
Invariant-based Specification, Synthesis, and Verification
of Synchronization in Concurrent Programs

Xianghua Deng, Matthew B. Dwyer, John Hatcliff and Masaaki Mizuno
Kansas State University

Department of Computing and Information Sciences
Manhattan, KS 66506, USA

{deng,dwyer,hatcliff,masaaki}@cis.ksu.edu

ABSTRACT
Concurrency is used in modern software systems as a means of
addressing performance, availability, and reliability requirements.
The collaboration of multiple independently executing components
is fundamental to meeting such requirements and such collabora-
tion is realized by synchronizing component execution.

Using current technologies developers are faced with a tension
between correct synchronization and performance. Developers can
be confident when simple forms of synchronization are used, for
example, locking all accesses to shared data. Unfortunately, such
simple approaches can result in significant run-time overhead, and,
in fact, there are many cases in which such simple approaches can-
not implement required synchronization policies. Implementing
more sophisticated (and less constraining) synchronization policies
may improve run-time performance and satisfy synchronization re-
quirements, but fundamental difficulties in reasoning about concur-
rency make it difficult to assess their correctness.

This paper describes an approach to automatically synthesiz-
ing complex synchronization implementations from formal high-
level specifications. Moreover, the generated coded is designed
to be processed easily by software model-checking tools such as
Bandera. This enables the generated synchronization solutions to
be verified for important system correctness properties. We be-
lieve this is an effective approach because the tool-support provided
makes it simple to use, it has a solid semantic foundation, it is lan-
guage independent, and we have demonstrated that it is powerful
enough to solve numerous challenging synchronization problems.

1. INTRODUCTION
The use of concurrency to resolve challenging system require-

ments with software is becoming common-place. Concurrency can,
for example, enable increased system performance through the use
of parallel processing, enable increased availability and reliability
through replication of functionality, and, through pre-emptive ex-
ecution, enable timely system response. Increasingly, developers
of concurrent systems are reusing existing libraries and program-
ming frameworks rather than developing entire applications from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

scratch. One of the key challenges in this setting is enforcing ap-
plication specific synchronization policies on the mixture of reused
and custom-built components that comprise the application.

Synchronization can be viewed as controlling the possible schedul-
ing of component execution. For all but the simplest of systems, the
number of ways that components can be scheduled is enormous.
This, combined with the fact that synchronization is distributed
throughout the application, makes it very difficult to reason about
the overall correctness of an application with respect to synchro-
nization requirements. This presents developers of concurrent sys-
tems with a choice between employing the synchronization policies
that are best suited to their application, but which may be difficult
to validate, or employing very simple policies that are overly re-
strictive of component scheduling, but which are easy to validate.
Given the lack of usable and effective methodologies for introduc-
ing complex synchronization policies into software, developers in-
variably choose to use simple synchronization policies even at the
expense of system performance.

In this paper, we describe an approach which addresses these is-
sues by: (i) allowing developers to specify global synchronization
policies that govern the execution of components in a concurrent
application; (ii) automatically synthesizing correct efficient imple-
mentations of those synchronization policies; and (iii) indepen-
dently verifying the correctness of those implementations and sup-
porting the automated checking of other system correctness prop-
erties. Ours is a focused approach that does not attempt to assure
complete functional correctness. We believe that, except for the
most safety critical systems, formal specification and verification
of complete functional behavior is impractical. We also feel that
generation of code from high-level specifications is impractical for
complete functional behavior. However, we believe that formal def-
inition and derivation of code for particularaspectsof program be-
havior is practical, and in this paper we give what we believe is a
convincing demonstration of this for the aspect of synchronization.

In our approach (refer to Figure 1), the developer builds core
functional code without implementing the synchronization policy.
For example, in a readers-writers system, code to access a shared
buffer would be written. The developer delimits particular code re-
gions that will be synchronized. In a readers-writers system, one
would mark the regions that access shared data as a reader and
those that access the data as a writer. A synchronization policy
that controls the scheduling of threads that attempt to execute in
those regions is specified in a language of global invariant patterns.
This synchronization specification is compiled to a predicate repre-
senting an invariant that must hold on the regions. These invariants
can then be used to generate implementations of the synchroniza-
tion policy in Java, for example, that are then integrated with the

Fine−grain
Synchronization
Solution

Core Functional Code

Synchronization Calls

with

Coarse−grain
Solution

Coarse−grain
Solution
Generator

Decision Procedure
Package

Synchronization
Specification

Core Functional Code
with marked critical regions

additional Safety specifications
Liveness and

Java Model−checking Tool Set
Bandera Verification

Results

C++

Backend
...other
backends...

� ��������� �	� � �	���

� ��������� �	� � �	���

� ��������� �	� � �	���

Fine−grain Solution
Generators (backends)

Java
Backend Backend

C−CAN

Code Weaver

Figure 1: SyncGen Tool Architecture

core functional code to produce a complete concurrent application.
This process guarantees that the safety properties described by

the invariant are correctly implemented by construction. To guard
against errors in the synthesis process we can encode specifications
of the intended synchronization properties into the generated code
and apply model checking to verify that they hold. This kind of
checkable redundancy yields a high degree of confidence in the
correctness of our synthesis approach. This confidence does not,
however, extend to additional correctness properties, e.g., liveness
properties, that one might wish to check. To address this, we have
adapted the Bandera [8] toolset to extract models that are ahybrid
of synchronization specifications and core functional code. The
resulting models encode program synchronization very efficiently,
yielding dramatic state-space reductions that promise to increase
the size and complexity of systems for which model checking is
tractable.

Our approach builds off and extends the global invariant ap-
proached advocated by Andrews [2]. Our main extensions have
been to identify recurring patterns of global invariant specification
and to revise the methodology for developing implementations of
those specifications [22]. In this paper, we further extend the work
by providing automated tool support for the synthesis of implemen-
tations. We believe the result is a framework for developing correct
efficient synchronization code that is:

• Powerful– using the pattern system, complicated structures
can be described clearly and succinctly at a very high level;
• Expressive– we have used the pattern system to specify so-

lutions for a wide variety of exercises from three well-known
concurrency texts [2, 3, 13];
• Automatic– this is push-button approach where code with

very intricate semantics is automatically generated from high-
level specifications;
• General– the approach is language independent and sup-

ports multiple languages and synchronization primitives;
• Formal– our aspect specification language has a rigorous se-

mantic foundation which enables code generation techniques
that use decision procedures for a quantifier-free fragment of
first-order arithmetic and yields a high degree of confidence
in the generated solutions; and
• Verifiable– the structure of the generated code and associated

artifacts is designed so that crucial correctness requirements

can be checked automatically using existing software model-
checking technology.

The SyncGen tool described in this paper has been fully im-
plemented1. While this paper focuses on the synthesis and veri-
fication of synchronization in Java programs, in collaboration with
colleagues we have produced synchronization code generators for
other languages and execution platforms. These include C++ with
POSIX shared memory primitives, distributed synchronization prim-
itives in C on CAN networks [24], and most recently we have begun
adaptation of the event-channel mechanism in TAO [25], a widely
used object request broker, to implement synchronization policies
in real-time distributed object-based systems.

The rest of the paper is organized as follows. Section 2 describes
the semantic foundation of global invariants, how they give rise to
synchronization solutions, and how common global invariants can
be captured by a collection of reusable patterns. Section 3 describes
the generation of coarse-grain solutions and how these solutions
can be optimized for specific patterns. Section 4 summarizes the
construction of a fine-grain solution for Java. Section 5 presents a
non-trivial example that involves the composition of multiple prim-
itive synchronization policies in a single application. Section 6 de-
scribes our approach to verifying the correctness of synchronization
implementations and how we can leverage the coarse-grain solution
for state-space reduction in model checking. Section 7 describes
related work and Section 8 concludes.

2. SPECIFYING SYNCHRONIZATION

2.1 Global invariants
In our approach to coding concurrent software, a developer uses

traditional methods and development environments to produce what
we term the system’score functional code. This code realizes the
behavior of each concurrent component of the system, butdoes not
specify how components synchronize. Instead, the developer sim-
ply marks theregionsof code in each component that require syn-
chronization with syntactic tags. The developer then partitions re-
gions into equivalence classes termedclusters. Intuitively, regions
R1 andR2 should be in the same cluster if a thread at regionR1

1The tool and a collection of examples are publicly available at
www.cis.ksu.edu/saves .

waits for an event or state that is triggered or changed by a thread
atR2.

Each regionR is associated with twoconceptual counters InR
andOutR that keep track of the number of times that a thread of
control has entered or exited the region, respectively. The devel-
oper then specifies the synchronization policy for each cluster by
giving a logic formula that constrains the relationships between the
cluster’s region counters.

As an example, consider how a developer would specify a sim-
ple system of concurrent readers and writers of a shared variable.
Figure 2 displays the core functional code for theReader and
Writer threads. In this code, the regions that need synchroniza-
tion are the reading and writing of the shared variable. These re-
gions form a cluster since a thread entering the reader region must
wait for a thread in the writer region to exit the region (and vice
versa) if the proper mutual exclusion discipline is to be enforced.
Thus, the developer tags the entrance and exit of the regions with
special comments recognized by the SyncGen tool. These regions
should be synchronized so that (a) multiple reader threads can be in
the reader region provided no writer thread is in the writer region,
and (b) one writer thread is in the writer region provided no reader
thread is in the reader region. The logic formula that specifies this
policy is

Irw
def
= (InR −OutR = 0 ∨ InW −OutW = 0)
∧ (InW −OutW ≤ 1)

where the variables used are the implicit entrance and exit counters
associated with each region. The first line specifies that either the
reader region is empty or the writer region is empty; the second
line specifies that at most one thread can be in the writer region at
a time.

2.2 Global invariant patterns
One possible drawback of the global invariant approach is that

developers may find it difficult to identify appropriate global in-
variant formulas that accurately capture the safety properties of the
given synchronization requirements. To address this problem, we
provide a set of global invariantpatternsor idioms that can be used
directly or composed to produce more complex synchronization
specifications [23]. Below we describe each pattern and present
its formal semantics as a global invariant formula.

Bound(R, n): at mostn threads can be inR at any point in time.
The underlying formalization is(InR −OutR ≤ n).

Exclusion(R1, R2, · · · , Rn): at any point in time, threads can be
in at most one synchronization region out of then synchroniza-
tion regions. To aid in the formalization, we define a predicate
OnlyOneOccupied(i,n) that holds in the state in which threads are
only in one regionRi out ofn regions:

(In1 −Out1 = 0) ∧ · · ·
∧ (Ini−1 −Outi−1 = 0) ∧ (Ini+1 −Outi+1 = 0)
∧ · · · ∧ (Inn −Outn = 0).

Thus, the formalization is∨i∈{1, ..., n}OnlyOneOccupied(i, n). For
example,Exclusion(R1, R2, R3) is

(In1 −Out1 = 0) ∧ (In2 −Out2 = 0))
∨ (In1 −Out1 = 0) ∧ (In3 −Out3 = 0))
∨ (In2 −Out2 = 0) ∧ (In2 −Out2 = 0)).

Resource((RP , NP), (RC , NC), n): a pool of resources (withn
items in the pool initially) accessed by a producer regionRP that
producesNP resource items each time a thread executes it, and a

consumer regionRC that consumesNC resource items each time a
thread executes it. If there are fewer thanNC resource items in the
pool, a thread executingRC waits at the entrance of the region until
there are at leastNC resources in the pool. Thus, the formalization
is (InC ≤ ((OutP ∗NP +n) divNC) wherediv represents integer
division.

Barrier(R1, R2): thekth thread to enterR1 and thekth thread to
enterR2 meet at their respective synchronization regions and leave
together. The formalization is(Out1 ≤ In2) ∧ (Out2 ≤ In1).

The barrier pattern yields a symmetric synchronization; threads
cannot move faster throughR1 than they can throughR2 (or vice
versa). This pattern may be decomposed and its components used
to specify an asymmetricrelaysynchronization described below.

Relay(R1, R2): a thread enteringR1 can leaveR1 immediately;
however, thekth thread enteringR2 is blocked and cannot leaveR2

until thekth thread arrives atR1. In this situation, an arrival of a
thread atR1 triggers a release of a thread atR2. The formalization
is Out2 ≤ In1.

It is convenient to extend the barrier synchronization to the fol-
lowing more general form, called theGroupsynchronization.

Group((R1, N1), (R2, N2), · · · , (Rn, Nn)): Ni threads entering
Ri for 1 ≤ i ≤ n meet, form a group, and leave the respective
synchronization regions together. For example, letn = 3,N1 = 2,
N2 = 3, andN3 = 4. Then, 2 threads inR1, 3 threads inR2, and
4 threads inR3 form a group and leave together. The formalization
is

∧ i∈{1, ..., n} ∧ j∈{1, ..., n} (Outi ≤ (Inj divNj) ∗Ni)).

The constraintInj div Nj gives the number of complete units that
have entered regionRj . Now, multiplying(Inj divNj) byNi and
using this as a bound forOuti for eachRj ensures that every time
a complete unit assembles at eachRj for all j, another unit (Ni
threads) is allowed to leaveRi. Thus, thekth unit of threads in
Ri may leave the region when thekth unit of threads have entered
every regionRj .

Pattern-based synchronization specifications are formed by com-
posing instances of the above patterns where composition is in-
terpreted as logical conjunction. For example, the second section
of Figure 2 displays readers/writers synchronization specification
expressed as a composition ofExclusionandBoundpatterns. In
this example, the developer declares a nameRWfor the single clus-
ter, namesReader , Writer for the two synchronization regions,
and finally the global invariant for the cluster. In problems with
multiple clusters, this information is repeated for each cluster. Ex-
panding the patterns to logical predicates as described above and
interpreting the composition symbol ’+’ as conjunction yields the
global invariantIrw.

3. COARSE-GRAIN SOLUTION
A global invariant specification is automatically translated into

an implementation independentcoarse-grainsynchronization so-
lution which is represented using atomic test-and-update constructs
〈awaitB → S 〉. Informally, a thread executing〈awaitB → S 〉
is suspended until boolean expressionB becomestrue. OnceB
holds, the thread continues in an atomic step to executeS — a se-
quence of one or more assignment statements.

An await statement will be placed at the entrance and exit of
each region. Each expressionB will act as a guard ensuring that
threads can only enter/exit a region when an appropriate condition
on region counter variables is satisfied, andS will be an increment
of the appropriate region entrance/exit counter variable. Often, a

Core Functional Code With Delimited Regions:

final class Reader extends Thread {
public void run() {

while (true) {
...other computation...
/*** RW Reader enter ***/
...read value of shared variable...
/*** RW Reader exit ***/
...other computation...
}}}

final class Writer extends Thread {
public void run() {

while (true) {
...other computation...
/*** RW Writer enter ***/
...write value to shared variable...
/*** RW Writer exit ***/
...other computation...
}}}

Synchronization Specification:

CLUSTER: RW;
REGIONS: Reader, Writer;
INVARIANT: Exclusion(Reader,Writer) + Bound(Writer,1);

Coarse-grain Solution:

CLUSTER: RW

REGION: Reader
ENTER: <AWAIT Writer_in - Writer_out == 0

--> Reader_in++>
NOTIFY: ;
NOTIFYALL: ;
EXIT: <Reader_out++>
NOTIFY: ;
NOTIFYALL: Writer_in;

REGION: Writer
ENTER: <AWAIT Reader_in - Reader_out == 0 &&

((Writer_in + 1) - Writer_out) <= 1
--> Writer_in++>

NOTIFY: ;
NOTIFYALL: ;
EXIT: <Writer_out++>
NOTIFY: Writer_in;
NOTIFYALL: Reader_in;

Woven Core Functional Code:

final class Reader extends Thread {
public void run() {

while (true) {
...other computation...
///*** RW Reader enter ***/
SGCluster$RW.Reader$enter();
...read value of shared variable...
///*** RW Reader exit ***/
SGCluster$RW.Reader$exit();
...other computation...
}}}

final class Writer extends Thread {
public void run() {

while (true) {
...other computation...
///*** RW Writer enter ***/
SGCluster$RW.Writer$enter();
...write value to shared variable...
///*** RW Writer exit ***/
SGCluster$RW.Writer$exit();
...other computation...
}}}

Figure 2: SyncGen Tool Artifacts for Readers/Writers Example

guardB in 〈awaitB → S 〉 will be the constanttrue (signifying
that a thread can unconditionally enter/exit a region); we abbre-
viate suchawait statements as〈S 〉 and refer to them asatomic
statements.

In summary, our strategy ensures (via induction on the number
of execution steps) that an invariant holds throughout an execution
by (a) checking that the invariant holds in the initial state where all
region counter variables have a value of 0 (base case), and (b) con-
structing appropriate guards at region boundaries (entrances/exits)
that guarantee that, if the invariant holds before a thread crosses a
boundary, then it will also hold after the thread crosses a boundary
(induction case).

Figure 2 (middle) presents the coarse-grain solution for the read-
ers/writers example that is produced automatically by the Sync-
Gen tool. The solution passes along the declared cluster and re-
gion names, gives the await/atomic statement associated with each
region entrance/exit, and specifies other regions that should be no-
tified upon completion of each region entrance/exit. The intuition
behind the guards for each region entrance is as follows: the reader
region can only be entered when there are no threads present in
the writer region (i.e., when the difference between the number
of threads that have entered the writers region and the number of

threads that have exited the writers region is zero), and the writer
region can only be entered when (a) there are no threads present in
the reader region and (b) there are no threads present in the writer
region. It is clear that more compact renderings of condition (b)
are possible, but the displayed version is what produced by the au-
tomatic construction outlined in Section 3.1 below.

The SyncGen tool actually provides two different mechanisms
for generating coarse-grain solutions. The first is an approach that
starts from the logic formula representation of the global invariant
(e.g., the formulaIrw) and employs weakest-precondition calcu-
lations and subsequent reductions using a decision procedure for
a subset of first-order logic (our implementation uses the Stanford
Validity Checker (SVC) decision procedure package). The second
mechanism generates the coarse-grain representation directly from
the global invariant pattern specification. Working directly from
the patterns makes generation easier in several respects because
information about the structure of the synchronization solution is
already coded in the pattern concept – the structure does not have
to be (re)discovered by manipulation of the invariant formula. We
almost always use the pattern-based generation mechanism since
(a) the generation process is more efficient — the formula-based
method requires numerous calls to the decision procedure package,

(b) the generated solution is slightly more efficient due to leverag-
ing structural information in the patterns, and (c) the pattern collec-
tion is expressive enough to specify a wide variety of synchroniza-
tion solutions. The formula-based mechanism can be used when a
particular global invariant cannot be expressed using the existing
pattern collection. We give an overview of both approaches below.
We give a more detailed explanation of the formula-based approach
since it provides the semantic foundation of the coarse-grain solu-
tion generation.

3.1 Formula-based generation
Establishing the base case of our inductive argument is straight-

forward: references to region counter variables in the global in-
variantI are replaced with their initial value 0, and the decision
procedure is called to verify that the resulting formula is true. If
the formula is not true the user is notified that the proposed syn-
chronization policy is unsatisfiable; otherwise, we continue with
the inductive steps as described below.

To see how each entrance〈awaitB → InR++ 〉 statement is
constructed automatically from a given global invariant formulaI,
note that, in order to preserveI, a thread at the entrance of a region
R must wait until it is guaranteed that incrementingInR will pre-
serveI (similarly for the exit ofR). Thus, we are looking for the
least restrictive conditionB that guarantees thatInR++ will result
in I being true. In other words, calculate the least restrictiveB such
that the Hoare triple{I ∧ B} InR++ {I} is satisfied. Note that if
all region guards are constructed appropriately,I should always be
true, and thus it appears in both the precondition and postcondition
of the triple.

Step 1: The calculation process begins by noting that a correct
but often unnecessarily complexB0 can be produced by taking

B0
def
= wp(InR++, I), i.e.,B0 is the weakest precondition ofInR++

with respect toI. Calculating wp(S, I) whenS is an assignment
statementx := e proceeds by substitutinge for any occurrences of

x in I: wp(x := e, I)
def
= I[e/x] [12]. In the readers/writers exam-

ple, to calculate theawait statement for the entrance of the reader
region, we have

B0
def
= wp(InR := InR + 1, Irw)
= (InR+1− OutR = 0 ∨ InW − OutW = 0)

∧ (InW − OutW ≤ 1).

Notice that the structure of this formula is more complex than nec-
essary. For example, the first disjunct can never hold because of
two basic propertiesof region counters: (1) counter variables can
never have negative values, and (b) for any regionRi, Ini ≥ Outi.
In addition, sinceIrw holds globally, the second conjunct must be
true since it also appears as a top-level conjunct inIrw. Reducing
B0 based on these two observations yieldsInW − OutW = 0 —
the guard at the reader region entrance (Figure 2). The following
two steps give a method for carrying out such reductions for region
entrances in a systematic way regardless of the structure ofI.

Step 2: Let B1 be the disjunctive normal form ofB0, that is,
B1 has formC1 ∨ C2 ∨ . . . ∨ Cn. Compute a smaller guard
B2 by removing disjunctsCi for which SVC can establish thatI ∧
A ⇒ ¬Ci holds. Here,⇒ is implication, andA is a formula
encoding the basic properties of counters mentioned above (e.g., it
is a conjunction of facts such asIni ≥ 0, Outi ≥ 0, Ini ≥ Outi,
etc.)

Picking up the readers/writers example, the disjunctive normal
form ofB0 is

B1
def
= (InR+1− OutR = 0) ∧ (InW − OutW ≤ 1)
∨ (InW − OutW = 0) ∧ (InW − OutW ≤ 1).

LetC1, C2 represent the first and second disjuncts above, respec-
tively. SVC can proveI ∧ A⇒ ¬C1 using facts encoded inA as

described above. However, SVC fails to proveI ∧ A⇒ ¬C2 and
so we have the reduced formula

B2
def
= (InW − OutW = 0) ∧ (InW − OutW ≤ 1).

LetD1,D2 be the first and second conjuncts inB2.
Step 3:Compute a smaller guardB3 fromB2 by removing con-

junctsDk from each of the remainingCj inB2 if I ∧ A⇒ Dk or
Dk is entailed byI ∧ A conjoined with other conjuncts inCj .

In the exampleB2 above, the decision procedure can establish
thatIrw ∧ A⇒ D2 (intuitively, becauseD2 appears as a top-level
conjunct inIrw). In fact, because the situation where a top-level
conjunct inIrw matches aDi occurs so often, our tool makes a
syntactic check for such cases before invoking the decision proce-
dure processing. In the readers/writers example, the resulting guard
for the entrance of the reader region is

B3
def
= (InW − OutW = 0)

and this matches the reader guard displayed in Figure 2. The gen-
eration of the await statement in Figure 2 for writer region entrance
follows the same steps.

Calculation of region exit statements begins with the weakest-
precondition calculation ofStep 1. Reduction then proceeds as in
Step 2andStep 3, but instead of reducing based on information
represented byI ∧ A, we reduce based on a formulaI ∧ A ∧ A′
whereA′ represents additional facts that hold when a thread is in-
side the current region – this information is derived by calculating
the strongest post-condition of the previously generated entrance
statement. For example, here is the intuition for the reader exit: cal-
culating wp(OutR := OutR + 1, Irw) and converting to disjunc-
tive normal form yields

B1
def
= (InR − (OutR+1) = 0) ∧ (InW − OutW ≤ 1)
∨ (InW − OutW = 0) ∧ (InW − OutW ≤ 1).

Unlike the calculation for entrance,Step 2does not lead to reduc-
tions because it is possible for each of disjunctsC1, C2 above to
hold (i.e., checkingI ∧ A⇒ ¬Ci fails). However, inStep 3, each
of the occurrences of(InW −OutW ≤ 1) can be removed as in the
case for the reader entrance (this follows fromIrw). Finally, for
Irw to hold while a thread is inside the reader region, it must be the
case thatInW − OutW = 0. This causes the potential guardB1 to
reduce totrue, which yields an atomic statement for the reader exit.

Figure 2 illustrates that the coarse-grain solution also contains
notification information. When an entrance/exit counter for region
R is incremented, it may cause an entrance/exit guard of another
regionR′ that was previously false to become true. Fine-grain
solutions often implement await statements by blocking on false
guards. In such implementations, a thread causing the guard at the
entrance/exit of regionR′ to change from false to true should wake
up threads waiting at the entrance/exit ofR′. TheNOTIFY clauses
in Figure 2 indicate situations where one thread in a region en-
trance/exit should be awakened, andNOTIFYALL clauses indicate
situations more than one thread in a region entrance/exit should be
awakened. Note that notifying all threads yields a less efficient but
guaranteed safe solution. DistinctNOTIFY andNOTIFYALL lists
are maintained because issuing anotify is typically more effi-
cient that issuing anotifyall . Although this information isn’t
necessary to specify the coarse-grain semantics, we include it at the
coarse-grain level because (a) most fine-grain backends make use
of it, thus this functionality is factored out of the back-ends, and
(b) it is very easy to generate precise notification information using
the pattern-based method described below – deferring the calcula-
tion to the back-ends where the structural information contained in
the patterns has already been compiled away usually yields more
conservative and thus less efficient notification actions.

3.2 Pattern-based generation
The pattern-based generation of region boundary guards lever-

ages three facts: (1) region enter/exits have a regular form – a sin-
gle counter increment, (2) patterns arecomposed by conjunctionto
form a synchronization specification, and (3)weakest-precondition
distributes across conjunction[12], i.e.,

wp(S, I1 ∧ . . . ∧ In) = wp(S, I1) ∧ . . . ∧ wp(S, In).

ConsiderS to be a region counter increment andIj to be the for-
mulas obtained by instantiatingj global invariant patterns (for1 ≤
j ≤ n). The law of distributivity above allows one to precompute
entrance/exitguard schemasfor each pattern individually. Then,
given a pattern-based synchronization specification that contains
pattern instancesP1, . . . , Pn, a guardG for a region entrance/exit
is built by conjoining guardsGj that are produced by instantiating
the precomputed guard schemas for eachPj . EachGj corresponds
to a reduced wp(S, Ij). We will illustrate this by considering sev-
eral patterns below – details for the remaining patterns and correct-
ness proofs can be found in [9].

Bound(R, n): Here, we haveI = (InR−OutR ≤ n). The entrance
guard schema for regionR is

wp(InR++, I) = ((InR + 1)−OutR ≤ n).

The entrance guard schema for any regionR′ 6= R is true (i.e., no
guard condition is required to ensure thatI holds after an entrance
to R′) sinceI holds beforeInR′++ and therefore it must be true
afterInR′++.

The nonreduced exit guard schema for regionR is

wp(OutR++, I) = (InR − (OutR + 1) ≤ n).

However, since we knowI must hold beforeOutR++ and counters
are always non-negative, the proposed exit guard will also be sat-
isfied. Therefore the reduced exit guard for regionR is true. Rea-
soning similar to the entrance guard for regionR′ 6= R establishes
that the exit guard schema forR′ with respect toBound(R, n) is
true.

For generating notification information specific to this pattern,
note that the only non-trivial guard is the entrance guard calculated
above, and only the increment ofOutR at the regionR exit can
cause the guard to change state fromfalseto true. Thus, upon exit
of R, threads at the entrance toR should be notified. Note that
notify should be used instead ofnotifyall : if a thread has
been waiting at the entrance of a “full”R (i.e., n are currently in
R), then one thread exiting will only allow one more thread to enter.
Thus, only one thread (instead of all) should be woken up.

Exclusion(R1, R2): We consider a simplified version of exclusion;
it is easy to see how to scale the steps to then-way version of Sec-
tion 2. Here we compute four guard and notification schemas:R1

entrance and exit andR2 entrance and exit. Working in a fashion
similar to theBoundcase above, we have

Gin1 = (In2 −Out2 = 0)
Gout1 = true
Gin2 = (In1 −Out1 = 0)
Gout2 = true.

For notification information, we haveR1 exit callsnotifyAll
onR2 entrance, andR2 exit callsnotifyAll onR1 entrance.

Considering the readers/writers specification of Figure 2, the dis-
tributivity of ’wp’ allows us to assemble the course-grain solution
from the schemas above as follows. For the reader entrance the
exclusionpattern contributesInW − OutW = 0 but thebound
pattern’s contribution is trivial since we noted above that for all

regionsR′ other than the regionR that is bounded, the entrance
guard istrue. For the reader exit, both theexclusionand bound
yield true guards so an atomic statement is generated (similarly
for the writer exit). For the writer entrance theexclusionpattern
contributesInR − OutR = 0 and theboundpattern contributes
(InW + 1) − OutW ≤ 1. Thus, the conjunction of these two
forms the guard. The schemas above reveal that notification only
occurs at the region exits. For the reader exit,exclusioncontributes
notifyAll to the writer entrance;bound contributes nothing.
For the writer exit,exclusioncontributesnotifyAll to the reader
entrance;boundcontributesnotify to the writer entrance.

4. FINE-GRAIN SOLUTION
As noted in the introduction, the language-independent coarse-

grain solution skeleton can be translated to fine-grain solutions ren-
dered using a variety of languages and synchronization primitives.
In this section, we focus on the Java translation.

The translation to Java involves generating several methods and
locks objects for eachawait and each atomic statement. Also, the
counter variables and associated increments for each critical region
must be implemented so as to ensure exclusive access across a clus-
ter. All such definitions for a particular cluster are collected into
common static classSGCluster$ clname, and we outline the con-
struction of each of these below. The translation follows Mizuno’s
strategy of implementingspecific notification, and further motiva-
tion for this implementation is given in [21].

Counters: For each regionrname, declare private static integer
variable implementing the region’s entrance/exit counters:

private static int <rname>_in, <rname>_out;

Note that this yields a solution with an unbounded counter vari-
able. If one needs to avoid potential wrap-around, the alternate
bounded counter implementation presented in Section 6 can be
used.

Locks: Declare a private static ObjectclusterCounterLock
to use for implementing exclusive access to counter variables.

private static Object
clusterCounterLock = new Object();

Awaits: For each〈awaitB → S 〉 at the entrance of region
rname(await statements at the exit of a region are treated iden-
tically – only exit is used in the generated names for methods
and variables), define one static public (non-synchronized) method
namedrname$enter , one static private method named
check$ rname$enter , and declare one static private variable of
type Object namedcondition$ rname$enter to implement spe-
cific notification.

We have the following declaration for the specific notification
lock.

private static Object
condition$<rname>$enter = new Object();

Public methodrname$enter is defined as follows.

public static void <rname>$enter() {
synchronized (condition$<rname>$enter) {

while (!check$<rname>$enter())
try {

condition$<rname>$enter.wait();
} catch (InterruptedException e){}

}
/* add notify calls here (see below) */

}

Private methodcheck$ rname$enter is defined as follows where
 and<S> are theawait guard and increment statements, re-
spectively.

private static boolean
check$<rname>$enter() {

synchronized (clusterCounterLock) {
if () {

<S>; return true;
} else return false;

}
}

Atomics: For each〈S 〉 at the entrance of regionrname(atomic
statements at the exit of a region are treated identically – onlyexit
is used in the generated names for methods and variables), define
one static public (non-synchronized) method namedrname$enter ,
as follows.

public static void <rname>$enter() {
synchronized (clusterCounterLock) { <S>; }
/* add notify calls here (see below) */

}

Notifies: For each await/atomic statement generated at the en-
trance for regionrname, add

synchronized (condition$<rname’>$enter) {
condition$<rname’>$enter.notify();}

at the point of the comments concerningnotify in the generated
await/atomic statement if<rname’>_in appears in theNOTIFY
list in the coarse-grain solution forrnameENTER, and add

synchronized (condition$<rname’>$enter) {
condition$<rname’>$enter.notifyAll();}

if <rname’>_in appears in the correspondingNOTIFYALL
list. The analogous steps are taken for atomic/awaits at region exits.

5. EXAMPLE
Using our basic invariant patterns and composition techniques,

we have solved a wide variety of challenging problems found in
standard textbooks [2, 3, 13], and all artifacts associated with eight
representative problems can be found on the project web-site. In
this section, we illustrate the use of the synchronization patterns
to specify a solution to thesleeping (daydreaming) barber problem
given in many OS textbooks (here, we use the description from [2]).

The shop has a barber, a barber chair, and a waiting room with
N chairs. When a barber finishes cutting a customer’s hair, the
barber fetches another customer from the waiting room if there is
a customer, or stands by the barber chair and daydreams if the
waiting room is empty. A customer who needs a haircut enters the
waiting room. If the waiting room is full, the customer comes back
later. If the barber is busy but there is a waiting room chair avail-
able, the customer takes a seat. If the waiting room is empty and
the barber is daydreaming, the customer sits in the barber chair
and wakes up the barber.

In a solution, we define two types of threads; a barber thread and
customer threads. Let integer variablenumCustomerskeep track
of the number of customers in the waiting room. A scenario de-
scribing the repeating sequential behavior of the barber thread is as
follows:

B1 {assertion: no customer is in the barber room} wait until a
customer is in the waiting room

B2 {assertion: met a customer} start cutting the customer’s hair
B3 finish the hair cut and inform the customer
B4 wait until the customer leaves the barber room

A scenario describing the repeating sequential behavior of the
customer thread is as follows:

B1

B2

B3

B4

C1

C2

C3

C4

C5

Barber Thread Customer Thread

���������
	��
 ���

��������
����

���
� ���

���
� ���
R_B4

R_C1

R_C3

R_C4

R_C5

R_B1

R_B3

R_C2

�����
���� "!$#

�����
���� "!$#

Figure 3: Sleeping Barber Synchronization Solution

C1 check if the waiting room is full (numCustomers== N) – if
so, leave; else enter the waiting room (incrementnumCustomers).

C2 wait until the barber becomes free
C3 {assertion: met the barber} leave the waiting room (decrement

numCustomers) and enter the barber room
C4 wait until the barber finishes the hair cut
C5 {assertion: hair cut is done} leave the barber room

In the barber’s scenario, steps B1 and B4 constitute synchroniza-
tion regions because they involve waiting on a customer (B1 waits
on C2, B4 waits on C5). Step B3 is a synchronization region be-
cause it triggers the customer’s exit. In the customer’s scenario,
steps C2 and C4 constitute synchronization regions because they
involve waiting on the barber (C2 waits on B1, C4 waits on B3).
Step C5 is a synchronization region because it releases the barber
to look for another customer. Let these regions be denoted byRB1,
RB3,RB4, andRC2,RC4,RC5.

We use a total of four clusters in the synchronization solution.
The waiting and notification causalities listed above give rise to
three clusters as described in Section 2:{RB1, RC2}, {RB3, RC4},
{RB4, RC5}. Cluster{RB1, RC2} is synchronized by
Barrier(RB1, RC2) since these two regions wait for each other.
Clusters{RB3, RC4} and{RB4, RC5} are synchronized by
Relay(RB3, RC4) andRelay(RC5, RB4), respectively since in each
case the completion of the first region triggers the start of the sec-
ond.

The fourth cluster{RC1, RC3} is formed to guarantee mutually
exclusive access to the counternumCustomerswhich is checked
and incremented in C1 and decremented in C3. Thus, this cluster
is synchronized byExclusion(RC1, RC3) (which ensures that ei-
therC1 or C3 is vacant) andBound(RC1, 1) andBound(RC3, 1)
(which ensure only one thread is accessingnumCustomersin C1
andC3). Figure 3 displays the structure of the synchronization
solution for the sleeping barber problem.

JAVA fragment:
synchronized(this)

this.x ++;

JIMPLE 3-address form for fragment:
label1:

nop;
T$0 = this;
entermonitor T$0;

label2:
T$1 = T$0.[Box.x:int];
T$1 = T$1 + 1;
T$0.[Box.x:int] = T$1;

label3:
exitmonitor T$0;
goto label5;

BIR guarded assignments for fragment:
loc s5: when true

do invisible T 0 := this;
goto s6;

loc s6: when lockAvailable(T 0.BIRLock)
do lock(T 0.BIRLock);
goto s7;

loc s7: when true
do T 1 := T 0.x;
goto s8;

loc s8: when true
do invisible T 1 := (T 1 + 1);
goto s9;

loc s9: when true
do T 0.x := T 1;
goto s10;

loc s10: when true
do unlock(T 0.BIRLock);
goto s11;

Figure 4: Bandera’s Intermediate Representations

6. SUPPORTING VERIFICATION
The approach described in this paper allows developers to be

confident that the resulting system implementation satisfies cor-
rectness properties related to the specified synchronization poli-
cies provided that the synthesis process is correct. One approach
to providing evidence of the correctness of the synthesis process
would be to provide a proof of correctness of the synthesis algo-
rithm. While potentially useful, this approach would not verify the
implementation of the synthesis algorithm. We take an approach
which analyzes the correctness of synthesized implementations di-
rectly by generating specifications of desired correctness properties
that can be checked against the implementation. This kind ofcheck-
able redundancyprovides an independent means of verifying that
the synchronization implementation is correct.

Eliminating subtle errors in synchronization implementations is
a significant advantage of our technique, however, other concur-
rency related errors may still be present in an application. We ex-
ploit synchronization specifications to constructhybridmodels that
blend synchronization behavior from the coarse-grain solution with
the behavior of the functional core application code. This can re-
sult in dramatic reductions in the cost of verifying properties of
SyncGen synthesized programs.

6.1 Software verification via model checking
We support verification of SyncGen synthesized programs by ex-

tending the Bandera toolset. Bandera [8] is a framework for trans-
lating Java source code into a finite-state model encoded in the in-

put format of existing model checking tools, such as SPIN [17].
To be effective in combating the exponential complexity of model
checking, Bandera provides support for reducing the number of
states in the finite-state model while retaining the ability to rea-
son about correctness properties. Bandera does this by providing
different automated program analyses and transformations, such as
program slicing [14] and data abstraction [10], that are aimed at
state-space reduction.

Bandera is organized like an optimizing compiler that represents
the program in a series of different formats that are amenable to dif-
ferent kinds of analyses. Bandera translates a Java program into a
3-address byte-code representation, called JIMPLE [26], to which
traditional compiler optimizations can be applied, then it converts
the JIMPLE representation to an asynchronous transition system
model expressed using guarded-assignments, called BIR, and fi-
nally it converts the BIR representation to the model checker in-
put format. Figure 4 gives a small fragment of Java code and its
JIMPLE and BIR representations. The mappings between repre-
sentations are, for the most part, straightforward. The only subtlety
is the use of guards, i.e., thewhen clauses, in BIR to capture the
semantics of JVM primitives, such asentermonitor . We note
that BIRs guarded-assignment statements have the same semantics
as theawait statements introduced in Section 3.

6.2 Checking synchronization implementations
If one considers the coarse-grain solution as described in Sec-

tion 3 it is immediately obvious that traditional model checking of
finite-state systems cannot be used to verify synchronization im-
plementations. The use of unbounded region entry/exit counters
means that in principle those counters may yield an infinite state
space.

One can use model checking as a thorough form of testing by
applying it to a portion of the system’s state space. Bandera al-
lows users to performbounded model checkingfor the portion of
state space where values of designated variables stay within a spec-
ified subrange. Figure 6 gives the number of states explored dur-
ing bounded model checks of theFine grain solution for both the
reader-writer (denoted RW in the figure) and Barber examples where
Unboundedcounters are used but the model check is restricted to
states where the counters have values less than 4. In these cases, the
checks were for deadlock and for synchronization policy related in-
variants encoded as assertions.

Such bounded model checks can provide evidence that the syn-
chronization implementation is correct, but if one desires complete
verification of correctness, the system’s states must be explored ex-
haustively. One approach, which we mention below, is to attempt to
abstract the unbounded counters to range over finite data domains.
An alternative approach is to design the coarse-grain solutions for
verification by usingboundedcounters that range over a, usually
small, finite domain. We describe this approach for the bound and
exclusion patterns below; bounded counter solutions for the rest of
the patterns are given in [9].

Bound: The original global invariant forBound(R, n) is InR −
OutR ≤ n. To adapt this to a bounded representation, we use a
variableB to hold the value ofInR − OutR. Thus, the adapted
global invariant isIbounded = B ≤ n. In the original unbounded
counter solution, the guard of the region entrance isInR + 1 ≤
OutR + n. This is adapted toB ≤ n − 1; the guard of the region
exit istrue. Unbounded counter operationsInR++ andOutR++ are
adapted toB++ andB-- , respectively.

We can verify the correctness of the bounded counter guards by
calculating the weakest preconditions of bounded counter opera-

tions: for the region entrance

wp(B++, Ibounded) = wp(B++, B ≤ n)

= B + 1 ≤ n
= B ≤ n− 1

for the region exit

wp(B-- , Ibounded) = wp(B-- , B ≤ n)

= B − 1 ≤ n
= B ≤ n+ 1

= true ...sinceB ≤ n.

Exclusion: The original invariant forExclusion(R1, R2, · · · , Rn)
is ∨i∈{1, ..., n}OnlyOneOccupied(i, n). whereOnlyOneOccupied
represents a formula that holds in a state in which threads are only
in one regionRi (as defined in Section 2.2). To adapt the definition
of OnlyOneOccupied, we use a family of countersEi(1 ≤ i ≤ n)
whereEi holds the value ofIni−Outi. Thus, the adapted definition
of OnlyOneOccupied(i, n) is

(E1 = 0) ∧ · · ·
∧ (Ei−1 = 0) ∧ (Ei+1 = 0)
∧ · · · ∧ (En = 0).

Using the orginal version ofOnlyOneOccupied, the unbounded
counter region entrance guard forRi is OnlyOneOccupied(i, n).
Thus, the bounded counter version is obtained by simply using
the adapted version ofOnlyOneOccupied. The original region exit
guard istrue, and thus it remains unchanged in the bounded counter
version.

We can verify the both of these guards by calculating the weakest
preconditions of bounded counter operations following the same
pattern as in the case forBoundabove.

The chief advantage of the bounded counter solution is that ex-
haustive consideration of all possible execution states of a synthe-
sized synchronization implementation can now be analyzed. In ad-
dition to this, comparison of state space sizes for the unbounded
and bounded checks of theFine grain solution of the 4 thread bar-
ber system in Figure 6 illustrates that the use of bounded counters
can reduce the number of states. The reduction, however, appears
rather modest, around 20%, and it is doubtful that it will mitigate
the exponential growth of the state space with increasing numbers
of components.

6.3 Hybrid model-extraction
A large body of recent work in model checking software, e.g., [4,

10, 27], has focused on identifying ways in which the low-level de-
tails of system descriptions and implementations can be abstracted.
In principle these approaches attempt to recover a high-level model
of the program that preserves behavioral properties that are rele-
vant to a specification that is to be checked. Fully-automated ver-
sions, e.g., [4, 27], of such abstraction techniques generate very
large numbers of sub-problems whose solutions are used to iden-
tify the high-level abstraction. Those sub-problems typically in-
volve reasoning about arithmetic and consequently their solution
requires the use of theorem-proving techniques. The number of
sub-problems can grow extremely rapidly and this is a limiting fac-
tor in scaling these approaches. Semi-automated techniques, e.g.,
[10], require the user to help in the identification of abstractions,
consequently these approaches may be even less scalable than the
theorem-prover based techniques.

In our approach, we start with the high-level abstract model for
the synchronization parts of the concurrent system and synthesize

Bounded Counter Coarse-grain Solution:
CLUSTER: RW
VARIABLES: E1 0, E1 1, B1;
REGION: Reader

ENTER: <AWAIT E11 == 0 --> E1 0++;>
EXIT: <E1 0--;>

REGION: Writer
ENTER: <AWAIT E10 == 0 && B1 == 0

--> E1 1++; B1++;>
EXIT: <E1 1--; B1--;>

JIMPLE Synchronization Calls:
Label0:

staticinvoke [RW.Reader$enter():void]();
...
staticinvoke [RW.Reader$exit():void]();
goto label1;

Hybrid BIR Model:
loc s26: when true

do invisible TEMP 2 := Reader this;
goto s27;

loc s27: when (E1 1 == 0)
do E1 0 := (E1 0 + 1);
goto s28;

loc s28: when true
...

loc s38: when true
do E1 0 := (E1 0 - 1);
goto s38;

Figure 5: Model Extraction Artifacts for Readers/Writers
(excerpts)

Program Model Counters Threads States

RW Fine Unbounded 5 1599250
RW Hybrid Bounded 5 534

Barber Fine Unbounded 4 (2 Customers) 530514
Barber Fine Bounded 4 (2 Customers) 418527
Barber Hybrid Bounded 4 (2 Customers) 488
Barber Hybrid Bounded 5 (3 Customers) 4646
Barber Hybrid Bounded 6 (4 Customers) 46472
Barber Hybrid Bounded 7 (5 Customers) 500350

Figure 6: State-space Sizes for Model Checks

its implementation. Thus, confidence in the correctness of the syn-
chronization code synthesis process can be leveraged to reduce the
cost of model checking SyncGen synthesized applications by ap-
plying the high-level abstractions on hand.

Our approach works in two phases integrated into Bandera’s model
extraction approach. First, parse the coarse-grain solution, e.g., as
depicted at the top of Figure 5. Second, when traversing the JIM-
PLE representation of the program, e.g., as depicted in the mid-
dle of Figure 5, identify calls to synchronization region entry/exit
implementations. In Bandera’s source code model extraction pro-
cess, the implementation of the fine-grain synchronization methods
would be inlined and the resultant JIMPLE would be translated to
BIR on-the-fly. For hybrid model extraction, instead of inlining
those methods we splice BIR transitions into the model that encode
the semantics of the region enter/exit commands in the coarse grain
solution, e.g., as depicted on the bottom of Figure 5.

The data in Figure 6 illustrates the effectiveness of this approach
in reducing the state space of systems for model checking. The
reader-writer example, denoted RW, exhibits a state space reduc-
tion of a factor of 2994 and the Barber example exhibits a reduction

of a factor of 1086 when using theHybrid models. This preliminary
data suggests that dramatic state space reductions are possible using
this approach and that this reduction will vary with the application.
The RW example exhibits a large reduction because the functional
core code has very little data. The hybrid model eliminates thelock
objects and the statements that manipulate those locks to implement
the conditional waiting and notification in the fine grain solution
since that behavior is implicit in the semantics ofawait statement
guards. Consequently, the ratio of synchronization related data and
control states to functional core code data and control states is very
high for the RW example which leads to the large state space re-
duction. Relative to the RW example, the functional core code for
the Barber example has a larger amount of data so the state space
reduction is smaller.

Despite the significant reductions, it is clear that the state space
of the hybrid model will still grow exponentially, as illustrated by
the scaling of Barber example. Our hope is that slowing the rate
of growth of the state space will allow scaling of model checking
of hybrid models for systems well-beyond the point at which their
implementations can be model checked, as was the case with the
Barber example.

It is important to note, that the technique described in this pa-
per does not address the potentially huge state space that may arise
from the core functional code. We believe that ongoing work on ab-
straction techniques may provide a means of addressing that prob-
lem. On the other hand, our approach provides one way of abstract-
ing synchronization code. Synchronization is not currently treated
by automatic abstraction techniques, in part because of the lack of
appropriate theories that would be needed to adapt theorem prover
based techniques.

7. RELATED WORK
The integration of synchronization and object oriented program-

ming has been studied extensively in the past decade. Several ex-
tensions to languages such as Java and C++ have been proposed
with additional synchronization primitives to enhance flexibility
and expressiveness. For example, several languages allow speci-
fication of conditions under which a method invocation can be ac-
cepted or blocked [19]. The notion ofcoordinator in [19] allows a
designer to specify the conditions under which a method may be in-
voked and the code to be executed on entry and exit of that method.
The Composition filters [1] and Synchronization rings [16] models
are similar in nature and define conditions to block or allow method
invocations. [1] and [16] show how filters or rings can be composed
in a layered fashion, allowing modular specification of synchro-
nization aspects. implements inter-object synchronization via syn-
chronizers. [19] also allows coordinators to control more than one
object. The frameworks discussed above can be classified as fol-
lowing the bottom-up approach: they provide the language mech-
anisms to the designer to program synchronization. Our approach,
on the other hand, is top-down. We start with high-level language
independent specification of synchronization requirements and au-
tomatically derive the synchronization code. Hence, our work can
be viewed as orthogonal and complimentary to the bottom-up ap-
proach.

[20] presents a framework for incorporating synchronization con-
straints into already developed code. These synchronization spec-
ifications are in terms of finite state machines and they employ a
synchronous model that allows immediate distribution of the global
state information. [6] presents a similar approach whereinmodal
processesare used to specify the legal combination of states of dif-
ferent processes. The system is implemented via a controller that
controls the transitions between the states of the individual pro-

cesses to ensure that illegal combinations are not reached.
The idea of using global invariants to specify synchronization

policies is not new [2, 5]. Our approach differs from this work in
several ways. [2, 5] present many coarse grained solutions in which
functional codes are embedded withinawait statements. Our ap-
proach cleanly separates development of functional code and syn-
chronization (aspect) code and weave them in a simple way. Solu-
tions in [2] use many types of counters. Our approach successfully
abstracts these counters by only two types of counters, In and Out.
We have developed various synchronization patterns and their so-
lution global invariants and demonstrated effectiveness of compo-
sition of such global invariants. We have also automated the trans-
lation from synchronization specifications to Java.

As mentioned in Section 6, model checking of software, and the
abstraction of software to make such checking tractable, is an ac-
tive area of research. Code can be viewed as a very detailed spec-
ification and this level detail leads to extremely large state spaces.
For this reason, and to provide feedback in early phases of devel-
opment, many researchers have advocated the application of auto-
mated verification techniques to requirements, e.g., [15], and soft-
ware design, e.g., [11, 18], descriptions. This kind of support can
be very useful, but without evidence of the conformance of designs
with code they don’t provide evidence of the correctness of the ex-
ecutable artifact. While work on automated refinement checking,
e.g., [7], provides a kind of conformance checking, there is still
the problem of relating the lowest level design to an implementa-
tion in a modern programming language like Java. In our approach,
this design-code conformance is guaranteed by the code synthesis
process so we are free to exploit the design information.

8. CONCLUSION
In this paper we describe a methodology for synthesizing cor-

rect implementations of synchronization policies from high-level
specifications. Mizuno has shown that this methodology is broadly
applicable to real synchronization problems when applied by hand
[22, 23]. The main contributions reported on this paper are the de-
velopment of the SyncGen tools that: automate the synthesis pro-
cess, provide checkable redundancy for verifying the correctness of
synthesized implementations, and exploit synchronization specifi-
cations for state-space reduction of general correctness properties.

SyncGen automates the synthesis of an intermediate represen-
tation of synchronization behavior, expressed as global invariants,
through the use of automated decision procedures or, when users
specify synchronization policies using patterns, through template
instantiation. Backends for different languages and run-time envi-
ronments, such as Java, C++/POSIX, and C/CAN based concurrent
systems, have been developed that generate implementations from
this intermediate representation and integrate the resulting synchro-
nization code with the functional application code. These back-
ends can also introduce redundant invariant specifications that can
be checked using, for example, the Bandera tools. The Bandera
tools themselves have been adapted to accept the functional core
code and the intermediate-level synchronization specification then
extract a model that represents their composite behavior.

Preliminary experience with the SyncGen tools on a variety of
examples (seewww.cis.ksu.edu/saves) is very encourag-
ing. More experience is needed, however, to understand the breadth
of applicability of this approach. Toward this end we are extend-
ing the methodology and SyncGen in several directions with the
goal of evaluating its effectiveness by reengineering embedded ve-
hicle control applications. This ongoing work includes: supporting
the propogation of exceptions thrown in the core code past region
boundaries, supporting group forming synchronization patterns us-

ing specific notification, adapting synchronization code generation
to target available middle-ware platforms, such as TAO [25], and
more tightly integrating our synchronization code generation with
scheduling algorithms to support real-time applications.

Acknowledgements
The authors would like to thank Gurdip Singh and Mitch Neilsen
for the many helpful discussions and comments related to this project.
This work was supported primarily by DARPA/ITO’s PCES pro-
gram through AFRL Contract F33615-00-C-3044, with additional
support from NSF under grants CCR-9703094, CCR-9708184, CCR-
9896354 and CCR-9901605, by the U.S. Army Research Labora-
tory and the U.S. Army Research Office under agreement number
DAAD190110564, and from the Formal Verification of Integrated
Modular Avionics Software cooperative agreement, NCC-1-399,
sponsored by Honeywell Technology Center and NASA Langley
Research Center.

9. REFERENCES

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and
A. Yonezawa. Abstracting object-interactions using
composition-filters. InObject-based distributed processing,
Lecture Notes in Computer Science 791, 1993.

[2] G. R. Andrews.Concurrent Programming: Principles and
Practice. Addison-Wesley, 1991.

[3] G. R. Andrews.Foundations of Multithreaded, Parallel, and
Distributed Programming. Addison-Wesley, 2000.

[4] T. Ball, R. Majumdar, T. Millstein, and S. Rajamani.
Automatic predicate abstraction of C programs. In
Proceedings of the ACM SIGPLAN ’01 Conference on
Programming Language Design and Implementation
(PLDI-01), pages 203–213, June 2001.

[5] A. Bernstein and P. Lewis.Distributed Operating Systems
and Algorithms. Jones and Bartlett, 1993.

[6] P. Chou and G. Borriello. An analysis-based approach to
composition of distributed embedded systems. InProc. of the
International Workshop on Hardware/Software Codesign,
1998.

[7] R. Cleaveland. The concurrency workbench: A
semantics-based verification tool for the verification of
concurrent systems.ACM Transactions on Programming
Languages and Systems, 15(1):36–72, Jan. 1993.

[8] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Păs̆areanu, Robby, and H. Zheng. Bandera : Extracting
finite-state models from Java source code. InProceedings of
the 22nd International Conference on Software Engineering,
June 2000.

[9] X. Deng. Tool-support for invariant-based specification,
synthesis, and verification of synchronization in concurrent
Java programs. Technical report, 2001.

[10] M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S.
Păs̆areanu, Robby, W. Visser, and H. Zheng. Tool-supported
program abstraction for finite-state verification. In
Proceedings of the 23rd International Conference on
Software Engineering, May 2001.

[11] K. Fisler and S. Krishnamurthi. Modular verification of
collaboration-based software designs. InProceedings of the
8th European Software Engineering Conference held jointly
with the 9th ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 152–163, Sept. 2001.

[12] D. Gries.The Science of programming. Springer-Verlag,
New York, 1981.

[13] S. Hartley.Concurrent Programming - The Java
Programming Language. Oxford University Press, 1998.

[14] J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for
model construction.Higher-order and Symbolic
Computation, 13(4), 2000.

[15] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw.
Automated consistency checking of requirements
specifications.ACM Transactions on Software Engineering
and Methodology, 5(3):231–261, July 1996.

[16] D. Holmes, J. Noble, and J. Potter. Aspects of
synchronization. InProceedings of the Twenty-Fifth
Conference on the Technology of Object-Oriented Languages
and Systems (TOOLS Pacific ’97), 1997.

[17] G. J. Holzmann. The model checker SPIN.IEEE
Transactions on Software Engineering, 23(5):279–294, May
1997.

[18] D. Latella, I. Majzik, and M. Massink. Automatic
verification of a behavioural subset of UML statechart
diagrams using the SPIN model-checker.Formal Aspects of
Computing, 11(6):637–664, 1999.

[19] C. Lopes and C. Kiczales. D: A language framework for
distributed programming. InTechnical Report SPL97-010,
P9710047, Xerox Palo Alto Research Center, 1997.

[20] G. Matos, J. Purtilo, and E. White. Automated computation
of decomposable synchronization conditions. InIEEE
High–Assurance Systems Engineering Workshop, 1997.

[21] M. Mizuno. A structured approach for developing concurrent
programs in Java.Information Processing Letters,
69(5):233–238, Mar. 1999.

[22] M. Mizuno. A pattern-based approach to developing
concurrent programs in UML: Part 1. Technical Report
2001-2, Kansas State University, Department of Computing
and Information Sciences, 2001.

[23] M. Mizuno. A pattern-based approach to developing
concurrent programs in UML: Part 2. Technical Report
2001-3, Kansas State University, Department of Computing
and Information Sciences, 2001.

[24] I. S. Organization.11898 Road Vehicles – Interchange of
digital Information – Controller area network (CAN) for
high speed communication, 1995.

[25] D. C. Schmidt, D. L. Levine, and S. Mungee. The design of
the TAO real-time object request broker.Computer
Communications, 21(4), Apr. 1998.

[26] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam,
E. Gagnon, and P. Co. Soot - a Java optimization framework.
In Proceedings of CASCON 1999, pages 125–135, 1999.

[27] W. Visser, S. J. Park, and J. Penix. Using predicate
abstraction to reduce object-oriented programs for model
checking. InProceedings of the 3rd Workshop on Formal
Methods in Software Practice (FMSP-00), pages 3–12, Aug.
2000.

