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Abstract—Operating system development is a very diverse task,
usually drawing from various applications of Computer Science,
Software Engineering, Computer Engineering, and Information
Technology. As such, the complexity of most usable systems is
significantly higher than traditional software projects. This fact
presents a problem when implementing security features and
policies for existing systems. Often times it is already too late
in the development process to make any substantial headway,
and any gain from newly added features will likely not be good
enough to deter determined attackers. Therefore, security needs
to be involved in the development process and system design
from the very beginning in order to be effective.

This work explores operating system security concepts that
should be at the foundation of any usable system. Specifically,
it covers program and operating system security concepts that
are present in modern systems. This background information
is necessary for an analysis of state-of-the-art designs that
incorporate security from the ground up. It also includes a survey
of popular commercial and research systems in order to cover the
different tradeoffs that exist between implementation techniques
and security gains.

While it is true that there is no such thing as perfect security
for operating systems, depending on the context in which the
system will be used it is possible to find the right balance between
implementation efficiency, complexity, and security that satisfies
its users. After all, the overall goal of operating system security
is to provide an environment for applications to run such that
all user data and private information is kept secret.

Index Terms—Program Security, Operating System Security,
Malware, Software Development Process

I. INTRODUCTION

This project is the next step in a two year effort focused
on malware research. My previous work was centered on
keylogger malware development and exploitation vectors [1].
Instead of focusing on how to prevent and detect malware
from infecting current operating systems, the idea is take a
step back and think about the design of the system in general.
As such, the focus of this project is on operating system design
concepts and implementations that are employed to keep both
the system and its users safe from malware and unwanted
program side effects.

The motivation for this research came from operating sys-
tem vulnerabilities and exploits. Today’s systems are plagued
with program errors and flaws that are easy to exploit by
attackers looking to gain a foothold in the system and com-
promise the user’s private data. Some of these systems rely
on implementation obfuscation to deter such attackers, but the
complexity of these systems can be easily uncovered given
enough time and effort on the attacker’s behalf. As such, it is
very important that the system is designed from the ground
up with security in mind.

There has been substantial research in operating system
design for security, and there are many different flavors of
these designs available for use. An analysis of these different
implementation shows that each operating system is unique in
how it handles security, and the only way to learn about these
systems is to analyze them one by one.

Therefore, the work of this project and paper is as follows.
Firstly, program errors and flaws and software engineering
practices used to prevent such errors are explored as the
influence for all operating system security designs. Second,
common operating system security concepts are discussed to
give a foundation for the case studies analyzed. Thirdly, dif-
ferent operating system implementations are examined from a
security perspective to ascertain how they handle the program
errors and flaws discussed in the paper. Lastly, I have proposed
some design concepts of my own that will serve as the starting
point for a custom, security-oriented system.

II. PROGRAM SECURITY

Security practitioners, software developers, and end users
all have entirely different views on what security means given
the context in which they interact with programs. As such, it is
important to understand program security from these different
perspectives. The following list identifies issues surrounding
secure programs that appeal to all of these different users, and
they all must be considered when discussing the general notion
of program security.

1) Programming errors and software flaws with security
implications

2) Malicious code
3) Software Engineering practices for security

A. Programming Errors and Software Flaws with Security
Implications

Errors in programs that cause them to behave in unintended
or unexpected ways are called program flaws. They are typ-
ically caused by program vulnerabilities, which in turn are
the result of unintentional programmer errors or malicious
functionality in the program. Software developers and security
practitioners are the ones who are primarily concerned with
this aspect of program security. Many security vulnerabilities
can be traced back to single programmer errors in the source
code. This means that such vulnerabilities, and any successful
exploits that are implemented upon such weaknesses, can be
avoided before the software is even ready for use.

Whether or not these programmer errors arise from a lack
of proper software engineering practices or poor programming
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practice on behalf of individual developers is a separate issue.
It is important to note how such errors can arise and the
impacts they can have on software products in any field,
especially those which deal with highly sensitive data.

The most common programming errors are memory corrup-
tion, incomplete mediation, time-of-check to time-of-use, and
information leakage [2]. Memory corruption, from a develop-
ment perspective, is a very vague term and can be applied
to a number of different errors. Perhaps the most notable
memory corruption error is a memory leak. In traditional, non-
managed languages like C the developer is responsible for
managing their own memory resources that are allocated on
the heap. If the programmer neglects freeing unused memory
from the heap then it is possible for the amount of available
memory to be exhausted. Although this is not directly a
security problem, a lack of available memory can cause a
fatal error and ultimately a program failure, thus compromising
whatever data the program was working with and the system
it was running on.

Incomplete mediation is when the programmer fails to check
every possible branch of code that grants to access to sensitive
objects or data within an application or system. There may be
cases not covered by the suite of unit and integration tests that
lead to such unauthorized access to sensitive objects. Given
the increasing complexity of modern software projects and
operating systems (as of March 14, 2011 the Linux kernel
has over 14 million lines of code) and the schedule and
financial limitations placed upon developers, it is often difficult
if not impossible to cover all possible cases. Therefore, the
likelihood of this error occurring will naturally increase as the
size and complexity of software increases in the future.

The problem that typically arises from incomplete mediation
is unauthorized access to sensitive objects. Incomplete media-
tion is especially harmful when considering system software as
it can lead to underprivileged users gaining escalated rights as
super user, accessing hardware devices and kernel data that
contain sensitive information to other users and processes,
and even system corruption and failure. Typically, however,
malicious users will exploit unchecked mediation paths simply
to escalate their privileges to root, from which they will
execute other malicious software to do the rest of the work.

The next programmer error, and perhaps the most famous
for being exploited, is a lack of input validation. These errors
are infamous for being the attack surface on which buffer
overflow attacks are layered. Other attacks such as heap
overflows and stack smashing are also possible due to this
error.

A buffer overflow is a theoretically simple attack that is
used to inject code into a running process to be executed by
placing more data in a buffer than it can hold. The idea was
first popularized by the Morris Worm in 1988, which relied
on lack of input validation in the fingerd application to inject
code to spread. From the attacker’s standpoint, there are two
steps involved in implementing a successful buffer overflow
attack. The first of which is to actually locate the buffer (which
is usually a simple array of data). The second is to design
the exploit to target that specific buffer. Fortunately for white
hat hackers and security practitioners, buffer overflows require

intimate knowledge of the system architecture and a great
deal of practice to implement. This means that attacks are
not portable across applications and systems [3].

Consider the following C program.

Listing 1: Vulnerable Program

# i n c l u d e <s t d i o . h>
# i n c l u d e < s t r i n g . h>

vo id d o i t ( vo id )
{

c h a r buf [ 8 ] ;
g e t s ( buf ) ;
p r i n t f (”% s \n ” , buf ) ;

}

i n t main ( vo id )
{

p r i n t f ( ” Be f o r e . . . \ n ” ) ;
d o i t ( ) ;
p r i n t f ( ” A f t e r . . . \ n ” ) ;
r e t u r n 0 ;

}

The main function has two calls to printf() that display two
strings and the doit() function displays the contents of the
buffer as entered by the user. Suppose the user entered the
string ”SAFE” when prompted inside the doit() function. This
would return the expected output:

Listing 2: Expected Output

B e f o r e . . .
SAFE
A f t e r . . .

Now consider what happens when the user enters the string
”WARNING, BUFFER OVERLOW EN ROUTE”. The output
will be something similar to the following:

Listing 3: Unexpected Output

B e f o r e . . .
WARNING, BUFFER OVERFLOW EN ROUTE
S e g m e n t a t i o n f a u l t

The application crashes because too much data was placed
in the buffer. Under the hood, the stack was essentially
”smashed”, meaning that other data on the stack was over-
written by the extra data placed in the buffer, thus causing
unwanted (or wanted, depending on who the user is) side
effects. Since there is no range checking in the function gets()
(thus qualifying it as an unsafe function to be avoided in any
application) any strings larger than 8 characters will continue
to be placed on the stack and overwrite whatever data is in
its place. To illustrate this, examine figure (1) in which the
equivalent operation to open a shell is strategically placed in
an unchecked buffer to cause it to overrun and be executed.

Fortunately, the example program above simply crashed
with a segmentation fault error after the buffer overflowed.
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Figure 1: A visual representation of the runtime stack, showing
how malicious code is strategically placed on the stack to
overwrite the return address and point to executable shell code
inserted by the attacker. Such code injections typically result
from buffer overflow attacks.

However, if the malicious attacker were to be able to determine
the location and contents of the stack at run-time, they would
be able to place malicious data inside the buffer that resembles
executable instructions (as shown in the figure above). These
instructions are typically branches or jumps that will move
the program counter to an unusual location in memory to
start executing malicious code, thus successfully completing
the code injection phase of the attack.

Some other unsafe functions aside from gets() include str-
cpy(), strcat(), scanf(), and printf(). Let’s consider the strcpy()
function. The function takes two arguments: a pointer to the
destination character array and a pointer to the source character
array. The basic implementation of this function is as follows:

Listing 4: strcpy implementation

c h a r ∗ s t r c p y ( c h a r ∗ d e s t , c o n s t c h a r ∗ s r c )
{

w h i l e (NULL != ∗ s r c )
{
∗ d e s t ++ = ∗ s r c ++;

}
}

As you can see, there is no bound checking to verify that
the destination array can fit all of the data contained in the
source array. This function is safe for use only when the
destination array is at least the same size as the source array.
Otherwise, this will cause a buffer overflow and potentially
lead to unwanted behavior or a segmentation fault altogether
if the destination array is accessed.

A safe version of this function is strlcpy(), and its signature
is as follows:

Listing 5: Safe strcpy prototype

s i z e t s t r l c p y ( c h a r ∗ d s t , c o n s t c h a r ∗ s r c ,
s i z e t s i z e ) ;

The implementation of this function is different in three
regards. Firstly, it makes sure to never write outside the bounds
of the destination array because the argument size specifies
the size of this array. Secondly, it will properly null-terminate
the source string, reducing the chance the function traversing
through memory until it finds a null character or size bytes
have been copied. Lastly, it returns the number of bytes
copied from the source to the destination array. Clearly, these

adjustments make the function safe to use for development.
Developers should strive to use such safe variants of the
common functions provided by stdio.h and string.h libraries
to avoid program errors and potential exploits.

In today’s software world, it is an implicit responsibility of
software developers who write code in unmanaged languages
to use safe functions and libraries. In most cases the developer
can employ the use of static code analysis tools to check for
potential buffer overflows. However, given the many differ-
ent implementation strategies for buffer overflows and their
dependence on specific platforms, these tools are not able to
catch every possible program flaw. This is not as big of a
problem for developers who use managed languages such as
Java and C#. However, buffer overflows are still possible in
these languages.

Another common software bug that is cause for concern is
a time-of-check vs. time-of-use error. This is a special kind
of race condition in which there is a prolonged lapse between
the checking of a condition and the use of the results of that
check. This is a common problem with the implementation
of file systems. For example, consider the following UNIX
program snippet written in C.

Listing 6: TOC vs. TOU UNIX code

i f ( a c c e s s ( ” f i l e , W OK) != NULL)
{

e x i t ( 1 ) ;
}

fd = open ( ” f i l e ” , O WRONLY) ;
w r i t e ( fd , b u f f e r , s i z e o f ( b u f f e r ) ) ;

In this program, access is a function used to check whether
the user who executed the program has access to the file.
Upon examination, one can see that this program suffers from
a critical time-of-check vs time-of-use bug. Consider what
would happen if, between the calls to access and open, the
same user creates a symbolic link between ”file” and another
sensitive file ”secret” they don’t normally have access to. After
the call to access the user is given permission to modify the
file, but the ”secret” file is opened instead due to this new link.
This can compromise the contents of the ”secret” file and even
expose them to the malicious user, which is clearly a security
problem.

Despite the simplicity of this exploit from the program bug,
these conditions are very difficult to avoid and eliminate. In
fact, the problem of avoiding and eliminating these conditions
was determined to be non-deterministic [4]. Since this result,
most UNIX systems have taken precautions to avoid these
bugs. Specifically, they rely on file handles, which are private
mappings to a file, instead of file names, which can be
modified with symbolic links. Since these handles cannot be
modified by other processes and users, the possibility of this
attack being implemented is greatly reduced.

B. Malicious Code

Malware is a piece of software that behaves in some
way that can cause harm to the infected person’s machine,
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information, and even their identity. Each form of malware
can loosely be defined as one of the following:

1) Virus
2) Worm
3) Trojan horse
4) Trapdoor
5) Logic bomb
6) Rootkit
Most malware is referred to as a virus since that was the

first popularized form among the general public. However,
viruses are only a subset of all malware, and there is a unique
difference between them and the rest of the types of malware.

A virus is a piece of malware that attaches itself to another
program and propagates through the host machine and across
networks by copying itself on to other programs it can find.
They can be copied or appended to, surrounded around, and
even integrated into other program code. They can also reside
in many different places within the operation system, including
individual files, boot sectors, and even stay in memory (with
the caveat that it is lost when the system is restarted).

The other forms of malware (worms, Trojan horses, trap-
doors, logic bombs) are similar in intent to viruses but operate
quite differently. Trojan horses contains unexpected, additional
functionality that is used to infect the system. Trapdoors allow
unauthorized access to program functionality. Worms propa-
gate copies of itself through the infected machine’s network.
Lastly, logic bombs trigger (usually malicious) actions when
certain conditions occur on the user’s behalf.

Rootkits were left out of this list because they are very
interesting forms of malware that can target virtually any
embedded, personal, and mobile computing platform. Also,
from a user’s standpoint, they pose to cause the most damage
and information loss. At a high level, a rootkit is a set of
small tools and programs that are used to gain undetected and
long-term access to a system without the user’s consent. They
typically serve to open up back-doors into systems and gain
access to highly sensitive information that only the operating
system and underlying hardware should access. Once a well-
crafted rootkit has infected a machine they are notoriously
difficult to detect and remove and can potentially cause serious
permanent damage to the system. This is because common
anti-virus software only monitors the user-mode of operating
systems. There are programs available that will look for the
presence of common rootkit installation techniques (such as
hooking the system call tables), but any clever attacker can
circumvent these and remain undetected.

There are many different flavors of rootkits that can target
virtually any layer of a system, including the user, kernel, and
even hypervisor (virtualization) levels. Considering the trade-
offs attackers must make between implementation difficulty
and the actual usefulness of the rootkit, the most common
form of rootkit is one that targets the kernel-level of an
operating system. Such rootkits are typically deployed within
the kernel as a fraudulent device driver or kernel module that
masquerade as legitimate components. Since these components
are deemed trusted by the system, they are given full access to
all memory segments (including both user- and kernel-mode
memory) and devices. This means the rootkit can modify

sensitive kernel data structures and device driver operation
for malicious purposes, whether it is to hide its presence on
the system or intercept and monitor data transfer on hardware
devices.

Keyloggers often take the form of kernel-mode rootkits.
This specific form of malware is installed on the system
(either by the user’s permission or through subversion of the
kernel security mechanisms) and used to retrieve information
directly from the physical keyboard device connected to the
system. This is often done by monitoring the keyboard data
port for new information or intercepting I/O requests as they
pass between the operating system and keyboard. There are
several possible ways to intercept keystrokes once the rootkit
has access within the kernel, which is why such forms of
malware are the most serious threat.

C. Software Engineering Practices for Security

Secure programs don’t come by chance. They are the direct
result of knowledgeable programmers and sound software
engineering practices and processes. Secure programming
practices for individual programmers consist of a variety of
implementation techniques that circumvent and prevent the
errors discussed in the previous sections from occurring.

Some of these implementation techniques include [5]:

1) Error/exception handling in code
2) Avoiding unsafe functions (fgets, sprintf, strcpy, strcat)

and using safe ones (strncpy, strncat)
3) Validating all input from the user or external sources to

ensure fully deterministic program behavior
4) Properly managing memory and object references so as

to avoid any memory problems (e.g. leaks)
5) Heed compiler warnings (especially those that have

stack smashing protection mechanisms) and use static
and dynamic analysis tools to uncover security flaws

6) Keep the design of the system as simple as possible -
security does not come through complexity

7) Deny access to sensitive objects by default
8) Filter unnecessary information from outgoing data

In addition to these techniques, it is good practice for
programmers to follow standardized quality assurance and
development processes for security. Perhaps the most notable
security-oriented development lifecycle, which includes qual-
ity assurance, is the Microsoft Security Development Lifecycle
(SDL) process. The phases and activities of this lifecycle are
shown in figure (2).

From a software engineering perspective, the structure of
this lifecycle is very similar to the standard waterfall model.
As you can see, each phase of this lifecycle can be mapped to a
phase in the waterfall model. This allows the security practices
outlined in each phase to be built on top of the existing phases
of the waterfall model, so security becomes an integral part of
the entire development process.

The SDL is based on the three very important concepts for
developers: 1) education, 2) continuous process improvement,
and 3) accountability [6]. The idea is to strive to keep
developers aware of security issues and have them evolve with
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Figure 2: The various phases and activities of the Microsoft Security Development Lifecycle, arranged in a linear (waterfall)
fashion.

the process itself, all the while keeping them accountable for
their actions and any bugs they may introduce into the project.

There are four levels of maturity for the practices and ca-
pabilities in these areas. They are 1) basic, 2) standardized, 3)
advanced, and 4) dynamic. The level of maturity for a specific
instance of the SDL depends entirely upon the competency of
the developers and their adherence to the activities outlined for
each phase of the lifecycle. Clearly, teams that follow the SDL
want to work their way towards the dynamic level of maturity,
in which the team and process can quickly and efficiently adapt
to emerging security issues [6].

Using the SDL does not remove the risk of security prob-
lems with software altogether; it is not a silver bullet. However,
using it as a model for the development process will help
reduce the risks and impact of security flaws with software.

III. OPERATING SYSTEM SECURITY SECURITY

A. Protection Motivation

Operating system security is built upon the concepts of
trust and protection. Both of these elements must be satisfied
in order for a system to be deemed secure. For example, if
protection mechanisms are bypassed, the trusted portion of
the system can be compromised. Similarly, if components in
the system are untrusted, then protection of individual objects
within the system cannot always be guaranteed.

Protection is the second prong of operating system security.
Objects that are used by the system, such as files, memory,
and hardware devices, must be protected from malicious and
unauthorized usage to prevent unwanted behavior. The basis
of any protection scheme is separation, and in most operating
systems there are varying degrees of separation [7]:

1) Physical separation - different processes use different
physical objects or devices

2) Temporal separation - processes that have different
security requirements are executed at different times

3) Logical separation - processes are restricted to their
own address space and domain by the operating system,
and the user is unaware of the existence of other
processes

4) Cryptographic separation - processes conceal their
state, code, and data using cryptographic primitives

However, in any realistic computing environment, processes
must interact and share data in one way or another. Therefore,
complete separation is only half of the solution for protection.
Careful design considerations must be made in order to allow
both object protection and sharing of data. There are, however,
several ways operating systems can support separation in order
to achieve these two goals, and they are outlined as follows
[7]:

1) Do not protect - No protection needed when sensitive
procedures are run at separate times.

2) Isolate - Each process is unaware of the presence of
other processes, and each process has its own address
space, files, and other objects. The operating system
provides a sandbox around each process such that its
private objects are kept secret.

3) Share all or share nothing - Process information is
declared to be public or private.

4) Share via access limitation - Both user and process
requests to operating system objects are checked against
the limitations imposed on such users/processes for the
object in question.

5) Share by capabilities - An extension of access limi-
tation in that usage and sharing rights can be created
dynamically.

6) Limit the use of an object - Limit both the access to
objects and the usage of such objects after access has
been granted.

The use of these different protection policies depends on
the environment in which the operating system is deployed,
whether the system is multi-user or single-user, and multi-
process. It is important to note that these protection policies
are ordered in increasing order of difficulty to implement and
the granularity of protection they provide. Therefore, more
thorough protection schemes require more work on behalf of
the operating system designers, and such schemes must be
outlined at the beginning of development, not implemented at
the end.

B. Memory Protection

Memory is the most frequently accessed and exploited
operating system resource in multi-programming systems.
Ensuring that process code and data is unaffected from other
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processes has become a task of both hardware and software
components. Most modern operating systems delegate memory
protection to hardware mechanisms as there is essentially
no overhead for such protection. The two most commonly
used protection mechanisms are segmentation and paging.
Segmentation is the simple of idea of separating a program
into logical pieces. Each of these pieces has a logical unifying
relationship among all its code and data. Segmentation is great
for producing the effect of a variable number of unbounded
base registers used for code memory protection. This means
that a program can be divided into any number of segments,
each with its own enforceable access rights [8].

From an implementation standpoint, each segment has a
unique name that is used to address its internal code and
data. Specifically, the pair ¡name, offset¿ is used to reference
the element that is located offset from the start of the name
segment. Each of these segments can be arranged in memory
in a non-contiguous fashion, meaning that they can be moved
from one location to another so long as the name and offset
fields are updated with the new location information. However,
from the developer’s viewpoint, each segment is arranged in
a contiguous fashion.

This also means that the user does not need to know (and
actually cannot know) the true memory address of a given
segment without access to the processes’ Segment Translation
Table (STT), which is used to translate ¡name, offset¿ pairs to
actual memory locations. Possession of this pair is all that’s
needed to access segments within memory, which means that
physical memory addresses remain hidden from the user.

There are a couple benefits that come from hiding the layout
of physical memory. Firstly, the operating system can relocate
segments at runtime without the user having to worry about
these new locations. This helps handle external fragmentation
that occurs as more and more processes are allocated memory
for code and data. Secondly, a segment can be removed
from main memory if it isn’t being used. This is typically
utilized to store segment data to secondary storage devices
for later access. Lastly, and probably most importantly, every
memory address passes through the operating system. This
provides the system with the opportunity to check each for
valid access rights and authorization (essentially serving as a
memory reference monitor), which is very appealing from a
security standpoint. This also implies that a process can only
access a segment if it is within its STT. Furthermore, each
segment within a process can be assigned classes with different
levels of protection granted by the operating system [8]. Some
additional protection benefits from segmentation include multi-
user access with enforced access rights and the assurance that
a user cannot generate an address to a segment which they are
not permitted to access.

Despite these many benefits there is one major aspect of
segmentation to consider when during before use. That is, the
size of segments must be maintained by each STT and checked
against the offset value in the segment pair. The reason for
this is that any useful segmentation scheme must allow for
dynamically-sized segments that change with the code and
data for each process. If the size of these segments is not
checked against the offset value, then a use may be able to craft

segment pairs that refer to segment data they are unauthorized
to access. Clearly, checking each offset value is tedious and
expensive, but it must be done for practical implementations
[7].

Additionally, segmentation schemes can suffer in perfor-
mance from the encoding of name values inside CPU instruc-
tions and the possibility of fragmentation. Given these con-
sequences of its implementation, segmentation schemes must
balance protection with efficiency in real-world applications.

Paging is the other most popular memory protection scheme.
It is similar to segmentation in that program code and data
is separated into blocks of main physical memory. They are
also similar to segmentation schemes in that each address in
a paging scheme is a tuple consisting of a page number and
offset. The addresses are translated in a similar fashion through
a Page Translation Table (PTT).

The biggest difference for paging schemes is that each page
is a fixed size, where each page is referred to as a page frame.
Perhaps the biggest implication of this fixed size is that the
programmer does not need to be aware of the specific page
locations for code and data within a program. However, this
also means that any change to the program’s contents (whether
it’s code or data) will result in a change in the page frame
contents.

One common problem with paging is that a page frame can
only have one set of read and write permissions. Therefore, if
two programs share a page frame for code and data there is
no way to differentiate between the separate content and no
way to enforce separate permissions for that frame.

Based on the characteristics of each of these memory
protection schemes, one can see that paging clearly offers
improved performance and segmentation offers improved log-
ical protection for memory addressing. The characteristics of
these two schemes have led to hybrid designs that utilize both,
referred to as paged segmentation. An image describing how
this scheme works is shown in figure (3).

C. General Object Protection

Although protecting memory is arguably the most important
goal of protection for an operating system, there are other
objects in the system that must be protected as well. Some of
these objects include:

1) Files and data sets on secondary storage
2) Executing programs
3) Directories of files
4) Hardware devices
5) Operating system tables (e.g. system call tables)
6) Passwords and user authentication data
There is no real standardized way of protecting these objects

as they can differ between operating system distributions.
However, a common set of complementary design goals and
practices has been accepted by the scientific community to
help guide the development of these protection schemes.
Firstly, the system should check every access to these objects
against the set of permissions it maintains. Secondly, the
system should practice the principle of least privilege, in which
an object only has access or permission to access only those
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Figure 3: This image depicts the paged segmentation memory protection scheme. As you can see, the STT is used to map
logical segments to specific page entries, which are then mapped to physical addresses using a unique PTT depending on the
segment entry.

objects it needs to operate correctly. Lastly, the system should
strive to verify appropriate usage of these objects.

All modern operating systems make tradeoffs between these
three goals when designing protection schemes. This is largely
due to the difficulty of protecting against all of the possible
threats that target these objects. A very simple example of
this idea revolves around keylogger malware. Consider the
keyboard and corresponding keystrokes of data that need
protection from keylogger malware. Without checking the
usage of all keystroke data as it flows throughout the system it
is very difficult to determine whether or not the physical device
drivers or I/O threads are using them appropriately. Therefore,
protection schemes for these types of objects generally rely on
permissions and limited access to such data.

These generic protection schemes are usually implemented
using a variety of different mechanisms, including access
control lists and matrices and capabilities. Access control lists
are conceptually simple structures that store objects, the list of
the subjects that should have access to that object, and what
that access is (e.g. read, write, execute permissions). Quite
similarly, an access control matrix is a way of associating
access rights for objects with subjects using a two-dimensional
matrix (the objects make up the row and the subjects make up
the columns). One might choose an access control matrix over
a list if there are very specific access rights for each object
in the system (which means the matrix would be dense as
opposed to sparse).

Capabilities are another form protection that lift the burden
of protection from the operating system and place it on the
user. Formally, capabilities are unforgeable tokens that give
the possessors certain rights to an object. In theory, subjects
should be able to create new objects and specify the operations
allowed on them. For example, a user can create a file and
mark it as read-only, which means that only this user and those
who have a higher set of privileges (typically administrators)
are capable of modifying these access rights.

IV. OPERATING SYSTEM SURVEY

A. Singularity

Singularity is a small, modular, and managed operating sys-
tem that has been under development by Microsoft Research
since the early 2000s. It is centered on five basic concepts: a
type safe abstract instruction set as the system binary interface,
contract-based communication channels, strong process isola-
tion architecture, managed and verifiable system components,
and a ubiquitous metadata infrastructure describing code and
data [9].

Architecturally, Singularity adheres to a microkernel design
to limit the amount of code running in the kernel. However, its
trusted computing base (TCB) is comprised of both the kernel
and the managed runtime, as shown in figure (4).

One of the goals of Singularity was to ensure that the
components of the TCB could are small and simple enough
to be formally verified. Clearly, the complexity of the TCB is
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Figure 4: The Singularity architecture. Note that the red line
indicates the separation between the trusted and untrusted
portions of the system.

relatively small since file systems, network protocols, device
drivers, etc. are located outside the bounds of this component.
This also means that no third-party code can run within the
TCB. This separation between trusted and untrusted code and
data in Singularity is one of its core security features.

1) System Binary Interface: Singularity’s system binary in-
terface (more commonly referred to as their application binary
interface, or ABI), is used to allow processes to communicate
with the kernel. It was designed with the following goals in
mind:

1) Enable separate garbage collection domains for each
process and the kernel

2) Enable separate runtimes for each process and the kernel
3) Enable independent versioning of processes from the

kernel
4) Enable strong process isolation

The ABI is a set of static functions exposed by the kernel
that are used to create and manipulate threads within the
calling process, create and use thread synchronization ob-
jects, activate child processes, create and manipulate message
content, send and receive messages via channels, securely
determine the identity of another process accessed through a
channel, allocate and free pages for GC memory, grow and
shrink thread stack segments, access process parameters, and
terminate the calling process when it completes [10].

Perhaps the most unique element of the design of this
interface is that a link between a process and the kernel cannot
be intercepted or hooked without explicit approval of the
process’ author. Modern operating systems such as Windows
NT and Linux allow user programs to hook into system call
chains to intercept data as it is forwarded down the call stack
and sent back up the call stack from the kernel. The ability to
hook such system calls has been exploited countless times by
malware developers when trying to gain access to the kernel
mode of the system or attain super user privileges. Without the
ability to hook into this call stack without explicit permission
from the calling process, these hooking attack vectors are
rendered useless and the private data sent to and from the
process to the kernel is kept secret.

Another important part of the ABI design is that no function
call can modify the state of other processes. The scope
of any ABI function is limited to the calling process, the
communication channel used to invoke the function, and the
kernel. As such, the integrity of other processes’ code and data
is maintained and kept safe from malicious processes trying
to modify other processes in the system and implementation
bugs that would normally bring down a system.

In addition to exposing this set of functions, the ABI also
provides processes with core services (e.g. debug and device
servers) that can be used when developing programs. These
primitive operations provide the following services:

1) Thread construction and destruction operations
2) Channel construction and destruction operations
3) Endpoint bind and unbind operations
4) Operations on thread synchronization primitives
5) Message send and receive operations
6) Operations to determine the security principle associated

with the opposite endpoint of a channel
2) Contract-Based Communication Channels: In traditional

multi-process operating systems there exists a variety of inter-
process communication (IPC) mechanisms used to establish
lines of communication between different process and services
within the system. In systems where process cooperation
and communication is important for information sharing,
computation speedup, modularity, and convenience, the two
fundamental models of IPC that are commonly used are shared
memory and message passing [8].

Shared memory is an IPC scheme that allows multiple
processes to access the same block of memory so as to avoid
redundancy of data between such processes and increase IPC
efficiency. The typical usage scenario is where one process
will create an area in memory and then hand out permissions
to access such memory to multiple processes that need to
access its data. This increases the speed at which processes
communicate as there is no significant implementation differ-
ence or overhead when accessing shared memory areas versus
local (and thus private) memory. Dynamic link libraries are
typically stored in shared memory when they are loaded so that
their exposed functions can be invoked by multiple processes
without copying the library into the address space of each
process.

On the other hand, message passing is an IPC scheme that
allows processes to send and receive messages, which are
typically data or segments of code, to other processes. There
are many different implementation forms of such schemes,
such as remote procedural calls, signals, and data packets, but
all of them address the following basic principles:

1) Whether messages are transferred reliably
2) Whether messages are guaranteed to be delivered in the

order in which they were sent
3) Whether messages are passed one-to-one, many-to-one,

or one-to-many
4) Whether message passing is synchronous or asyn-

chronous (e.g. blocking or non-blocking)
These design choices depend on the specific type of appli-

cation, platform, and protocol requirements.
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Singularity makes use of a message passing model of IPC
with contract-based communication channels [11]. Further-
more, there is no use of shared memory throughout the entire
system, thus prohibiting dynamic code loading by processes.
The reason for this comes from the design decision to use strict
FIFO communication interfaces for process communication
and single-process ownership of data. When data is sent
between two processes across a channel, the ownership of that
data is transferred from the sender to the receiver. Since only
one process can manage a piece of data at a time the risk
of such data being compromised by other processes is greatly
reduced.

Furthermore, processes cannot simply communicate with
any process they choose at run-time. Communication channels
are governed by contracts that are statically defined, meaning
they cannot be changed after installation. The main properties
enforced by channel contracts are 1) senders send messages
that are expected by receivers, 2) receivers are capable and
willing to handle all messages allowed by the contract, and
3) senders and receivers that have been verified separately
against a given contract cannot deadlock with communicating
over a channel governed by such contract. This level of
specification for IPC goes far beyond traditional schemes. One
can clearly see how it assists in formalizing and verifying
program behavior, which is a very appealing security attribute
for operating systems.

Channels are created dynamically at run-time based on the
contracts available between two processes. Each channel has
exactly two endpoints that are associated with exactly two
processes. From the processes perspective, only the endpoints
can be seen and used to send data; not the channel object itself.
Internally, every channel contains two FIFO, unidirectional
queues that are used to send and receive messages between the
processes. What is unique about channel endpoints is that, just
like other data objects, they can be passed to other processes
across other channels. It is also important to note that when
a process is terminated every channel it is associated with is
shut down as well. This prevents loss of data by removing the
possibility of sending messages to processes that no longer
exist.

3) Process Isolation: Perhaps the most significant design
feature of Singularity is its introduction of Software Isolated
Processes (SIPs) [12]. Unlike traditional operating systems that
provide process isolation and address space isolation through
custom hardware schemes like paging and segmentation, Sin-
gularity SIPs provide isolation by type and memory safety
features of managed programming languages.

There are several benefits for this approach. Firstly, it
removes the errors associated with using unmanaged languages
for software development. Using unsafe languages like C and
C++ to develop operating system and application software
is a very error-prone task and introduces unwanted security
risks. Languages like C and C++ rely on the knowledge
and expertise of the programmer to know what data they
are manipulating in memory and how to properly manage
their own memory resources. For example, device drivers
are mainly written in C so that the programmer can directly
access device I/O ports and status registers necessary for I/O

Figure 5: A visual representation of a software isolated pro-
cess. The only input and output for the process is through
messages sent by other processes. Also, the kernel function-
ality is exposed through the ABI that is made available to all
processes.

operations. However, this freedom comes at the cost of safety
and security, since applications in C are compiled directly into
machine language representations that are executed directly on
the host processor. Any mistake in memory address references,
memory leaks introduced by poor memory management, and
null pointer references made on behalf of the programmer can
wreak havoc on other parts of the operating system. Another
benefit to this approach is that it greatly reduces the possibility
of buffer overflow and stack smashing attacks.

Most modern operating systems are written in a combination
of C and C++, both of which are considered to be unsafe
languages. From an operating system development perspective,
C and C++ are appropriate languages because they give the
programmer direct access to memory resources they need for
development. For example, device drivers written in C can
easily access I/O ports and status registers using pointers.
Unfortunately, however, this freedom comes at the cost of
safety and security. Since C and C++ code is compiled directly
into machine language, any bugs in the code can wreak havoc
on the rest of the operating system if not handled properly.
This makes them susceptible to buffer overflow attacks.

Finally, since most managed languages are object-oriented
by default, the design and development of software processes
is greatly simplified. Modern software engineering practices
such as program design using class diagrams that identify
the relationships between components of the program can be
employed. Furthermore, it is almost always easier to trans-
late security policies and models to object-oriented software.
Security policies typically place restrictions on information
flow and component interactions, and the notion of relation-
ships and interactions is a natural part of the object-oriented
paradigm.
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Internally, a SIP is an object space composed of objects
that can be accessed only through object references, which is
a protection mechanism ensured by the Singularity run-time.
This means that every process can run within the same address
space due to the protection that exists between processes ob-
jects. This removes the overhead of context switches between
address spaces for different processes during the scheduling
process. Now, a context switch can be done in a single system
call.

4) Managed and Verifiable System Components: The ma-
jority of the operating system kernel and all user programs,
file system drivers, and device drivers are written in Sing#, an
extension of C#. Certain elements of the system that make
up the trusted computing base (TCB), such as the kernel
runtime and garbage collector, are written in an unsafe version
of Sing#. This allows those components to perform unsafe
operations that typically involve pointer usage. The most
notable implication of using Sing# for the majority of the
implementation is that the majority of the operating system can
be mathematically tested and verified using formal methods.
Most operating systems are simply too complex to be verified,
meaning that their unchecked behavior is susceptible to attack
from malicious code.

B. Caernarvon

Caernarvon is a smart card operating system that was
designed and built from the ground up with security in mind.
It targets the Evaluation Assurance Level (EAL) 7, which
is the highest level of the Common Criteria standard for
evaluating information security components. To meet this
standard, Caernarvon was designed and implemented with
a formally specified, mandatory security policy providing
multi-level security (MLS) suitable for any mission critical
application. Additionally, it includes a strong cryptographic
library that has been certified under the Common Criteria at
EAL5+ for use with other systems [13].

Caernarvon was designed with the following security prop-
erties:

1) Prevention of unauthorized information disclosure
2) Privacy-protecting authentication protocol
3) Hardware protection mechanisms to enforce security
4) Assurance of system state across power failures
5) Cryptographic library certified at EAL5+ (2048-bit RSA,

DSA, 3DES, SHA-1, and pseudorandom number gener-
ators)

The prevention of unauthorized information disclosure is
accomplished using both mandatory access control and discre-
tionary access controls. The difference between these types of
access control lies in how access rights are granted. Mandatory
access control is a policy in which the system manager or
security officer sets permissions on system objects. On the
other hand, discretionary access control is a policy in which
the user or owner of an object sets the access rights of such
object.

The reason that two forms of access control are imple-
mented lies in the impact of malware on system information.
For example, malware can be implemented to make copies of

Figure 7: A high-level depiction of the QNX operating system.
The microkernel is the basis for the entire system, as it
provides a means of communicating with each component and
a reference monitor boundary around such components.

protected information that is then passed along to unauthorized
users to view. Confining protected information using discre-
tionary access control has been proved to be an undecidable
problem equivalent to the Halting problem [14]. Therefore,
mandatory access control was put in place to prevent known
malware from leaking protected information by placing strict
access rights on specific objects of interest.

All of remaining components of the operating system are
depicted in the system architecture image shown in figure (6).

C. QNX Neutrino

The QNX Neutrino RTOS Secure Kernel is a mission
critical, real-time operating system designed to meet the needs
of aerospace, defense, and security systems that have strict
safety and security requirements for their applications. It was
the first full-featured RTOS to be certified under the common
criteria standard (meets standards of Evaluation Assurance
Level 4+), include symmetric multi-processing support for
multi-core processors, and include QNX’s unique partitioning
technology in the certification [15].

The security foundation in Neutrino comes from its design,
not from its implementation. As in most modern operating
systems that are designed with security in mind, it has a
microkernel based architecture to provide the system with
a fault tolerant way of dealing with poorly designed and
implemented applications or device drivers. The basic structure
of Neutrino is shown in figure (7).

As you can see, there exists a strong separation of concerns
that is enforced by boundaries between the components of
the system. These boundaries provide a layer of security not
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Figure 6: The system architecture for the Caernarvon operating system, which shows the logical segments of the hardware and
software portions of the system and their relationships.

only around the kernel itself, but around those applications
that run in user-mode as well. They are also responsible
for the enforcement of process isolation between the system
components.

Within these boundaries lies the reference monitor, which
serves to ensure that every resource is accessed not only by
the appropriate software process, but also by the right process
operating against the correct data in the correct context. In
addition, the reference monitor is also tamper resistant, it is
always invoked, and it is small and simple enough to be easily
verifiable. These are the properties of the reference monitor
concept proposed by James Anderson in his 1972 survey paper
of computer security entitled Computer Security Technology
Planning Study [16].

Clearly, if malicious users can bypass the reference monitor
to access confidential data or corrupt another portion of the
system, then the usefulness of the reference monitor degrades.
If the integrity of the reference monitor is affected by another
component or process then the entire system can no longer be
trusted to behave correctly. In Neutrino, the reference monitor
is part of the operating system kernel, which is marked as read-
only on boot. This means that it cannot be tampered with or
modified at run-time. Integrity checks are also performed to
ensure that the kernel image is undamaged and uncorrupted on
boot. This means that, if the integrity checks pass, the kernel
is loaded and the reference monitor is started to form a part
of the trusted computing base (TCB) of the system [15].

The reference monitor is also always invoked in order to
ensure that every resource access request by a process is veri-
fied thoroughly according to the system security policy. Since
the reference monitor is implemented as part of the kernel,
every access request goes through this uniform verification
mechanism. Depending on the security policy in place that
the reference monitor uses to verify and validate accesses,
the resource is either granted to the calling process or it is
denied. Any invalid requests are saved in the system auditing
information log, as shown in fig (7).

Finally, the reference monitor, in addition to the kernel

Figure 8: The general operation for a reference monitor. Based
on the specified security policy, the reference monitor will
either grant or deny a process access to system resources. Also,
audit information is generated based on the activity of the
monitor.

itself, must operate correctly at all times in order for the
system to be trusted. Therefore, the design of the kernel and
its internal reference monitor is simple enough to be verifiable
by modern formal method tools and techniques. By keeping
the design and implementation as small as possible, the chance
of unseen security holes existing decreases substantially. This
is yet another reason why the microkernel approach for the
operating system was chosen. Since only the bare essential
services of an operating system, such as virtual memory
management, IPC, and scheduling, are implemented inside the
kernel in this architecture, the complexity of the kernel design
is greatly minimized, which ultimately improves the formal
verification and validation process. Additionally, since there is
less code that actually makes up the kernel, there is less chance
of programmer errors propagating throughout the system and
causing unwanted security vulnerabilities.

1) Principles of Security Design in QNX: In 1974 Jerome
Salter and Michael Schroeder used Anderson’s three principles
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Figure 9: The eight security principles that guided the design
of QNX.

of a security design to create eight of their own, as shown in
the table above. The following enumeration provides a more
thorough description of each principles and their role in QNX.

1) Economy of mechanism - The goal of this principle,
as stated in the table, is to reduce the complexity as an
attempt to reduce unexpected side effects or behavior.
When it comes to operating system development, this
idea emphasizes a microkernel architecture because the
complexity of the most trusted component of the operat-
ing system is kept to a minimum. Microkernels are small
enough that their implementation and behavior can be
verified using formal method techniques so that it only
does exactly what it was programmed to do.

2) Fail-safe defaults - According to this principle, resource
access must be explicitly given and implicitly denied
at run-time. Following this principles, the operating
system must assign each new object in the system known
good security attributes. Furthermore, it must only grant
objects additional security attributes or clearance when
they make valid requests for such items.

3) Complete mediation - Complete mediation in operat-
ing systems is often a computationally intensive task
that involves a great deal of overhead. However, it is
necessary in order to ensure that every access request
is consistently and explicitly evaluated. QNX ensures
mediation through strict adherence to the POSIX API
and interlock hardware (typically through the memory
management unit).

4) Open design - An open design makes it easier for
reviewers to evaluate the system from a security perspec-
tive. As mentioned earlier, QNX adheres to the POSIX

guidelines and other standard APIs to ensure that the
behavior

5) Separation of privilege - Privileges for objects and
users are a fundamental part of operating system se-
curity. Keeping privileges separated by multiple authen-
tication criteria (e.g. using two locks to open a door)
ensures that the system is more resilient to accidental
and intentional request forgeries.

6) Least privilege - Least privilege is the concept that
a process is granted only the security privileges and
resources that it needs to function correctly, nothing
more. This minimizes the risk of damage caused to the
system by a process either accidentally or intentionally.

7) Least common mechanism - This principle implies that
resources cannot be shared implicitly between two com-
ponents of the system. QNX satisfies this principle by
strictly managing the possession of data being used by
the system and its components. If a process relinquishes
data or control over a resource, then QNX will quickly
regain control of it and clear any information that is still
lying behind.

8) Psychological acceptance - The system should operate
in a deterministic fashion in accordance with the pro-
vided documentation and APIs. This is typically done
by following well-known and accepted standards (e.g.
POSIX APIs).

There have been changes to these security principles since
their release in 1974. The addition of accountability, priori-
ties, self-tests, fault tolerance, and adaptive partitioning have
become a critical part of this list and are also directly applied
to the QNX Neutrino system.

Any system that manipulates sensitive information must
have some form of accountability of mechanism. QNX satis-
fies this requirement by time-stamping all events that happen
within the system. These time-stamps cannot be modified,
which prevents attacks that try to subvert auditing systems.

Additionally, priorities must be assigned to process threads
and system operations. Higher priority items must be able to
execute without interference from lower priority items. QNX
uses prioritization during the assignment of system resources.
If such resources become limited or scarce, higher priority
items will be moved to the head of the resource allocation
queue so as to prevent starvation. In any secure system it
should be impossible for lower priority items to cause higher
priority items to starve.

Self-tests are an obvious addition to the secure design
principles list. There must be some way to test the integrity
of stored code and data so as to stop attacks as early as
possible. QNX performs self tests on its trusted computing
base and program code and data in order to detect corruption.
This prevents further damage to system by not executing
or invoking code or using data that has been corrupted by
malicious intent or accidental failure caused by hardware,
firmware, or software.

Fault tolerance plays a large role in secure operating sys-
tems. Any secure operating system should always operate in
a known safe state. In the event of a failure that compromises
the state of the system, it should also be able to roll back to
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a safe state to avoid any data loss or system damages. QNX
relies on the results of self-tests to determine if the system
is in a known safe state. Also, if a process in QNX crashes,
it can easily relinquish the resources used by the process and
restart it from a known good state.

As an added level of fault tolerance through design, QNX
employs a high availability framework that allows developers
to use the services of such framework to implement fault
tolerance instead of reinventing the wheel in their own way.
The QNX high availability framework provides the following
[15]:

1) Services for automatically restarting failed processes
without restarting the system

2) Embedded watchdog timer to monitor processes for
failures or deadlocks

3) An API that allows the programmer to determine the
watchdog timeout and error conditions and, in the event
of a failure, specify which actions the watchdog will
execute to handle the failure

4) A guardian process that stands ready to take over the
watchdog process if necessary

The last notable design concept in QNX is adaptive parti-
tioning. A common technique for designing security into an
operating system is to clearly partition system components that
are susceptible to attacks and program errors. This is especially
important for systems that are open to access from an exter-
nal network or hardware devices that may contain malware.
According to this principle, system resources such as CPU
time are partitioned to ensure that critical system components
have access to these resources at all times. Traditional partition
schemes use fixed limits on system resource usage to ensure
that each partition gets access to the resources they require.
The problem with this approach is that any partition that is not
using these resources actively during their allotted time will
spin in an idle state, thus taking away these resources from
other partitions.

QNX has been pioneering a form of adaptive, dynamic
partitioning that takes advantage of unused system resources
[15]. The basic idea is that if a partition doesn’t use all of its
allocated resources, then the partitioning scheduler reallocates
those resources to other partitions that could make use of them.
The fixed limits are still in place to avoid starvation of other
partitions, but the adaptive partitioning solves the problem of
unused resources.

From a security perspective, adaptive partitioning allows
the system designer to separate vulnerable components from
system critical components in different partitions in an efficient
manner. This helps mitigate malicious program behavior or
code in one partition from affecting the contents of another
partition.

D. Chromium OS

Chromium OS has been designed from the ground up with
security in mind with the realization that it is an ongoing,
iterative process throughout the entire lifetime of the operating
system. It is a unique operating system in that it is entirely
web-based. The chromium browser is the user’s portal to the

Internet and all web applications contained therein. Given the
inherent security risks of Internet usage and web applications,
the Chromium designers took care to build an operating system
and browser that is both modular and secure in design by
making the system secure by default with multiple levels of
defense.

In order to mitigate the probability of the system being
compromised by a malicious user or program, Chromium uses
a variety of OS hardening, data protection, and verification
procedures. OS hardening is the idea of minimizing the
systems exposure to threats by fully configuring the operating
system and removing unnecessary applications [17]. The OS
hardening techniques used in Chromium serve to minimize the
number of attack vectors into the system, reduce the likelihood
of a successful attack, and reduces the usefulness of user-
level attacks if they are successful. Each of these techniques
are independent from each other to provide multiple levels of
security. This helps reduce the possibility of a failure in one
to cascade into another.

Out of all of these OS hardening techniques, process sand-
boxing is the most significant as a means of isolating processes
from each other and the rest of the system. Since the user only
interacts with Chromium through the browser, and every tab
in the browser is its own process, one can see why isolation
of individual tabs is crucial for security. Malicious code that
is executed in a single tab’s process might cause such process
to crash, but it will not be able to harm any other parts of
the system since it is maintained within a safe sandbox. This
also keeps malicious code from executing outside of the user
space and potentially corrupting the integrity of the operating
system. In a sense, the sandbox can be viewed as a reference
monitor that keeps checks the validity of every request to
system components and resources.

1) Chromium Security: Process sandboxing is a not a
new way of implementing process isolation (in fact, it’s the
same idea used in iOS), but the implementation specific to
Chromium does include some interesting features that make it
secure. Specifically, sandboxing in Chromium is implemented
following four key design decisions [17]:

1) Mandatory access control for processes
2) Control group filtering and resource abuse constraints
3) Chrooting and process namespacing
4) Media device interposition
Mandatory access control for processes is an obvious secu-

rity practice by which the operating system limits or constrains
processes from performing certain operations on other system
objects (including other processes). The policy set in place for
access control was delegated to the operating system designers
and is not modifiable by the users.

Control group device filtering is another useful security
practice by which devices connected and internal to the system
are separated by the privilege at which processes and users can
access them. For instance, it might require a higher privilege
to access the web-cam on a Chromium device than it does
to access the hard drive (as all processes generally reside
in RAM). The use of these devices is also limited so as to
avoid starvation among other processes and overuse by a single
process.
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Figure 10: The Chromium process sandboxing scheme from the perspective of the user and the system. Note the varying
degrees of read/write access that exist between the processes.

Finally, media device interposition, as the description im-
plies, is the practice by why the operating system places
protection barriers around media devices connected to the
system. This reduces the possibility of malicious content on
such devices causing damage to the rest of the system.

Sandboxing is managed entirely by the Chromium kernel,
which is obviously part of the TCB. Since the sandboxing
mechanism has been verified and is trusted, it is guaranteed
to keep processes at a safe state throughout the lifetime of the
operating system.

Some other OS hardening technique implemented by
Chromium include file system restrictions and kernel hard-
ening and configuration pairing. At the file system level, there
are several key features implemented that serve to prevent the
execution of code that could damage or corrupt the operating
system and thwart attempts to escalate user privileges. Some of
these include using a read-only partition for the root directory
and prohibiting the presence of executable (privileged or not)
and device nodes within a users home directory.

Kernel hardening and configuration pairing simply refers
to the idea that security policies and mechanisms that govern
the kernel are directly paired with a specific configuration of
such kernel. If the system is updated securely (a procedure

discussed in the next section), then the new configuration is
paired with the new kernel image.

Another security strength of Chromium is its secure update
procedure. Malicious attackers will often try to circumvent
the update procedure of an operating system by injecting
malicious code into forged update packages. From the user’s
perspective, these updates will look benign. However, once
installed, the system’s integrity is compromised without the
user’s knowledge.

Chromium’s secure update procedure is a mechanism that
thwarts such attacks. The techniques used to implement this
feature are very simple and heavily based off of authenti-
cation and verification procedures provided by cryptographic
primitives. For example, the system will only allow users to
install updates that digitally signed by a legitimate source and
downloaded over SSL. The digital signature alone would be
enough to thwart update forgery attacks. However, using the
SSL protocol to transfer update files is just an added layer of
security that keeps the user safe. In addition to this feature,
the update security policy also dictates that update versions
can only forwards, never backwards, and the integrity of such
updates is always verified on boot-up.
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Verified boot is a form of self-test that uses a two-fold
verification procedure at the firmware and kernel level to
ensure code and data loaded from the operating system is
correct and trusted (essentially, verifying that the TCB has
not been compromised) [17]. It is a means of getting crypto-
graphic assurance that the TCB of the system has not been
compromised either intentionally or accidentally.

The firmware-based verification consists of the following
steps:

1) Read-only firmware checks writable firmware with a
permanently stored key

2) Writable firmware then checks other non-volatile mem-
ory, including the bootloader and kernel

Similarly, kernel-based verification consists of authentica-
tion and integrity checks on system files and metadata on the
root file system. Blocks of data in the file system are verified
using cryptographic hashes stored after the root file system on
the system partition.

One useful characteristic of separating kernel and firmware
verification routines is that there are no dependencies between
them, so firmware-based verification is compatible with any
trusted kernel. If any of these verification steps fail then the
user is given the choice of continuing as normal or recovering
to a safe state, which is done by loading a safe configuration
from read-only, non-volatile memory.

E. Android
Android has become an extremely popular and ubiquitous

computing platform for embedded and mobile devices. It is
an open source software stack with an operating system,
middleware, and key applications. It is built upon the Linux
kernel for key features such as security, memory management,
process management, network stack, and the driver model.

The Android framework is outlined in figure (11) [18].
Notice how the stack is organized in such a way that user-
level applications lie at the top, and the services and devices
that they use lie below. This organization scheme ties in nicely
with the privilege system that governs application and user
permissions in the system.

Android security is delivered in a multi-tiered design with its
foundation in the Linux kernel. Higher layers in the software
stack contain the other components of the security architecture,
including application signatures, user identification and file
access, and permissions.

Android is a privilege-separated operating system, meaning
that each application runs with a unique identity (user ID
and group ID). In addition, parts of the system are also sep-
arated into distinct identities. Therefore, identification-based
partitioning provided by the Linux kernel isolates applications
from each other and from the system critical components.
This behavior is similar in nature to sandboxing, a technique
utilized by other operating systems (such as Chromium) [18].

One implication of the application sandboxing design pat-
tern is that applications must explicitly share resources and
data with each other. This is done by application developers
through the use of XML-based permissions (shown below),
which extend the capabilities of an application beyond what
is typically allowed by the sandbox.

Listing 7: Android Permissions

<m a n i f e s t xmlns : a n d r o i d =
” h t t p : / / schemas . a n d r o i d . com / apk / r e s /
a n d r o i d ”
package =”com . a n d r o i d . app . myapp”>
<uses−p e r m i s s i o n a n d r o i d : name=

” a n d r o i d . p e r m i s s i o n . RECEIVE SMS” />
. . .

</ m a n i f e s t>

These permissions are statically declared when the ap-
plication is installed, which makes users subject to social
engineering techniques that try to trick them into installing
malicious applications. However, to help mitigate this threat,
all applications must be signed using a private key held by
the developers. This certificate is used to verify the identity of
the developer. Using these certificates the operating system can
determine the access rights based on the application signatures.

One caveat of application sandboxing is that the kernel
is only responsible for keeping processes separate; it is not
a security boundary. The Dalvik virtual machine (a custom
register-based Java virtual machine optimized for mobile de-
vices) that drives the Android runtime will execute any byte
code instructions it is given. Furthermore, any application
can run native code (implemented using the Android Native
Development Kit) [19]. This means that the strict use of both
permissions and application sandboxing is the key to security
in Android; not one or the other.

F. Security-Enhanced Linux

Security-Enhanced Linux, or SELinux, is a feature of the
Linux kernel that provides mechanisms for supporting DoD-
style mandatory access controls through the use of Linux
Security Modules (LSMs) inside the Linux kernel. It is not
a Linux distribution, but rather a set of features utilized by
*nix-based kernels. The SELinux architecture is an attempt
to enforce software security policies outlined in the Trusted
Computer System Evaluation Criteria (often referred to as the
Orange Book).

SELinux provides the following security policy features:
1) Clean separation of policy from enforcement
2) Well-defined policy interfaces
3) Support for policy changes
4) Individual labels and controls for kernel objects and

services
5) Separate measures for protecting system integrity and

data confidentiality
6) Controls over process initialization and inheritance, file

systems, directories, files, sockets, messages, network
interfaces, and use of system object capabilities

The reader is referred to [20] for a more thorough descrip-
tion of SELinux.

G. Cloud Operating Systems

With the advent of cloud computing in recent years, operat-
ing systems have started to separate from the user’s machines
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Figure 11: The Android software stack.

and migrate into the cloud to provide a seamless, scalable,
and on-demand environment for application deployment. In
this computing paradigm the user is no longer responsible for
managing their own hardware or underlying system software,
as both of these items are the located within the cloud.
Furthermore, applications are no longer installed and run on
the user’s local machine. In this way, the cloud provides
applications and software as a service through which the users
securely access using a light-weight client (typically a web
browser).

The framework on top of which these applications are
deployed is the cloud operating system. It provides the com-
putational and storage resources for any application that is
located within the cloud. Additional functions and services
are available depending on the flavor of operating system, but
these two are the basis for most distributions. The goal of these
operating systems is to remove the overhead and tediousness of
configuring hardware and system software and focus the effort
of the developers on what matters most - the applications.

Cloud operating systems are specifically designed to man-
age and abstract large collections of computational power and
storage (e.g. CPUs, storage, networks) into dynamic operating
environments that are used on demand. In contrast to tradi-
tional operating systems that are responsible for managing the
resources of a single machine (or multiple machines connected
through a network), cloud operating systems are responsible
for managing the complexity and resources of a data center. In
addition, they are platforms that provide developer-accessible
services for creating applications and storing data.

Security is an important issue that cloud operating systems
must consider very carefully. Since user applications and data
are run in the cloud and can be accessed from any terminal

with a network connection, there is an obvious need to ensure
that only authenticated users can access this information (iden-
tity management). This is typically done through the use of
cryptographic primitives (e.g. PKI schemes, digital signatures
and certificates, password- and key-oriented protection) to
enforce user authentication.

Protection mechanisms similar to those provided by tradi-
tional operating systems are also implemented to segregate the
data that belongs to different users. These protection schemes
rely on authentication to ensure users can only access their
own data and on the storage management mechanisms to
physically separate data within the cloud computing fabric. If
user data requires additional security (e.g. more than protection
from other user data) it can be encrypted at the different stages
within the cloud for added privacy. This is a standard practice
that all critical applications (e.g. online bank services) employ
to keep their data safe.

The use of communication protocols such as SSL are also
employed as an additional level of security. The idea is to
design security in independent layers so breaches in one layer
will not compromise or impact lower layers. Additional secu-
rity mechanisms such as application isolation, data availability,
access control for storage services, and even network traffic
filtering are provided depending on the specific cloud service
provider and operating system.

At a fundamental level, most security policies are enforced
with public key cryptographic primitives. Since the cloud data
centers store almost every portion of an application (code, data,
metadata, etc.), user authentication and data privacy are two
security goals that must be fulfilled in any cloud computing
environment. More advanced cryptosystems that would pro-
vide data security and privacy, such as fully homomorphic en-
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Figure 12: The Windows Azure platform, consisting of the
Windows Azure system, AppFabric, SQL Azure, and the
Azure Marketplace.

cryption, have been a topic of research for many years. While
such systems would greatly simplify the security policies and
implementation schemes for cloud computing environments
by offloading data privacy to the users, this system is really
only a theoretically nice idea at this point in time. Currently,
there does not exist a practical fully homomorphic encryption
scheme for use in cloud operating systems.

1) Windows Azure: Azure is a state-of-the-art cloud oper-
ating system platform that is composed of the our parts shown
in figure (12) [21].

1) Windows Azure - the Windows environment for run-
ning applications and storing data on computers con-
nected to Microsoft datacenters.

2) SQL Azure - relational data services in the cloud based
on Microsoft’s SQL Server.

3) Windows Azure AppFabric - cloud-based infrastruc-
ture services for applications running in the cloud or on
premises.

4) Windows Azure Marketplace - online service where
users can purchase cloud-based data and applications.

This analysis will focus solely on the Windows Azure
platform and its security properties. The reader is referred to
[21] for a more thorough description of the other components.

2) Windows Azure Platform: The purpose of the Azure
platform is simple: run Windows applications and store data in
the cloud. Internally, however, it is quite sophisticated. There
are five parts of Azure that work together to provide the
framework for application deployment and data storage: 1)
computation service, 2) storage service, 3) fabric controller,
4) content delivery network (CDN), and 5) connect service.
The compute part is responsible for actually running Windows
applications on an instance of Windows Server. This means
that developers can write their applications using a variety of
different languages, including C#, C++, Visual Basic, and Java.
Additionally, applications can take advantage of the .NET
framework that is provided by Windows Server.

The storage component is responsible for allowing the
application developers to store large objects (referred to as
blobs) and access them using a standard querying language.
It is important to note that this is not a traditional relational
database, so if developers are in need of such storage they can

always use the SQL Azure component, which is discussed
later. Another unique property of this storage component
is that it can be accessed by both Azure and Windows
applications using a RESTful (Representational State Transfer)
protocol approach.

The fabric controller is a very important part of the Azure
platform. Again, one of the goals of the operating system is to
manage the complexity of large data centers that are composed
of copious amounts of computers connected together through a
network. The fabric controller serves to knit these individual
nodes together and provide them as a single computational
and storage unit on top of which the computation and storage
services are built.

Finally, the CDN is simply responsible for caching applica-
tion data to data centers that are closest to its users in order
to provide the fastest possible access time.

3) Windows Azure Security: At a bare minimum, Windows
Azure must provide confidentiality, integrity, and availability
of user data [22]. However, it must also provide built-in
accountability mechanisms that can be used by customers
to track the usage and administration of applications and
infrastructure components by themselves and Microsoft (since
all of the information is maintained on Microsoft datacenters).
Confidentiality is implemented using three different policies:
identity and access management that ensure only properly
authenticated entities are granted access to objects, isolation
to minimize interaction with data, and encryption to protect
control channels and provide further protection for user data.

Azure makes use of several different key-based authen-
tication schemes in order to enforce authentication of its
users. Such keys are comprised of Windows LiveIDs and
storage account keys that are granted on a per-customer basis.
The user is also allowed to enforce their own authentication
schemes within their applications to provide yet another layer
of protection.

Certificates and user private keys play a very important role
in the security framework of Azure. For example, users inter-
act with the cloud service through the Service Management
API (SMAPI) via the REST protocol over SSL [22]. These
channels are authenticated with certificates and private keys
generated by the users, so by maintaining the privacy of the
secret keys there is a very low probability that unauthorized
users will access their data. These certificates and private keys
are installed in the cloud via a mechanism that is separate from
the code that uses them. Both of these items are encrypted and
transferred over SSL to the cloud service to be stored in the
computing fabric, where the certificate and public key are also
stored.

Application code and data isolation is implemented in layers
in Azure at the operation system (hypervisor, root OS, guest
VMs), fabric controller, and network level (incoming and
outgoing packet filtering) [22]. The trusted computing base
for Azure is comprised of the root OS and hypervisor. All
of the user applications are deployed within guest VMs that
are layered on top of the TCB. Thus, the TCB is responsible
for enforcing VM isolation and separation. These separation
policies draw on the decades of operating system research in
the past and on Microsoft’s Hyper-V product.
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At the fabric controller level, communication between the
fabric controller and fabric agents (those services running on
virtual machines that serve users and guests) is unidirectional.
Specifically, the fabric agent provides an SSL-protected ser-
vice that is accessed by the fabric controller to pass requests
to the agent. The fabric agent cannot initiate communication
with the fabric controller or any other privileged internal node
running on another piece of fabric. After the fabric controller
receives a response from the agent it must be parsed as
though it is malicious in content or intent. In a way, the
fabric controller acts as a reference monitor for every response
generated by the fabric agents, which in turn helps mitigate
any potential threats to the fabric controller portion of Azure.

Finally, at the network level, packet filtering is utilized to
minimize the probability that untrusted virtual machines and
users generate spoofed traffic. User access to virtual machines
where their applications are deployed is very limited by this
filtering, which takes place at the edge load balancers and at
the root OS [22]. Features such as remote debugging, remote
terminal services, and remote access to VM file shares are
currently not permitted by default due to this filtering scheme,
but it is something that Microsoft is considering for future
releases. Also, user access to storage nodes that run on Azure
is very limited this filtering scheme so as to enforce strict
control policies for legitimate access to data stored in the
cloud.

Data privacy is enforced with the Advanced Encryption
Standard (AES), hash functions such as MD5 and SHA-2
(although these are likely to be replaced with the winner of the
SHA-3 competition), and pseudorandom number generators
to seed the other cryptographic primitives. Furthermore, basic
key management schemes, some of which probably rely on
Diffie Hellman key management and distribution, are em-
ployed to allow authenticated users and the cloud service to
manipulate keys within the storage service.

V. DESIGN PROPOSALS

This section outlines my design proposals for an experimen-
tal operating system. These ideas stem from my analysis of
program and operating system security, as well as the various
case studies I have explored throughout the course of my
research. For the sake of brevity, these design features are
simply listed below. The next stage of this project will be to
experiment with these concepts in a working system.

1) Strong, verified separation of concerns between applica-
tion and system software

2) Secure communication channels between OS objects
(processes, device drivers, kernel, etc.)

3) Create a sandbox around each process and enforce
communication using message passing queues

4) Unique identity of all processes and components in the
system

5) Static enforcement of message passing scheme between
processes

6) Completely verifiable design and implementation using
formal method tools and techniques

7) Encrypted boot and kernel read-only memory (enforced
by hardware) for kernel integrity and establishment of
TCB

8) Abstraction of system hardware configuration from OS
9) Fault tolerance between components of the system (think

QNX-type separation with the microkernel at the base
of it all)

10) Limited dynamic code loading and shared libraries
11) Interface between processes and kernel with an efficient

and secure API
12) Information sent across channels and enforcement of

that policy
13) Managed language, compiler, and runtime (think

C#/CLR and Java/JVM) as the basis for all applications
14) Permissions-based capabilities for access to hardware

devices (ACL) based on cryptographic certification of
identity
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