Invariant-based Specification, Synthesis, and Verification
of Synchronization in Concurrent Programs

Xianghua Deng, Matthew B. Dwyer, John Hatcliff and Masaaki Mizuno
Kansas State University
Department of Computing and Information Sciences
Manhattan, KS 66506, USA

{deng,dwyer,hatcliff, nasaaj@cis.ksu.edu

ABSTRACT scratch. One of the key challenges in this setting is enforcing ap-

Concurrency is used in modern software systems as a means 0\pllcatlon specific synchronization policies on the mixture of reused

addressing performance, availability, and reliability requirements. and custom-_buﬂt componer_lts that compnse_the appllcat_|on.

The collaboration of multiple independently executing components . Synchronization can b? viewed as controll_lng the possible schedul-

is fundamental to meeting such requirements and such collabora-""9 Of component execution. For all but the simplest of systems, the

tion is realized by synchronizing component execution. number of ways that components can be sn_:hegiuled IS enormous.
Using current technologies developers are faced with a tension This, comhined W'th the fact that ;ynchroplgatlon Is distributed

between correct synchronization and performance. Developers Car{hroughout the application, makes it very difficult to reason about

be confident when simple forms of synchronization are used, for the qverall qurecmess Of. an application with respect to synchro-
example, locking all accesses to shared data. Unfortunately, suchnization requirements. This presents developers of concurrent sys-

simple approaches can result in significant run-time overhead, and,tems with a choice between employing the synchronization policies

in fact, there are many cases in which such simple approaches Can;hat are best suited to their application, but which may be difficult

not implement required synchronization policies. Implementing to _va_lldate, or employing very _5|mple poll_(:les that are overly re-
more sophisticated (and less constraining) synchronization poIiciesSt.”Ct'Ve of component SChedu"ng’.bUt which are easy to. validate.
may improve run-time performance and satisfy synchronization re- _G|ven the lack of usab_le a}nd effgc_tlve_ methodologies for mtrodqc-
quirements, but fundamental difficulties in reasoning about concur- |ng_complex synchronlza_tlon policies |nt_o sqftware_, (_jevelopers n-
rency make it difficult to assess their correctness. variably choose to use simple synchronization policies even at the
This paper describes an approach to automatically synthesiz-e)(pens_'e of system perfor_mance. , .
ing complex synchronization implementations from formal high- In this paper, we describe an approa(;h which addresseg thgse IS
level specifications. Moreover, the generated coded is designedsue_s_ by: {) allowing developers_to specify global sy_nchronlzatlon
to be processed easily by software model-checking tools such asp()l'c_'eS 'that_govern thg execution Of. gomponents na co_ncurrent
Bandera. This enables the generated synchronization solutions toPPlication;) automatically synthesizing correct efficient imple-
be verified for important system correctness properties. We be- mentatlon_s _Of those synchronization po_hues; afi (ndepen-
lieve this is an effective approach because the tool-support provideddently verifying the correctness of those implementations and sup-
makes it simple to use, it has a solid semantic foundation, it is lan- po_rtlng the a!ﬂomated checking of other system correctness prop-
guage independent, and we have demonstrated that it is powerfulemes' Ours is a focused approach that does not attempt to assure

enough to solve numerous challenging synchronization problems. complete funcy(_)nal correctness. We be'_"?"e _that, excep_t_for_the
most safety critical systems, formal specification and verification

of complete functional behavior is impractical. We also feel that
1. INTRODUCTION generation of code from high-level specifications is impractical for
The use of concurrency to resolve challenging system require- complete functional behavior. However, we believe that formal def-
ments with software is becoming common-place. Concurrency can, inition and derivation of code for particulaspectsf program be-
for example, enable increased system performance through the uséavior is practical, and in this paper we give what we believe is a
of parallel processing, enable increased availability and reliability convincing demonstration of this for the aspect of synchronization.
through replication of functionality, and, through pre-emptive ex- In our approach (refer to Figure 1), the developer builds core
ecution, enable timely system response. Increasingly, developersfunctional code without implementing the synchronization policy.
of concurrent systems are reusing existing libraries and program- For example, in a readers-writers system, code to access a shared
ming frameworks rather than developing entire applications from buffer would be written. The developer delimits particular code re-
gions that will be synchronized. In a readers-writers system, one
would mark the regions that access shared data as a reader and
those that access the data as a writer. A synchronization policy
that controls the scheduling of threads that attempt to execute in
Permission to make digital or hard copies of all or part of this work for those regions is specified in a language of global invariant patterns.
personal or classroom use is granted without fee provided that copies areThjs synchronization specification is compiled to a predicate repre-
not made or distributed for profit or commercial advantage and that copies genting an invariant that must hold on the regions. These invariants
bear this notice and the full citation on the first page. To copy otherwise, to . . .
republish, to post on servers or to redistribute to lists, requires prior specific c_an the_n b_e used to generate |mplementat|ons_ of the synchronlza-
permission and/or a fee. tion policy in Java, for example, that are then integrated with the
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Fine—grain Solution Fi)
ine-grain
Coarse—grain Clé_e_rl_e[a_t?r"sl_(tﬁcl«_er_\qs) - f— Synchronization
—_— . Solution 'Java :: C++ , , —— | Solution
— |—= Coarse_gram — 1 Backend ;' Backend,; ! java/.c/.cc
Solution — X N ! !
Synchronization | Generator — et S |
Specificati ! — Core Functional Coc
pecification | JC-CAN & e ! :
Decision Procedure 1Backend | pacyends I it
! | 1=~ —|| Synchronization Cal
— Package L] b
: I .java/.c/.cc
,,,,,,,,,,,,,,, X
] I
Code Weaver r
Jjava/.c/.cc Py
Core Functional Code \;/ \y
with marked critical regions
% Bandera Verification
Java Model-checking Tool Set Results
Liveness and
additional Safety specifications
Figure 1: SyncGen Tool Architecture

core functional code to produce a complete concurrent application. can be checked automatically using existing software model-
This process guarantees that the safety properties described by checking technology.
the invariant are correctly implemented by construction. To guard
against errors in the synthesis process we can encode specifications The SyncGen tool described in this paper has been fully im-
of the intended synchronization properties into the generated codePlemented. While this paper focuses on the synthesis and veri-
and apply model checking to verify that they hold. This kind of fication of synchronization in Java programs, in collaboration with
checkable redundancy yields a high degree of confidence in thecolleagues we have produced synchronization code generators for
correctness of our synthesis approach. This confidence does notother languages and execution platforms. These include C++ with
however, extend to additional correctness properties, e.g., liveness” OSIX shared memory primitives, distributed synchronization prim-
properties, that one might wish to check. To address this, we haveitives in C on CAN networks [24], and most recently we have begun
adapted the Bandera [8] toolset to extract models that hgbad adaptation of the event-channel mechanism in TAO [25], a widely
of synchronization specifications and core functional code. The used object request broker, to implement synchronization policies
resulting models encode program synchronization very efficiently, in real-time distributed object-based systems.
yielding dramatic state-space reductions that promise to increase The restof the paper is organized as follows. Section 2 describes
the size and complexity of systems for which model checking is the semantic foundation of global invariants, how they give rise to
tractable. synchronization solutions, and how common global invariants can
Our approach builds off and extends the global invariant ap- be captured by a collection of reusable patterns. Section 3 describes
proached advocated by Andrews [2]. Our main extensions have the generation of coarse-grain solutions and how these solutions
been to identify recurring patterns of global invariant specification €an be optimized for specific patterns. Section 4 summarizes the
and to revise the methodology for developing implementations of construction of a fine-grain solution for Java. Section 5 presents a
those specifications [22]. In this paper, we further extend the work non-trivial example that involves the composition of multiple prim-
by providing automated tool support for the synthesis of implemen- itive synchronization policies in a single application. Section 6 de-

tations. We believe the result is a framework for developing correct Scribes our approach to verifying the correctness of synchronization
efficient synchronization code that is: implementations and how we can leverage the coarse-grain solution

for state-space reduction in model checking. Section 7 describes

e Powerful— using the pattern system, complicated structures "élatéd work and Section 8 concludes.

can be described clearly and succinctly at a very high level;

e Expressive- we have used the pattern system to specify so- 2. SPECIFYING SYNCHRONIZATION
lutions for a wide variety of exercises from three well-known
concurrency texts [2, 3, 13]; 2.1 Global invariants

* Auto_mapc— this is pl_Jsh_-button ap_proach where code W.'th In our approach to coding concurrent software, a developer uses
very |ntr|c§§e sgmar'mcs is automatically generated from high- traditional methods and development environments to produce what
level specifications; . . we term the system’'sore functional codeThis code realizes the

* General—_the approach is language |r_1de|_oende_nt_ ‘de _SUp' behavior of each concurrent component of the systentdes not
ports multiple Ianguages_e_md _synchronlzatlon prln_ntlves, specify how components synchronize. Instead, the developer sim-

* FO”“?"‘ our as_pect spemflcatlon language has_a rigorous se- ply marks theregionsof code in each component that require syn-
mantic foundapon which enables code ggperatlon techniques chronization with syntactic tags. The developer then partitions re-
that use decision procedures for a quantifier-free fragment of gions into equivalence classes ternoiubters Intuitively, regions

first—order arithmetic qnd yields a high degree of confidence R, and R, should be in the same cluster if a thread at regin
in the generated solutions; and

o \erifiable-the structure of the generated code and associated ' The tool and a collection of examples are publicly available at
artifacts is designed so that crucial correctness requirementswww.cis.ksu.edu/saves

waits for an event or state that is triggered or changed by a threadconsumer regiotikc that consumed/c resource items each time a

at R». thread executes it. If there are fewer thislp resource items in the
Each regionR is associated with twaonceptual counters pool, a thread executinB¢ waits at the entrance of the region until

andOutg that keep track of the number of times that a thread of there are at leasVc resources in the pool. Thus, the formalization

control has entered or exited the region, respectively. The devel-is (Inc < ((Outp * Np + n) div N¢) wherediv represents integer

oper then specifies the synchronization policy for each cluster by division.

giving a Iogi(_: formula that constrains the relationships between the Barrier(Ry, R»): the k™" thread to enteR, and thek" thread to

clusters region counters.) . enterR2 meet at their respective synchronization regions and leave
As an example, consider how a develo_per would specify a SIM- oqether. The formalization i€Out; < In) A (Out < In:).

ple system of concurrent readers and writers of a shared variable. The barrier pattern yields a symmetric synchronization; threads

\l;\llg_ure 2 ﬂlsplgys ltheh_coredfuncglonal _codehfor ﬂﬁezder ahnd . cannot move faster througR; than they can througR, (or vice
riter threads. In this code, the regions that need synchroniza- versa). This pattern may be decomposed and its components used

tion are the reading and writing of the shared variable. These re-, ¢yqify an asymmetrielay synchronization described below.
gions form a cluster since a thread entering the reader region must

wait for a thread in the writer region to exit the region (and vice RelayRi, Rz): a thread enteringz; can leaveR, immediately;
versa) if the proper mutual exclusion discipline is to be enforced. however, thé:"" thread enteringg. is blocked and cannot leave,
Thus, the developer tags the entrance and exit of the regions withuntil the k'" thread arrives aR; . In this situation, an arrival of a
special comments recognized by the SyncGen tool. These regionghread atfz; triggers a release of a threadag. The formalization
should be synchronized so that (a) multiple reader threads can be infS Out: < In;.

the reader region provided no writer thread is in the writer region, It is convenient to extend the barrier synchronization to the fol-
and (b) one writer thread is in the writer region provided no reader lowing more general form, called ti@roupsynchronization.

thread is in the reader region. The logic formula that specifies this Group((R1, V1), (R2, N2),--- , (Rn, N»)): N; threads entering

policy is R; for 1 < i < n meet, form a group, and leave the respective
dof synchronization regions together. For exampleplet 3, N, = 2,
I, = (Ing —Outg =0 V Inw — Outw = 0) Ny = 3, andN3 = 4. Then, 2 threads iR, 3 threads inR», and

A (Inw — Outw < 1) 4 threads inR3 form a group and leave together. The formalization

where the variables used are the implicit entrance and exit counters'®

assomated_ W|th each region. The_ first I|n_e specmes that either the Nictemy A seqt...my (OUL < (In; div N;) * ;).
reader region is empty or the writer region is empty; the second

line specifies that at most one thread can be in the writer region at The constraintn; div N, gives the number of complete units that

atime. have entered regioRR;. Now, multiplying (In; div V;) by N; and
. . using this as a bound f@ut; for eachR; ensures that every time
2.2 Global invariant patterns a complete unit assembles at eagh for all j, another unit {V;

One possible drawback of the global invariant approach is that threads) is allowed to leav&;. Thus, thek®" unit of threads in
developers may find it difficult to identify appropriate global in- R; may leave the region when ti&" unit of threads have entered
variant formulas that accurately capture the safety properties of theevery regionR;.
given synchronization requirements. To address this problem, we Pattern-based synchronization specifications are formed by com-
provide a set of global invariapatternsor idioms that can be used posing instances of the above patterns where composition is in-
directly or composed to produce more complex synchronization terpreted as logical conjunction. For example, the second section
specifications [23]. Below we describe each pattern and presentof Figure 2 displays readers/writers synchronization specification
its formal semantics as a global invariant formula. expressed as a composition BXclusionand Boundpatterns. In
this example, the developer declares a n&¥éor the single clus-
ter, name®Reader , Writer for the two synchronization regions,
and finally the global invariant for the cluster. In problems with
Exclusio Ry, Rz, -~ , Rn): at any point in time, threads can be myitiple clusters, this information is repeated for each cluster. Ex-
in at most one synchronization region out of thesynchroniza- panding the patterns to logical predicates as described above and

tion regions. To aid in the formalization, we define a predicate interpreting the composition symbot”as conjunction yields the
OnlyOneOccupiefn) that holds in the state in which threads are glopal invariant/,..,.

only in one regionR; out of n regions:

(Iny — Outy = 0) AN 3. COARSE-GRAIN SOLUTION

A (i1 = Out—1 =0) A (Iniys — Outiyr = 0) A global invariant specification is automatically translated into

Bound R, n): at mostn threads can be i at any point in time.
The underlying formalization ifing — Outg < n).

A A (Inn — Outy = 0). an implementation independeaparse-grainsynchronization so-
Thus, the formalization is;c (1, . ,; OnlyOneOccupied, n). For lution which is represented using atomic test-and-update constructs
example Exclusior{ R, Rz, R3) is (await B — 5). Informally, a thread executingwait B — 5)

is suspended until boolean expressiBrbecomedrue. Once B
(Iny —Out; = 0) A (Ing — Out; = 0)) holds, the thread continues in an atomic step to exegute a se-
VvV (Iny — Out; = 0) A (In3 — Outs = 0)) qguence of one or more assignment statements.
VvV (Ing — Out; = 0) A (In2 — Out, = 0)). An await statement will be placed at the entrance and exit of
each region. Each expressidhwill act as a guard ensuring that
Resourcé Rp, Np), (Rc, Nc),n): a pool of resources (with threads can only enter/exit a region when an appropriate condition
items in the pool initially) accessed by a producer regitm that on region counter variables is satisfied, ghdill be an increment

producesNp resource items each time a thread executes it, and a of the appropriate region entrance/exit counter variable. Often, a

Core Functional Code With Delimited Regions:

final class Reader extends Thread {
public void run() {
while (true) {
...other computation...
[** RW Reader enter ***/
..read value of shared variable...
/*** RW Reader exit ***/
...other computation...

)
Synchronization Specification:

CLUSTER: RW;
REGIONS: Reader, Writer;

Coarse-grain Solution:
CLUSTER: RW

REGION: Reader

ENTER: <AWAIT Writer_in - Writer_out ==
--> Reader_in++>

NOTIFY: ;

NOTIFYALL: ;

EXIT: <Reader_out++>

NOTIFY: ;

NOTIFYALL: Writer_in;

Woven Core Functional Code:

final class Reader extends Thread {
public void run() {
while (true) {
...other computation...
/I** RW Reader enter ***/
SGCluster$RW.Reader$enter();
...read value of shared variable...
/I** RW Reader exit ***/
SGCluster$RW.Reader$exit();
...other computation...

m

final class Writer extends Thread {
public void run() {

while (true) {

...other computation...

[** RW Writer enter ***/

...write value to shared variable...

[*** RW Writer exit ***/

...other computation...

m

INVARIANT: Exclusion(Reader,Writer) + Bound(Writer,1);

REGION: Writer

ENTER: <AWAIT Reader_in - Reader_ out == 0 &&
((Writer_in + 1) - Writer_out) <= 1

--> Writer_in++>

NOTIFY: ;

NOTIFYALL: ;

EXIT: <Writer_out++>

NOTIFY: Writer_in;

NOTIFYALL: Reader_in;

final class Writer extends Thread {
public void run() {
while (true) {
...other computation...
I** RW Writer enter ***/
SGCluster$RW.Writer$enter();
...write value to shared variable...
/I** RW Writer exit ***/
SGCluster$RW.Writer$exit();
...other computation...

m

Figure 2: SyncGen Tool Artifacts for Readers/Writers Example

guardB in (await B — S') will be the constantrue (signifying threads that have exited the writers region is zero), and the writer
that a thread can unconditionally enter/exit a region); we abbre- region can only be entered when (a) there are no threads present in
viate suchawait statements a¢.S) and refer to them aatomic the reader region and (b) there are no threads present in the writer
statements. region. It is clear that more compact renderings of condition (b)
In summary, our strategy ensures (via induction on the number are possible, but the displayed version is what produced by the au-
of execution steps) that an invariant holds throughout an executiontomatic construction outlined in Section 3.1 below.
by (a) checking that the invariant holds in the initial state where all The SyncGen tool actually provides two different mechanisms
region counter variables have a value of 0 (base case), and (b) confor generating coarse-grain solutions. The first is an approach that
structing appropriate guards at region boundaries (entrances/exits)tarts from the logic formula representation of the global invariant
that guarantee that, if the invariant holds before a thread crosses ge.g., the formulal,.,) and employs weakest-precondition calcu-
boundary, then it will also hold after the thread crosses a boundary lations and subsequent reductions using a decision procedure for
(induction case). a subset of first-order logic (our implementation uses the Stanford
Figure 2 (middle) presents the coarse-grain solution for the read- Validity Checker (SVC) decision procedure package). The second
ers/writers example that is produced automatically by the Sync- mechanism generates the coarse-grain representation directly from
Gen tool. The solution passes along the declared cluster and re-the global invariant pattern specification. Working directly from
gion names, gives the await/atomic statement associated with eaclthe patterns makes generation easier in several respects because
region entrance/exit, and specifies other regions that should be no-information about the structure of the synchronization solution is
tified upon completion of each region entrance/exit. The intuition already coded in the pattern concept — the structure does not have
behind the guards for each region entrance is as follows: the readerto be (re)discovered by manipulation of the invariant formula. We
region can only be entered when there are no threads present iralmost always use the pattern-based generation mechanism since
the writer region i(e., when the difference between the number (a) the generation process is more efficient — the formula-based
of threads that have entered the writers region and the number ofmethod requires numerous calls to the decision procedure package,

(b) the generated solution is slightly more efficient due to leverag- described above. However, SVC fails to prdve. A = —~C> and
ing structural information in the patterns, and (c) the pattern collec- SO we have the reduced formula

tion is expressive enough to specify a wide variety of synchroniza- def

tion solutions. The formula-based mechanism can be used when a Bz = (Inw — Outyy = 0) A (Inw — Outyy < 1).
particular glopal invariant cannot bg expressed using the existing Let Dy, D,
patte_rn collection. We give an overview of both approaches below. Step 3: Compute a smaller guar; from Bs by removing con-
V_/e give amore detailed explgnatlon of_the formula-based approaChjunctsDk from each of the remaining); in Ba if I A A = Dy, or
since it provides the semantic foundation of the coarse-grain solu- Dy is entailed byl A A conjoined with other conjuncts iff;.

be the first and second conjunctsha.

tion generation. In the exampleB; above, the decision procedure can ‘establish
. thatl,., A A = D (intuitively, becausé), appears as a top-level
3.1 Formula-based generation conjunct inl.,,). In fact, because the situation where a top-level

Establishing the base case of our inductive argument is straight- conjunct inZ,.,, matches aD; occurs so often, our tool makes a
forward: references to region counter variables in the global in- Syntactic check for such cases before invoking the decision proce-
variant I are replaced with their initial value 0, and the decision dure processing. In the readers/writers example, the resulting guard

procedure is called to verify that the resulting formula is true. If for the entrance of the reader region s
the formula is not true the user is notified that the proposed syn-
chronization policy is unsatisfiable; otherwise, we continue with
the inductive steps as described below. and this matches the reader guard displayed in Figure 2. The gen-
To see how each entrangawait B — Ingr++) statement is eration of the await statement in Figure 2 for writer region entrance
constructed automatically from a given global invariant formila follows the same steps.
note that, in order to preservea thread at the entrance of a region Calculation of region exit statements begins with the weakest-
R must wait until it is guaranteed that incrementimg; will pre- precondition calculation otep 1 Reduction then proceeds as in
serve! (similarly for the exit of R). Thus, we are looking for the ~ Stép 2andStep 3 but instead of reducing based on information

!
least restrictive conditiol® that guarantees thét z++ will result represented by A A, we reduce based on a formula\ A A A

in 7 being true. In other words, calculate the least restridthaich where A’ represents additional facts that hold when a thread is in-
: ’ side the current region — this information is derived by calculating

that the Hoare tripl§/ A B} Ing++{I} is satisfied. Note thatif yhe sirongest post-condition of the previously generated entrance
all region guards are constructed appropriateshould always be statement. For example, here is the intuition for the reader exit: cal-
true, and thus it appears in both the precondition and postcondition culating wdOutg := Outg + 1, I,.,,) and converting to disjunc-

B3 déf (InW — Outyy = 0)

of the triple. tive normal form yields

Step 1: The calculation process begins by noting that a correct
but often unnecessarily comple®, can be produced by taking B (Ing — (Outg+1) = 0) A (Iny — Outyy < 1)
Bo ¥ wp(Ing++, 1), i.e., By is the weakest precondition bf z++ V (Iny —Outyy =0) A (Inw —Outyy <1).

with respect tal. Calculating wgS, I) when S is an assignment]]
statement: := e proceeds by substitutingfor any occurrences of Unlike the calculation for entranc8tep 2does not lead to reduc-

zinI:wp(z:=e, 1) def I[e/x] [12]. In the readers/writers exam- tions _because it. is possible for ea_ch of disjur(C’ls_ C> above to
ple, to calculate thawait statement for the entrance of the reader Nold (i.e., checking A A = ~C; fails). However, irStep 3 each

region, we have of the occurrences dfny — Outyy < 1) can be removed as in the
def case for the reader entrance (this follows frém). Finally, for
Bo = wp(ng :=Ing + 1, Irw) I, to hold while a thread is inside the reader region, it must be the

= (InR+1fOutR:0 V |nW70UtW:0)

A (Iny — Outy < 1). case thatny — Outyy = 0. This causes the potential guaBd to

) i) reduce tdrue, which yields an atomic statement for the reader exit.
Notice that the structure of this formula is more complex than nec- Figyre 2 illustrates that the coarse-grain solution also contains
essary. For example, the first disjunct can never hold because ofpqtification information When an entrance/exit counter for region
two basic propertief region counters: (1) counter variables can p is incremented, it may cause an entrance/exit guard of another
never have negative values, and (b) for any redignin; > Out. region R’ that was previously false to become true. Fine-grain
In addition, sincel,-., holds globally, the second conjunct must be so|ytions often implement await statements by blocking on false
true since it also appears as a top-level conjundt.in Reducing guards. In such implementations, a thread causing the guard at the
By based on these two observations yidlts — Outy = 0 — entrance/exit of regio®’ to change from false to true should wake
the guard at the reader region entrance (Figure 2). The following yp threads waiting at the entrance/exitiff TheNOTIFY clauses
two steps give a method for carrying out such reductions for region iy Figure 2 indicate situations where one thread in a region en-
entrances in a systematic way regardless of the structure of trance/exit should be awakened, a@TIFYALL clauses indicate
Step 2: Let B, be the disjunctive normal form aB, that is, situations more than one thread in a region entrance/exit should be
By has formCy vV C2 V ... vV Cn. Compute a smaller guard awakened. Note that notifying all threads yields a less efficient but
Bs by removing disjunct€’; for which SVC can establish thatA guaranteed safe solution. Distif¢OTIFY andNOTIFYALL lists

A = -C; holds. Here= is implication, andA is a formula are maintained because issuingatify is typically more effi-
gncoding the. basic properties of counters mentioned above (e.g., itsient that issuing aotifyall . Although this information isn't
is a conjunction of facts such &s; > 0, Out; > 0, In; > Out;, necessary to specify the coarse-grain semantics, we include it at the
etc.) . . . coarse-grain level because (a) most fine-grain backends make use
Picking up the readers/writers example, the disjunctive normal ¢ 1hs this functionality is factored out of the back-ends, and
form of Bo is (b) it is very easy to generate precise notification information using
B ¥ (Ing+1 — Outg = 0) A (Inyy — Outyy < 1) the pattern-based method described below — deferring the calcula-
Vv (Iny —Outw =0) A (Inyy — Outyy < 1). tion to the back-ends where the structural information contained in

Let Cy, Cs represent the first and second disjuncts above, respec-the patterns has already been compiled away usually yields more
tively. SVC can provd A A = —(C, using facts encoded iH as conservative and thus less efficient notification actions.

3.2 Pattern-based generation

regionsR’ other than the regioi? that is bounded, the entrance

The pattern-based generation of region boundary guards lever-guard istrue. For the reader exit, both thexclusionand bound

ages three facts: (1) region enter/exits have a regular form — a sin-

gle counter increment, (2) patterns ammposed by conjunctido
form a synchronization specification, and {@&akest-precondition
distributes across conjunctidd?], i.e.,

wp(S,I1 A ... A In) =wp(S, 1) A ... Awp(S, I,).

ConsiderS to be a region counter increment andto be the for-
mulas obtained by instantiatinjgglobal invariant patterns (far <

j < n). The law of distributivity above allows one to precompute
entrance/exiguard schemasor each pattern individually. Then,

yield true guards so an atomic statement is generated (similarly
for the writer exit). For the writer entrance tlegclusionpattern
contributesing — Outg = 0 and thebound pattern contributes
(Inw + 1) — Outw < 1. Thus, the conjunction of these two
forms the guard. The schemas above reveal that notification only
occurs at the region exits. For the reader essittlusioncontributes
notifyAll to the writer entrancepound contributes nothing.
For the writer exitexclusiorcontributesotifyAll to the reader
entrancepoundcontributesotify to the writer entrance.

given a pattern-based synchronization specification that contains4. FINE-GRAIN SOLUTION

pattern instance®, . .. , P,, a guardG for a region entrance/exit

is built by conjoining guards;; that are produced by instantiating
the precomputed guard schemas for eBghEachG; corresponds

to a reduced w5, I;). We will illustrate this by considering sev-
eral patterns below — details for the remaining patterns and correct-
ness proofs can be found in [9].

Bound R, n): Here, we havd = (Ing —Outr < n). The entrance
guard schema for regioR is

wp(Ing++,I) = ((Ing + 1) — Outg < n).

The entrance guard schema for any regitin R is true (i.e., no
guard condition is required to ensure tlidiolds after an entrance
to R’) sincel holds beforelnz,++ and therefore it must be true
aftering: ++.

The nonreduced exit guard schema for regdis

wp(Outg++,1) = (Ing — (Outg + 1) < n).

However, since we know must hold beforé®©utz++ and counters

are always non-negative, the proposed exit guard will also be sat-
isfied. Therefore the reduced exit guard for regidis true. Rea-
soning similar to the entrance guard for regi@h+# R establishes
that the exit guard schema fdt’ with respect tdBBound R, n) is

true.

For generating notification information specific to this pattern,
note that the only non-trivial guard is the entrance guard calculated
above, and only the increment Gfutr at the regionR exit can
cause the guard to change state friafseto true. Thus, upon exit
of R, threads at the entrance 1 should be notified. Note that
notify ~ should be used instead nbtifyall . if a thread has
been waiting at the entrance of a “fulR (i.e., n are currently in
R), then one thread exiting will only allow one more thread to enter.
Thus, only one thread (instead of all) should be woken up.

ExclusioffR1, R2): We consider a simplified version of exclusion;
it is easy to see how to scale the steps tortheay version of Sec-
tion 2. Here we compute four guard and notification schenias:
entrance and exit an®- entrance and exit. Working in a fashion
similar to theBoundcase above, we have

Gi" = (Ing — Out = 0)
G = true
ngn = (In1 — Out;, = 0)
G$*™ = true

For notification information, we hav&; exit calls notifyAll

on R, entrance, and®, exit callsnotifyAll on R; entrance.
Considering the readers/writers specification of Figure 2, the dis-

tributivity of 'wp’ allows us to assemble the course-grain solution

As noted in the introduction, the language-independent coarse-
grain solution skeleton can be translated to fine-grain solutions ren-
dered using a variety of languages and synchronization primitives.
In this section, we focus on the Java translation.

The translation to Java involves generating several methods and
locks objects for eachwait and each atomic statement. Also, the
counter variables and associated increments for each critical region
must be implemented so as to ensure exclusive access across a clus-
ter. All such definitions for a particular cluster are collected into
common static clasSGCluster$ clname and we outline the con-
struction of each of these below. The translation follows Mizuno'’s
strategy of implementingpecific notificationand further motiva-

tion for this implementation is given in [21].
Counters: For each regiomname declare private static integer
variable implementing the region’s entrance/exit counters:

private static int <rname>_in, <rname>_out;

Note that this yields a solution with an unbounded counter vari-
able. If one needs to avoid potential wrap-around, the alternate
bounded counter implementation presented in Section 6 can be

sed.

Locks: Declare a private static ObjetiusterCounterLock
to use for implementing exclusive access to counter variables.

private static Object
clusterCounterLock = new Object();

Awaits: For each(awaitB — S) at the entrance of region
rname (await statements at the exit of a region are treated iden-
tically — only exit is used in the generated names for methods
and variables), define one static public (hon-synchronized) method
namedrname$enter , one static private method named
check$ rnamebenter , and declare one static private variable of
type Object namedondition$ rnamebenter toimplement spe-
cific notification.

We have the following declaration for the specific notification
lock.

private static Object
condition$<rname>$enter

new Object();

Public methodnamebenter is defined as follows.

public static void <rname>$enter() {
synchronized (condition$<rname>$enter) {
while (!check$<rname>$enter())
try {
condition$<rname>$enter.wait();
} catch (InterruptedException e){}

/* add notify calls here (see below) */

}

from the schemas above as follows. For the reader entrance the pyiyate methodheck$ rnamesenter is defined as follows where

exclusionpattern contributesny, — Outyy = 0 but the bound
pattern’s contribution is trivial since we noted above that for all

 and <S> are theawait guard and increment statements, re-
spectively.

private static boolean Barber Thread Customer Thread
check$<rname>$enter() {
synchronized (clusterCounterLock) {
if () {
<S>; return true;
} else return false;

}

}

Atomics: For each(S') at the entrance of regiamame(atomic
statements at the exit of a region are treated identically —exity
is used in the generated names for methods and variables), define
one static public (non-synchronized) method nammedginebenter
as follows.

public static void <rname>$enter() {
synchronized (clusterCounterLock) { <S>; }
/* add notify calls here (see below) */

}

Notifies: For each await/atomic statement generated at the en-
trance for regionname add

synchronized (condition$<rname’>$enter) {
condition$<rname’>$enter.notify();}

at the point of the comments concerningtify in the generated
await/atomic statement frname’>_in appears in th&lOTIFY
list in the coarse-grain solution fonameENTER and add

synchronized (condition$<rame’>$enter) { Figure 3: Sleeping Barber Synchronization Solution

condition$<rname’>$enter.notifyAll();}

if <rname’>_in appears in the correspondilNOTIFYALL C1 check if the waiting room is fullfjumCustomers== N) — if
list. The analogous steps are taken for atomic/awaits at region exits. S0, leave; else enter the waiting room (incrememrhCustomeds
C2 wait until the barber becomes free
5. EXAMPLE C3 {assertion: met the barbeleave the waiting room (decrement

. numCustomejsand enter the barber room
Using our basic invariant patterns and composition techniques, c4 wait until the barber finishes the hair cut

we have solved a wide variety of challenging problems found in c5 {assertion: hair cut is dofdeave the barber room

standard textbooks [2, 3, 13], and all artifacts associated with eight

representative problems can be found on the project web-site. In Inthe barber’s scenario, steps B1 and B4 constitute synchroniza-
this section, we illustrate the use of the synchronization patterns tion regions because they involve waiting on a customer (B1 waits
to specify a solution to theleeping (daydreaming) barber problem on C2, B4 waits on C5). Step B3 is a synchronization region be-
given in many OS textbooks (here, we use the description from [2]). cause it triggers the customer’s exit. In the customer’s scenario,
steps C2 and C4 constitute synchronization regions because they
involve waiting on the barber (C2 waits on B1, C4 waits on B3).
Step C5 is a synchronization region because it releases the barber
to look for another customer. Let these regions be denotdd Ay

Rps, Rps, andRc2, Reoa, Reos.

We use a total of four clusters in the synchronization solution.
The waiting and notification causalities listed above give rise to
three clusters as described in Sectiof Bz1, Rz}, { Rp3, Rca},
{RBa, Rcs}. Cluster{ Rp1, Rc2} is synchronized by
Barrier(Rp1, Rc2) since these two regions wait for each other.
Clusters{ Rps, Rca} and{Rpu, Rcs} are synchronized by

In a solution, we define two types of threads; a barber thread and Relay Rz3, Rc4) andRelay Res, Rga), respectively since in each
customer threads. Let integer variablemCustomerkeep track case the completion of the first region triggers the start of the sec-
of the number of customers in the waiting room. A scenario de- gnd.
scribing the repeating sequential behavior of the barber thread is as The fourth cluste{ Rc1, Rc3} is formed to guarantee mutually
follows: exclusive access to the countaumCustomersvhich is checked
and incremented in C1 and decremented in C3. Thus, this cluster
is synchronized b¥xclusior{Rc1, Re3) (which ensures that ei-
ther C'1 or C3 is vacant) anBound Rc1, 1) andBound Rcs, 1)
(which ensure only one thread is accessignCustomeré C'1
and C3). Figure 3 displays the structure of the synchronization
solution for the sleeping barber problem.

The shop has a barber, a barber chair, and a waiting room with
N chairs. When a barber finishes cutting a customer’s hair, the
barber fetches another customer from the waiting room if there is
a customer, or stands by the barber chair and daydreams if the
waiting room is empty. A customer who needs a haircut enters the
waiting room. If the waiting room is full, the customer comes back
later. If the barber is busy but there is a waiting room chair avail-
able, the customer takes a seat. If the waiting room is empty and
the barber is daydreaming, the customer sits in the barber chair
and wakes up the barber.

B1 {assertion: no customer is in the barber rgowait until a
customer is in the waiting room

B2 {assertion: met a custonjestart cutting the customer’s hair

B3 finish the hair cut and inform the customer

B4 wait until the customer leaves the barber room

A scenario describing the repeating sequential behavior of the
customer thread is as follows:

JAVA fragment:
synchronized(this)
this.x ++;

JIMPLE 3-address form for fragment:

labell:
nop;
T$0 = this;
entermonitor T$0;
label2:

T$1 = T$0.[Box.x:int];

T$1 = T$1 + 1;

T$0.[Box.x:int] = T$1;
label3:

exitmonitor T$0;

goto label5;

BIR guarded assignments for fragment:
loc s5: when true
do invisible T _0 := this;

goto s6;

loc s6: when lockAvailable(T _0.BIRLockK)
do lock(T _0.BIRLock);
goto s7,

loc s7: when true
do T.1 :=T.0x;
goto s8;
loc s8: when true
do invisible T 1= (T 1+ 1);
goto s9;
loc s9: when true
do TOx =T .1
goto s10;
loc s10: when true
do unlock(T _0.BIRLock);
goto s11,

Figure 4: Bandera’s Intermediate Representations

6. SUPPORTING VERIFICATION

put format of existing model checking tools, such as SPIN [17].
To be effective in combating the exponential complexity of model
checking, Bandera provides support for reducing the number of
states in the finite-state model while retaining the ability to rea-
son about correctness properties. Bandera does this by providing
different automated program analyses and transformations, such as
program slicing [14] and data abstraction [10], that are aimed at
state-space reduction.

Bandera is organized like an optimizing compiler that represents
the program in a series of different formats that are amenable to dif-
ferent kinds of analyses. Bandera translates a Java program into a
3-address byte-code representation, called JIMPLE [26], to which
traditional compiler optimizations can be applied, then it converts
the JIMPLE representation to an asynchronous transition system
model expressed using guarded-assignments, called BIR, and fi-
nally it converts the BIR representation to the model checker in-
put format. Figure 4 gives a small fragment of Java code and its
JIMPLE and BIR representations. The mappings between repre-
sentations are, for the most part, straightforward. The only subtlety
is the use of guards, i.e., tlehen clauses, in BIR to capture the
semantics of JVM primitives, such astermonitor . We note
that BIRs guarded-assignment statements have the same semantics
as theawait statements introduced in Section 3.

6.2 Checkingsynchronizationimplementations

If one considers the coarse-grain solution as described in Sec-
tion 3 it is immediately obvious that traditional model checking of
finite-state systems cannot be used to verify synchronization im-
plementations. The use of unbounded region entry/exit counters
means that in principle those counters may yield an infinite state
space.

One can use model checking as a thorough form of testing by
applying it to a portion of the system’s state space. Bandera al-
lows users to perforrbounded model checkirfgr the portion of
state space where values of designated variables stay within a spec-
ified subrange. Figure 6 gives the number of states explored dur-

The approach described in this paper allows developers to being bounded model checks of tiéne grain solution for both the
confident that the resulting system implementation satisfies cor- reader-writer (denoted RW in the figure) and Barber examples where
rectness properties related to the specified synchronization poli-Unboundedcounters are used but the model check is restricted to
cies provided that the synthesis process is correct. One approactstates where the counters have values less than 4. In these cases, the
to providing evidence of the correctness of the synthesis processchecks were for deadlock and for synchronization policy related in-
would be to provide a proof of correctness of the synthesis algo- variants encoded as assertions.
rithm. While potentially useful, this approach would not verifythe ~ Such bounded model checks can provide evidence that the syn-
implementation of the synthesis algorithm. We take an approach chronization implementation is correct, but if one desires complete
which analyzes the correctness of synthesized implementations di-Verification of correctness, the system’s states must be explored ex-
rectly by generating specifications of desired correctness propertieshaustively. One approach, which we mention below, is to attempt to
that can be checked against the implementation. This kinotextk- abstract the unbounded counters to range over finite data domains.
able redundancyrovides an independent means of verifying that An alternative approach is to design the coarse-grain solutions for
the synchronization implementation is correct. verification by usingooundedcounters that range over a, usually

Eliminating subtle errors in synchronization implementations is small, finite domain. We describe this approach for the bound and
a significant advantage of our technique, however, other concur- €xclusion patterns below; bounded counter solutions for the rest of
rency related errors may still be present in an application. We ex- the patterns are given in [9].
ploit synchronization specifications to constrogbrid models that Bound: The original global invariant foBound R, n) is Ing —
blend synchronization behavior from the coarse-grain solution with out, < n. To adapt this to a bounded representation, we use a
the I?ehavior qf the fungtiongl core applicatioq cpde. This can re- yariable B to hold the value ofnz — Outz. Thus, the adapted
sult in dramatic r(_eductlons in the cost of verifying properties of glopal invariant islyoundea = B < n. In the original unbounded
SyncGen synthesized programs. counter solution, the guard of the region entranctnjs + 1 <

e . . Outr + n. This is adapted t& < n — 1; the guard of the region
6.1 Software verification via model CheCkmg exitistrue. UnboundeF()j counter operatiomsgi andOutg++ agre

We support verification of SyncGen synthesized programs by ex- adapted taB++ and B-- , respectively.
tending the Bandera toolset. Bandera [8] is a framework for trans- We can verify the correctness of the bounded counter guards by
lating Java source code into a finite-state model encoded in the in-calculating the weakest preconditions of bounded counter opera-

tions: for the region entrance . !
9 Bounded Counter Coarse-grain Solution:

Wp(B.;..‘.7 Ibounded) — Wp(B++’ B< n) CLUSTER: RW
VARIABLES: E1.0, E1 1, B1;
=B+1<n REGION: Reader
—B<n-1 ENTER: <AWAIT E11 == 0 -> E1 0++;>
- EXIT: <E1 0--;>
for the region exit REGION: Writer
ENTER: <AWAIT E10 == 0 && Bl == 0
WP(B-- , Inounded) = WP(B-- , B < n) > E1 _1++; Bl++>
—B-1<n EXIT: <E1 _1--; B1--;>
=B<n+1 JIMPLE Synchronization Calls:
=true ..sinceB <n. LabeIO:. . .
= staticinvoke [RW.Reader$enter():void]();
Exclusion: The original invariant foExclusiofR1, Rz, - - - , Rx) staticinvoke [RW.Reader$exit():void]();
iS Vieq1,...,n}ONlyOneOccupied, n). where OnlyOneOccupied goto labell;

represents a formula that holds in a state in which threads are only)

in one regionRk; (as defined in Section 2.2). To adapt the definition Hyblr(l)dc 2'2%. M(\)A(/jr?(l.:n e

of OnlyOneOccupiedve use a family of counter®; (1 < i < n) : S _ .
T Tt | TEMP 2 =R _th

whereE; holds the value oin; —Out;. Thus, the adapted definition do invisible cader _this;

. . goto s27;
of OnlyOneOccupied, n) is loc s27: when (E1 _1 == 0)
do E10 := (E1 0 + 1);
(Er=0) AN goto s28;
AN (Bici=0) A (Ei41=0) loc s28: when true
RS A (B, =0).
))]) loc s38: when true
Using the orginal version oOnlyOneOccupiedthe unbounded do E1.0 := (E1 0 - 1);
counter region entrance guard f&; is OnlyOneOccupied, n). goto s38;
Thus, the bounded counter version is obtained by simply using
the adapted version @nlyOneOccupiedThe original region exit Figure 5: Model Extraction Artifacts for Readers/Writers
guard istrue, and thus it remains unchanged in the bounded counter | (excerpts)
version.
We can verify the both of these guards by calculating the weakest
preconditions of bounded counter operations following the same [Progé?,:/n | M'g_del | 5 C;ount;:‘r? Thrseads | 155:::;”
H Ine npounae
pattern as in the case fBoundabove. RW | Fybrid Bounded 5 537

The chief advantage of the bounded counter solution is that ex- Barber Fine | Unbounded| 4 (2 Customers) 530514

haustive consideration of all possible execution states of a synthe- Barber Eine Bounded | 4 (2 Customers) 418527
sized synchronization implementation can now be analyzed. In ad- Barber | Hybrid Bounded| 4 (2 Customers) 488
dition to this, comparison of state space sizes for the unbounded Barber | Hybrid Bounded| 5 (3 Customers) 4646
and bounded checks of tlne grain solution of the 4 thread bar- Barber | Hybrid Bounded| 6 (4 Customers)| 46472

ber system in Figure 6 illustrates that the use of bounded counters Barber | Hybrid Bounded | 7 (5 Customers) 500350
can reduce the number of states. The reduction, however, appears

rather modest, around 20%, and it is doubtful that it will mitigate Figure 6: State-space Sizes for Model Checks
the exponential growth of the state space with increasing numbers

of components.

. . its implementation. Thus, confidence in the correctness of the syn-

6.3 Hybrid model-extraction chronization code synthesis process can be leveraged to reduce the

A large body of recent work in model checking software, e.g., [4, cost of model checking SyncGen synthesized applications by ap-
10, 27], has focused on identifying ways in which the low-level de- plying the high-level abstractions on hand.
tails of system descriptions and implementations can be abstracted. Our approach works in two phases integrated into Bandera’s model
In principle these approaches attempt to recover a high-level modelextraction approach. First, parse the coarse-grain solution, e.g., as
of the program that preserves behavioral properties that are rele-depicted at the top of Figure 5. Second, when traversing the JIM-
vant to a specification that is to be checked. Fully-automated ver- PLE representation of the program, e.g., as depicted in the mid-
sions, e.g., [4, 27], of such abstraction techniques generate verydle of Figure 5, identify calls to synchronization region entry/exit
large numbers of sub-problems whose solutions are used to iden-implementations. In Bandera’s source code model extraction pro-
tify the high-level abstraction. Those sub-problems typically in- cess, the implementation of the fine-grain synchronization methods
volve reasoning about arithmetic and consequently their solution would be inlined and the resultant JIMPLE would be translated to
requires the use of theorem-proving techniques. The number of BIR on-the-fly. For hybrid model extraction, instead of inlining
sub-problems can grow extremely rapidly and this is a limiting fac- those methods we splice BIR transitions into the model that encode
tor in scaling these approaches. Semi-automated techniques, e.gthe semantics of the region enter/exit commands in the coarse grain
[10], require the user to help in the identification of abstractions, solution, e.g., as depicted on the bottom of Figure 5.
consequently these approaches may be even less scalable than the The data in Figure 6 illustrates the effectiveness of this approach
theorem-prover based techniques. in reducing the state space of systems for model checking. The

In our approach, we start with the high-level abstract model for reader-writer example, denoted RW, exhibits a state space reduc-
the synchronization parts of the concurrent system and synthesizetion of a factor of 2994 and the Barber example exhibits a reduction

of a factor of 1086 when using th¢ybrid models. This preliminary cesses to ensure that illegal combinations are not reached.
data suggests that dramatic state space reductions are possible using The idea of using global invariants to specify synchronization
this approach and that this reduction will vary with the application. policies is not new [2, 5]. Our approach differs from this work in
The RW example exhibits a large reduction because the functional several ways. [2, 5] present many coarse grained solutions in which
core code has very little data. The hybrid model eliminatesdtie functional codes are embedded witlawait statements. Our ap-
objects and the statements that manipulate those locks to implemenproach cleanly separates development of functional code and syn-
the conditional waiting and notification in the fine grain solution chronization (aspect) code and weave them in a simple way. Solu-
since that behavior is implicit in the semanticsanfait statement tions in [2] use many types of counters. Our approach successfully
guards. Consequently, the ratio of synchronization related data andabstracts these counters by only two types of counters, In and Out.
control states to functional core code data and control states is veryWe have developed various synchronization patterns and their so-
high for the RW example which leads to the large state space re-lution global invariants and demonstrated effectiveness of compo-
duction. Relative to the RW example, the functional core code for sition of such global invariants. We have also automated the trans-
the Barber example has a larger amount of data so the state spacktion from synchronization specifications to Java.
reduction is smaller. As mentioned in Section 6, model checking of software, and the
Despite the significant reductions, it is clear that the state spaceabstraction of software to make such checking tractable, is an ac-
of the hybrid model will still grow exponentially, as illustrated by tive area of research. Code can be viewed as a very detailed spec-
the scaling of Barber example. Our hope is that slowing the rate ification and this level detail leads to extremely large state spaces.
of growth of the state space will allow scaling of model checking For this reason, and to provide feedback in early phases of devel-
of hybrid models for systems well-beyond the point at which their opment, many researchers have advocated the application of auto-
implementations can be model checked, as was the case with themated verification techniques to requirements, e.g., [15], and soft-
Barber example. ware design, e.g., [11, 18], descriptions. This kind of support can
It is important to note, that the technique described in this pa- be very useful, but without evidence of the conformance of designs
per does not address the potentially huge state space that may ariseith code they don't provide evidence of the correctness of the ex-
from the core functional code. We believe that ongoing work on ab- ecutable artifact. While work on automated refinement checking,
straction techniques may provide a means of addressing that prob-e.g., [7], provides a kind of conformance checking, there is still
lem. On the other hand, our approach provides one way of abstract-the problem of relating the lowest level design to an implementa-
ing synchronization code. Synchronization is not currently treated tion in a modern programming language like Java. In our approach,
by automatic abstraction techniques, in part because of the lack ofthis design-code conformance is guaranteed by the code synthesis
appropriate theories that would be needed to adapt theorem provemprocess so we are free to exploit the design information.
based techniques.

8. CONCLUSION

7. RELATED WORK In this paper we describe a methodology for synthesizing cor-
The integration of synchronization and object oriented program- rect implementations of synchronization policies from high-level
ming has been studied extensively in the past decade. Several exspecifications. Mizuno has shown that this methodology is broadly
tensions to languages such as Java and C++ have been proposeapplicable to real synchronization problems when applied by hand
with additional synchronization primitives to enhance flexibility [22, 23]. The main contributions reported on this paper are the de-
and expressiveness. For example, several languages allow specivelopment of the SyncGen tools that: automate the synthesis pro-
fication of conditions under which a method invocation can be ac- cess, provide checkable redundancy for verifying the correctness of
cepted or blocked [19]. The notion @fordinator in [19] allows a synthesized implementations, and exploit synchronization specifi-
designer to specify the conditions under which a method may be in- cations for state-space reduction of general correctness properties.
voked and the code to be executed on entry and exit of that method. SyncGen automates the synthesis of an intermediate represen-
The Composition filters [1] and Synchronization rings [16] models tation of synchronization behavior, expressed as global invariants,
are similar in nature and define conditions to block or allow method through the use of automated decision procedures or, when users
invocations. [1] and [16] show how filters or rings can be composed specify synchronization policies using patterns, through template
in a layered fashion, allowing modular specification of synchro- instantiation. Backends for different languages and run-time envi-
nization aspects. implements inter-object synchronization via syn- ronments, such as Java, C++/POSIX, and C/CAN based concurrent
chronizers. [19] also allows coordinators to control more than one systems, have been developed that generate implementations from
object. The frameworks discussed above can be classified as fol-this intermediate representation and integrate the resulting synchro-

lowing the bottom-up approach: they provide the language mech- nization code with the functional application code. These back-
anisms to the designer to program synchronization. Our approach,ends can also introduce redundant invariant specifications that can
on the other hand, is top-down. We start with high-level language be checked using, for example, the Bandera tools. The Bandera
independent specification of synchronization requirements and au-tools themselves have been adapted to accept the functional core
tomatically derive the synchronization code. Hence, our work can code and the intermediate-level synchronization specification then
be viewed as orthogonal and complimentary to the bottom-up ap- extract a model that represents their composite behavior.
proach. Preliminary experience with the SyncGen tools on a variety of
[20] presents a framework for incorporating synchronization con- examples (sea&ww.cis.ksu.edu/saves) is very encourag-
straints into already developed code. These synchronization specing. More experience is needed, however, to understand the breadth
ifications are in terms of finite state machines and they employ a of applicability of this approach. Toward this end we are extend-
synchronous model that allows immediate distribution of the global ing the methodology and SyncGen in several directions with the
state information. [6] presents a similar approach whenedaal goal of evaluating its effectiveness by reengineering embedded ve-
processesare used to specify the legal combination of states of dif- hicle control applications. This ongoing work includes: supporting
ferent processes. The system is implemented via a controller thatthe propogation of exceptions thrown in the core code past region
controls the transitions between the states of the individual pro- boundaries, supporting group forming synchronization patterns us-

ing specific notification, adapting synchronization code generation
to target available middle-ware platforms, such as TAO [25], and
more tightly integrating our synchronization code generation with
scheduling algorithms to support real-time applications.

Acknowledgements

The authors would like to thank Gurdip Singh and Mitch Neilsen
for the many helpful discussions and comments related to this proje
This work was supported primarily by DARPA/ITO's PCES pro-
gram through AFRL Contract F33615-00-C-3044, with additional
support from NSF under grants CCR-9703094, CCR-9708184, CC

9896354 and CCR-9901605, by the U.S. Army Research Laboraﬁle]

tory and the U.S. Army Research Office under agreement number
DAAD190110564, and from the Formal Verification of Integrated
Modular Avionics Software cooperative agreement, NCC-1-399,
sponsored by Honeywell Technology Center and NASA Langley
Research Center.

9. REFERENCES

[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and

A. Yonezawa. Abstracting object-interactions using

composition-filters. IrObject-based distributed processing,

Lecture Notes in Computer Science 79293.

G. R. Andrews Concurrent Programming: Principles and

Practice Addison-Wesley, 1991.

G. R. AndrewsFoundations of Multithreaded, Parallel, and

Distributed ProgrammingAddison-Wesley, 2000.

T. Ball, R. Majumdar, T. Millstein, and S. Rajamani.

Automatic predicate abstraction of C programs. In

Proceedings of the ACM SIGPLAN '01 Conference on

Programming Language Design and Implementation

(PLDI-01), pages 203-213, June 2001.

[5] A. Bernstein and P. LewiDistributed Operating Systems

and AlgorithmsJones and Bartlett, 1993.

P. Chou and G. Borriello. An analysis-based approach to

composition of distributed embedded system®1oc. of the

International Workshop on Hardware/Software Codesign

1998.

R. Cleaveland. The concurrency workbench: A

semantics-based verification tool for the verification of

concurrent system#&CM Transactions on Programming

Languages and Systeni$(1):36-72, Jan. 1993.

[8] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng. Bandera : Extracting
finite-state models from Java source codePtaceedings of
the 22nd International Conference on Software Engineering
June 2000.

[9] X. Deng. Tool-support for invariant-based specification,

synthesis, and verification of synchronization in concurrent

Java programs. Technical report, 2001.

M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S.

Pasareanu, Robby, W. Visser, and H. Zheng. Tool-supported

program abstraction for finite-state verification. In

Proceedings of the 23rd International Conference on

Software EngineeringMay 2001.

K. Fisler and S. Krishnamurthi. Modular verification of

collaboration-based software designsPhoceedings of the

8th European Software Engineering Conference held jointly
with the 9th ACM SIGSOFT Symposium on the Foundations

of Software Engineeringpages 152-163, Sept. 2001.

(2]
(3]
(4]

(6]

(7]

(10]

[11]

Jasl

[12] D. Gries.The Science of programmingpringer-Verlag,
New York, 1981.

[13] S. Hartley.Concurrent Programming - The Java
Programming LanguageéDxford University Press, 1998.

[14] J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for

model constructiorHigher-order and Symbolic

Computation13(4), 2000.

C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw.

Automated consistency checking of requirements

specificationsACM Transactions on Software Engineering

and Methodology5(3):231-261, July 1996.

D. Holmes, J. Noble, and J. Potter. Aspects of

synchronization. IfProceedings of the Twenty-Fifth

Conference on the Technology of Object-Oriented Languages

and Systems (TOOLS Pacific '97p97.

G. J. Holzmann. The model checker SPINEE

Transactions on Software Engineerjr&B(5):279-294, May

1997.

D. Latella, I. Majzik, and M. Massink. Automatic

verification of a behavioural subset of UML statechart

diagrams using the SPIN model-check&rmal Aspects of

Computing 11(6):637-664, 1999.

C. Lopes and C. Kiczales. D: A language framework for

distributed programming. Ifiechnical Report SPL97-010,

P9710047, Xerox Palo Alto Research Cenfe397.

[20] G. Matos, J. Purtilo, and E. White. Automated computation
of decomposable synchronization conditionslBEE
High—Assurance Systems Engineering Workst8p7.

[21] M. Mizuno. A structured approach for developing concurrent

programs in Javdnformation Processing Letters

69(5):233-238, Mar. 1999.

M. Mizuno. A pattern-based approach to developing

concurrent programs in UML: Part 1. Technical Report

2001-2, Kansas State University, Department of Computing

and Information Sciences, 2001.

M. Mizuno. A pattern-based approach to developing

concurrent programs in UML: Part 2. Technical Report

2001-3, Kansas State University, Department of Computing

and Information Sciences, 2001.

I. S. Organization11898 Road Vehicles — Interchange of

digital Information — Controller area network (CAN) for

high speed communicatiph995.

[25] D. C. Schmidt, D. L. Levine, and S. Mungee. The design of
the TAO real-time object request brok€@omputer
Communications21(4), Apr. 1998.

[26] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam,

E. Gagnon, and P. Co. Soot - a Java optimization framework.
In Proceedings of CASCON 199%ages 125-135, 1999.

[27] W. Visser, S. J. Park, and J. Penix. Using predicate
abstraction to reduce object-oriented programs for model
checking. InProceedings of the 3rd Workshop on Formal
Methods in Software Practice (FMSP-0ppges 3—-12, Aug.
2000.

[17]

(18]

[19]

[22]

(23]

(24]

