The security kernel approach provides controls
that are effective against most internal attacks—including some
that many designers never consider.
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Providing highly reliable protection for computerized
information has traditionally been a game of wits. No
sooner are security controls introduced into systems than
are penetrators finding ways to circumvent them. Securi-
ty kernel technology provides a conceptual base on which
to build secure computer systems, thereby replacing this
game of wits with a methodical design process. The
kernel approach is equally applicable to all types of
systems, from general-purpose, multiuser operating
systems to special-purpose systems such as communica-
tion processors—wherever the protection of shared in-
formation is a concern.

Most computer installations rely solely on a physical
security perimeter, protecting the computer and its users
by guards, dogs, and fences. Communications between
the computer and remote devices may be encrypted to
geographically extend the security perimeter, but if only
physical security is used, all users can potentially access
all information in the computer system. Consequently,
all users must be trusted to the same degree. When the
system contains sensitive information that only certain
users should access, we must introduce some additional
protection mechanisms. One solution is to give each class
of users a separate machine. This solution is becoming
increasingly less costly because of declining hardware
prices, but it does not address the controlled sharing of
information among users. Sharing information within a
single computer requires internal controls to isolate sen-
sitive information.

Continual efforts are being made to develop reliable
internal security controls solely through tenacity and
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hard work. Unfortunately, these attempts have been uni-
formly unsuccessful for a number of reasons. The first is
that the operating system and utility software are typical-
ly large and complex. The second is that no one has
precisely defined the security provided by the internal
controls. Finally, little has been done to ensure the cor-
rectness of the security controls that have been im-
plemented.

The security kernel approach described here directly
addresses the size and complexity problem by limiting the
protection mechanism to a small portion of the system.
The second and third problems are addressed by clearly
defining a security policy and then following a rigorous
methodology that includes developing a mathematical
model, constructing a precise specification of behavior,
and coding in a high-level language.

The security kernel approach is based on the concept
of the reference monitor, an abstract notion adapted
from the models of Butler Lampson.! The reference
monitor provides an underlying security theory for con-
ceptualizing the idea of protection. In a reference
monitor, all active entities such as people or computer
processes make reference to passive entities such as
documents or segments of memory using a set of current
access authorizations (Figure 1). Of particular impor-
tance is that every reference to information (e.g., by a
processor to primary memory) or change of authoriza-
tion must go through the reference monitor.

The security kernel is defined as the hardware and soft-
ware that realize the reference monitor abstraction. To
successfully implement a security kernel, we must adhere
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to three engineering principles: (1) completeness, in that
all access to information must be mediated by the kernel;
(2) isolation, in that the kernel must be protected from
tampering; and (3) verifiability, in that some cor-
respondence must be shown between the security policy
and the actual implementation of the kernel. The com-
pleteness and isolation requirements are best addressed
with an adequate hardware foundation. A formal devel-
opment methodology can be a powerful tool for address-
ing the verifiability requirement.

Schell first introduced the security kernel concept in
1972 as ‘‘a compact security ‘kernel’ of the operating
system and supporting hardware such that an antagonist
could provide the remainder of the system without com-
promising the protection provided.”” In 1974, Mitre
tested the hypothesis that such a security kernel could ac-
tually be constructed. The first security kernel consisted
of less than 20 primitive subroutines that directly man-
aged the physical resources and enforced protection con-
straints. The entire security kernel contained fewer than
a thousand compilable high-level language statements
and ran on a DEC PDP-11/45.

To demonstrate this kernel, Mitre also constructed a
simple, experimental operating system along with ap-
plications for a practical military example. The operating
system had a hierarchical file system, cooperating pro-
cesses with controlled information sharing, and inter-
faces to a few interactive terminals. The operating system
and applications were outside the kernel and could not
impact the information protection provided by the
kernel.

Since this initial prototype effort, a number of re-
search efforts have dealt with the issues of security kernel
construction and verification. Today, a few security-
kernel-based products are being introduced commercial-
ly. One such system, the Honeywell Secure Communica-
tions Processor (Scomp), is discussed by L. Fraim? (see
the article in this issue); others are surveyed by C. Land-
wehr? (also in this issue).

Basic principles

The first step in developing a kernel-based system is to
identify the specific set of protection policies to be sup-
ported. A given system is ‘‘secure’’ only with respect to
some specific policy. In a computer system, a well-
formed protection policy should identify all the permissi-
ble modes of access between the active entities, or sub-
jects, and the passive entities, or objects. The external
policy that corresponds to the people, paper, and
methods of accessing information in the real world must
be interpreted in a way that allows the policy to apply to
the internal entities of the computer system.

This requirement—that policy be precisely defined—is
a primary distinction between a security-kernel-based
system and several other efforts to develop security-
relevant operating systems, such as ‘‘capability’’ ma-
chines.* These other systems tend to strive for general-
purpose protection, yet do not have any definitive
criteria for what is security relevant. The mechanisms in
these systems essentially provide a computer with special
security features. By contrast, the security-kernel ap-
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proach explicitly addresses both policy and mechanism.
If general-purpose protection mechanisms are well-
defined and augmented to enforce a specific policy,
however, they can provide an underlying base for subse-
quent security kernel construction.

A formally defined security model. We need to define
two types of policy: nondiscretionary and discretionary.
A nondiscretionary policy contains mandatory security
rules that are imposed on all users. A discretionary
policy, on the other hand, contains security rules that can
be specified at the option of each user.

The protection policy enforced by a security kernel is
encapsulated in a set of mathematical rules that con-
stitute a formal security model. Both discretionary and
nondiscretionary policies must be addressed by the rules
of the model.

In determining whether the model of a policy is suffi-
cient, we need to consider two key issues, which occa-
sionally have been a source of misunderstanding. First, a
model of a policy must define the information protection
behavior of the system as a whole. Merely modeling dis-
tinct operations with respect to individual assertions
about a protection mechanism does not indicate much
about overall system security and can, in fact, be mis-
leading. Second, a model of a policy must include a
‘‘security theorem’’ to ensure that the behavior defined
by the model always complies with the security require-
ments of the applicable policy.

The model enforced by most security kernels has been
derived from early security kernel work at Mitre> and
Case Western Reserve University.® Commonly referred
to as the Bell and LaPadula model, this model provides
rules for preventing unauthorized observation and modi-
fication of information. By representing the security
kernel as a finite state machine, these rules define allow-
able transitions from one ‘‘secure’’ state to the next.
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Figure 1. Reference monitor. The security kernel ap-
proach is based on the concept of a reference monitor, in
which active entities (subjects) make reference to pas-
sive entities (objects) using a set of access authoriza-
tions (reference monitor database).
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Within the model, each subject and object of the ref-
erence monitor is given a security identifier termed an ac-
cess class. The access classes of subjects and objects are
compared at each state transition to determine whether a
subject is allowed to access an object. By organizing the
access classes in the form of a mathematical structure
called a lattice, a wide range of potential policies can be
supported. The lattice defines the relations among access
classes, allowing us to determine whether one access class
is less than, greater than, equal to, or disjoint from (not
comparable to) another. Examples of environments in
which access classes form a lattice include the privacy
protection compartments of medical data, financial
data, criminal records, and the hierarchical government
security classifications.

The protection policy enforced by a security
kernel is encapsulated in a set of
mathematical rules that constitute a formal
security model.

Of the model’s nondiscretionary rules, two are funda-
mental. The first, called the simple security condition,
states that a subject cannot observe the contents of an
object unless the access.class of the subject is greater than
or equal to the access class of the object. This simple
security condition prohibits users from directly viewing
data that they are not entitled to see.

The second basic nondiscretionary rule, the *-property
(pronounced ‘‘star’’ property) rule, helps to prevent all
illicit indirect viewing of objects. It stipulates that a sub-
ject may not modify an object unless that object’s access
class is greater than or equal to the access class of the
subject.

The purpose of the *-property is to explicitly address
the problem of ‘‘Trojan horse’’ software, which as the
name implies is software that appears legitimate but in
fact is designed to do something illicit in addition to its
normal function. For example, any generally used soft-
ware utility, such as a text editor or compiler, has the
potential for accessing a user’s files in a manner the user
might not have intended. A Trojan horse implanted in a
text editor could make illicit copies of a user’s file and
store the information in a file belonging to an unauthor-
ized user, all unbeknownst to the original user.

The Trojan horse problem is serious when highly sen-
sitive information is involved, especially on large systems
where the programmer responsible for a given utility pro-
gram cannot always be determined. A person is, of
course, charged with the responsibility for maintaining
the confidentiality of information, but a computer utility
such as a text editor cannot necessarily be given the same
trust. The reason is that we may have no practical way to
determine whether the utility contains a Trojan horse.

With the *-property, information cannot be compro-
mised through the use of a Trojan horse. Under this rule,
the program operating on behalf of one user cannot be
used to pass information to any user having a lower or
disjoint access class.

The simple security condition and the *-property are
primarily to prevent the unauthorized disclosure of in-
formation, but the model also includes integrity proper-
ties to protect information from improper alteration. In-
tegrity rules prevent subjects with a given integrity class
from modifying objects of higher integrity or being af-
fected by objects of lower integrity.

The nondiscretionary rules of the model do not pro-
vide a protection policy that distinguishes different users
within the same access class. Discretionary rules are in-
cluded in the model to provide that type of protection
policy. The discretionary rules of the Bell and LaPadula
model allow authorized users and programs to arbitrarily
grant and revoke access to information based on user
names or other information. Since discretionary controls
are more or less arbitrary, we cannot make very many ab-
solute statements about the movement of the informa-
tion. In particular, the Trojan horse attack is more dif-
ficult to address under these controls than under non-
discretionary controls. Therefore, the latter, being much
stricter, always takes precedence.

In addition to the threats of improper disclosure or
modification of information, we have a threat known as
denial of service (e.g., crashing the system or making it
unresponsive), which most security models such as the
Bell and LaPadula model do not explicitly address.
While a kernel-based system is likely to withstand this
threat at least as well as any conventional system, rules
dealing with denial of service are more difficult to for-
malize in a model.

Faithful implementation. The mathematical model
aids in identifying the types of functions that a kernel
should provide. It does not, however, specify the design
for the applications interface to the kernel. To bridge the
gap between model and implementation, the develop-
ment process must be broken into small steps. One com-
mon technique is to apply a hierarchy of abstract specifi-
cations to the design of the security kernel. For each step,
it is important to demonstrate security so that we have
confidence in the security of the final system.

We can use numerous formal and informal methods to
demonstrate security with varying degrees of confi-
dence—the reference monitor concept does not mandate
any one approach. However, early in the formulation of
the kernel approach, we recognized that formal specifi-
cation and mathematical verification had the potential
for providing real proof that the implementation of the
kernel faithfully followed the rules of the model. These
formal methods have since been applied to various de-
grees in demonstrating the correspondence between the
model, the hierarchy of specifications, and the high-level
language implementation (Figure 2).

As with any operating system design effort, preparing
the specifications is a creative activity, molded by the
particular design and security goals of the system. The
most abstract kernel specification defines all the kernel’s
interface characteristics. We can use this high-level speci-
fication to judge functionality as well as to demonstrate
that the interface preserves the rules of the model. Once
the interface functionality is specified abstractly and its
security properties are precisely established, we can ex-
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pand the functionality by gradually introducing more im-
plementation detail. This process is done without affect-
ing the validity of the security properties already
established. (For examples of systems that use formal
specification techniques, see the article by Landwehr in
this issue.)

Three classes of formal verification techniques have
been applied to different stages of kernel development
(Figure 2), and several techniques are available within
each class. The first class is used to prove that the
kernel’s intended behavior, as described in the formal
high-level interface specification, is secure with respect to
the policy model. One common technique, security flow
analysis, is a relatively simple way to identify and analyze
information flows in a specification.” Note that only the
security of the interface specification must be demon-
strated, not the more difficult problem of its functional
‘“‘correctness,”’ since functional properties, most of
which are not security related, are not addressed by the
model.

In the second class of formal verification techniques,
we verify the correspondence or correctness of mappings
between any intermediate specifications in the hierarchy
and the interface specifications. Finally, a third class of
verification techniques, the most traditional way to
prove correctness, shows that the kernel implementation
corresponds to its specification.

Cheheyl et al. have documented a survey of current
verification systems covering most of these techniques,
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Figure 2. Development and verification hierarchy.

July 1983

along with their application to Department of Defense
security policy.® Walker et al. describe an example of a
formal specification and verification.®

Implementation considerations

To successfully realize a kernel-based system, we must
take into account architectural and engineering consider-
ations that may not be encountered in the development
of other systems. Although the kernel approach can be
applied to all types of systems, these considerations are
best illustrated in the context of a general-purpose
operating system with online, interactive users (Figure 3).
The kernel, as already noted, provides a relatively small
-and simple subset of the operating system functions. The
kernel primitives are the interface of this subset to the
rest of the operating system (generally referred to as the
supervisor). In turn, the supervisor primitives provide
the general-purpose operating system functions used by
the applications.

Kernel/supervisor trade-offs. An operating system is
usually broken down into functional areas, such as pro-
cess management, file system management for segments,
and I/0 control. Within each area, some functions are
clearly security relevant and must be in the kernel, while
some are not. The rules of the policy model help to clear-
ly identify which functions are security relevant.

APPLICATIONS

}:\\“G SYSTEM w ’59
e

SUPERVISOR

%‘\L - TE/“
é‘/ »

Figure 3. Structure of a kernel-based operation system.
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The kernel must handle the parts of an operating sys-
tem that manage resources, such as memory and disk
space, shared by multiple users. These parts are in the
kernel because the model requires that these resources be
virtual to hide their location from untrusted (nonkernel)
software. The functions that provide useful common
utilities but do not manage anything shared among users
and those that address denial of service are outside the
scope of the security policy and can generally be in the
SUpervisor.

In practice, we can usually apply the details of the
model and a particular security policy to determine what
must be in the kernel and what must be in the supervisor.
However, issues such as performance and functionality
often force us to consider engineering problems that
necessitate putting non-security-related functions in the
kernel. We might have trouble, for example, separating
the operating system’s file-name interpretation mecha-
nism, which may not be security relevant, from the ker-
nel’s file management system. We must constantly make
trade-offs among performance, functionality, and com-
plexity when designing a kernel-based system. Trade-offs
are especially important when the system is emulating a
previously existing operating system whose functions
may not be easy to reallocate.

The kernel must handle the parts of an
operating system that manage resources
shared by multiple users.

Trusted subjects. Most systems require a security
policy that is more specifically tailored to their needs
than that defined by the basic security model. This tai-
lored policy is generally exercised on a limited basis for
infrequent operations and may apply only under special
circumstances or to a special class of users. A kernel that
implements such an extended policy will usually provide
a set of interfaces that can be invoked only by certain
trusted subjects (Figure 3), that is, software it recognizes
via some internal identifier, such as a privilege indicator.
When a running program has such privileges, it may be
able to perform actions not permitted by the access

checks built into normal kernel functions.

Trusted subjects usually perform system maintenance
and are needed to control the access policy that the kernel
enforces for untrusted subjects. For example, a security
officer must be given access to maintain the table that the
kernel uses to specify access classes of users. Software the
security officer uses for this purpose is a trusted subject.
Sometimes normal users invoke certain trusted subjects
to perform security-sensitive functions. For example,
since the basic security model does not allow an un-
trusted subject to lower the access class of information,
the occasional need for downgrading a segment that a
user accidentally overclassifies is satisfied by providing a
trusted subject for the user.

Trusted subjects are often implemented as asynchro-
nous processes, called trusted processes, or as extensions
of the kernel itself, called trusted functions. Regardless
of the implementation technique, trusted subjects must

adhere to the same engineering principles as the kernel if
the security policy is to be correctly implemented. Other
than the implementation technique, the only difference is
the specific security policy enforced.

Hardware/software features. The kernel approach
may need considerable hardware support to achieve
adequate performance. The amount of hardware sup-
port is bounded by two extremes. At one extreme, the
kernel can be built entirely in software on any conven-
tional machine so that the kernel runs as a pure inter-
preter, executing and checking every user instruction and
permitting no direct user execution of hardware instruc-
tions. In this case, no particular security demands are
placed on the hardware architecture other than the re-
quirement to execute the kernel software correctly. At
the other extreme, all the kernel functions can be imple-
mented as hardware instructions; in this case the hard-
ware architecture would be completely responsible for
security. As with the supervisor/kernel trade-offs, the
specific choices are heavily influenced by the trade-offs
among complexity, size, and performance. In this article,
we examine only a pragmatic middle ground, one close to
a traditional view of the functional division between the
hardware and the operating system software.

The hardware features and software mechanisms nec-
essary for a kernel-based operating system to perform
adequately are sophisticated but not exotic. The specific
hardware features desirable for a kernel-based system are
provided in many (but by no means all) modern com-
puter architectures, from microprocessors to main-
frames. Several past and ongoing kernel implementa-
tions have resulted in significant performance degrada-
tion from the lack of adequate hardware. However, with
appropriate hardware, we see no reason that a kernel-
based operating system should perform any worse than a
non-kernel-based system with similar capabilities. R.
Schell gives a specific example of the features necessary
to implement a microprocessor-based kernel in another
article in this issue. !0

There are four general architectural areas in which
specific hardware and software mechanisms have proved
useful or necessary to support a kernel-based general-
purpose operating system (for special-purpose kernels,
some of these mechanisms might be less appropriate):

® explicit processes—efficient support for multiple
processes (multiprogramming) and interprocess
communication;

* memory protection—large segmented virtual mem-
ory, access control to memory, and explicitly identi-
fied objects;

® execution domains—minimum of three states or do-
mains (user, supervisor, and kernel) and efficient
transfer of control between domains; and

® [/0 mediation—control of access to I/0 devices, to
external media, and to memory by I/O processors.

Although most of these mechanisms are familiar internal
components of many current commercial operating sys-
tems, their impact is quite hidden from the users, and
they are usually of interest only to system designers.
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Explicit processes. The reference monitor’s notion of a
subject is traditionally realized in most operating systems
as a process that operates as a surrogate for some user.
The user’s identification and access class must therefore
be represented within the system as nonforgeable (and
unalterable) identifiers tied to each process. The iden-
tifiers become the basis for making access decisions with
respect to discretionary and nondiscretionary policies.

By process we mean the activity of a processor carrying
out the computation specified by a program, the pro-
cessor being either a computation or I/0 processor. For
information protection to be meaningful, an on-line en-
vironment must of course include multiple users, so the
kernel must support multiple simultaneous processes.
This requirement mandates that the kernel save and re-
store the representation of a process in execution, other-
wise known as the state of the processor. Depending on
when a process is allowed to be suspended, this state may
include the internal state of the CPU, the user-visible
processor registers, or merely the instruction counter. In
addition, the architecture must provide a means of sav-
ing and restoring a definition of the accessible informa-
tion (i.e., the address space) distinct for each process.
The address space is typically defined by a set of de-
scriptors, as we discuss later in the section on memory
protection.

Because of the multiplicity of simultaneous processes,
a kernel-based operating system typically has a large
number of process switches, and an efficient process-
switching mechanism is desirable. This mechanism can
be supported in a number of ways: we can use high-speed
memory instead of explicit processor registers, or we can
load and store processor registers as a block or even have
several independent sets of registers in the processor. The
efficient switching of address spaces can be aided by us-
ing a descriptor base or root register instead of copying
memory descriptor tables, or by simultaneously retaining
several sets of descriptors.

In addition to the multiprogramming support, we need
direct support for interprocess communication. Par-
ticularly for multiprocessor configurations, we need a
race-free communication mechanism (e.g., read-alter-
rewrite memory access) as well as a processor-to-process-
or interrupt capability. Note that an I/0 initiation in-
struction is primarily a mechanism for directing an inter-
rupt to an /O processor. More sophisticated hardware
mechanisms, such as operations to assist process syn-
chronization, can also contribute to kernel simplicity and
performance.

Memory protection. The reference monitor abstrac-
tion of a storage object is usually realized by memory,
and this realization is constrained by the principle of
completeness identified earlier. Clearly, some fundamen-
tally interpretive mechanism is needed to completely
mediate all access to memory. Virtual memory is com-
monly used to accomplish the needed mediation. In a vir-
tual memory system, some form of descriptor is used to
control the access to memory. There must be no way out-
side the kernel for a process to access memory without
using a descriptor.
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With a reference monitor, all information within the
system must be represented in distinct, identifiable ob-
jects. In all but the simplest case, the virtual address
space of a process includes more than one object, each
with distinct logical attributes such as size, access mode,
and access class. This logically distinct memory is com-
monly called a segment.

With a reference monitor, all information
within the system must be represented in
distinct, identifiable objects.

Hardware-supported segmentation of virtual memory
is the underlying mechanism to support this concept.
Each segment is identified by a descriptor that controls
the virtual-address-mapping hardware. The descriptor
contains some logical attributes as well as a physical base
address and a segment size (or bound) to distinguish each
segment. Complete access mediation is provided, since
for each access to virtual memory the hardware must in-
terpret the relevant descriptor.

Two factors are quite important in supporting an effi-
cient and simple secure system: (1) each process should
be able to have a relatively large number of independent
segments, and (2) any segment should have a wide range
of possible sizes. These requirements tend to result in a
large number of segment descriptors for each process. A
high-speed associative cache memory can be useful to
speed address translations without requiring software to
reload descriptors on each process switch.

Architectures in which a process’s view of virtual
memory is not segmented but is simply a large, linear ad-
dress space, with no portion shared by other processes,
are often compatible upgrades to older systems without
virtual memory. Although kernel-based systems can be
and have been built on such architectures, considerable
flexibility (and resulting performance) can be lost
because of the inability to directly address different
segments with differing access rights.

To implement typical discretionary and nondiscre-
tionary access policies of the reference monitor, the seg-
ment descriptor must support distinct access modes of at
least null, read, and read-write for each segment.

Overall system performance can often be enhanced by
including a referenced and modified flag for each block
of physical memory. This enhancement permits more ef-
ficient operating system memory management schemes
when information must be moved back and forth be-
tween primary memory and secondary storage.

The segment descriptors are, of course, managed by
the security kernel software, although much of the actual
mediation of the reference monitor is performed by the
address-mapping hardware. Since address mapping re-
quires an examination of the descriptors, the hardware
can conveniently check access using information in the
descriptor at the same time with no additional perfor-
mance penalty. The security kernel software enforces
reference monitor authorizations by controlling the ac-
cess mode specified in the descriptors for all segments of
each process.
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Even if all access to segments is fully controlled, the
kernel designer may encounter a major pitfall: the possi-
bility that information will be leaked unintentionally
through the use of control information. Control infor-
mation consists of items that are not memory objects in
the usual sense but are shared repositories of informa-
tion. They include items maintained within the kernel
database, for example, file names and attributes, system
variables such as the number of users logged in, and the
sizes of message queues. Although these items are not
within the hardware-supported virtual address space,
they are objects to the reference monitor, and thus the
kernel must mediate access to each of them in the same
way that it controls access to segments. Access to most of
these items is usually done interpretively through explicit
kernel calls, rather than through hardware.

Any accidental leakage of information through the use
of control information should, of course, be detected by
appropriate design and verification techniques. The pit-
fall is the possibility that some fundamental aspect of the
design is based on (and in fact may depend on) this leak-
age. This issue must be recognized early in the design
because at a late stage of system development, the re-
moval of undesired leakage channels can be one of the
most difficult tasks a kernel designer can encounter.

Execution domains. Execution domains are essential
to the isolation and protection of the security kernel
mechanism. The total address space of a process includes
the programs and data of the security kernel, since these
must clearly be accessible when the security kernel func-
tions are invoked. Yet, the kernel also requires a distinct
execution domain so that a process can access some ob-
jects (most notably the segment descriptors) only when
executing in the kernel itself.

The simplest and most common domain structure is
made up of two hierarchical domains implemented by
privileged and nonprivileged modes of processor execu-
tion. The privileged domain contains only the kernel. Al-
though two domains are sufficient to protect the kernel,
the supervisor would have to reside in the same domain
as the applications software—a serious limitation. Oper-
ating systems traditionally reside in the privileged do-
main while the user applications do not. Thus, to retain
the benefits of separating the operating system from the
user, we need a minimum of three hierarchical domains:
kernel, supervisor, and user.

More general nonhierarchical domains could be useful
in simplifying the design of a kernel-based system. Do-
main and capability machines fall into this class. Work
on using a more general domain structure for kernel de-
velopment is now in the research stage.

A process typically experiences a large number of calls
to the kernel and supervisor, so we want mechanisms that
ease the transfer of program control between domains.
Entrance into the most privileged domain must, of
course, be limited to well-defined entry points. A com-
mon means of limiting entrance is by using a system or
supervisor fault or trap that transfers control to a known
location. However, kernel simplicity and efficiency are
improved if the hardware supports multiple entry points
in a fashion more like a procedure call, so that each

kernel function has a distinct entry point. The hardware
should also support some form of argument validation
(i.e., checking the validity of arguments passed by the ap-
plication or supervisor to the kernel) and stack manage-
ment for cross-domain calls. The Multics system employs
a particularly elegant and efficient hierarchical domain
architecture with domain-crossing hardware. !}

Input/output mediation. 1/0 in most machines can
take place in two fundamentally different ways. The
simplest way, often called ‘‘programmed 1/0,”’ requires
software to explicitly execute an I/O instruction to
transfer each byte or word of information between an
170 device and a register or memory. We must therefore
consider I/0 devices as objects within the reference
monitor framework; thus the kernel must control access
to these devices. Typically, we would restrict the use of
I70 instructions to the most privileged software domain
(i.e., the kernel), and allow user and supervisor software
to invoke kernel functions to perform I/O on their
behalf.

A more complex architecture for I/O provides inde-
pendent 1/0 processors that, once activated by the cen-
tral processor, asynchronously transfer information be-
tween devices and memory. This transfer of information
is specified by an explicit /0 program residing in mem-
ory or an implicit program (one built into the I/0 pro-
cessor) that is given parameters such as buffer and device
addresses. The kernel must consider I/0 programs in ex-
ecution, or I/0 processes, as subjects, and it must there-
fore control access to memory by 1/0 processors in the
same manner as it controls access to memory by the
CPU. As in programmed [/0, the conventional ap-
proach to handling this access control is for hardware to
limit initiation of 1/O processors (e.g., execution of a
start I/0 request) to the most privileged domain. I/0 re-
quests made by a user are in the form of kernel function
calls. These calls cause a check of the I/O program or pa-
rameters to ensure that both the I/0O devices and memory
segments containing the 1/0 buffers are accessible to the
user. The 1/0 processor itself, usually lacking multiple
domains, typically works entirely in the kernel domain
and uses physical memory addresses supplied by the
kernel. Consequently, the kernel must often translate
virtual addresses in the I/O program to physical ad-
dresses. Because of the sophisticated capabilities of some
170 processors, kernel checking of user-defined 1/0 pro-
grams can be a complex function.

Because of the complexity of handling 1/0, a hard-
ware architecture that allows direct user or supervisor do-
main access to 1/0 is desirable. Such an architecture
would provide some form of descriptor to control access
to the devices, in a manner similar to the use of memory
descriptors. In addition, for the I/0O processor to effec-
tively operate outside the kernel by accessing virtual
memory on behalf of the user, we need descriptor-con-
trolled access to memory by the 1/0 processor. Such a
capability is provided by the Scomp as discussed in the
article by Fraim, which appears in this issue.

A careful concept of 1/0 operation should be part of
the kernel development effort. We need to clearly distin-
guish between two device types: (1) external 1/0 involv-
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ing devices such as terminals, local printers, and tape
drives, which are effectively accessed by only one user at
a time, and (2) internal I/0 that includes devices such as
disk drives and their storage media, which the kernel
must manage because they can access information com-
mon to multiple users. For all removable I/0 media on
external devices capable of accessing information with
varying access classes, we need a trusted labeling tech-
nique to ensure that the access class of the medium is cor-
rectly marked, or that some operator is in control of the
access class of information accessible to the device. La-
bels can include, for example, nonforgeable banner
sheets on printer output and operator interaction with
the kernel for mounting tapes and removable disks.

Verification. Most kernel developments to date have
been accompanied by some degree of formal verifica-
tion. Some of the early promises of formal verification
were overstated—verification has turned out to be more
difficult than we expected.!? Formal verification of a
kernel involves problems of program correctness, and we
are still quite a long way from being able to prove the cor-
rectness of a large computer program. Because formal
verification technology has not fully matured, we need to
understand its current capabilities before defining re-
quirements for a major kernel development. Unrealistic
expectations for verification can turn a practical develop-
ment effort fully within the bounds of current technol-
ogy into a research effort that could consume unlimited
resources.
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The security kernel design approach is the most prom-
ising methodology currently available that can provide
both the internal security and the functional capabilities
that many of today’s computer systems need. This ap-
proach is based on a firm foundation and will support a
wide range of commercial and governmental informa-
tion protection policies. The kernel provides security
controls that are effective against most internal at-
tacks—including many that kernel designers never con-
sidered. Bugs of malicious software contained in applica-
tions, or even in the operating system, cannot cause un-
authorized access to information.

The overall trend in hardware and software technology
for computer systems is toward greater application of the
principles and features applicable to the kernel ap-
proach. We have in fact recently seen the emergence of a
security kernel in a commercial product (Honeywell
Scomp). The required hardware and operating system
technology is thus clearly within practical application. ll
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