which are usually much more
complex since they involve multiple behavior clauses, are
translated to a sequence of assertions in the BIR code.

4.4 Logic Operations

In this section, we discuss how logic operations are handled
in Bogor. The conventional logic operators of conjunction
(&&), disjunction (||), negation (!), etc., are built in as part
of BIR syntax. However, JML has facilities to define both
universal and existential quantification.

The universal quantification expression \forall(τ X ;
R(X); C(X)) holds true when C(X) is satisfied by all val-
ues of quantified variables X = x1, . . . , xn of type τ that
satisfy the range predicate R(X). Bogor supports bounded
(finite) quantifications over integer types and quantifications
over reference types. Quantifications over reference types are
implemented by collecting the set of reachable τ objects from
all global variables and threads.

The existential quantification expression \exists(τ X ;
R(X); C(X)) holds true if C(X) is satisfied by some values
of quantified variables X = x1, . . . , xn of type τ that satisfy
the range predicate R(X). This quantification is supported
similarly as \forall – values of the associated domain are
considered in sequence until a value is found that satisfies
C(X).

4.5 Heap Object Operations

JML provides a rich set of operators that allow the manipula-
tion of objects stored in the heap. Bogor maintains an explicit
representation of the heap and its contents. Therefore, imple-
menting these operators in Bogor is done by an inspection of
the heap representation. In the following paragraphs, we ex-
plain some of these JML operators and how they have been
easily implemented in Bogor.

\reach(e) gives the objects reachable by following ref-
erence chains originating from e. JML also includes variants
of \reach that filter the objects based on their types and
field navigations [20]. The basic notion of heap reachability
is used extensively in Bogor for partial-order reductions and
thread symmetry reduction as described in Section 3. Given
this existing functionality in Bogor, \reach(e) is easily eval-
uated by calling the appropriate Bogor libraries. The last as-

Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework 11

function { | l inkedqueue . LinkedQueue . re fac to redEx t r ac t () | } ((| l inkedqueue . LinkedQueue |) [| r0 |])
returns (| j ava . lang . Object |) {

(| j ava . lang . Object |) [| r1 |] ; (| l inkedqueue . LinkedNode |) [| $r1 |] ;
(| l inkedqueue . LinkedNode |) [| r2 |] ; Set . type <(| j ava . lang . Object |) > spec1 ;
i n t co l lapsedSta te ;

loc locSpec0 :
do inv is ib le { /∗ noth ing ∗ / } goto locSpec1 ;

loc locSpec1 :
do inv is ib le {

co l lapsedSta te : =
State . getCol lapsedState <(| l inkedqueue . LinkedNode |) > ([| r0 |] . / | l inkedqueue . LinkedQueue . head | \) ;

/ / I n v a r i a n t s
asser t ([| r0 |] . / | l inkedqueue . LinkedQueue . head | \ ! = nul l) ;
asser t ([| r0 |] . / | l inkedqueue . LinkedQueue . l a s t | \ ! = nul l) ;
asser t ([| r0 |] . / | l inkedqueue . LinkedQueue . putLock | \ ! = nul l) ;
asser t ([| r0 |] . / | l inkedqueue . LinkedQueue . wai t ingForTake |\ >= 0) ;
asser t (Set . contains <(| j ava . lang . Object |) >(State . reachSet <(| j ava . lang . Object |) > ([| r0 |]

. / | l inkedqueue . LinkedQueue . head | \) , [| r0 |] . / | l inkedqueue . LinkedQueue . l a s t | \)) ;

/ / Checking o f Frame Cond i t ions
State . en te rAss ignab le () ;
State . addAssignable <(| l inkedqueue . LinkedNode |) > ([| r0 |] . / | l inkedqueue . LinkedQueue . head | \) ;
State . addAssignable <(| j ava . lang . Object |) > ([| r0 |] . / | l inkedqueue . LinkedQueue . head |\

. / | l inkedqueue . LinkedNode . next | \ . / | l inkedqueue . LinkedNode . value | \) ;

/ / F i r s t method ’ s i n s t r u c t i o n . . .
[| r1 |] : = nul l ;

} goto l oc7 ;

. . . // Instructions corresponding to the body of the method

loc locSpec5 :
do inv is ib le {

/ / Last method ’ s i n s t r u c t i o n
[| r0 |] . / | l inkedqueue . LinkedQueue . head | \ : = [| r2 |] ;

/ / End of Frame Cond i t ions Check
State . ex i tAss i gnab le () ;

/ / pos t cond i t i on
spec1 : = State . preVal<Set . type <(| j ava . lang . Object |)>>

(State . reachSet <(| j ava . lang . Object |) > ([| r0 |] . / | l inkedqueue . LinkedQueue . head |\) ,
State . getCurrentThreadId ()) ;

asser t ([| r1 |] = = nul l | | Set . ex is ts2Contex t <(| j ava . lang . Object |) , (| j ava . lang . Object |) ,
Set . type <(| j ava . lang . Object |)>>

(specFun1 , spec1 , [| r1 |] , State . reachSet <(| j ava . lang . Object |)>
([| r0 |] . / | l inkedqueue . LinkedQueue . head | \))) ;

/ / I n v a r i a n t s
asser t ([| r0 |] . / | l inkedqueue . LinkedQueue . head | \ ! = nul l) ;
asser t ([| r0 |] . / | l inkedqueue . LinkedQueue . l a s t | \ ! = nul l) ;
asser t ([| r0 |] . / | l inkedqueue . LinkedQueue . putLock | \ ! = nul l) ;
asser t ([| r0 |] . / | l inkedqueue . LinkedQueue . wai t ingForTake |\ >= 0) ;
asser t (Set . contains <(| j ava . lang . Object |)>

(State . reachSet <(| j ava . lang . Object |) > ([| r0 |] . / | l inkedqueue . LinkedQueue . head |\) ,
[| r0 |] . / | l inkedqueue . LinkedQueue . l a s t | \)) ;

} goto loc13 ;
loc loc13 :

do { /∗ noth ing ∗ / } return [| r1 |] ;
}

fun specFun1 ((| j ava . lang . Object |) n , (| j ava . lang . Object |) r ,
Set . type <(| j ava . lang . Object |) > s) returns boolean =

n instanceof (| l inkedqueue . LinkedNode |) ?
(((| l inkedqueue . LinkedNode |)) n) . / | l inkedqueue . LinkedNode . value |\ == r &&

! (Set . contains <(| j ava . lang . Object |) >(s , n)) : fa lse ;

Fig. 4. Specification check code for method refactoredExtract() of the Linked Queue example

12 Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework

sertion at locSpec5 in Figure 4 illustrates how those library
routines are exposed as BIR extensions.

\lockset gives all the objects locked by the current
thread. The notion of lock set is already used in Bogor’s par-
tial order reductions as well, and just as with \reach, it can
be implemented by calling the existing Bogor libraries.

4.6 Checking Pre and Postconditions

The JML constructs requires, ensures and signals
are used to specify preconditions, normal postconditions, and
exceptional postconditions, respectively. Normal postcondi-
tions are checked on method exits caused by executing a return
bytecode in Java, and exceptional postconditions are checked
on exits caused by an uncaught exception. As described ear-
lier, we check preconditions for a thread t entering a method
m when t’s program counter (PC) is at the first bytecode in-
struction of m. The Bogor representation of the precondition
is wrapped together with the representation of the first byte-
code of the method in a Bogor atomic block, which guar-
antees that no interleaving can occur from the start of the
checking until after the completion of the first byte code.
This is illustrated in location locSpec1 of Figure 4: all the
assertions to check the precondition and class invariants are
grouped in the same location, together with the first method’s
instruction. As mentioned earlier, all instructions in the same
location are executed atomically without any interleaving.

For normal postconditions, the following instructions are
grouped in a Bogor atomic block: the return expression (if
it exists) is evaluated and the resulting value is assigned to
a temporary variable, the postcondition is evaluated (occur-
rences of \result yield the value held in the temporary
variable), and the return control action is executed. Without
this encoding (e.g., [4]), spurious errors might be reported,
for example, if a put call is interleaved after a call to isEmpty
(in Figure 1) returns true, but before the postcondition. For
exceptional postconditions, we take advantage of Bogor’s built-
in exception tables (following the same structure as Java byte-
code). In a single atomic block in the exception handler, the
exception is caught, assertion is checked, and then the excep-
tion is re-thrown. Figure 4 does not show the check of excep-
tional conditions, but it does show at location locSpec5,
how the last instruction of the method is aggregated with the
checking of the postcondition.

4.7 Checking Invariants

A JML invariant is checked in “visible states” as de-
scribed in Section 2. Note that this means that the notion

of invariant in JML is relaxed with respect to the notion of
invariant used in model checking and other formal methods
where invariants are required to hold in every state. Also, in
JML at every visible state the invariant for all the objects
present in the heap are checked; this can be very expensive.
We make the observation that given modern programming
practice most methods will only modify a very small por-
tion of the program heap. Therefore, a naive enforcement of
JML invariants would waste considerable effort in checking
invariants on objects that have not changed their state.

Based on this observation, our framework reduces the num-
ber of objects on which invariants are checked at visible states,
such that only instances of class C are checked at the vis-
ible states of methods belonging to C. This is problematic
only for classes that have public fields that are written di-
rectly by methods defined in other classes. Conceptually, we
address this problem by treating public field writes as calls to
implicit set methods and we extend Bogor to trigger invari-
ant checking at points that correspond to the visible states of
those calls.

Figure 4 illustrates this approach using the invariants for
the method refactoredExtract(). We recall from Fig-
ure 1 the assignable clause for this method:

/ /@ a s s i g n a b l e head , head . n e x t . v a l u e ;

head is a local field, and value is a field of the object re-
turned from head.next, which is of type LinkedNode,
which is a class that has no invariants. Hence, in this method
we only check the invariants of the class LinkedQueue.
The corresponding invariant checks can be seen in Figure 4
at locations locSpec1 and locSpec5. Note that invari-
ant checks are inserted at the beginning and at the end of the
method. The check for the first three invariants is straightfor-
ward: just an assertion with the corresponding boolean ex-
pression. The last assertion, however, which corresponds to
the invariant:

/ /@ i n s t a n c e i n v a r i a n t \ reach (head) . has (l a s t) ;

is more interesting because it involves a complex heap manip-
ulation operator (\reach). This is a structural consistency
property and states that the bottom of the list is always reach-
able from the head of the list (remember that this is a linked
list).

4.8 Checking Postconditions Involving \old and
\fresh Operators

When the construct \old(e) appears in the postcondition of
a method m, it yields the value of the expression e evaluated

Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework 13

in the prestate of m. We will discuss the evaluation of this
construct in detail; the issues encountered are representative
of the interesting challenges that one faces when trying to
implement the semantics of a number of JML constructs. In
run-time monitoring, one strategy for providing some level
of checking for an \old construct appearing in a postcondi-
tion p of a method m is to: (a) store the value of e in a spe-
cial local variable ve when entering m, and then, (b) replace
\old(e) with ve in p [4]. When the expression e includes ob-
ject references, this approach can require storage of all heap
data reachable from e in the prestate, and this could well be a
substantial portion of the prestate heap.

In a concurrent setting, an additional complication arises
since there can be multiple prestates associated with a partic-
ular poststate of m. For example, when a thread t is ready
to execute method m, but before t enters m, one or more
actions from other threads may be interleaved — yielding a
succession of states where entrance of t into m could occur
from any one of these. While achieving coverage of all of
these interleavings is problematic for run-time monitoring, a
model checker explores all interleavings of threads, thus, it
can naturally check a postcondition with respect to all asso-
ciated prestates.

Since an explicit-state model checker such as Bogor stores
all states, one might think that when arriving at an instance
of \old in a postcondition, we can simply retrieve the ap-
propriate prestate from the model checker’s depth-first-stack
of visited states to evaluate the \old expression. However,
we explain in detail below that it is necessary to store addi-
tional information of the method’s prestate during its execu-
tion to ensure that postconditions are evaluated for all appro-
priate states. Without storing additional information about the
prestate to appropriately distinguish method execution states
with different values of \old, some contexts in which the
postcondition must be checked might be missed because the
model checker may end up hitting a state stored in the model
checker’s seen-before-set of states (and thus backtrack) be-
fore it reaches the points of a method where postconditions
are checked (and this may happen even though the prestates
are different).

Figure 5 presents an example to illustrate this issue. The
figure gives a fragment of Java with a simple postcondition
and the state-space constructed by Bogor using a depth-first
search state exploration with two instances of the Race thread.
For simplicity, the state is illustrated by a state vector con-
taining four integers: (1) the value of the static variable x, (2)
the PC of the main thread, (3) the PC of the first instance of
Race, and (4) the PC of the second instance of Race. We
denote the PC of threads at locX as the integer X . The first

c l a s s RaceDr ive r {
p u b l i c s t a t i c f i n a l main (S t r i n g [] a r g s) {

Race r1 = new Race () ;
Race r2 = new Race () ;
r1 . s t a r t () ;
r2 . s t a r t () ;

}
}

c l a s s Race ex tends Thread {
p r i v a t e s t a t i c i n t x ;

p u b l i c vo id run () {
l o c 1 : x = 0 ;
l o c 2 : foo () ;

}

/∗@ e n s u r e s
@ \o l d (x) = = 0 ;
@∗ /

p r i v a t e vo id foo () {
l o c 3 : x = 1 ;
l o c 4 : re turn ;

}
}

〈0, 0, •, •〉

��
〈0, •, 1, 1〉

vvllll
l

jj〈0, •, 2, 1〉

vvmmmm
m

((RR
RR

R

〈0, •, 3, 1〉

vvllll
l

((RR
RR

R
〈0, •, 2, 2〉

��
pp〈1, •, 4, 1〉

�� ((RR
RR

R
〈0, •, 3, 2〉

�� ((RR
RR

R

〈1, •, •, 1〉

��

〈0, •, 4, 2〉

vv ��

〈1, •, 4, 2〉

�� ((RR
RR

R
〈0, •, 3, 3〉

�� ��
〈0, •, •, 2〉

��

〈0, •, 4, 3〉

vv ��

〈1, •, •, 2〉

��

〈1, •, 4, 3〉

]]

vv
〈0, •, •, 3〉

��

〈1, •, 4, 4〉

pp
��

〈1, •, •, 3〉

hh〈1, •, •, 4〉

��
〈1, •, •, •〉

Fig. 5. Race Example and its DFS state-space

location of the main thread is loc0. We use • to denote the
PC of a thread that has died or has not been created yet. For
transitions between state vectors, a straight arrow denotes an
atomic step in the model checker, and a dotted arrow denotes
an atomic step that causes the model checker to backtrack
because it has seen the destination state (i.e., the destination
state is stored in the model checker’s seen-before-set).

To reduce the state-space of the example, we use the thread
symmetry and partial-order reduction techniques described in
Section 3. Thread symmetry causes, for example, the state
〈0, •, 1, 2〉 to be considered equivalent to the state 〈0, •, 2, 1〉.
Partial-order reduction causes all the transitions of the main
thread to execute without any interleaving of the newly cre-
ated Race instances. Note that the reductions do not affect
the result of checking the postcondition; the problem that we
are presenting also occurs in the unreduced state-space.

In our implementation strategy for checking postcondi-
tions, the execution of a return statement is aggregated
with the transition that checks the postcondition so that the
two transitions are executed in a single atomic transition. Thus

14 Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework

in the example of Figure 5, the postcondition \old(x) ==
0 is checked immediately following the execution of the return
statement at loc4.

The following trace through the state-space of Figure 5
violates the postcondition:

〈0, 0, •, •〉 → 〈0, •, 1, 1〉 → 〈0, •, 2, 1〉 → 〈0, •, 3, 1〉 → 〈0, •, 3, 2〉 →

〈0, •, 3, 3〉 ...> 〈1, •, 4, 3〉 ...> 〈1, •, •, 3〉 ...> 〈1, •, •, 4〉 ...> 〈1, •, •, •〉

Specifically, at step 〈1, •, •, 4〉 ...> 〈1, •, •, •〉 the postcondition
will fail to verify because the value of x at one of the prestates
of the second instance of Race (i.e., 〈1, •, •, 3〉) is non-zero.
However, this violating trace is not found by the state space
exploration because the atomic step 〈0, •, 3, 3〉 ...> 〈1, •, 4, 3〉 causes
Bogor to backtrack as it has already seen the state 〈1, •, 4, 3〉

from a different trace. Thus, the subsequent steps (including
the postcondition check) in the error trace are not encountered
in the state-space exploration.

The problem here is reminiscent of issues associated with
temporal logic model checking in which state information as-
sociated with the property being checked needs to be added
to system state information to ensure complete checking with
respect to the property being considered [5, p. 122]. We solve
the problem in a similar way by identifying a portion of the
prestate that can be used to distinguish identical poststates
that are arrived at from different prestates; it suffices to con-
sider the set of objects reachable from references that are vis-
ible in the prestate. This calculation can be performed effi-
ciently in Bogor because: (1) as discussed Section 3, Bogor
employs collapse compression techniques that reuse repre-
sentations of objects from previous states when storing a new
state, and (2) we can augment the thread state that will ex-
ecute the postconditions containing \old(e) by a collapsed
state fragment that encodes the relevant prestate objects. Con-
ceptually, our approach is analogous to adding the collapsed
prestate fragment as a local variable of the method, for exam-
ple,

p r i v a t e vo id foo () {
i n t c o l l a p s e d S t a t e = Bogor . g e t C o l l a p s e d S t a t e (e) ;
l o c 3 : x = 1 ;
l o c 4 : re turn ;

}

where methodBogor.getCollapsedState(e) returns
the unique collapsed state id of the object referred to by e (and
all objects reachable from e). Intuitively, this makes identical
poststates that derive from different prestates (with respect to
e) distinguishable from each other. In general, this addition
to the state space might cause significant increase in check-
ing time and space, but as our experimental evaluations in
Section 5 demonstrate, this can be mitigated through the use
of reduction techniques that detect and exploit atomic method

execution as determined by partial order reductions [14]. These
reductions prevent interleaving in sequences of bytecodes that
are independent of bytecodes from other threads – causing the
sequence of bytecodes to execute in a single atomic step. The
lack of interleaving enables our POR framework to employ
an additional optimization: instead of storing the intermedi-
ate states when executing an atomic bytecode sequence, we
only store the final state produced at the end of the atomic
sequence. For methods whose bodies consist entirely of inde-
pendent actions, the atomic block runs from the precondition
through the postcondition. This means that the fingerprints
of the relevant prestate that would normally be recorded are
never stored in a state since they are consumed in the postcon-
dition before a state is stored at the end of the atomic block.

Now let us describe how the concept above is actually im-
plemented at the BIR level. The post condition of refactoredExtract()
from Figure 1 is:

/ /@ e n s u r e s \ r e s u l t == n u l l | | (\ e x i s t s LinkedNode n ;
/ /@ \o l d (\ reach (head)) . has (n) ;
/ /@ n . v a l u e == \ r e s u l t
/ /@ && !(\ reach (head) . has (n))) ;

The second condition in the disjunct makes a reference
to the prestate value of all the objects reachable from head.
Thus, we need to store, at the beginning of the method, the
collapsed portion of the heap that is relevant for this prop-
erty — in this case, the portion of the heap reachable from
head. For this, we extend BIR with a function that, given a
reference, returns the collapsed encoding of the heap reach-
able from the reference argument. Figure 4 illustrates the use
of this extension function in the first instruction of location
locSpec1 to store the collapsed heap ID in the local vari-
able collapsedState.

We now turn to the issue of how to evaluate the argu-
ments of \old constructs when evaluating postconditions.
We have described above how we save the collapsed (i.e.,
optimized, compacted) representation of \old argument val-
ues in the state vector being used to evaluate a method. One
might imagine using those saved collapsed values to directly
evaluate the arguments of \old constructs. We avoided this
approach for two reasons. First, the Bogor API for the state
manager component does not provide a method mapping from
a compressed state to an uncompressed state by default (i.e.,
it is not mandated by the API) to allow flexibility of usage of
various kinds of loss-less and lossy compression (e.g., hash-
ing using MD5) algorithms. Second, and most importantly,
uncompressing states that have been generated by a sophisti-
cated compression algorithm, such as our implementation of
collapse compression, can be very expensive. Thus, uncom-

Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework 15

pressing states is avoided so as to not further increase the cost
of model checking.

Therefore, we take a different approach for retrieving the
values from the prestate needed to evaluate the arguments of
\old. In essence, when evaluating the postcondition, we use
the existing model checker infrastructure for undo-ing state
transformations to back up to a prestate, and the \old ar-
guments are evaluated in that state. We abstract the steps
required for this by introducing another extension function
called State.preValwhose use is illustrated in the imple-
mentation of postcondition evaluation in Figure 4. Given the
representation of an expression to evaluate,State.preVal
calculates the prestate value by using the backtracking facili-
ties of Bogor: starting at the poststate, it clones the state and
backtracks to the prestate, evaluates the expression, and re-
turns the result of the evaluation (and throws away the cloned
and the backtracked state). This result value is stored in a
temporary variable (spec1 in Figure 4) and then used sub-
sequently in the postcondition checking.

An alternate implementation strategy would be to propa-
gate forward from method entry the required uncompressed
prestate values for evaluating \old in postconditions. How-
ever, a preliminary investigation of this strategy indicated that
it would be more expensive because not all traces beginning
from the method entry will be fully explored up to the method
exit where the postcondition is checked; Bogor may back-
track earlier because it has seen the middle states. By em-
ploying the backing up strategy described above, we ensure
the prestate is queried only when it is actually needed. In ad-
dition, in a multi-threaded program, Bogor may check sev-
eral methods at the same time. This means that in some cases
memory consumption is larger due to the forward propaga-
tion of several prestates. In the backward approach, this is
always done one method at a time, on-demand basis.

JML’s \fresh(x1, . . . , xn) operation requires that, at the
poststates of a method m, variables xi are non-null and the
objects bound to xi are not present in any of the prestates of
m. For \fresh, we explicitly store newly allocated object
references in a method local variable to minimize the stored
state information, since the number of allocated objects in a
method activation is usually significantly smaller than the set
of all objects in the prestate. To handle method call chains
(a method calls a method that allocates an object to a refer-
ence declared fresh by the first method), we use an approach
similar to the one used to check frame conditions that is de-
scribed in the next sub-section: a method that declares some
fresh variable, instructs the model checker to create a set (the
fresh set) to keep track of newly allocated objects, and which
is passed down the call chain.

4.9 Checking Frame Conditions: The assignable
Clause

The assignable ap1, . . . , apn annotation for a method m

specifies that the field/variable given by the access path api

can be assigned during the execution of m. According to
the JML definition, each access path api must have the form
x.f1 . . . fk, where fi is either a field or an array access, and
where k > 0; access paths with null-prefixes are ignored.

The assignable clause is difficult to check without being
overly conservative due to the presence of aliasing, and con-
sequently many tools simply avoid this check. Since Bogor
is an explicit-state model checker, its explicit representation
of the heap has complete alias information. Thus, it can de-
cide precisely whether an assignment satisfies the assignable
clause. When an assignable clause is specified for an access
path x.f1 . . . fk, we extend Bogor so that it records that the
field fk of the object represented by x.f1 . . . fk−1 (when en-
tering m) may be assigned during the execution of m; any
assignment to the heap in the body of the method that has not
been thusly recorded is flagged as an error.

In addition, for nested method calls, the semantics of the
assignable clause requires that the sets of assignable lo-
cations of a nested method are a subset of those for any en-
closing method. Again, Bogor can easily check this on-the-
fly since its explicit heap representation keeps precise alias
information.

The mechanism for checking frame conditions with Bo-
gor is illustrated in Figure 6. To control and monitor the as-
signments to any portions of the heap we needed to modify
the behavior of the module that takes care of performing these
assignments. This module is the IActionTaker (shown in
Figure 2), which interprets BIR actions (i.e., commands). We
modified this module to implement the stack-like mechanism
shown in the figure.

Basically, the information about which variables can be
assigned to, at any given moment, are maintained in a per
thread stack data structure. Each level of the stack corresponds
to the frame conditions of a specific method and the depth of
the stack is the depth of the method calls chain. Every time an
assignment is made, there is a check to verify that the mem-
ory location is in the stack. Only the top level is inspected be-
cause Bogor enforces the following correctness condition on
the stack: the set of memory locations at any level of the stack
(the memory locations that can be assigned by the method as-
sociated with the frame) must be a subset of the set of mem-
ory locations of the stack level immediately below, with the
exception of the bottom level which has no restrictions. If this
condition is violated for any method, an error message is re-

16 Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework

a , b

a , b

invoke method1()
//@ assignable a,b;

a , b
 a

//@ assignable a;
invoke method2()

State of Assignable Stack Methods Call Chain

return method2()

return method1()

Fig. 6. Mechanism used to check frame conditions in Bogor.

ported. This enforces the JML restriction that a method m1

cannot call another method m2 that assigns to locations not
listed in m1’s assignable clause.

This mechanism is implemented in BIR using a set of ex-
tension operators. We can see in Figure 4 how the verifica-
tion of frame conditions is translated to BIR. First, in location
locSpec4 we see the following instructions:

State . en te rAss ignab le () ;
State . addAssignable <(| l inkedqueue . LinkedNode |) > (. . .) ;

The first instruction is executed to inform to the extended
IActionTaker that a new stack level must be allocated.
The second instruction is used to add objects to the assignable
list of this method. These instructions should be executed at
the beginning of the method, before the body of the method
starts executing. Finally, when the method finishes, we let
the IActionTaker know that this method has finished, so
the frame conditions for this method can be popped from the
stack, as seen in location locSpec5:

State . ex i tAss i gnab le () ;

At this point all the information corresponding to the frame
conditions for the method are eliminated and what is left
is the assignable memory locations from methods up in the
method call chain. This instruction is inserted, of course, af-
ter all the method body instructions have been executed.

4.10 Methods in JML Expressions

It is convenient to allow JML expressions to invoke Java meth-
ods as “helper expressions”. Semantically, this is only sound
if the method does not change the observable state. The method

annotation pure declares that a method m is side-effect free.
The JML definition of pure is that m does not diverge and its
assignable clause is empty. Note that this definition does not
allow methods annotated as pure to synchronize on objects as
this would represent a modification of an object’s lock state.
For example, the isEmpty method in Figure 1 cannot be
declared as a pure method. However, it would be useful to
consider methods such as isEmpty as pure, as discussed
in [21].

To address this, we introduce the notion of weak purity.
The intuition is that a weakly pure method can contain as-
signments (e.g., to local variables or newly allocated objects
that do not escape the method) as long as the state observed
by other threads does not change. In other words, in a con-
text in which the method is executed without any interleaving,
the poststate of the method should be identical to the prestate
(modulo differences in the PC for the executing thread).

Using this definition, the isEmpty method can be con-
sidered as weakly pure. This condition can be checked in
Bogor by comparing the prestates and poststates of methods
as they are called. We implement and use this kind of weak
purity in our framework in order to be able to call methods
such as isEmpty from within JML expressions. This can
be done because of the non-interfering property between the
verification of the specification of a system and the execution
of the system itself, described in Section 4.2. That is, even
if isEmpty has temporary side effects (i.e., the lock is ac-
quired), these effects are invisible to the system as long as the
initial state is restored after isEmpty has finished execution,
because no other thread is interleaved with the execution of
specification checks.

5 Evaluation

This section overviews the methodology and important is-
sues that need to be considered in practical application of our
framework and then provides a summary of the performance
of the framework on a collection of Java programs.

5.1 Tool Methodology

The exhaustive exploration of a system’s state space inher-
ent in model checking makes it difficult to scale to large sys-
tems. Many researchers believe that it is most natural to ap-
ply model checking to software units, or modules, instead of
whole systems. Specifically, software model checking is of-
ten envisioned as part of a development and quality assurance

Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework 17

methodology in which it is incorporated with unit testing.
When model checking a software unit, one typically desires
to specify/check as much of the unit’s behavior as possible in
the hope of detecting as many bugs as possible.

To apply model checking to software units (with or with-
out JML specifications), a developer needs to follow an ap-
proach that is similar in many respects to the steps involved
in traditional unit testing. In unit testing, one develops a test
harness that makes method calls into the unit for specific sets
of parameter values and examines the results of the method
calls for invalid results (indicating failed test). When apply-
ing model checking to software modules, one must similarly
use a test harness (also termed a closing environment or an
environment) to drive the unit through particular execution
paths. The scale and complexity of a software unit’s inter-
face may vary greatly: a unit may consist of multiple classes
and interfaces that expose fields and methods through a va-
riety of mechanisms, such as, reference, method call, inheri-
tance and interface implementation. Consequently, a general
test harness for a unit must be designed to accommodate all
legal modes of external interaction. The environment will se-
quence those interactions to represent the behavior of pro-
gram contexts in which the unit will be used in a larger piece
of software.

It is important to note that for theorem-proving-basedJML
checking tools like ESC/Java and LOOP, verification of a
method’s behavior against a JML specification proceeds, at
a conceptual level, by assuming the precondition and show-
ing that the postcondition of a method is satisfied. This en-
sures that method is verified against the JML specification for
any context in which the method could ever be called. Thus,
method preconditions (along with class invariants) effectively
describe the set of program states against which method bod-
ies will be verified, and when the tool reports that a software
unit is “verified”, the user can conclude that a method’s post-
condition will be satisfied for all method prestates that satisfy
the method’s precondition.

In contrast, with a model checking or run-time monitor-
ing approach to JML verification, JML specifications for a
method are not checked against all possible states that satisfy
the precondition nor against all possible invocation contexts,
but only for the invocation contexts and method prestates gen-
erated by the given test harness that happen to satisfy method
preconditions. Thus, when the tool reports that a software unit
is “verified”, the user cannot conclude that a method’s post-
condition will be satisfied for all method prestates that satisfy
the method’s precondition, but only for the states generated
by the given test harness and filtered by method precondi-
tions. However, a key difference between run-time monitor-

ing and model checking in this context is that model checking
will explore all concurrent interleavings generated by the test
harness whereas run-time monitoring will only explore one
trace for each verification run.

Various abstraction techniques such as counterexample
guided predicate abstraction refinement are often used in soft-
ware model checking [1,15]. While those techniques have
been applied with good success for verifying simple temporal
safety properties in the context of sequential C programs with
relatively little heap-allocated data, they have yet to be effec-
tively applied in the context of concurrent software with large
amounts of heap data and rich behavioral specifications such
as those one typically encounters in JML-annotated Java pro-
grams. Thus, our approach to obtaining tractable state spaces
focuses on bounding the program’s behavior in various ways.
This includes limiting the number of threads and size of data
structures generated in test harnesses, selectively introducing
representative data elements for contents of data structures,
and bounding the ranges of integer variables. Of course, this
type of bounding also limits the range of behaviors for which
the software unit is checked. Thus, there is a delicate balance
in constructing test harnesses and model bounds so that a
wide range of system behaviors are checked while construct-
ing the space, enough to yield tractable checking.

In conclusion, our JML checking approach targets devel-
opers who are interested in automated methods for finding
bugs by checking rich JML specifications against program
modules written in full featured multi-threaded Java where
the modules being checked are of the size typically consid-
ered in unit testing. Section 6 provides a broader discussion of
the trade-offs between existing approaches to checking JML
specifications.

5.2 Experiments

We applied Bogor to reason about six Java programs, most
of which are multi-threaded and manipulate non-trivial heap-
allocated data structures. Table 2 reports several measures
of program size: loc is the number of control points in the
source text, threads is the number of threads of control in
the instance of the program, and objects is the maximum
number of allocated objects on any program execution. All
programs were annotated with JML invariants, pre/postcon-
ditions, and assignable clauses; the table highlights the chal-
lenging features used in the specifications for each program.
We report the number of states visited during model checking
as well as machine dependent measures, the run-time in sec-
onds and memory in mega-bytes of RAM, for each version of

18 Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework

Program POR and JML POR and no JML no POR and JML no JML and no POR

BoundedBuffer[13] 164 loc \fresh, \old, signals
3 threads 69 states 69 states 2647 states 2647 states

10 objects 1 sec/0.8 MB 1 sec/0.6 MB 4 sec/1.2 MB 3 sec/1.0 MB
7 threads 1098 states 1098 states 1601745 states 1601745 states

18 objects 26 sec/1.2 MB 23 sec/1.0 MB 8936 sec/180.2 MB 8458 sec/167.7 MB

DiningPhilosopers[13] 193 loc \forall, \fresh
4 threads 38 states 38 states 12514 states 12514 states
6 objects 1 sec/1.1 MB 1 sec/0.7 MB 27 sec/2.5 MB 20 sec/2.0 MB
6 threads 1712 states 1712 states 1939794 states 1939794 states
8 objects 32 sec/2.3 MB 24 sec/1.8 MB 9571 sec/159.9 MB 8719 sec/157.6 MB

LinkedQueue[19] 228 loc \fresh, \reach, \old, signals, \exists
3 threads 2833 states 1533 states 17064 states 11594 states

22 objects 10 sec/1.6 MB 5 sec/1.0 MB 38 sec/3.7 MB 21 sec/2.3 MB
5 threads 39050 states 12807 states 1364007 states 423538 states

32 objects 144 sec/5.9 MB 72 sec/2.5 MB 14557 sec/140.5 MB 2415 sec/46.4 MB

RWVSN[19] 227 loc \old
4 threads 183 states 183 states 2621 states 2255 states
5 objects 1 sec/1.0 MB 1 sec/0.8 MB 2 sec/1.5 MB 2 sec/1.0 MB
7 threads 18398 states 18398 states 4995560 states 4204332 states
9 objects 185 sec/6.8 MB 144 sec/3.0 MB 34804 sec/463.7 MB 26153 sec/366.3 MB

ReplicatedWorkers[8] 543 loc \fresh, \old, \reach
4 threads 1751 states 1751 states 322016 states 269593 states

19 objects 14 sec/2.1 MB 13 sec/1.9 MB 897 sec/29.8 MB 716 sec/26.6 MB
6 threads 10154 states 10154 states 12347415 states 10016554 states

21 objects 99 sec/3.3 MB 92 sec/2.8 MB 30191 sec/391.8 MB 21734 sec/282.5 MB

java.util.Arrays.sort(Object[]) 151 loc \forall, \exists, \old
1 thread 2 states 2 states 21597 states 21597 states

502 objects 82 sec/2.0 MB 7 sec/1.9 MB 391 sec/49.5 MB 343 sec/48.8 MB

Table 2. Checking time/space for JML Annotated Java Programs

the example programs; data was gathered running Bogor un-
der JDK 1.4.1 (32-bit mode) on a 2 GHz Opteron with maxi-
mum heap of 1 GB running Linux (64-bit mode).

In the following subsections, we give a brief description
of each of the six programs used in the experiments and the
driver used to perform each experiment. As mentioned be-
fore, Table 2 gives details about further configuration of the
test drivers: number of threads and number of objects. We
also give an overview of the kind of properties verified in
each system. Source code and BIR models for all the experi-
ments can be found in [33].

5.3 BoundedBuffer

This program is an implementation of a concurrent buffer,
using a fixed size array, obtained from [13]. The program has
four classes: BoundedBuffer, Consumer, Producer,
and ProducerConsumer.

The main class is BoundedBuffer. This class has a
constructor that initializes the underlying array to the initial

bound (the number of slots). The class declares two methods:
deposit(Object) and fetch() which are used to in-
sert and extract objects to/from the array, respectively. These
methods are synchronized and implement a blocking policy.

The Consumer and Producer classes just implement
threads that fetch and deposit objects from/to the buffer, re-
spectively. Finally, the ProducerConsumer class just ini-
tializes several threads of each type and starts the run.

The specifications in this program are mostly located in
BoundedBuffer and focus on checking frame conditions
(assignable) and structural invariants, such as checking
that the size of the buffer always keeps between bounds.

5.4 DiningPhilosophers

This is an implementation of the dining philosophers problem
obtained from [13], with just three classes: DiningServer,
Philosopher, and DiningPhilosophers.

The DiningServer class can be thought of as provid-
ing the dining table: it provides the abstraction of the number

Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework 19

of forks and keeps track of their state (held or free). It also
provides functions for picking up and releasing the forks. The
Philosopher class implements a thread that interacts with
the server, always trying to pick up the forks, and going into
a thinking state if it cannot do so. DiningPhilosophers
is the driver class: it initializes the philosophers and starts the
run.

The specifications in this program have to do mostly with
correctness invariants, for example, the philosophers cannot
be eating all at the same time, two adjacent philosophers can-
not be eating at the same time, and in order to pick up a fork
it must be free.

5.5 LinkedQueue

This program has already been described in Section 2, so
we only briefly describe some other details in this section.
There are three classes:LinkedQueue, LinkedNode, and
LinkedQueueDriver.

The LinkedQueue class has already been explained with
detail in Section 2. The class LinkedNode provides the
node structure for the linked list used by the queue. Finally,
the LinkedQueueDriver is the driver class: it initializes
a group of threads that insert and remove elements to/from
the queue, and starts the run.

5.6 RWVSN

This program is an implementation of a readers-writers lock
obtained from [19]. The program has four important classes:
RWVSN, Reader, Writer, and RWVSNDriver.

The RWVSN class implements the readers-writers lock.
Reader and Writer implement threads that try to read and
write to the resource protected by the readers-writers lock,
respectively. RWVSNDriver is the driver class that starts a
group of reader and writer threads, on the same resource, and
starts the run.

The specifications for this program include the normal
global invariants for a readers-writers lock, for example, at
all times there is at most one writer accessing the resource,
and if there is a writer accessing the resource no readers can
be accessing it.

5.7 ReplicatedWorkers

This program provides an abstraction to implement a set of
threads that perform a given task according to a given policy
that all the threads follow (hence, replicated worker threads).

This program was obtained from [8]. The program has a to-
tal of 16 classes, of which we only list the most important
ones: ReplicatedWorkers, Coordinator, Worker,
and BasicRWTest.

The ReplicatedWorkers class is a factory for cre-
ating, initializing, executing and terminating a parallel com-
putation that is factored into a collection of identical sub-
computations operating on partitions of data. The class Worker
encapsulates the sub-computation to be performed on a data
partition. The Coordinator class controls the dispatch of
data partitions to worker threads and the accumulation of re-
sults returned from those threads. Finally the BasicRWTest
class is a driver class that initializes a set of workers with a set
of initial tasks, and starts the run. For more details we refer
the reader to [8].

The specifications in this program are focused on syn-
chronization behavior and global invariants based on the syn-
chronization policy.

5.8 java.util.Arrays.sort(Object[])

We wanted to try the technique on a sorting algorithm, and
we picked Java’s array sort function which is a sequential
method. Even so, it shows the kind of powerful specifications
that can be written in JML.

This test has only one class: ComparableSort. This
class is a driver that allocates an array with elements unsorted,
and then calls the sort method on the array.

The specifications for this method include structural con-
sistency properties on the array, such as, the element count is
the same at the beginning and at the end, and the elements in
the array are the same elements that the array had before the
sort. There are also specifications of the sorting property: at
the end, the elements are sorted in non decreasing order.

5.9 Discussion

For each program version, we ran model checks for each of
the four combinations of object-sharing based partial order
reductions (POR) and JML checking features. By compar-
ing runs with and without JML checking, one can determine
the overhead of JML checking. For half of the examples, re-
gardless of the use of reductions, the use of potentially prob-
lematic features like \old and \fresh yields no significant
overhead for JML checking. Without POR, however, there
is non-trivial overhead for three of the six programs; in the
worst-case, LinkedQueue, space consumption increased by a
factor of three and time by a factor of six. This is not unex-
pected since the JML specifications for LinkedQueue contain

20 Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework

\reach expressions within a \old; consequently nearly all
of the prestate heap must be used to distinguish poststates.
Comparing runs with and without POR reveals the significant
benefit of sophisticated POR; it yields between 2 and 4 order
of magnitude reductions in the size of the state space on our
set of example programs. Furthermore, the use of POR signif-
icantly mitigates JML checking overhead. For the worst-case
example, run-time overhead is reduced from a factor of six to
a factor of two. For the RWVSN and ReplicatedWorkers, the
fact that these programs have methods with atomic execution
behavior allows our POR to eliminate nearly all of the JML
checking overhead. Only when methods are not atomic does
JML checking suffer significant overhead.

The increase in complexity of JML brings an increase
in the possibility of making errors in writing specifications.
In the presence of concurrency, it is not uncommon to make
subtle errors in defining the intended behavior of a class or
method. We experienced this in annotating several of the ex-
amples used in our study. As has been observed by others, we
found that the generation of counterexamples proved to be
extremely useful in debugging erroneous specifications. The
exhaustive nature of the search in model checking makes it
a more effective specification debugging tool than run-time
checking.

We included a standard comparison sorting program in
our set of examples to illustrate Bogor’s behavior on a declar-
ative JML specification of a rich behavioral property (i.e.,
the poststate is an ordered permutation of the prestate). De-
spite the richness of this specification, because of the singly
threaded nature of the program the method trivially executes
atomically, thus, there is no overhead for JML checking. Our
on-the-fly atomic block detection algorithm dramatically re-
duces the number of states, memory and time required for
analysis since it defers the storage of a global state until the
current thread reaches a point where it modifies data that
can be observed by another thread. Since there are no other
threads, this only happens at the final program state, hence
the second state.

6 Related Work

Burdy et. al. [3] survey the steadily growing body of tool sup-
port for reasoning about JML specifications. In general, there
are three underlying technologies used in these tools: semi-
automated theorem proving, automated decision procedures,
and run-time monitoring. These technologies have different
advantages and disadvantages which we assess along four di-
mensions:

Automation/Usability How much effort is needed to use the
technology or tool?

JML Coverage How much of the JML language is supported?
Behavior Coverage How much of a program’s behavior is

considered in reasoning?
Scalability How does reasoning cost grow with system size

and complexity?

In this section, we characterize the strengths and weaknesses
of the basic technologies in terms of these dimensions. While
we cite specific tools that implement JML reasoning with
those technologies, the strengths and weaknesses mentioned
are, for the most part, characteristics of the underlying tech-
nology. We note that despite their weaknesses, each of these
techniques and associated tools is useful in that they have
been used effectively on real Java programs.

LOOP [38] is the most mature theorem-prover-basedJML
reasoning system. It translates JML specifications and Java
source code into proof obligations for the theorem prover
PVS [24]. Thus, the semantics of the Java code as well as
JML specifications are represented as PVS theories, and users
verify specifications against the Java code by interacting with
the PVS command-line interface to discharge the generated
proof obligations. LOOP is difficult for novices to use since it
requires detailed knowledge of logical representation of Java
semantics. Recent advances in LOOP’s weakest-precondition
calculus allow methods with straight-line code performing in-
teger calculations to be verified with little or no user inter-
vention by leveraging the underlying numerical procedures
of PVS. LOOP scales poorly to general Java applications due
to the complexities of its logical treatment of aliasing. With
sufficient expertise, however, LOOP allows very strong cor-
rectness properties to be established with the highest-possible
degree of confidence.

ESC/Java [10] is another decision-procedure-based tool
for a subset of JML. ESC/Java allows the user to work at the
Java level by encapsulating the translation of verification con-
ditions to an underlying decision procedure. It gains a high
degree of automation by treating a small subset of JML and
by sacrificing soundness in the results of its analysis. ESC/-
Java targets the efficient, automatic checking of null refer-
ences and simple integer properties (e.g., array bounds vio-
lations), but does not support richer properties, for example,
those that require quantification over class instances or any
of JML’s heap related primitives. It uses a modular checking
approach in which methods are verified in isolation by trying
to prove that class invariants and method postconditions hold
under the assumption that the method’s preconditions are sat-
isfied. ESC/Java is fully automatic and its modular checking
approach allows it to scale to large programs (e.g., up to 50K

Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework 21

lines of code) in terms of run-time, but experience suggests
that significant user effort is required to annotate a program
sufficiently to enable verification of properties. A new version
of ESC/Java that supports more of JML is available at [23].

Cheon and Leavens [4] have developed a run-time checker
(jmlc) which compiles JML-annotated programs into byte-
code that includes run-time assertions to check JML specifi-
cations. As with other run-time analysis methods, reasoning
using jmlc requires a complete Java program, thus if a single
class or method is to be analyzed, an appropriate test harness
must be constructed. Aside from this, using jmlc is fully au-
tomatic for a good portion of the JML language; notably lack-
ing are general support for class instance domains and access
to precondition state values in postconditions which are very
common in heavyweight behavioral specifications. jmlc im-
plements run-time checking on top of existing JVMs and con-
sequently it provides no direct support for multi-threaded pro-
grams.

We believe that our approach to model checking JML
specifications using a model checker that is customized to
exploit JVM semantics has a different set of strengths and
weaknesses than these techniques. It is as automated as run-
time checking, but provides significantly greater JML and
behavior coverage. It provides a high-degree of JML cov-
erage as do theorem-prover approaches, but it does not suf-
fer as seriously from usability problems, in terms of provid-
ing user guidance. Since model checking is a whole-program
analysis, it does not suffer the annotation-burden of mod-
ular decision-procedure approaches. While model checking
is not as scalable as run-time analysis or modular decision-
procedure based approaches, it is capable of treating thousand-
line Java programs with embedded JML specifications which
is sufficient for non-trivial unit-level or subsystem-level pro-
gram verification.

6.1 Other Related Work on Specification Languages

There have been an enormous number of efforts to define
languages for specifying and reasoning about program be-
havior. We are interested in providing automated reasoning
support for strong properties of modern concurrent object-
oriented languages, thus, discussion on most of the existing
work on simple assertion languages and manual formal meth-
ods is lacking. Recent work on OCL and Alloy is aimed at
supporting at least some of our goals.

Space constraints do not permit a detailed discussion of
the different checking mechanisms that have been proposed
for OCL. One line of work, e.g., [17], is similar to jmlc in

that it generates run-time assertions for checking Java. An-
other popular direction is to compare OCL specifications with
other UML models, e.g., [27], rather than program source
code, thus a number of the issues regarding reasoning about
heap-allocated program data are not considered in that work.

The Alloy Annotation Language (AAL) [18] is a language
for annotating Java code with a syntax that is similar to JML.
AAL supports analysis, via bounded satisfiability checking,
of loop-free code sequences that may have method invoca-
tions. AAL targets the verification of small methods that main-
tain invariants on complex heap structures (e.g., red-black
trees). The Java heap is modeled in Alloy using relations,
and checking is carried out automatically by generating all
possible heap-structures that can be constructed from a user-
bounded set of objects. AAL does not support reasoning about
concurrent programs.

7 Conclusion

For model checking to become useful as a software validation
technique it must become more efficient (so that it provides
feedback on fragments of real code in a matter of minutes),
more expressive (so that it can reason about a broad range
of functional properties of interest to software developers),
and more standardized (so that developer investment in writ-
ing specifications can be leveraged for multiple forms of val-
idation and documentation). In this paper, we have presented
an approach to customizing a model checking framework to
meet these goals by incorporating novel state-space reduc-
tions and support for reasoning about behavioral properties
written in JML. Our data suggest that the combination of
these techniques can provide cost-effective reasoning about
non-trivial properties of multi-threaded Java programs.

Bogor supports nearly all of JML, but there are a few fea-
tures that we are still working to support. Chief among these
are JML’s model programs which we are implementing as
Bogor type extensions that directly encode the model abstract
data types (ADTs) as first-class types in the Bogor’s input
language. We believe this alternative will be more efficient
than [4] because we can apply various reduction algorithms
to those ADTs, as shown in [28].

There are several issues that need to be addressed to in-
crease the effectiveness of this approach. In Section 5, we
discussed the need to provide test harnesses for model check-
ing software units. The problem of constructing such test har-
nesses is often overlooked in the research community and is
surprisingly difficult. For example, Penix et al. [25] note that

22 Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework

it took several months to construct an environment that cor-
rectly modeled the context of the DEOS real-time operating
system scheduler. In addition, in a proper methodology a user
should seek to evaluate the completeness of test harnesses
for covering all the behaviors referred to by the specification,
since (as described above) the software unit is only checked
up to the behaviors generated by the test harness.

Driven in part by the work presented in this paper, we
have developed multiple forms of tool support to address these
issues. First, the Bandera Environment Generation (BEG) tools
[37,36] provide basic support that addresses many of the chal-
lenges encountered in the DEOS case study, but it does not
treat the full range of complexities that arise when model
checking units with JML specifications. To assess the quality
of test harnesses with respect to JML specifications, we have
built a coverage framework [31,34] on top of Bogor to pro-
vide information about the portions of code and JML spec-
ifications that are actually exercised by a given test harness.
An important consideration in this process is the selection of
input values to achieve thorough coverage of the behavior of
both the program and the specification, and we are extending
recent work by Stoller [35] towards that end.

Finally, we believe that a natural direction for future work
on model checking JML specifications is to enrich JML to
support the explicit specification of concurrency related be-
havior. One proposal for JML concurrency extensions is cen-
tered around introducing the notion of atomicity in method
behavior specifications [30]. Our initial experience adapting
existing approaches to checking atomicity properties via model
checking [14,9] suggests that reasoning about JML specifi-
cations that explicitly capture concurrency properties along
with behavior properties of programs is feasible.

References

1. T. Ball and S. K. Rajamani. The slam toolkit. In Proceedings
of the 13th International Conference on Computer Aided Veri-
fication, pages 260–264. Springer-Verlag, 2001.

2. G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder
– a second generation of a Java model-checker. In Proceedings
of the Workshop on Advances in Verification, July 2000.

3. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll. An overview of JML tools and ap-
plications. In Proceedings of the Eighth International Workshop
on Formal Methods for Industrial Critical Systems, volume 80
of Electronic Notes in Theoretical Computer Science. Elsevier,
2003.

4. Y. Cheon and G. T. Leavens. A runtime assertion checker for
the Java Modeling Language (JML). In Proceedings of The In-

ternational Conference on Software Engineering Research and
Practice, pages 322–328. CSREA Press, June 2002.

5. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT
Press, Jan. 2000.

6. M. B. Dwyer, J. Hatcliff, Robby, and V. R.Prasad. Exploiting
object escape and locking information in partial order reduction
for concurrent object-oriented programs. Formal Methods in
System Design, 25(2–3):199–240, September–November 2004.

7. M. B. Dwyer, Robby, X. Deng, and J. Hatcliff. Space reductions
for model checking quasi-cyclic systems. In Proceedings of
the 3rd International Conference on Embedded Software (EM-
SOFT 2003), volume 2855 of Lecture Notes in Computer Sci-
ence, pages 173–189. Springer, October 2003.

8. M. B. Dwyer and V. Wallentine. A framework for parallel adap-
tive grid simulations. Concurrency : Practice and Experience,
9(11):1293–1310, November 1997.

9. C. Flanagan. Verifying commit-atomicity using model-
checking. In Proceedings of the 11th International SPIN Work-
shop on Model Checking of Software, volume 2989 of Lecture
Notes in Computer Science, pages 252–266. Springer, April
2004.

10. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata. Extended static checking for java. In
Proceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming language design and implementation, pages 234–
245. ACM Press, 2002.

11. R. Floyd. Assigning meaning to programs. In Proceedings of
the Symposium on Applied Mathematics, volume 19 of Mathe-
matical Aspects of Computer Science, pages 19–32. American
Mathematical Society, 1967.

12. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns. Addison-Wesley Pub. Co., Jan. 1995.

13. S. Hartley. Concurrent Programming - The Java Programming
Language. Oxford University Press, 1998.

14. J. Hatcliff, Robby, and M. Dwyer. Verifying atomicity spec-
ifications for concurrent object oriented software using model
checking. In Proceedings of the 5th International Conference
on Verification, Model Checking, and Abstract Interpretation,
volume 2937 of Lecture Notes in Computer Science, pages 175–
190. Springer, 2004.

15. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy ab-
straction. In Proceedings of the 29th ACM Symposium on Prin-
ciples of Programming Languages, pages 58–70, Jan. 2002.

16. G. J. Holzmann. The model checker SPIN. IEEE Transactions
on Software Engineering, 23(5):279–294, May 1997.

17. H. Hussmann, B. Demuth, and F. Finger. Modular architecture
for a toolset supporting OCL. In The Third International Con-
ference on The Unified Modeling Language, volume 1939 of
Lecture Notes in Computer Science, pages 278–293. Springer,
2000.

18. S. Khurshid, D. Marinov, and D. Jackson. An analyzable an-
notation language. In Proceedings of the 17th ACM conference
on Object-oriented programming, systems, languages, and ap-

Robby et al.: Checking JML Specifications Using An Extensible Software Model Checking Framework 23

plications, pages 231–245, New York, NY, USA, 2002. ACM
Press.

19. D. Lea. Concurrent Programming in Java: Second Edition.
Addison-Wesley, 2000.

20. G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation
for detailed design. In H. Kilov, B. Rumpe, and I. Simmonds,
editors, Behavioral Specifications of Businesses and Systems,
pages 175–188. Kluwer Academic Publishers, Boston, 1999.

21. G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. Cok. How
the design of JML accommodates both runtime assertion check-
ing and formal verification. In Proceedings of the 1st Inter-
national Symposium on Formal Methods for Components and
Objects, volume 2852 of Lecture Notes in Computer Science,
pages 262–284. Springer, November 2002.

22. B. Meyer. Object-oriented Software Construction. Prentice-
Hall, 1988.

23. NIII. ESC/Java2 Website. http://www.cs.kun.nl/
sos/research/escjava/index.html.

24. S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype ver-
ification system. In D. Kapur, editor, 11th International Confer-
ence on Automated Deduction (CADE), volume 607 of Lecture
Notes in Artificial Intelligence, pages 748–752, Saratoga, NY,
jun 1992. Springer-Verlag.

25. J. Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger.
Verification of time partitioning in the deos scheduler kernel. In
Proceedings of the 22nd international conference on Software
engineering, pages 488–497. ACM Press, 2000.

26. A. D. Raghavan and G. T. Leavens. Desugaring JML method
specifications. Technical Report 00-03d, Iowa State University,
Department of Computer Science, July 2003.

27. M. Richters and M. Gogolla. Validating UML models and
OCL constraints. In The Third International Conference on The
Unified Modeling Language, volume 1939 of Lecture Notes in
Computer Science, pages 265–277. Springer, 2000.

28. Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible and
highly-modular model checking framework. In Proceedings of
the 9th European Software Engineering Conference held jointly
with the 11th ACM SIGSOFT Symposium on the Foundations of
Software Engineering, volume 28 number 5 of SIGSOFT Softw.
Eng. Notes, pages 267–276. ACM Press, 2003.

29. Robby, M. B. Dwyer, J. Hatcliff, and R. Iosif. Space-reduction
strategies for model checking dynamic systems. In Proceedings
of the 2003 Workshop on Software Model Checking, volume 89
number 3 of Electronic Notes on Theoretical Computer Science.
Elsevier, July 2003.

30. E. Rodrı́guez, M. Dwyer, C. Flanagan, J. Hatcliff, G. T. Leav-
ens, and Robby. Extending sequential specification techniques
for modular specification and verification of multi-threaded
programs. In Proceedings of the 19th European Conference
on Object-Oriented Programming (ECOOP 2005). Springer-
Verlag, 2005. To appear.

31. E. Rodrı́guez, M. B. Dwyer, J. Hatcliff, and Robby. A flexi-
ble framework for the estimation of coverage metrics in explicit

state software model checking. In Proceedings of the Inter-
national Workshop on Construction and Analysis of Safe, Se-
cure and Interoperable Smart Devices (CASSIS 2004), volume
3362 of Lecture Notes in Computer Science, pages 210–228.
Springer, 2004.

32. D. S. Rosenblum. A practical approach to programming
with assertions. IEEE Transactions on Software Engineering,
21(1):19–31, Jan. 1995.

33. SAnToS. SpEx Website. http://spex.projects.cis.
ksu.edu, 2003.

34. SAnToS. MAnTA Website. http://manta.projects.
cis.ksu.edu, 2004.

35. S. D. Stoller. Domain partitioning for open reactive systems. In
Proceedings of the International Symposium on Software Test-
ing and Analysis, pages 44–54. ACM Press, 2002.

36. O. Tkachuk, M. Dwyer, and C. Pasareanu. Automated environ-
ment generation for software model checking. In Proceedings
of the 18th International Conference on Automated Software
Engineering, pages 116–129. IEEE Computer Society, October
2003.

37. O. Tkachuk and M. B. Dwyer. Adapting side effects analy-
sis for modular program model checking. In Proceedings of
the Fourth joint meeting of the European Software Engineering
Conference and ACM SIGSOFT Symposium on the Foundations
of Software Engineering, Sept. 2003.

38. J. van den Berg and B. Jacobs. The LOOP compiler for Java
and JML. In Proceedings of the 7th International Conference
on Tools and Algorithms for the Construction and Analysis of
Systems, volume 2031 of Lecture Notes in Computer Science,
pages 299–312. Springer-Verlag, 2001.

39. W. Visser, K. Havelund, G. Brat, and S. Park. Model check-
ing programs. In Proceedings of the 15th IEEE Conference on
Automated Software Engineering, volume 10 number 2, pages
203–232. Springer, September 2000.

40. J. M. Wing. Writing Larch interface language specifications.
ACM Trans. Program. Lang. Syst., 9(1):1–24, 1987.

